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Abstract

We present new results on a number of fundamental problems about dynamic geometric data
structures:

1. We describe the first fully dynamic data structures with sublinear amortized update time
for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point
set, (ii) the largest empty circle for a 2D point set, (iii) the Hausdorff distance between
two 2D point sets, (iv) the discrete 1-center of a 2D point set, (v) the number of maximal
(i.e., skyline) points in a 3D point set. The update times are near n11/12 for (i) and (ii),
n5/6 for (iii) and (iv), and n2/3 for (v). Previously, sublinear bounds were known only for
restricted “semi-online” settings [Chan, SODA 2002].

2. We slightly improve previous fully dynamic data structures for answering extreme point
queries for the convex hull of a 3D point set and nearest neighbor search for a 2D point
set. The query time is O(log2 n), and the amortized update time is O(log4 n) instead of
O(log5 n) [Chan, SODA 2006; Kaplan et al., SODA 2017].

3. We also improve previous fully dynamic data structures for maintaining the bichromatic
closest pair between two 2D point sets and the diameter of a 2D point set. The amortized
update time is O(log4 n) instead of O(log7 n) [Eppstein 1995; Chan, SODA 2006; Kaplan
et al., SODA 2017].

1 Introduction

Background. Dynamic data structures that can support insertions and deletions of data have
been a fundamental topic in computational geometry since the beginning of the field. For example,
in 1981 an early landmark paper by Overmars and van Leeuwen [31] presented a fully dynamic
data structure for 2D convex hulls with O(log n) query time and O(log2 n) update time; the log2 n
bound was later improved in a series of work [9, 8, 14] for various basic types of hull queries, e.g.,
finding extreme points along given directions.

One of the key results in the area was the author’s fully dynamic data structure for 3D convex
hulls [12], which was the first to achieve polylogarithmic query and update time for basic types
of hull queries. The original solution required O(log2 n) query time for extreme point queries,
and O(log6 n) amortized update time. (A previous solution by Agarwal and Matoušek [5] had
O(nε) query or update time for an arbitrarily small constant ε > 0.) Recently Kaplan et al.
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[25] noted a small modification of the data structure, improving the update time to O(log5 n).
The result has numerous applications, including dynamic 2D nearest or farthest neighbor search
(by the standard lifting map). Another application is dynamic 2D bichromatic closest pair (i.e.,
computing minp∈P minq∈Q ‖p−q‖ for two planar point sets P and Q) or dynamic 2D diameter (i.e.,
computing maxp∈P maxq∈P ‖p − q‖ for a planar point set P ): Eppstein [22] gave a clever, general
technique reducing dynamic closest/farthest pair problems to dynamic nearest/farthest neighbor
search, which increased the update time by a log2 n factor; when combined with the above, this
yielded an O(log7 n) update time bound.

For many other problems, polylogarithmic update time appears more difficult, and getting
sublinear update time is already challenging. For example, in SoCG 2001, the author [10] obtained
a dynamic data structure for the width of a 2D point set with Õ(

√
n) amortized update time.1 (Part

of the difficulty is that the width problem is neither “decomposable” nor “LP-type”.) Sublinear
update time is known for a few other assorted geometric problems, such as dynamic connectivity
for the intersection graph of geometric objects [17].

In SODA 2002, the author [11] explored still more challenging dynamic geometric problems,
including maintaining

(i) the number of vertices and facets of a 3D convex hull, or its volume,

(ii) the largest empty circle for a 2D point set (with center restricted to be inside a fixed triangle),

(iii) the Hausdorff distance for two 2D point sets P and Q (i.e., computing maxq∈Qminp∈P ‖p−q‖
for two planar point set), and

(iv) the discrete 1-center of a 2D point set P (i.e., computing minq∈P maxp∈P ‖p− q‖).

The paper [11] obtained sublinear results only for the insertion-only case and the off-line case
(where we are given the entire update sequence in advance), or a generalization of both, known
as the semi-online case (as defined by Dobkin and Suri [21], where we are given the deletion time
of an element when it is inserted). The update time bounds were O∗(n7/8) for (i) and (ii), and
O∗(n5/6) for (iii) and (iv).

None of these four problems are “decomposable” (when a point set is decomposed in two subsets,
knowing the answers for the subsets is not sufficient to deduce the answer for the overall set). In
particular, problem (i) is nontrivial since known methods such as [12] for 3D convex hull queries do
not maintain the global hull explicitly, unlike Overmars and van Leeuwen’s original data structure
for 2D convex hulls. Problem (ii) also seems to require explicit maintenance of a 3D convex hull
(lifted from the 2D farthest-point Voronoi diagram). Problems (iii) and (iv) are max-min or min-
max problems, and lack the symmetry of min-min and max-max problems that enable Eppstein’s
technique. For all these problems, the fully dynamic case has remained open.

New results.

1. We present the first fully dynamic data structures with sublinear update time for Problems
(i)–(iv). The amortized update time bounds are O∗(n11/12) for (i) and (ii), and O∗(n5/6) for
(iii) and (iv).

1 Throughout the paper, we use the Õ notation to hide polylogarithmic factor, and O∗ notation to hide nε factors
for an arbitrarily small constant ε > 0.
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The approach is general enough to be applicable to many more problems; for example, we
can maintain the number of maximal or “skyline” points (points that are not dominated by
other points) in a 3D point set in Õ(n2/3) amortized time.

2. For basic 3D convex hull queries (e.g., extreme point queries) and 2D nearest neighbor search,
as mentioned, Kaplan et al. [25] have lowered the amortized update time of the author’s fully
dynamic data structure [12], from O(log6 n) to O(log5 n). We describe a further logarithmic-
factor improvement, from O(log5 n) to O(log4 n).

Although this improvement is admittedly small, the importance of the result stems from its
many applications [12]; for example, we can now compute the convex (or onion) layers of
a 3D point set in O(n log4 n) time, and the k-level in an arrangement of planes in 3D in
O(n log n+ f log4 n) time where f is the output size.

3. For bichromatic closest pair and diameter in 2D, combining Eppstein’s technique [22] with
the above new result on dynamic nearest neighbor search already gives a slightly improved
amortized update time of O(log6 n). We describe a further, more substantial improvement
that eliminates the two extra logarithmic factors caused by Eppstein’s technique [22]. The
new update time bound is O(log4 n).

Dynamic bichromatic closest pair has applications to other problems. For example, we can
now maintain the Euclidean minimum spanning tree of a 2D point set with O(log6 n) amor-
tized update time by using another reduction of Eppstein [22] combined with known results
for dynamic minimum spanning trees for graphs [24].

Techniques. The common thread in all of our new methods is the use of shallow cuttings : Let
H be a set of n hyperplanes in R

d. The level of a point q refers to the number of hyperplanes of H
strictly below q. A (k,K)-shallow cutting is a collection of cells covering all points of level at most
k, such that each cell intersects at most K hyperplanes. The conflict list H∆ of a cell ∆ refers to
the subset of all hyperplanes of H intersecting ∆.

Matoušek [28] proved the existence of shallow cuttings with small number of cells. Specifically,
in 3D, the main lemma can be stated as follows:2

Lemma 1.1. (Shallow Cutting Lemma) Given a set H of n planes in R
3 and a parameter k ∈

[1, n], there exists a (k,O(k))-shallow cutting with O(n/k) cells, where each cell is a “downward”
tetrahedron containing (0, 0,−∞). The cutting, together with the conflict lists of all its cells, can
be constructed in O(n log n) time.

The construction time was first shown by Ramos [32] with a randomized algorithm. Later,
Chan and Tsakalidis [18] obtained the first O(n log n)-time deterministic algorithm.

To see how static shallow cuttings may be useful for dynamic geometric data structures, observe
that most of the problems considered here are related to the lower envelope of a dynamic set of planes
in R

3 (via duality or the standard lifting transformation). Usually, the bottleneck lies in deletions
rather than insertions. Basically, a shallow cutting provides a compact implicit representation of
the (≤ k)-level, which is guaranteed to cover the lower envelope even when up to k deletions have
occurred.

2Matoušek’s original formulation in R
d states the existence of a (k, n/r)-shallow cutting with O(rbd/2c(1 +

kr/n)dd/2e) cells.
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A further idea behind all our solutions is to classify planes into two types, those that intersect
few cells of the shallow cutting, and those that intersect many cells. The latter type of planes may
be bad in that they slow down updates, but the key is to observe that there are not too many bad
elements.

The new sublinear solutions to Problems (i)–(iv), described in Sections 2–3, are obtained by
incorporating the shallow cutting idea with the previous techniques from [11], based on periodic
rebuilding. The entire solution is conceptually not complicated at all, and the description for
Problem (i) fits in under two pages, assuming the availability of known range searching structures.
As are typical in other works on data structures with sublinear update time with “funny” exponents,
parameters are judiciously chosen to balance several competing costs.

The shallow cutting idea has actually been exploited before in dynamic data structures for basic
3D convex hull queries: Agarwal and Matoušek [5] used shallow cuttings recursively, which caused
some loss of efficiency, while the author [12] used a hierarchy of shallow cuttings, for logarithmically
many values of k. The above application of shallow cuttings to Problems (i)–(iv) is even more
elementary—we only need a single cutting. (This makes it all the more embarassing that the idea
was missed till now.)

For basic 3D convex hull queries and 2D nearest neighbor search, our improvement is less
innovative. Described in Section 4 (which can be read independently of the previous sections),
it is based on the author’s original data structure [12], with Kaplan et al.’s logarithmic-factor
improvement [25], plus one extra idea to remove a second logarithmic factor: the main observation
is that Chan and Tsakalidis’s algorithm for shallow cuttings [18] can construct an entire hierarchy
of O(log n) cuttings in O(n log n) time, not just a single cutting. However, the hierarchy needed
for the data structure in [12] requires some planes to be pruned as we go from one cutting to the
next, so Chan and Tsakalidis’s algorithm cannot be applied immediately. Still, we show that some
nontrivial but technical changes (as explained in the appendix) can fix the problem.

For 2D bichromatic closest pair and diameter, our log2 n-factor improvement, described in
Section 5, is a bit more interesting. We still do not know how to improve Eppstein’s general reduc-
tion [22] from dynamic closest pair to dynamic nearest neighbor search,3 but intuitively the blind
combination of Eppstein’s technique with the author’s dynamic data structure for 2D nearest neigh-
bor search seems wasteful, since both share some commonalities (both are sophisticated variants
of the logarithmic method [7], and both handle deletions via re-insertions of elements into smaller
subsets). To avoid the redundancy, we show how to directly modify our dynamic data structure
for 2D nearest neighbor search to solve the dynamic 2D bichromatic closest pair problem. The
resulting modification completely bypasses Eppstein’s “conga line” structure [22, 23], and turns
out to cause no increase to the O(log4 n) update bound.

2 Dynamic 3D Convex Hull Size

We begin with our new sublinear-time fully dynamic data structure for maintaining the number of
vertices/facets of the convex hull of a dynamic 3D point set. The solution is based on the use of
shallow cuttings (Lemma 1.1) and the author’s previous semi-online data structure [11].

3 See [15] for a new reduction, discovered after the present work, which still requires two extra logarithmic factors
in general.
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Theorem 2.1. We can maintain the number of vertices, edges, and facets for the convex hull of a
dynamic set of n points in R

3, in general position, with O∗(n) preprocessing time and O∗(n11/12)
amortized insertion and deletion time.

Proof. It suffices to maintain the number of convex hull facets, which determines the number of
vertices and edges (assuming general position). It suffices to compute the number of upper hull
facets, since by symmetry we can compute the number of lower hull facets. We describe our solution
in dual space, where the problem is to compute the number of vertices in LE(H) for a dynamic set
H of n planes in R

3.
Let k and s be parameters to be set later. We divide the update sequence into phases of k

updates each. We maintain a decomposition of the set H into a deletion-only set H0 and a small
set Hbad of “bad” planes.

Preprocessing for each phase. At the beginning of each phase, we construct a (k,O(k))-shallow
cutting Γ of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.1. We set

H0 = {h ∈ H : h intersects at most n/s cells} and Hbad = H −H0.

Since the total conflict list size is O(n/k · k) = O(n) and each plane in Hbad participates in at least
n/s conflict lists, we have |Hbad| = O(s).

Let V0 and E0 be the set of vertices and edges of the portion of LE(H0) covered by Γ, respectively.
There are O(k) such vertices and edges per cell of Γ, and hence, |V0|, |E0| = O(n/k ·k) = O(n). We
preprocess V0 and E0 in O∗(n) time by known range searching and intersection searching techniques,
so that

• we can count the number of points in V0 inside a query tetrahedron in O∗(n2/3) time (this is
3D simplex range searching) [2, 13, 27];

• we can count the number of line segments in E0 intersecting a query triangle in O∗(n3/4) time
(as noted in [11], we can first solve the case of lines and query halfplanes in R

3 by mapping
lines to 4-dimensional points using Plücker coordinates, and then applying known results on
semi-algebraic range searching [4] in R

4; we can then extend the solution to line segments
and query triangles by a multi-level data structure [2]).

These data structures can support insertions and deletions of points in V0 and line segments in
E0 in O∗(1) time each. In addition, we preprocess H0 in a known dynamic lower envelope data
structure in Õ(n) time, to support ray shooting queries in LE(H0) in Õ(1) time and deletions in
Õ(1) time (e.g., see [12] or Section 4). The total preprocessing time per phase is O∗(n). Amortized
over k updates, the cost is O∗(n/k).

Inserting a plane h. We just insert h to the list Hbad. Note that |Hbad| = O(s+ k) at all times,
since there are at most k insertions per phase.

Deleting a plane h from Hbad. We just remove h from the list Hbad.

Deleting a plane h from H0. We consider each cell ∆ ∈ Γ intersected by h, and compute
LE((H0)∆) from scratch in O(k log k) time (since |(H0)∆| = O(k)). As the number of cells inter-
sected by h is at most n/s, this computation requires O∗(kn/s) total time. The sets V0 and E0

undergo at most O(kn/s) changes, and their associated data structures can be updated in O∗(kn/s)
time.
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Computing the answer. To compute the number of vertices of LE(H) = LE(H0 ∪ Hbad), we
first construct LE(Hbad) in O((s + k) log(s + k)) time, and triangulate all its O(s + k) faces. For
each triangle τ in this triangulation:

• we count the number of vertices of V0 that lie directly below τ , in O∗(n2/3) time; and

• we count the number of edges of E0 that intersect τ , in O∗(n3/4) time.

We sum up all these counts. In addition, for each edge of LE(Hbad), we test whether it intersects
LE(H0), and if so, add the number of intersections to the count; the number of intersections is at
most 2 (since LE(H0) is the boundary of a convex polyhedron), and we can find them by at most 2
ray shooting queries in Õ(1) time. For each vertex of LE(Hbad), we test whether it is underneath
LE(H0) by vertical ray shooting in Õ(1) time, and increment the count if true. Note that LE(H)
is covered by Γ at all times, since there are at most k deletions per phase. The overall count thus
gives the answer. The total time to compute the answer is O∗((s+ k)n3/4).

Analysis. The overall amortized update time is

O∗(n/k + kn/s+ (s+ k)n3/4).

The theorem follows by setting s = k2 and k = n1/12.

The preprocessing time can be made O(n log n) and space made O(n) by increasing the update
time by an nε factor, via known trade-offs for range/intersection searching (with larger-degree
partition trees). The method can be deamortized, using existing techniques [30].

The same method can be adapted to maintain the sum or maximum of f(v) over all vertices v
of LE(H), for a general class of functions f . Instead of range counting, we store the set V0 of points
for range sum or range maximum queries (which have similar complexity as range counting). For
the set E0 of line segments, the base level of its multi-level data structure requires data structures
SL for each canonical subset L of lines in R

3, so that we can return the sum or maximum of f(`∩h)
over all ` ∈ L for a query plane h in O∗(|L|α) time, supporting insertions and deletions in L in
O∗(1) time. If α ≤ 3/4, the final time bound of our algorithm remains O∗(n11/12).

Theorem 2.2. We can maintain the volume of the convex hull for a dynamic set of n points in
R
3, with O∗(n) preprocessing time and O∗(n11/12) amortized insertion and deletion time.

Proof. Let o be a fixed point sufficiently far below all the input points. It suffices to maintain the
sum of the volume of the tetrahedra op1p2p3 over all upper hull facets p1p2p3, since by symmetry
we can maintain a similar sum for lower hull facets and subtract. We map each point p to its
dual plane hp. Then the problem fits in the above framework, with f(v) equal to the volume of
the tetrahedron op1p2p3 for a vertex v defined by the planes hp1 , hp2 , hp3 . Let `p1p2 denote the line
defined by the planes hp1 and hp2 . To design the data structure SL for a given canonical subset L of
lines in R

3, observe that f(`p1p2 ∩hp) is a linear function in the 3 coordinates of p, since the volume
of op1p2p can be expressed as a determinant. Thus, the sum of f(`p1p2 ∩ hp) over all `p1p2 ∈ L is
also a linear function in three variables, and can be evaluated in O(1) time for any query point p,
after precomputing the four coefficients.

However, the above assumes that p lies on a fixed (left or right) side of op1p2 for all `p1p2 ∈ L
(otherwise we would need to sum the absolute values of the determinants). To fix this issue, we
first find the subset of all lines `p1p2 ∈ L such that the query point p is left (resp. right) of op1p2.
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This step reduces to halfspace range searching in dual space—the dimension is in fact 2 since o is
fixed. By “find”, we mean expressing the answer as a union of smaller canonical subsets. We can
then apply the above to these smaller canonical subsets. The query cost for 2-dimensional halfspace
range searching [2, 27] is O∗(

√
|L|) with a near-linear space data structure that supports updates

in O∗(1) time. Hence, we get α = 1/2.

Theorem 2.3. We can maintain the largest empty circle of a dynamic set of n points in R
2, under

the restriction that the center lies inside a given triangle ∆0, with O∗(n) preprocessing time and
O∗(n11/12) amortized insertion and deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) ∈ R
2 to the plane

hp with equation z = −2ax−2by+a2+ b2 in R
3. Add 3 near-vertical planes along the edges of ∆0.

The largest empty circle problem reduces to finding a vertex v = (x, y, z) of the lower envelope of
these planes, maximizing f(v) = x2+y2+z. To design the data structure SL for a canonical subset
L of lines in R

3, we map each line to a 4-dimensional point using Plücker coordinates. Deciding
whether max`∈L f(` ∩ h) ≥ r for a query plane h and a query value r reduces to semi-algebraic
range searching in this 4-dimensional point set, and can be done in O∗(|L|3/4) time [5, 6, 26] with
a near-linear space data structure that supports updates in O∗(1) time. By standard techniques
(e.g., parametric search, as in [3]), we can find max`∈L f(` ∩ h) for a query plane h in the same
time bound, ignoring polylogarithmic factors. Hence, we get α = 3/4.

We can obtain sublinear update time bounds for other similar problems, e.g., maintaining
the minimum/maximum-area Delaunay triangle of a dynamic 2D point set. Another application
is computing the number of maximal points, also called “skyline points” (which are points not
dominated by other points), in a dynamic 3D point set:

Theorem 2.4. We can maintain the number of maximal points in a dynamic set P of n points in
R
3, with Õ(n) preprocessing time and Õ(n2/3) amortized insertion and deletion time.

Proof. The maximal points are vertices of the upper envelope of orthants (−∞, a]×(−∞, b]×(−∞, c]
over all input points (a, b, c) ∈ P (this upper envelope is an orthogonal polyhedron). As is well
known, an analogue of the shallow cutting lemma holds for such orthants in 3D (in fact, there
is a transformation that maps such orthants to halfspaces in 3D); for example, see [16]. The
same method can thus be adapted. In fact, it can be simplified. The data structure for V0 is for
orthogonal range searching [19], which has Õ(1) query and update time. The data structure E0 is
not needed. The overall update time becomes

Õ(n/k + kn/s+ (s+ k)).

The theorem follows by setting s = k2 and k = n1/3.

We can similarly maintain the volume of a union of n boxes in R
3 in the case when all the boxes

have a common corner point at the origin (this is called the hypervolume indicator problem) with
Õ(n2/3) update time (previously, an Õ(

√
n) bound was known only in the semi-online setting [11]).

3 Dynamic 2D Hausdorff Distance

The method in Section 2 can also be adapted to solve the dynamic 2D Hausdorff distance problem:
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Theorem 3.1. We can maintain the Hausdorff distance between two dynamic sets P and Q of at
most n points in R

2, with O∗(n) preprocessing time and O∗(n5/6) amortized insertion and deletion
time.

Proof. By the standard lifting transformation, map each point p = (a, b) ∈ P to the plane hp with
equation z = −2ax − 2by + a2 + b2 in R

3. Let H be the resulting set of planes. For each point
q ∈ Q, let λH(q) denote the point on LE(H) at the vertical line at q. The problem is to find the
maximum of f(λH(q)) over all q ∈ Q, where f(x, y, z) = x2 + y2 + z, for a dynamic set H of at
most n planes and a dynamic set Q of at most n points.

Let k and s be parameters to be set later. We divide the update sequence into phases of k
updates each. We maintain a decomposition of the set H into a deletion-only set H0 and a small
set Hbad of “bad” planes, and a decomposition of the set Q into a deletion-only set Q0 and a small
set Qbad of “bad” points.

Preprocessing for each phase. At the beginning of each phase, we construct a (k,O(k))-shallow
cutting Γ of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.1. We further
subdivide the cells to ensure that each cell contains at most k points of Q in its xy-projection; this
can be done by O(n/k) additional vertical plane cuts, so the number of cells remains O(n/k). We
set

H0 = {h ∈ H : h intersects at most n/s cells} and Hbad = H −H0.

Since the total conflict list size is O(n/k · k) = O(n), we have |Hbad| = O(s).
We set Q0 = Q. We compute λH0

(q) for all q ∈ Q in O(n log n) time. Let Λ0 be the subset of
points in {λH0

(q) : q ∈ Q} covered by Γ. We preprocess the point set Λ0 in known 3D simplex range
searching data structures [2, 13, 27] in O∗(n) time, to support the following queries in O∗(n2/3)
time:

• compute the maximum of f(v) over all points v ∈ Λ0 inside a query tetrahedron;

• compute the maximum of f(λ{hp}(x, y)) over all points v = (x, y, z) ∈ Λ0 inside a query tetra-
hedron for a query plane hp; note that maximizing f(λ{hp}(x, y)) is equivalent to maximizing
the distance from (x, y) to p (so we can use a 2-level data structure, combining simplex range
searching with 2D farthest neighbor searching).

The O∗(n2/3) query cost can be improved, by observing that the point set Λ0 is in convex position.
Sharir and Zaban [33] has shown that in the convex-position case (called “1-shallow” in their paper),
the cost of 3D simplex range searching reduces to O∗(

√
n).

The data structures can support insertions and deletions of points in Λ0 in O∗(1) time each.
In addition, we preprocess H0 in a known dynamic lower envelope data structure in Õ(n) time, to
support ray shooting queries in LE(H0) in Õ(1) time and deletions in Õ(1) time (e.g., see [5] or
Section 4).

Inserting a plane h to H or a point q to Q. We just insert h to the list Hbad or q to the list
Qbad. Note that |Hbad| = O(s+ k) and |Qbad| = O(k) at all times.

Deleting a plane h from Hbad or a point q from Qbad. We just remove h from the list Hbad

or q from the list Qbad.

Deleting a point q from Q0. We just remove λH0
(q) from the set Λ0 in O∗(1) time.
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Deleting a plane h from H0. We consider each cell ∆ ∈ Γ intersected by h, and compute
λ(H0)∆(q) for all q ∈ Q in the xy-projection of ∆ from scratch in O(k log k) time (since ∆ is
intersected by O(k) planes in H and contains O(k) points of Q in its xy-projection). As the
number of cells intersected by h is at most n/s, this computation takes O∗(kn/s) total time. The
set Λ0 undergoes at most O(kn/s) changes, and its associated data structures can be updated in
O∗(kn/s) time.

Computing the answer. To compute the maximum of f(λH(q)) over all q ∈ Q, we first construct
LE(Hbad) in O((s+ k) log(s+ k)) time, and triangulate all its O(s+ k) faces. For each triangle τ
in this triangulation:

• We compute the maximum of f(v) over all v = (x, y, z) ∈ Λ0 that lie directly below τ , in
O∗(n2/3) time. Note that for all such v, the λH(x, y) = λH0

(x, y) = v.

• We let h be the plane through τ and compute the maximum of f(λ{h}(x, y)) over all v =

(x, y, z) ∈ Λ0 that lie directly above τ , in O∗(n2/3) time. Note that for all such v, λH(x, y) =
λ{h}(x, y).

In addition, for each q ∈ Qbad, we compute λH(q) by vertical ray shooting in LE(H0) and LE(Hbad)
in O∗(1) time; we take the maximum of f(λH(q)) for these points. Note that LE(H) is covered by
Γ at all times, since there are at most k deletions per phase. The overall maximum thus gives the
answer. The total time to compute the answer is O∗((s+ k)

√
n).

Analysis. The overall amortized update time is

O∗(n/k + kn/s+ (s+ k)
√
n).

The theorem follows by setting s = k2 and k = n1/6.

We can similarly solve the dynamic 2D discrete 1-center problem, by switching lower with upper
envelopes and maximum with minimum:

Theorem 3.2. We can maintain the discrete 1-center of a dynamic set of n points in R
2, with

O∗(n) preprocessing time and O∗(n5/6) amortized insertion and deletion time.

Incidentally, the above idea of using 3D simplex range searching in the convex-position case [33]
can also improve the author’s previous result in the semi-online setting [11] from O∗(n5/6) to
O∗(n3/4) update time.

It remains open whether the dynamic Hausdorff distance and discrete 1-center problem in
dimensions d ≥ 3 can similarly be solved in sublinear time. The author’s previous paper [11] gave
an O∗(n1−1/(d+1)(dd/2e+1))-time algorithm but only in the semi-online setting. In higher dimensions,
the size of shallow cuttings becomes too large for the approach to be effective.

4 Dynamic 3D Convex Hull Queries

In this section, we present a slightly improved data structure for extreme point queries for a dynamic
3D convex hull, by combining the author’s previous data structure [12] (as refined by Kaplan et
al. [25]) with a modification of Chan and Tsakalidis’s algorithm for constructing a hierarchy of
shallow cuttings [18].
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To describe the latter, we need a definition: Given a set H of n planes in R
3 and a collection

Γin of cells, a Γin-restricted (k,K)-shallow cutting is a collection Γout of cells covering {p ∈ R
3 :

p is covered by Γin and has level at most k}, such that each cell in Γout intersects at mostK planes.
We say that a cutting is convex if its cells are interior-disjoint and their union is a convex polyhedron.
We note that Chan and Tsakalidis’s algorithm, with some technical modifications, can prove the
following lemma. The proof requires knowledge of Chan and Tsakalidis’s paper, and is deferred to
the appendix.

Lemma 4.1. There exist constants b, c, and c′ such that the following is true: For a set H of
at most n planes in R

3 and a parameter k ∈ [1, n], given a convex (−∞, cbk)-shallow cutting4 Γin

with at most c′n/(bk) downward cells, together with their conflict lists, we can construct a convex
Γin-restricted (k, ck)-shallow cutting Γout with at most c′n/k downward cells, together with their
conflict lists, in O(n+ (n/k) log(n/k)) deterministic time.

We now redescribe the author’s previous data structure [12] for 3D extreme point queries, with
slight changes to incorporate Lemma 4.1. The redescription uses a recursive form of the logarithmic
method [7], which should be a little easier to understand than the original description.

Theorem 4.2. We can maintain a set of n points in R
3, with O(n log n) preprocessing time,

O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time, so that we can find the
extreme point of the convex hull along any query direction in O(log2 n) time.

Proof. We describe our solution in dual space, where we want to answer vertical ray shooting
queries for LE(H), i.e., find the lowest plane of H at a query vertical line, for a dynamic set H of
n planes in R

3.

Preprocessing. Our preprocessing algorithm is given by the pseudocode below (ignoring trivial
base cases), with the constants b, c, c′ from Lemma 4.1:5

preprocess(H):

1. H0 = H, Γ0 = {R3}, ` = logb n
2. for i = 1, . . . , ` do {
3. Γi = a convex Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1 with at most c′bi cells
4. Hi = Hi−1 − {h ∈ H : h intersects more than 2cc′` cells of Γ1 ∪ · · · ∪ Γi}
5. for each ∆ ∈ Γi, compute the conflict list (Hi)∆ and initialize k∆ = 0

}
6. preprocess H` for static vertical ray shooting
7. Hbad = H −H`

8. preprocess(Hbad)

Note that Γi−1 is a (−∞, cn/bi−1)-shallow cutting of Hi−2, and consequently a (−∞, cn/bi−1)-
shallow cutting of Hi−1, since Hi−1 ⊆ Hi−2. Given Γi−1 and its conflict lists, we can thus apply
Lemma 4.1 to compute Γi and its conflict lists, in O(n+ bi log bi) time. The total time for lines 1–5
is O(n log n+

∑`
i=1 b

i log bi) = O(n log n). Line 6 takes O(n log n) time (by a planar point location
method [19]).

4 In a (−∞, k)-shallow cutting, the cells are not required to cover any particular region.
5 Line 4 is where Kaplan et al.’s improvement lies [25]. The original data structure from [12] basically had

Hi = Hi−1 − {h ∈ H : h intersects more than 2cc′` cells of Γi}.
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We claim that |Hbad| ≤ n/2. To see this, consider each h ∈ Hbad. Let i be the index with
h ∈ Hi−1 − Hi. Then h intersects more than 2cc′` cells of Γ1 ∪ · · · ∪ Γi; send a charge from h to
each of these cells. Each cell in Γj receives charges only from planes in Hj−1 that intersect the cell.

Thus, the total number of charges is at least 2cc′`|Hbad| and is at most
∑`

j=1 cn/b
j · c′bj = cc′`n.

The claim follows. The preprocessing time thus satisfies the recurrence P (n) ≤ P (n/2)+O(n log n),
which gives P (n) = O(n log n).

Inserting a plane h. We simply insert h to Hbad recursively. When |Hbad| reaches 3n/4, we
rebuild the data structure for H. It takes Ω(n) updates for a rebuild to occur. The amortized
insertion time thus satisfies the recurrence I(n) ≤ I(3n/4) + O(P (n)/n) = I(3n/4) + O(log n),
which gives I(n) = O(log2 n).

Deleting a plane h. The deletion algorithm is as follows:

delete(H,h):

1. for i = 1, . . . , ` do
2. for each ∆ ∈ Γi with h ∈ (Hi)∆ do {
3. increment k∆
4. if k∆ ≥ n/bi+1 then
5. for all h ∈ (Hi)∆ that are still in H but not yet in Hbad, insert h to Hbad

}
6. if h ∈ Hbad then delete(Hbad, h)

Let i be the largest index with h ∈ Hi. Then h intersects at most 2cc′` = O(log n) cells of
Γ1 ∪ · · · ∪ Γi. Thus, in each deletion, lines 3–5 are executed O(log n) times.

In lines 3–5, it takes n/bi+1 increments of k∆ to cause the |(Hi)∆| ≤ cn/bi planes to be inserted
to Hbad. Thus, each increment triggers O(1) amortized number of insertions to Hbad, and so a
deletion triggers O(log n) amortized number of insertions to Hbad. The amortized deletion time
thus satisfies the recurrence D(n) ≤ D(3n/4) + O(log n)I(3n/4) = D(3n/4) + O(log3 n), which
gives D(n) = O(log4 n).

Answering the query for a vertical line q. We first answer the query for the static set H` in
O(log n) time (by planar point location); if the returned plane has already been deleted, ignore the
answer. We then recursively answer the query forHbad, and return the lowest of all the planes found.
The query time satisfies the recurrence Q(n) ≤ Q(3n/4) +O(log n), which gives Q(n) = O(log2 n).

Correctness of the query algorithm. To prove correctness, let h∗ be the lowest plane at q and
v∗ = h∗ ∩ q. If h∗ ∈ Hbad, correctness follows by induction. So, assume that h∗ 6∈ Hbad.

If v∗ is covered by Γ`, say, by the cell ∆ ∈ Γ`, then either v∗ is on LE(H`), in which case the
algorithm would have correctly found h∗, or some plane in (H`)∆ has been deleted from H, in
which case all active planes of (H`)∆, including h∗, would have been inserted to Hbad.

Otherwise, let i be an index such that v∗ is not covered by Γi but is covered by Γi−1, say, by
the cell ∆ ∈ Γi−1. Since Γi is a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1, it follows that
v∗ must have level more than n/bi in Hi−1. In order for v∗ to be the answer, the more than n/bi

planes of Hi−1 below v∗ must have been deleted from H. But then all active planes of (Hi−1)∆,
including h∗, would have been inserted to Hbad.

By the standard lifting transformation, we obtain:
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Corollary 4.3. We can maintain a set of n points in R
2, with O(n log n) preprocessing time,

O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time, so that we can find the
nearest neighbor to any query point in O(log2 n) time.

The space usage in the above data structure is O(n log n), but can be improved to O(n), by
following an idea mentioned in [12] (due to Afshani): instead of storing conflict lists explicitly,
generate conflict lists on demand by using a known optimal (static) linear-space data structure for
halfspace range reporting [1].

As in [12], the same dynamic data structure can be used to answer other basic types of 3D
convex hull queries, for example:

• Gift wrapping queries (finding the two tangents of the convex hull with a query line outside
the hull): In dual space, this reduces to finding the two intersection points of LE(H) with a
nonvertical query line—this is essentially nonvertical ray shooting. By symmetry, it suffices to
compute the top intersection point. The same query algorithm and analysis works (except that
we store LE(H`) in a Dobkin–Kirkpatrick hierarchy [20] to support nonvertical ray shooting
queries in O(log n) time). We can check whether the query line actually intersects LE(H)
by verifying that the answer is indeed a point on LE(H) (which we can do by a vertical ray
shooting query). The overall query time is O(log2 n) as before.

• Line-intersection queries (intersecting the convex hull with a query line): In dual space,
this reduces to a linear programming query (finding a point on LE(H) that is extreme along
a query direction). As noted in [12], linear programming queries can be reduced to verti-
cal ray shooting by multi-dimensional parametric search [29]; the query time increases to
O(log4 n log4 log n). (The update time is unchanged, since the data structure is unchanged.)

Many applications follow, as noted in the previous paper [12]. For example, the smallest en-
closing circle for a dynamic 2D point set can now be maintained in O(log4 n log4 log n) time: by
the standard lifting transformation, the problem reduces to convex programming over LE(H) for
a dynamic set H of n planes in R

3, and the multi-dimensional parametric search technique is still
applicable to convex programming. See [12] for more applications. The dynamic data structure
from [14] for 3D halfspace range reporting queries can also be immediately improved.

5 Dynamic 2D Bichromatic Closest Pair

We now adapt the data structure in Section 4 to solve the dynamic 2D bichromatic closest pair
problem:

Theorem 5.1. We can maintain the closest pair between two dynamic sets P and Q of at most n
points in R

2, with O(n log n) preprocessing time, O(log2 n) amortized insertion time, and O(log4 n)
amortized deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) to the plane hp
with equation z = −2ax − 2by + a2 + b2 in R

3. Let H = {hp : p ∈ P}. For each point q ∈ Q, let
λH(q) denote the point on LE(H) at the vertical line at q. Let J = {hq : q ∈ Q}. For each point
p ∈ P , define λJ(p) similarly. We want to compute the minimum of f(λH(q)) over all q ∈ Q, where
f(x, y, z) = x2 + y2 + z, which is equivalent to the minimum of f(λJ(p)) over all p ∈ P .
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Preprocessing. We maintain a global heap, whose minimum gives the answer. We modify the
preprocess(H) algorithm in Section 4:

preprocess(H, J):

1. run lines 1–7 of the preprocess(H) algorithm on H
2. for each hq ∈ J , add f(λH`

(q)) to the heap
3. run lines 1–7 of the preprocess(H) algorithm but with H’s replaced by J ’s
4. for each hp ∈ H, add f(λJ`(p)) to the heap
5. preprocess(Hbad, Jbad)

As in Section 4, the preprocessing time satisfies the recurrence P (n) ≤ P (n/2) + O(n log n),
which gives P (n) = O(n log n).

Inserting a plane hp to H. We recursively insert hp to Hbad. We also compute λJ`(p) in O(log n)
time (by planar point location), and add f(λJ`(p)) to the heap.

When |Hbad| or |Jbad| reaches 3n/4, we rebuild the data structure for H and J . It takes
Ω(n) updates for a rebuild to occur. The amortized insertion time thus satisfies the recurrence
I(n) ≤ I(3n/4) +O(log n) +O(P (n)/n) = I(3n/4) +O(log n), which gives I(n) = O(log2 n).

Inserting a plane hq to J . Symmetric to the above.

Deleting a plane hp from H. We run lines 1–5 of the delete(H,h) algorithm in Section 4 (with
h = hp). In the heap, we remove all entries f(λH`

(q)) that has λH`
(q) = λ{hp}(q). If hp ∈ Hbad, we

further recursively delete hp from Hbad. We also remove f(λJ`(p)) from the heap.
For the analysis, we can charge removals of entries from the heap to their corresponding

insertions, by amortization. The amortized deletion time thus satisfies the recurrence D(n) ≤
D(3n/4) +O(log n)I(3n/4) = D(3n/4) +O(log3 n), which gives D(n) = O(log4 n).

Deleting a plane hq from J . Symmetric to the above.

Correctness. Let p∗q∗ be the closest pair with p∗ ∈ P and q∗ ∈ Q. If both hp∗ ∈ Hbad and
hq∗ ∈ Jbad, correctness follows by induction. Otherwise, assume without loss of generality that
hp∗ 6∈ Hbad. (The case Jq∗ 6∈ Jbad is symmetric.) Let v∗ = λH(q∗). The rest of the correctness
argument is essentially identical to that in Section 4:

If v∗ is covered by Γ`, say, by the cell ∆ ∈ Γ`, then either v∗ is on LE(H`), in which case the
algorithm would have included f(λH(q∗)) in the heap, or some plane in (H`)∆ has been deleted
from H, in which case all active planes of (H`)∆, including hp∗ , would have been inserted to Hbad.

Otherwise, let i be an index such that v∗ is not covered by Γi but is covered by Γi−1, say, by
the cell ∆ ∈ Γi−1. Since Γi is a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1, it follows that
v∗ must have level more than n/bi in Hi−1. In order for v∗ to be the answer, the more than n/bi

planes of Hi−1 below v∗ must have been deleted from H. But then all active planes of (Hi−1)∆,
including hp∗ , would have been inserted to Hbad.

We can similarly solve the diameter problem, by replacing min with max and lower with upper
envelopes:

Theorem 5.2. We can maintain the diameter of a dynamic set of n points in R
2, with O(n log n)

preprocessing time, O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time.
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A Proof of Lemma 4.1

In this appendix, we describe how a proof by Chan and Tsakalidis [18, Theorem 5] can be adapted
to show Lemma 4.1, as restated below:

Lemma 4.1. There exist constants b, c, and c′ such that the following is true: For a set H of
at most n planes in R

3 and a parameter k ∈ [1, n], given a convex (−∞, cbk)-shallow cutting Γin

with at most c′n/(bk) downward cells, together with their conflict lists, we can construct a convex
Γin-restricted (k, ck)-shallow cutting Γout with at most c′n/k downward cells, together with their
conflict lists, in O(n+ (n/k) log(n/k)) deterministic time.

Proof. As in the previous paper [18], it is more convenient to work with shallow cuttings in vertex
form: given a set H of n planes in R

3, a (k,K)-shallow cutting in vertex form is a set V of points
whose upper hull UH(V ) covers all points in R

3 of level at most k, such that every point in V has
level at most K. The conflict list of a point refers to the list of all planes of H below the point.

Chan and Tsakalidis [18, Theorem 5] proved the following statement for some constants B, C,
and C ′:

For a set H of at most n planes in R
3 and a parameter k ∈ [1, n], given a (Bk,CBk)-

shallow cutting Vin in vertex form with at most C ′n/(Bk) vertices, together with their
conflict lists, we can construct a (k,Ck)-shallow cutting Vout in vertex form with at most
C ′n/k vertices, together with their conflict lists, in O(n+(n/k) log(n/k)) deterministic
time.

By a close inspection of their proof, we actually get the following stronger statement for any
choice of constants B, C ′, and t, where a′0, c0, and c′0 are absolute constants:

For a set H of at most n planes in R
3 and a parameter k ∈ [1, n], given a (12c20k, CBk)-

shallow cutting Vin in vertex form with at most C ′n/(Bk) vertices, together with their
conflict lists, we can construct a (k, Ck)-shallow cutting Vout in vertex form with at most
C ′′n/k vertices, together with their conflict lists, in O(n+(n/k) log(n/k)) deterministic

time, where C = 12c20 + 1 and C ′′ = 2c′0 +
8a′

0
c′
0
CC′

3c0
√
t

.

Set b = B/6, c = 3C, and c′ = C ′/18. To derive Lemma 4.1 from the above statement, we
first convert Γin to vertex form, simply by letting Vin to be the vertex set of the convex poly-
hedron Pin formed by unioning the cells in Γin. The polyhedron Pin has at most c′n/(bk) faces,
at most 3c′n/(3bk) = c′n/(bk) vertices, and at most 3c′n/(2bk) edges. It is helpful to assume
that each vertex has degree 3 in Pin; this can be guaranteed by intersecting Pin with extra planes
infinitesimally close to each vertex (the number of new vertices is equal to twice the number of
old edges). After this modification, Pin has |Vin| ≤ 3c′n/(bk) = C ′n/(Bk) vertices, and at most
2c′n/(bk) = 2C ′n/(3Bk) faces.

We cannot apply the above result to H directly. Instead, we make 12c20k copies of the plane

through each face of Pin, and add them to H. The new set Ĥ of planes has size n̂ ≤ n +
(12c20k)2C

′n/(3Bk) ≤ 2n, assuming B ≥ 8c20C
′. Then Pin = UH(Vin) covers all points of level

at most 12c20k in Ĥ. Each point in Vin has level at most cbk + 3(12c20k) ≤ CBk in Ĥ, assuming
B ≥ 72c20.

We can now apply the above result to Ĥ, and obtain a (k, Ck)-shallow cutting Vout for Ĥ in
vertex form. We can set Γout to be the vertical decomposition of UH(Vout), which has at most
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2|Vout| cells. Each cell of Γout intersects at most 3Ck = ck planes of H. Every point covered by
Γin with level at most k in H has level at most k in Ĥ and is thus covered by Γout. Furthermore,

|Γout| ≤ 2C ′′n̂/k ≤ 4C ′′n/k = 4(2c′0 +
8a′

0
c′
0
CC′

3c0
√
t

)n/k ≤ 12c′0n/k by setting t = (
8a′

0
CC′

3c0
)2. Thus,

|Γout| ≤ C ′n/k by setting C ′ = 36 · 12c′0.
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