
Noname manuscript No.
(will be inserted by the editor)

A cluster realization of Uq(sln) from quantum
character varieties

Gus Schrader · Alexander Shapiro

Received: date / Accepted: date

Abstract We construct an injective algebra homomorphism of the quantum
group Uq(sln+1) into a quantum cluster algebra Ln associated to the moduli
space of framed PGLn+1-local systems on a marked punctured disk. We obtain
a description of the coproduct of Uq(sln+1) in terms of the corresponding
quantum cluster algebra associated to the marked twice punctured disk, and
express the action of the R-matrix in terms of a mapping class group element
corresponding to the half-Dehn twist rotating one puncture about the other.
As a consequence, we realize the algebra automorphism of Uq(sln+1)⊗2 given
by conjugation by the R-matrix as an explicit sequence of cluster mutations,
and derive a refined factorization of the R-matrix into quantum dilogarithms
of cluster monomials.
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Introduction

In [9], an intriguing realization of the quantum group Uq(sl2) and the Drinfeld
double of its Borel subalgebra was presented in terms of a quantum torus
algebra D. Explicitly, the algebra D has generators {w1, w2, w3, w4}, with the
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relations

wiwi+1 = q−2wi+1wi and wiwi+2 = wi+2wi (1)

where i ∈ Z/4Z. In terms of the standard generators E,F,K,K ′ of the Drinfeld
double (see Section 3 for the definitions), the embedding described in [9] takes
the form

E 7→ i(w1 + w2), K 7→ qw2w3,

F 7→ i(w3 + w4), K ′ 7→ qw4w1,
(2)

where i =
√
−1.

The embedding (2) has some striking properties. First, as proposed in [9],
one can use the Weyl-type relations (1) to define a modular double of Uq(sl2)
compatible with the regime |q| = 1. Second, the image of the quasi R-matrix
under this embedding admits a remarkable factorization into the product of
four quantum dilogarithms:

R̄ = Ψ q (w1 ⊗ w3)Ψ q (w1 ⊗ w4)Ψ q (w2 ⊗ w3)Ψ q (w2 ⊗ w4) . (3)

These properties have been exploited in [35,36,6] to define and study a new
category of Uq(sl2)-modules, the so-called positive representations, which is
closed under taking tensor products in the sense of a direct integral.

On the other hand, factorizations of the Uq(sl2) quasi R-matrix of the
form (3) have also appeared in quantum Teichmuller theory. In [26], the action
of the R-matrix is identified, up to a permutation, with an element of the
mapping class group of the twice punctured disc. The mapping class group
element in question corresponds to the half-Dehn twist rotating one puncture
about the other. Having chosen certain triangulation of the twice punctured
disc, this transformation can be decomposed into a sequence of four flips of
the triangulation, as shown in Figure 10. One is thus led to interpret each
dilogarithm in the factorization (3) as corresponding to a flip of a triangulation.
In [22], this observation was used to re-derive Kashaev’s knot invariant.

In this paper, we explain how to generalize Faddeev’s embedding (2) to the
case of the quantum group Uq(sln+1) using the language of quantum cluster
algebras. These quantum cluster algebras come in two types, often referred
to as quantum A- and X -cluster algebras, whose precise definition we recall
in Section 1. Roughly speaking, the cluster A-coordinates are generalizations
of the minimal collections of minors introduced by Fomin and Zelevinsky to
test total positivity of an n × n matrix, while the cluster X -coordinates are
generalizations of the factorization parameters used to parameterize the locus
of totally positive matrices.

The study of the interplay between quantum groups and quantum cluster
A-algebras goes back to the original paper of Berenstein and Zelevinsky [4]
where the notion of a quantum cluster A-algebra was defined. In [4], it was
shown that particular collections of generalized quantum minors constitute
initial A-clusters for the quantized algebras of functions Oq(Gu,v) on double
Bruhat cells in Kac-Moody groups. It was also conjectured that Oq(Gu,v) is
in fact isomorphic to the quantum upper cluster A-algebra corresponding to
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these initial seeds. A version of this conjecture for the quantum unipotent co-
ordinate ring Oq(N(w)) associated to any Weyl group element w was proved
by Geiss, Leclerc and Schröer in [16] by studying certain subcategories of rep-
resentations of the associated preprojective algebras. Moreover, it was shown
in [16] that cluster monomials from different clusters are linearly independent
(unless equal) and belong to the Lusztig’s semicanonical basis [33].

A new perspective on quantum cluster A-algebras was suggested by Her-
nandez and Leclerc in [20,21], where the notion of a monoidal categorification
of a cluster algebra was introduced. The existence of a monoidal categorifi-
cation guarantees that the cluster monomials are linearly independent and
admit expansions in other clusters as Laurent polynomials with coefficients in
Z>0[q±

1
2 ]. It was shown in [20] that the finite-type cluster algebras for the An

quivers are categorified by a certain subcategory of finite-dimensional modules
of the quantum affine algebra Uq(ŝln+1), whose simple objects are the Kirillov-
Reshetikhin modules. It was also conjectured that cluster algebras for arbitrary
Dynkin quivers should admit monoidal categorifications. This conjecture was
proven in the simply-laced case by Nakajima [34] using the category of perverse
sheaves on graded quiver varieties. The result of [34] was further generalized by
Kimura and Qin in [29] where they showed by similar techniques that any clus-
ter algebra with an acyclic seed admits a monoidal categorification. Finally, in
the recent work [25] of Kang, Kashiwara, Kim and Oh, a monoidal categori-
fication of the cluster structure on Oq(N(w)) was constructed via categories
of modules over symmetric KLR algebras. As a consequence, they obtained a
proof of Kimura’s conjecture [28] that every cluster monomial belongs to the
dual canonical basis of Oq(N(w)). The latter conjecture is a refined version
of (part of) a conjecture made by Berenstein and Zelevinsky [3] and corrected
later by Fomin and Zelevinsky in [14], which relates cluster structure and the
dual canonical basis of Oq(N). We refer the reader interested in these devel-
opments to the recent survey by Kashiwara [27].

The relation between quantum groups and the quantum cluster X -algebras
has been studied somewhat less extensively. It is known that quantum cluster
X -algebra structures on quantum nilpotent algebras Uq(n(w)) are provided by
the Feigin homomorphisms [1,39], in which the quantum cluster X -coordinates
can be regarded as quantum analogs of factorization parameters for unipotent
cells, see [2] and [12]

It has remained unclear, however, (in either A- or X -algebra setup) whether
there exists a quantum cluster algebra realization of the whole quantized en-
veloping algebra Uq(g) associated to a semisimple Lie algebra g. The existence
of such a cluster A-realization is suggested by the work of Gekhtman, Shapiro,
and Vainshtein [17] in which the algebra of functions on the Poisson-Lie dual
group GL∗n (cf Remark 1) was shown to carry the structure of generalized
cluster A-algebra, as well as by Qin’s construction [37] of Uq(g) for simply-
laced g as the quotient of a Grothendieck ring arising from certain cyclic quiver
varieties.

In the present work, we show that a cluster X -realization of Uq(g) indeed
exists when g = sln+1. Our approach to constructing this realization is based
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on the quantum cluster structure associated to moduli spaces of PGLn+1-
local systems on marked surface, see [11,13]. Cluster charts on these varieties
are obtained from an ideal triangulation of the surface by “gluing” certain
simpler cluster charts associated to each triangle. In the case of moduli spaces
of PGLn+1-local systems, a flip of a triangulation can be realized as sequences
of
(
n+2

3

)
cluster mutations.

Taking a particular cluster chart on the moduli space associated to the
regular triangulation of the punctured disk (see Section 2 for the definition),
we obtain by this gluing procedure a quiver and a corresponding quantum
cluster X -algebra Ln, the quantized algebra of regular functions on the cor-
responding cluster X -variety. Our first main result, Theorem 1, provides an
explicit embedding of Uq(sln+1) into Ln. This embedding has an interesting
property that each Chevalley generator of Uq(sln+1) is a cluster monomial in
some quantum cluster chart. As explained by Goncharov and Shen [19], there
exists an action of the Weyl group Sn+1 on Ln by cluster transformations,
and we conjecture that the image of Uq(sln+1) under our embedding coincides
precisely with the subalgebra of invariants for this action. In the simplest case,
n = 1, our result reproduces Faddeev’s realization (2) of Uq(sl2) in terms of
the quantum torus D1 associated to the cyclic quiver with four nodes (see
Figure 4). Moreover, since the quantum group is contained in the quantum
cluster X -algebra Ln, one can apply certain sequences of cluster mutations to
obtain embeddings of Uq(sln+1) into quantum tori corresponding to the two
self-folded triangulations of the punctured disk shown in Figure 8. Each of
these triangulations turns out to have the property that the restriction of the
corresponding embedding to one of the quantum Borel subalgebras Uq(b±)
coincides with the Feigin homomorphism.

We also solve the problem of describing the coproduct and the universal R-
matrix of Uq(sln+1) in cluster-algebraic terms. We formulate this description
in terms of another quantum cluster algebra, this time corresponding to a
quiver built from a triangulation of the twice punctured disk. As we explain
in Remark 7, the coproduct admits a simple description in terms of cluster
variables.

We finish this paper by proving in Theorem 2 that the automorphism
P ◦ AdR of Uq(sln+1)⊗2 given by conjugation by the R-matrix followed by
the flip of tensor factors can be identified with a cluster transformation given
as the composite of the half-Dehn twist and a certain permutation. In the
course of the proof, we obtain in Theorem 3 a refined factorization of R into
a product of 4

(
n+2

3

)
quantum dilogarithms, one for each mutation required to

achieve the half-Dehn twist realized as a sequence of four flips. In the case
of Uq(sl2), when each flip can be achieved by a single cluster mutation, we
recover Faddeev’s factorization (3).

Let us conclude the introduction by describing some applications and future
directions suggested by our results. First, as explained in [13], the quantized al-
gebra of functions on a cluster X -variety comes equipped with a natural family
of Hilbert space representations on which the groupoid of cluster transforma-
tions acts by unitary operators. In particular, one can restrict the Hilbert
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space representations of the quantum cluster algebra Ln to the subalgebra
Uq(sln+1) ⊂ Ln. The quantum group representations obtained in this fashion
turn out to be isomorphic to the positive representations defined in [15], which
are higher rank generalizations of the representations of Uq(sl2) introduced by
Ponsot and Teschner in [35,36]. Thus, the cluster transformations for Ln (for
example, those corresponding to flips of diagonals in an ideal triangulation)
provide a useful topological lens through which to investigate the rather in-
tricate algebraic structure of these representations. More specifically, in [41,
42] we use this perspective to prove the conjecture of Frenkel and Ip that the
positive representations of Uq(sln+1) are closed under tensor product. More-
over, in a work in preparation with Ivan Ip we show that the cluster-algebraic
approach can be used to generalize the results of [23] and construct a C∗-Hopf
algebra L2

(
SL+

q (n+ 1,R)
)

satisfying a positive analog of the Peter-Weyl the-
orem for the modular double of Uq(sln+1,R). We would also like to note that
since the first version of this paper appeared, its results were generalized in [24]
to other Dynkin types, which allows to use techniques devised by us in [41] to
study positive representations of quantum groups beyond Dynkin type A.

Second, our proof of the injectivity of the homomorphism Uq(sln+1)→ Ln
in Proposition 3 is based on “tropicalizing” the images of PBW basis elements
of Uq(sln+1). As we observe in Remark 6, the condition that a cluster monomial
X appears as the leading term of a PBW basis element is equivalent to the
tropicalized Goncharov-Shen potential function χt0 having non-negative value
at X. The non-negativity of this tropical potential is closely related to the
hive condition, introduced by Knutson and Tao in [31] in their combinatorial
reformulation of the Littlewood-Richardson rule and proof of the saturation
conjecture for GLn. We find it an intriguing problem to further investigate this
connection to the Littlewood-Richardson rule and the decomposition of tensor
products of finite dimensional quantum group representations, especially in
light of the application of the cluster realization of Uq(sln+1) to the problem
of decomposing tensor products of its positive representations.

Finally, the fact that in an appropriate cluster each Chevalley generator of
Uq(sln+1) becomes a cluster monomial under our embedding appears interest-
ing from the point of view of categorification of quantum groups. Indeed, in
the setup of monoidal categorification, each cluster monomial corresponds to
a certain simple object in the corresponding category. In the recent paper [10]
it has been shown that the quantum group Uq(sln+1) can be realized as a
quantum K-theoretic Coulomb branch [5] for a certain An quiver gauge the-
ory. This suggests the possibility of categorifying Uq(sln+1) via an appropriate
category of equivariant coherent sheaves on the variety of triples corresponding
to this quiver gauge theory. Along similar lines, Cautis and Williams [7] have
recently proposed a monoidal categorification of the quantum cluster algebra
associated to the type An quantum Coxeter-Toda chain using the category of
equivariant perverse coherent sheaves on another Coulomb branch, the affine
Grassmannian GrGLn+1

. In the future, we hope to return to the problem of
constructing a categorification of Uq(sln+1) based on a monoidal categorifica-
tion of the corresponding cluster algebra.
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The article is organized as follows. In Section 1, we recall some basic facts
about quantum cluster algebras and the quantum dilogarithm function. Sec-
tion 2 reviews the quantum character varieties as defined in [11]. We also recall
the procedure of quiver amalgamation and explain how a flip of the triangu-
lation can be realized as a sequence of cluster transformations. In Section 3,
we fix our notations and conventions regarding the quantum group Uq(sln+1).
We state our first main result in Section 4: an explicit embedding of Uq(sln+1)
into a quantum cluster algebra Ln built from the punctured disk. Section 6
recalls the combinatorial description of the half-Dehn twist on a twice punc-
tured disk. In Section 7, we prove our next main result on the cluster nature of
the R-matrix, while its refined factorization appears in Section 8. We conclude
the paper by comparing our results to those of Faddeev in Section 9.

1 Quantum cluster algebras

In this section we recall a few basic facts about cluster algebras and their quan-
tization following [11]. We shall need only skew-symmetric exchange matrices,
and we incorporate this in the definition of a cluster seed.

A seed Σ is triple (I, I0, ε) where I is a finite set, I0 ⊂ I is a subset, and
ε = (εij)i,j∈I is a skew-symmetric1 1

2Z-valued matrix, such that εij ∈ Z unless

i, j ∈ I0. To a seed Σ we associate a pair of algebraic tori AΣ = (C×)|I|

and XΣ = (C×)|I|, equipped respectively with coordinates {A1, . . . , A|I|} and
{X1, . . . , X|I|}. We refer to the torus AΣ as the cluster A-torus, the torus XΣ
as the cluster X -torus, and the matrix ε as the exchange matrix associated
to the seed Σ. The coordinates Ai and Xi are called cluster A-variables and
cluster X -variables respectively, and they are said to be frozen if i ∈ I0. Let M
be the I×I matrix with Mij = 0 unless both i and j are frozen, and such that
ε̃ = ε + M is an integer matrix. Then there is a regular map pMΣ : AΣ → XΣ
called the cluster ensemble map corresponding to the matrix M , defined by
the formula (

pMΣ
)∗
Xk =

∏
i∈I

Aε̃kii .

Given a pair of seeds Σ = (I, I0, ε), Σ
′ = (I ′, I ′0, ε

′), and an element k ∈
I \ I0 we say that an isomorphism µk : I → I ′ is a seed mutation in direction
k if µk(I0) = I ′0 and

ε′µk(i),µk(j) =


−εij if i = k or j = k,

εij if εikεkj 6 0,

εij + |εik|εkj if εikεkj > 0.

(4)

The combinatorial data of a cluster seed can be conveniently encoded by a
quiver with vertices {vi} labelled by elements of the set I and with adjacency
matrix ε. The arrows vi → vj between a pair of frozen variables are considered

1 in general, the matrix ε is allowed to be skew-symmetrizable.
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to be weighted by εij . Then the mutation µk of the corresponding quiver can
be performed in three steps:

1) reverse all the arrows incident to the vertex k;
2) for each pair of arrows k → i and j → k draw an arrow i→ j;
3) delete pairs of arrows i→ j and j → i going in the opposite directions.

To a seed mutation µk is associated a pair of birational isomorphisms of
cluster tori µAk : AΣ → AΣ′ and µXk : XΣ → XΣ′ defined as follows:

(
µAk
)∗
Aµk(i) =

{
A−1
k

(∏
i|εki>0A

εki
i +

∏
i|εki<0A

−εki
i

)
if i = k,

Ai if i 6= k,
(5)

(
µXk
)∗
Xµk(i) =

X
−1
k if i = k,

Xi

(
1 +X

− sgn(εki)
k

)−εki
if i 6= k.

(6)

The isomorphisms (5) and (6) are referred to as cluster A- and cluster X -
mutations respectively. As observed in [43, Proposition 4.7], the two kinds of
mutations are intertwined by the cluster ensemble morphisms pMi : one has

µXk ◦ pMΣ = pMµk(Σ) ◦ µ
A
k . (7)

The cluster algebra associated to the seed Σ is defined to be the subring
of the fraction field of O(AΣ) generated by cluster variables from all seeds
mutation equivalent to Σ. The cluster A-variety A corresponding to a seed Σ
is defined to be the affine scheme whose ring of regular functions O(A) consists
of all universally Laurent elements, i.e. the elements f ∈ O(AΣ) that remain
Laurent polynomials under all finite sequences of cluster A-mutations. The
ring of regular functions O(AΣ) is sometimes referred to as the upper cluster
algebra. By the Laurent phenomenon property [14], the upper cluster algebra
O(A) always contains the cluster algebra.

The cluster X -variety X is defined similarly, using the algebra O(XΣ) and
the cluster X -mutations. In view of equality (7), for each choice of the matrix
M there is a well-defined morphism pM : A → X which is an isomorphism
when det(ε̃) = ±1.

The algebra of regular functions on each cluster X -torus comes equipped
with a Poisson structure defined by

{Xi, Xj} = 2εijXiXj , i, j ∈ I.

These Poisson structures have the property that the cluster X -mutations are
Poisson maps, so that the cluster X -variety is equipped with a canonically
defined Poisson structure.

The algebra of functions O(XΣ) admits a quantization X qΣ = Oq(XΣ)
called the quantum torus algebra associated to the seed Σ. It is the algebra
over Z[q±

1
2 ] defined by generators X±1

i , i ∈ I, subject to relations

XiXj = q2εjiXjXi.
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For each cluster mutation µk there is a homomorphism µqk : X qΣ → X
q
Σ′

called the quantum cluster mutation, defined by

µqk(Xi) =



X−1
k , if i = k,

Xi

εki∏
r=1

(
1 + q2r−1X−1

k

)−1
, if i 6= k and εki > 0,

Xi

−εki∏
r=1

(
1 + q2r−1Xk

)
, if i 6= k and εki 6 0.

(8)

Here the generators Xi on the right hand side belong to the torus X qΣ′ . The
quantum cluster X -algebra LX associated to a seed Σ is defined to be the
subalgebra of Oq(XΣ) consisting of universally Laurent elements. This notion
of quantum cluster X -algebra was introduced by Fock and Goncharov in [13].
When det(ε̃) = ±1, it is related to the notion of quantum cluster algebras
introduced by Berenstein and Zelevinsky [4] as follows, cf. [13, Section 2.7].
Denoting by λ the matrix inverse to ε̃, to each seed Σ one associates a quantum
torus algebraOq(AΣ) generated by Ai, i ∈ I, with relations AiAj = q2λjiAjAi.
Mutations between these tori can then be defined by means of the rule given
by formula (4.23) in [4]. Then the algebra LA of elements in Oq(AΣ) that are
universally Laurent with respect to this mutation rule contains as a subalgebra
the quantum cluster algebra of Berenstein and Zelevinsky. Moreover, in each
seed Σ one has an isomorphism

p∗Σ : Oq(XΣ)→ Oq(AΣ), p∗ΣXi = q
∑
k≤l λklε̃ik ε̃ilAε̃ikk .

The quantum cluster X -mutation µqk defined in (8) can be written as a
composition of two homomorphisms, namely

µqk = µ]k ◦ µ
′
k

where µ′k : X qΣ → X
q
Σ′ is a monomial transformation defined by

Xi 7−→


X−1
k , if i = k,

qεikεkiXiX
εki
k , if i 6= k and εki > 0,

Xi, if i 6= k and εki 6 0,

and

µ]k = AdΨq(Xk)

is a conjugation by the quantum dilogarithm function

Ψ q(x) =
1

(1 + qx)(1 + q3x)(1 + q5x) . . .
.

Mutation of the exchange matrix is incorporated into the monomial transfor-
mation µ′k. The following lemma will prove very useful in what follows.
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Lemma 1 [19, Proposition 2.4] A sequence of mutations µqik . . . µ
q
i1

can be
written as follows

µqik . . . µ
q
i1

= Φk ◦Mk

where
Φk = AdΨq(Xi1) AdΨq(µ′i1(Xi2)) . . .Ad

Ψq
(
µ′ik−1

...µ′i1(Xik)
)

and
Mk = µ′ik . . . µ

′
i2µ
′
i1 .

Proof We shall prove the lemma by induction. Assume the statement holds
for some k = r − 1. Then

µqir . . . µ
q
i1

= AdΨq(Φr−1(Mr−1(Xir ))) µ
′
irΦr−1Mr−1.

Now the proof follows from the fact that the homomorphisms µ′ir and Φr−1

commute, and the following relation:

AdΨq(Φr−1(Mr−1(Xir ))) Φr−1 = Φr−1 AdΨq(Mr−1(Xir )) = Φr.

We conclude this section with the two properties of the quantum diloga-
rithm which we will use liberally throughout the paper. For any u and v such
that uv = q−2vu we have

Ψ q(u)Ψ q(v) = Ψ q(u+ v) (9)

Ψ q(v)Ψ q(u) = Ψ q(u)Ψ q(qvu)Ψ q(v) (10)

The first equality is nothing but a q-analogue of the addition law for exponen-
tials, while the second one is known as the pentagon identity.

2 Quantum character varieties

Let Ŝ be a decorated surface — that is, a topological surface S with boundary
∂S, equipped with a finite collection of marked points x1, . . . , xr ∈ ∂S and
punctures p1, . . . , ps. In [11], the moduli space XŜ,PGLm of PGLm-local sys-
tems on S with reductions to Borel subgroups at each marked point xi and
each puncture pi, was defined and shown to admit the structure of a cluster
X -variety. In particular, suppose that T is an ideal triangulation of Ŝ, that is
all vertices of T are at either marked points or punctures; e.g. all ideal triangu-
lations of a punctured disk with a pair of marked points on the boundary are
drawn in Figure 8. It was shown in [11] that for each ideal triangulation, there
exists a cluster X -chart on XŜ,PGLm . We shall now recall the construction of
such a chart together with its canonical quantization.

The first step is to describe the quantum cluster X -chart associated to a
single triangle. To do this, consider a triangle ABC given by the equation
x + y + z = m in the octant x, y, z > 0, and intersect it with planes x = p,
y = p, and z = p for all 0 < p < m, p ∈ Z. The resulting picture is called
the m-triangulation of the triangle ABC. Let us now color the triangles of the
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m-triangulation in black and white as in Figure 1, so that triangles adjacent
to vertices A, B, or C are black, and two triangles sharing an edge are of
different color. Now, we orient the edges of white triangles counterclockwise.
Finally, we connect the vertices of the m-triangulation lying on the same side
of the triangle ABC by dashed arrows in the clockwise direction. The resulting
graph is shown in Figure 1. Note that the vertices on the boundary of ABC
are depicted by squares. Throughout the text we will use square vertices for
frozen variables. All dashed arrows will be of weight 1

2 , that is a dashed arrow
vi → vj denotes the commutation relation XiXj = q−1XjXi.

A

B

C
2 5 9

1 4 8 12

3 7 11

6 10

Fig. 1: Cluster X -coordinates on the configuration space of 3 flags and 3 lines.

Now, let us recall the procedure of amalgamation of two quivers by a subset
of frozen variables, following [12]. In simple words, amalgamation is nothing
but the gluing of two quivers by a number of frozen vertices. More formally,
let Q1, Q2 be a pair of quivers, and I1, I2 be certain subsets of frozen variables
in Q1, Q2 respectively. Assuming there exists a bijection φ : I1 → I2 we can
amalgamate quivers Q1 and Q2 by the subsets I1, I2 along φ. The result is a
new quiver Q constructed in the following two steps:

1) for any i ∈ I1 identify vertices vi ∈ Q1 and vφ(i) ∈ Q2 in the union Q1tQ2;
2) for any pair i, j ∈ I1 with an arrow vi → vj in Q1 labelled by εij and an

arrow vφ(i) → vφ(j) in Q2 labelled by εφ(i),φ(j), label the arrow between
corresponding vertices in Q by εij + εφ(i),φ(j)

Amalgamation of a pair of quivers Q1, Q2 into a quiver Q induces an embed-
ding X qΣ → X

q
Σ1
⊗X qΣ2

of the corresponding cluster X -tori:

Xi 7→


Xi ⊗ 1, if i ∈ Q1 \ I1,
1⊗Xi, if i ∈ Q2 \ I2,
Xi ⊗Xφ(i), otherwise.

An example of amalgamation is shown in Figure 2. There, the left quiver
is obtained by amalgamating a triangle ABC from Figure 1 with a similar
triangle along the side BC (or more precisely, along frozen vertices 10, 11, and
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12 on the edge BC). Another example is shown in Figure 7 where a triangle
ABC is now amalgamated by 2 sides. Finally, the process of amalgamation is
best visible in Figure 6.

As explained in [11], in order to construct the cluster X -coordinate chart

on XŜ,PGLm corresponding to an ideal triangulation T of Ŝ, one implements
the following procedure:

1) m-triangulate each of the ideal triangles in T ;
2) for any pair of ideal triangles in T sharing an edge, amalgamate the corre-

sponding pair of quivers by this edge.

In general, different ideal triangulations of Ŝ result in different quivers, and
hence different cluster X -tori. However, any triangulation can be transformed
into any other by a sequence of flips that replace one diagonal in an ideal 4-gon
with the other one. Each flip corresponds to the following sequence of cluster
mutations that we shall recall on the example shown in Figure 2. There, a flip
is obtained in three steps. First, mutate at vertices 10, 11, 12, second, mutate
at vertices 7, 8, 14, 15, and third, mutate at vertices 4, 11, 18. Note, that the
order of mutations within one step does not matter. In general, a flip in an
m-triangulated 4-gon consists of m− 1 steps. On the i-th step, one should do
the following. First, inscribe an i-by-(m− i) rectangle in the 4-gon, such that
vertices of the rectangle coincide with boundary vertices of the m-triangulation
and the side of the rectangle of length m−i goes along the diagonal of a 4-gon.
Second, divide the rectangle into i(m − i) squares and mutate at the center
of each square. As in the example, the order of mutations within a single step
does not matter.
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Fig. 2: A pair of triangles amalgamated by 1 side.
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3 Quantum groups

In what follows, we consider the Lie algebra sln+1 = sln+1(C) equipped with
a pair of opposite Borel subalgebras b± and a Cartan subalgebra h = b+∩b−.
The corresponding root system ∆ is equipped with a polarization ∆ = ∆+ t
∆−, consistent with the choice of Borel subalgebras b±, and a set of simple
roots {α1, . . . , αn} ⊂ ∆+. We denote by (·, ·) the unique symmetric bilinear
form on h∗ invariant under the Weyl group W , such that (α, α) = 2 for all
roots α ∈ ∆. Entries of the Cartan matrix are denoted aij = (αi, αj).

Let q be a formal parameter, and consider an associative C(q)-algebra Dn

generated by elements

{Ei, Fi,Ki,K
′
i | i = 1, . . . , n}

subject to the relations

KiEj = qaijEjKi, KiKj = KjKi,

K ′iEj = q−aijEjK
′
i, K ′iKj = KjK

′
i,

KiFj = q−aijFjKi, K ′iK
′
j = K ′jK

′
i,

K ′iFj = qaijFjK
′
i,

(11)

the relation

[Ei, Fj ] = δij
(
q − q−1

)
(Ki −K ′i) , (12)

and the quantum Serre relations

E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0,

F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0,

[Ei, Ej ] = [Fi, Fj ] = 0 if |i− j| > 1.

(13)

The algebra Dn is a Hopf algebra, with the comultiplication

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Ki) = Ki ⊗Ki,

∆(Fi) = Fi ⊗K ′i + 1⊗ Fi, ∆(K ′i) = K ′i ⊗K ′i,

the antipode

S(Ei) = −K−1
i Ei, S(Ki) = K−1

i ,

S(Fi) = −FiKi, S(K ′i) = (K ′i)
−1,

and the counit

ε(Ki) = ε(K ′i) = 1, ε(Ei) = ε(Fi) = 0.

The quantum group Uq(sln+1) is defined as the quotient

Uq(sln+1) = Dn/ 〈KiK
′
i = 1 | i = 1, . . . , n〉 .
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Note that the quantum group Uq(sln+1) inherits a well-defined Hopf algebra
structure from Dn. The subalgebra Uq(b) ⊂ Dn generated by all Ki, Ei is a
Hopf subalgebra in Dn. The algebra Uq(b) is isomorphic to its image under
the projection onto Uq(sln+1) and is called the quantum Borel subalgebra of
Uq(sln+1). Note that Dn is nothing but the Drinfeld double [8] of the Hopf
algebra Uq(b).

Remark 1 Our definition of the quantum group generators Ei, Fi differs from
the standard one, in which the relation (12) is replaced by the relation

[ei, fj ] = δij
Ki −K ′i
q − q−1

.

Our normalization

Ei = (q − q−1)ei, Fi = (q − q−1)fi

is chosen so that in the semiclassical q → 1 limit, the quantum group delivers
the Poisson algebra of functions on the Poisson-Lie dual group SL∗n+1.

Let us fix a normal ordering ≺ on ∆+, that is a total ordering such that
α ≺ α + β ≺ β for any α, β ∈ ∆+. We set Eαi = Ei, Fαi = Fi, and define
inductively

Eα+β =
EαEβ − q−(α,β)EβEα

q − q−1
, (14)

Fα+β =
FβFα − q(α,β)FαFβ

q − q−1
. (15)

Then the set of all normally ordered monomials in Kα, K ′α, Eα, and Fα for
α ∈ ∆+ forms a Poincaré-Birkhoff-Witt (PBW) basis for Dn as a C(q)-module.
In what follows, we denote

Eij = Eαi+αi+1+...+αj and Fij = Fαi+αi+1+...+αj .

Finally, let us introduce for future reference the automorphism θ of the Dynkin
diagram of Uq(sln+1) defined by

θ(i) = n+ 1− i, 1 ≤ i ≤ n. (16)

4 An embedding of Uq(sln+1)

Let us now explain how to embed Uq(sln+1) into a quantum cluster X -chart on

the quantum character variety of decorated PGLn+1-local systems on a disk Ŝ
with a single puncture p, and with two marked points x1, x2 on its boundary.

We consider the ideal triangulation of Ŝ in which we take the pair of
triangles from Figure 1 and amalgamate them by two sides as in Figure 6.
The resulting quiver is shown in Figure 3. Note that the vertices in the central



14 Gus Schrader, Alexander Shapiro

V1

V2

Vn

...
...

...
...

...
...

...
...

...
...

Λ1

Λ2

Λn

Fig. 3: Dn-quiver.

column used to be frozen before amalgamation. We shall refer to this quiver
as the Dn-quiver and denote the corresponding quantum torus algebra by
Dn. The Dn-quivers for n = 1, 2, and 3 are shown in Figures 4, 5, and 7
respectively.

Let us explain our convention for labelling the vertices of the Dn-quiver. We
denote frozen vertices in the left column by Vi,−i with i = 1, . . . , n counting
South to North. Now, choose a frozen vertex Vi,−i and follow the arrows in the
South-East direction until you hit one of the vertices in the central column.
Each vertex along the way is labelled by Vi,r, r = −i, . . . , 0. Then, start from
the central vertex Vi,0 and follow arrows in the North-East direction labelling
vertices Vi,r, r = 0, . . . , i, on your way until you hit a frozen vertex in the
right column, which receives the label Vi,i. This way we label all the vertices
except for the upper half of those in the central column. Now, let us rotate
the Dn-quiver by 180◦, and label the image of the vertex Vi,r by Λi,r. Now,
we have labelled every vertex twice by some V and some Λ except for those in
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the central column. This way to label vertices, although redundant, will prove
very convenient in the sequel. The following relation is easy to verify:

Vi,±r = Λθ(r),∓θ(i), 1 6 r 6 i 6 n. (17)

In the above formula, θ denotes the diagram automorphism defined in (16).
Finally, we refer to the subset of vertices {Vi,r | − i 6 r < i} as the Vi-path.
Similarly, the Λi-path is {Λi,r | − i 6 r < i}.

Example 1 Let us refer to the i-th vertex in Figure 4 by Xi. Then the labelling
suggested above is as follows:

V1,−1 = X1, V1,0 = X2, V1,1 = X3,

Λ1,−1 = X3, Λ1,0 = X4, Λ1,1 = X1.

Example 2 Similarly, we refer to the i-th vertex in Figure 5 by Xi. Then, one
has

V1,−1 = X1, V1,0 = X2, V1,1 = X3, V2,−2 = X4,

V2,−1 = X5, V2,0 = X6, V2,1 = X7, V2,2 = X8,

Λ1,−1 = X8, Λ1,0 = X9, Λ1,1 = X4, Λ2,−2 = X3,

Λ2,−1 = X7, Λ2,0 = X10, Λ2,1 = X5, Λ2,2 = X1.

Remark 2 As shown in [40], for any semisimple Lie algebra g the algebra
Uq(g) can be embedded into the quantized algebra of global functions on the
Grothendieck-Springer resolution G×B B, where B ⊂ G is a fixed Borel sub-
group in G. On the other hand, the variety G×BB is isomorphic to the moduli
space of G-local systems on the punctured disc, equipped with reduction to
a Borel subgroup at the puncture, as well as a trivialization at one marked
point on the boundary. Classically, this moduli space is birational to XŜ,G,
and it would be interesting to understand the precise relation between the
corresponding quantizations.

We now come to the first main result of the paper.

Theorem 1 There is an embedding of algebras ι : Dn → Ln defined by the
following assignment for i = 1, . . . , n:

Ei 7−→ i
i−1∑
r=−i

qi+rVi,−iVi,1−i . . .Vi,r, (18)

Ki 7−→ q2iVi,−iVi,1−i . . .Vi,i, (19)

Fθ(i) 7−→ i
i−1∑
r=−i

qi+rΛi,−iΛi,1−i . . . Λi,r, (20)

K ′θ(i) 7−→ q2iΛi,−iΛi,1−i . . . Λi,i. (21)
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Remark 3 Formulas (18) and (20) can be rewritten as follows:

Ei 7−→ i µqVi,i−1
. . . µqVi,1−i (Vi,−i) ,

Fθ(i) 7−→ i µqΛi,i−1
. . . µqΛi,1−i (Λi,−i) .

Thus the right hand side of the formula (18) coincides with the cluster X -
variable corresponding to the vertex Vi,−i, in the cluster ΣEi obtained from
the initial cluster Σ by consecutive application of mutations at variables Vi,r,
where r runs from i−1 to 1−i. Similarly, the right hand side of the formula (20)
coincides with the cluster X -variable for vertex Λi,−i in the cluster ΣFθ(i)
obtained from Σ by consecutive application of mutations at variables Λi,r,
where r runs from i − 1 to 1 − i. Let us also record the observation that in
the cluster ΣEi , the only cluster variables adjacent to Vi,−i are the variable
Vi,1−i which has a single arrow pointing to Vi,−i, the frozen variable Λθ(i),−θ(i)
which receives a single arrow from Vi,−i, and the frozen variables Vi−1,1−i and
Vi+1,−1−i which receive an arrow of weight 1

2 from Vi,−i whenever they exist.
The analagous property with V’s replaced by Λ’s holds in the cluster ΣFθ(i).

Remark 4 As explained in [13], the quantized algebra of functions on a cluster
Poisson variety comes equipped with a natural family of Hilbert space repre-
sentations on which the groupoid of cluster transformations acts by unitary
operators. In particular, one can restrict the Hilbert space representations of
the quantum cluster algebra Ln to the subalgebra Uq(sln+1) ⊂ Ln. The quan-
tum group representations obtained in this fashion turn out to be unitary
equivalent to the positive representations defined in [15], in which the quan-
tum group acts by certain explicitly defined q-difference operators. We thank
Ivan Ip for pointing this out to us.

Example 3 For n = 1, in the notations of Figure 4, the embedding ι reads

E 7→ iX1(1 + qX2), K 7→ q2X1X2X3,

F 7→ iX3(1 + qX4), K ′ 7→ q2X3X4X1.

4

1

2

3

Fig. 4: D1-quiver.
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Example 4 For n = 2, in the notations of Figure 5, the embedding ι reads

E1 7→ iX1(1 + qX2), K2 7→ q4X4X5X6X7X8,

E2 7→ iX4(1 + qX5(1 + qX6(1 + qX7))), K1 7→ q2X1X2X3,

F1 7→ iX3(1 + qX7(1 + qX10(1 + qX5))), K ′2 7→ q2X8X9X4,

F2 7→ iX8(1 + qX9), K ′1 7→ q4X3X7X10X5X1.

1

2

3

4

5

6

7

8

9

10

Fig. 5: D2-quiver.

The proof of Theorem 1 will follow from Propositions 1, 2, and 3 stated
below. The first of these propositions asserts that the quantum torus algebra
elements (18) – (21) indeed satisfy the defining relations of the quantum group.

Proposition 1 The formulas (18) – (21) define a homomorphism of algebras
ι : Dn → Dn.

Proof In what follows we abuse notations and denote an element of the algebra
Dn and its image under ι the same. For any 1 6 i 6 n and −i 6 r < i, let us
define

wri = iqi+rVi,−i . . .Vi,r,

mr
i = iqi+rΛi,−i . . . Λi,r.

(22)

Then, the formulas (18) – (21) can be rewritten as follows:

Ei = w−ii + · · ·+ wi−1
i , Ki = −qwi−1

i m
−θ(i)
θ(i) ,

Fθ(i) = m−ii + · · ·+mi−1
i , K ′θ(i) = −qmi−1

i w
−θ(i)
θ(i) .

(23)

It is immediate from inspecting the quiver that the relations (11) hold, as
well as [Ei, Ej ] = [Fi, Fj ] = 0 for |i− j| > 1. To verify (12) it suffices to notice
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that

i < θ(j) =⇒ wrim
s
j = ms

jw
r
i , (24)

i = θ(j) =⇒ wrim
s
j =


q2ms

jw
r
i if r = −i, s = j − 1,

q−2ms
jw

r
i if r = i− 1, s = −j,

ms
jw

r
i otherwise,

(25)

i > θ(j) =⇒ wrim
s
j =


q2ms

jw
r
i if r = ±θ(j), s = ∓θ(i)− 1,

q−2ms
jw

r
i if s = ±θ(i), r = ∓θ(j)− 1,

ms
jw

r
i otherwise.

(26)

Indeed, using formulas (23) we can write

[
Ei, Fθ(j)

]
=

i−1∑
r=−i

j−1∑
s=−j

(
wrim

s
j −ms

jw
r
i

)
. (27)

If i < θ(j) the right hand side of the equation (27) is 0 by relation (24).
Similarly, if i > θ(j), we use relation (26) and see that the right hand side of
equation (27) equals

(
q2 − 1

) (
m
−θ(i)−1
j w

θ(j)
i +m

θ(i)−1
j w

−θ(j)
i

)
+
(
q−2 − 1

) (
m
θ(i)
j w

−θ(j)−1
i +m

−θ(i)
j w

θ(j)−1
i

)
.

On the other hand, equations (22) and (17) yield

m
θ(i)
j w

−θ(j)−1
i = −q2j−1Λj,−j . . . Λj,θ(i)−1Λj,θ(i)Vi,−i . . . Λi,−θ(j)−1

= −q2j−1Λj,−j . . . Λj,θ(i)−1Vi,−θ(j)Vi,−i . . . Λi,−θ(j)−1

= −q2j+1Λj,−j . . . Λj,θ(i)−1Vi,−i . . . Λi,−θ(j)−1Λi,−θ(j)

= q2m
θ(i)−1
j w

−θ(j)
i .

Similarly,

m
−θ(i)
j w

θ(j)−1
i = q2m

−θ(i)−1
j w

θ(j)
i

and thus we conclude that[
Ei, Fθ(j)

]
= 0 unless i = θ(j).

Finally, if i = θ(j) one obtains[
Ei, Fθ(j)

]
=
(
q2 − 1

) (
m
θ(i)−1
θ(i) w−ii −m

i−1
i w

−θ(i)
θ(i)

)
=
(
q − q−1

)
(Ki −K ′i)

which proves formula (12).
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Let us now check the Serre relations

E2
i+1Ei + EiE

2
i+1 = (q + q−1)Ei+1EiEi+1.

Suppose −i 6 t 6 i− 1 and −i− 1 6 r 6 i. We write

tC r if wri+1w
t
i = q−1wtiw

r
i+1,

tB r if wri+1w
t
i = qwtiw

r
i+1.

(28)

It is easy to verify that

tC r ⇐⇒

{
t 6 r if r < 0,

t < r if r > 0
and tB r ⇐⇒

{
t > r if r < 0,

t > r if r > 0.

We can now express

E2
i+1Ei =

∑
r,s,t

wri+1w
s
i+1w

t
i

=
∑

tBr,tBs

wri+1w
s
i+1w

t
i +

∑
tBr,tCs

wri+1w
s
i+1w

t
i

+
∑

tCr,tBs

wri+1w
s
i+1w

t
i +

∑
tCr,tCs

wri+1w
s
i+1w

t
i

= q
∑

tBr,tBs

wri+1w
t
iw

s
i+1 + q−1

∑
tBr,tCs

wri+1w
t
iw

s
i+1

+ q
∑

tCr,tBs

wri+1w
t
iw

s
i+1 + q−1

∑
tCr,tCs

wri+1w
t
iw

s
i+1.

Analogously, we have

EiE
2
i+1 = q

∑
tCr,tBs

wri+1w
t
iw

s
i+1 + q−1

∑
tBr,tBs

wri+1w
t
iw

s
i+1

+ q
∑

tCr,tCs

wri+1w
t
iw

s
i+1 + q−1

∑
tBr,tCs

wri+1w
t
iw

s
i+1.

Observe that if t B r and t C s, then one necessarily has r < s. Similarly, if
tC r and tB s, it follows that r > s. We now use the fact that

wri+1w
s
i+1 = q2wsi+1w

r
i+1 for r > s (29)

to derive ∑
tBr,tCs

wri+1w
t
iw

s
i+1 =

∑
tBr,tCs

wsi+1w
t
iw

r
i+1,∑

tCr,tBs

wri+1w
t
iw

s
i+1 =

∑
tCr,tBs

wsi+1w
t
iw

r
i+1.
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It therefore follows that

E2
i+1Ei + EiE

2
i+1

=
(
q + q−1

)( ∑
tBr,tBs

+
∑

tBr,tCs

+
∑

tCr,tBs

+
∑

tCr,tCs

)
wri+1w

t
iw

s
i+1

=
(
q + q−1

)
Ei+1EiEi+1.

The other nontrivial Serre relations are proved in an identical fashion.

The next step in the proof of Theorem 1 is to Proposition 2 which guar-
antees that the image of the quantum group consists of universally Laurent
elements in the quantum torus algebra Dn.

Proposition 2 The image of Dn under the homomorphism ι is contained in
the algebra Ln of universally Laurent elements.

Proof The Proposition follows from the observations made in Remark 3 along
with the following trick, which was taught to us by Linhui Shen. Let Σ =
(I, I0, ε) be the seed encoded by the Dn-quiver. Consider a larger quantum
cluster algebra associated to the seed Σ′ = (I ′, I ′0, ε

′) obtained by “framing”
the original seed Σ as follows. First, consider a set J0 together with a bijection
j : I → J0, and define

I ′0 = I0 t J0, I ′ = I t J0.

Then, for each vertex i ∈ I, adjoin a new frozen vertex j(i) ∈ J0, along with a
single arrow i→ j(i). Thus, the exchange matrix ε′ of the new seed Σ′ takes
the block form

ε′ =

[
ε Id
−Id 0

]
.

In particular, for any |I ′| × |I ′| matrix M , with Mij = 0 unless both i, j are
frozen and such that ε̃ = ε′+M is an integer matrix, the corresponding cluster
ensemble map p induced by pMΣ′ will be an isomorphism, since the matrix ε̃ is
invertible over Z.

Let us denote the quantum cluster X -variables of the torus X qΣ′ by Yi
for i ∈ I and Yj(i) for j(i) ∈ J0. It is then evident from the commutation
relations in the cluster tori X qΣ and X qΣ′ , that the map φ : X qΣ → X

q
Σ′ defined

by φ(Xi) = Yi is an embedding of algebras. Moreover, it is evident from
the quantum X -mutation rules (8), that for any sequence µq = µqi1 . . . µ

q
ik

of
quantum cluster mutations, one has µq ◦φ(Yi) = φ◦µq(Xi). Thus, φ gives rise
to an embedding of the corresponding quantum cluster algerbas:

φ : Ln ↪→ L′n.

It now follows from Remark 3 that under the ensemble map p∗ in the
cluster Σ′Ei we have

(p∗ ◦ ι)(Ei) = p∗(XVi,−i) = AVi,1−i ×mfrozen, (30)
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wheremfrozen is a monomial in the frozenA-variables. By the quantum Laurent
phenomenon [4], we know that under any sequence of quantum A-mutations
the right-hand-side of the formula (30) remains a Laurent polynomial in the
quantum cluster A-variables. Since the ensemble map p∗ is invertible and
intertwines the quantum X - and A-mutations, we conclude that ι(Ei) ∈ Ln.
An analogous argument applies to the image of the Chevalley generators Fi.
Finally, one readily observes that in the initial cluster Σ, for each Cartan
generator Ki,K

′
i the monomials (p∗◦ι)(Ki) and (p∗◦ι)(K ′i) only involve frozen

A-variables, and are thus manifestly universally Laurent. The Proposition is
proved.

The final step of the proof of Theorem 1 is to establish that ι is indeed a
faithful embedding.

Proposition 3 The homomorphism ι is injective.

Proof It will be convenient to choose a different PBW basis of Dn from the
one we considered in Section 3. Namely, for any simple root α we set F ′α = Fα,
then define inductively

F ′α+β =
F ′αF

′
β − q−(α,β)F ′βF

′
α

q − q−1

for any α, β ∈ ∆+ such that α ≺ β.To illustrate the difference between Fα and
F ′α, observe that one has

Fα1+α2 =
F2F1 − q−1F1F2

q − q−1
and F ′α1+α2

=
F1F2 − qF2F1

q − q−1
.

By the PBW theorem, the set MonPBW of all normally ordered monomials
in Kα, K ′α, Eα, and F ′α, α ∈ ∆+, forms a basis for Dn over C(q). Let us now fix
a degree-lexigocraphic order on the set of all monomials in the quantum torus
Dn, taken with respect to any total order on the generators {Xi}. To establish
injectivity of ι, it will suffice to show that there are no two PBW monomials
m1,m2 ∈ MonPBW , such that ι(m1) and ι(m2) have the same leading term
with respect to our chosen monomial order for Dn. Indeed, if this is true, our
monomial order induces a total order on MonPBW with respect to which the
map ι becomes triangular.

In fact, given a monomial X ∈ Dn that arises as the leading term of some
PBW monomial, one can reconstruct the unique PBW monomial mX such that
the leading term of ι(mX) is X as follows. In the monomial X, let nij , sij , eij ,
and wij be respectively the degrees of the cluster variables corresponding to
North, South, East, and West nodes of the rhombus labelled by ij in the right
triangle in Figure 6; for example if i = 2 and j = 3, numbers nij , sij , eij , and
wij are the degrees of the cluster variables X5, X13, X15, and X2. Let us also
declare w1n = 0. Then the degree of Eij in mX is equal to nij + sij − eij −wij
and the degree of Ki is equal to eii − nin.
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Fig. 6: A pair of triangles amalgamated by 2 sides.

To see this, it suffices to analyze how much each of the generators Ers, F
′
rs,

Kr, and K ′r contribute to the expression

nij + sij − eij − wij (31)

for different r and s. First, note that Kr contributes 0 to all of the summands
in (31) if r 6= j, j − 1. At the same time, Ki contributes 1 to sij = wi,j−1 and
eij = ni,j−1 and 0 to nij , wij , si,j−1 and ei,j−1. Therefore, Kr does not con-
tribute anything to the sum (31) for any r = 1, . . . , n. Using similar arguments
one shows that the generators K ′r and F ′r do not contribute anything to the
sum (31) as well.

Now, let us consider generators Ers. If r < i or s < j then none of the
cluster variables corresponding to the vertices of the rhombus ij appear in
the expression ι(Ers) and therefore, Ers does not contribute anything to the
expression (31). On the other hand, if r > i then Ers contributes to 1 ni,j if
and only if it does so to wi,j . Similarly, it contributes simultaneously 1 or 0
to the pair si,j and ei,j . The same holds for s > j and the pairs (ni,j , ei,j) and
(si,j ,wi,j). Thus, it only remains to consider r = i and j = s in which case
Ers contributes 1 to si,j and 0 to all other summands in (31). This finishes
the proof of the formula for the exponent of Eij in the monomial mX. The
formula for Ki is proved by similar arguments.

Now, let nij , sij , eij , and wij denote the degrees in mX of the cluster
variables corresponding to the North, South, East, and West nodes of the
rhombus labelled ij in the left triangle in Figure 6, where we set e1n = 0.
Then the degree of F ′θ(i)θ(j) equals nij + sij − eij − wij in the left triangle

where we set e1n = 0 and the degree of K ′θ(i) equals wi,i − si,n. Again, the
proofs are similar to the one for Eij .

Corollary 1 The homomorphism ι induces an embedding of the quantum
group Uq(sln+1) into the quotient of the algebra Ln by relations

q2n+2Vi,−i . . .Vi,i · Λθ(i),−θ(i) . . . Λθ(i),θ(i) = 1

for all 1 6 i 6 n.
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Fig. 7: D3-quiver.

It was shown in [18] that the algebra Ln carries a natural action of the
symmetric group Sn+1 by cluster transformations. At the classical level, this
action is given by permuting the (n + 1)! coordinate flags in Cn+1 fixed by a
generic monodromy around the puncture. We conclude this section with the
following conjecture regarding the image of the homomorphism ι.

Conjecture 1 The image of ι coincides with the subalgebra of elements in Ln
invariant under the Sn+1 action, that is we have an isomorphism

ι : Dn ' (Ln)
Sn+1 .

We remark that for n = 1, Conjecture 1 can be proven by a direct calculation.

5 Triangulations of a punctured disk

Let Ŝ, as before, be a punctured disk with a pair of marked points on the
boundary. Recall that the quiver Dn was constructed from a triangulation
of Ŝ shown in the middle of Figure 8. In this section we discuss the embed-
ding ι in terms of clusters corresponding to the self-folded triangulations of Ŝ
shown in the left and right parts of Figure 8. The respective quivers we denote

Fig. 8: Three triangulations of the punctured disk with a pair of marked points on its
boundary.
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by Dsf±
n , with positive sign corresponding to the triangulation in the left part

of Figure 8. The quiver Dsf+
3 is shown in Figure 9; it can be obtained from D3

by first mutating the latter at vertices 1, 3, 6, then at vertices 4, 7, 13, 14, and
finally at 8, 3, 15.

10 16

11 6 17

12 7 14 18

8 3 15

4 13

1

2

5

9

11

22

33

12

23
13

Fig. 9: Quiver Dsf+
3 .

We shall now express generators Ei and Ki of the quantum Borel subal-

gebra Uq(b+) ⊂ Uq(sln+1) in terms of cluster coordinates of the quiver Dsf+
n .

Note that in the bottom of Dsf+
n , there are n horizontal rows of vertices, such

that the vertices in the beginning and end of each row are frozen. Let us num-
ber the rows from bottom to top, so that there are r + 1 vertices in the r-th
row, and number vertices in each row from left to right, starting with 1. We
denote the j-th vertex in the r-th row by Br,j . Then it is straightforward to
check that the images under the embedding ι of the generators Ei and Ki can
be expressed as follows:

Ei 7→ i

i∑
r=1

qr−1Bi,1Bi,2 . . . Bi,r, Ki 7→ qiBi,1Bi,2 . . . Bi,i+1. (32)

One can see that the above formulas involve fewer monomials than those for
the middle triangulation in Figure 8. On the other hand, formulas for the
generators of the opposite Borel Uq(b−) ⊂ Uq(sln+1) become more involved.
In the cluster corresponding to the right-most triangulation in Figure 8 the
opposite occurs: the images of Uq(b−) generators under ι are simpler in terms

of the quantum torus Dsf−
n than in Dn, while the generators of the opposite

Borel Uq(b+) are transformed to longer expressions. More details on the com-
binatorics underlying the formulas (32), as well as those for the generators of
Uq(b−), are given in [41, Section 4].
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Example 5 In the notations of Figure 9, the restriction of ι to Uq(b+) reads

E1 7→ iX10, K3 7→ q3X12X7X14X18,

E2 7→ iX11(1 + qX6), K2 7→ q2X11X6X17,

E3 7→ iX12(1 + qX7(1 + qX14)), K1 7→ qX10X16.

Remark 5 Formula (32) coincides with the “Feigin homomorphism”, a well-
known embedding of Uq(b+) into a quantum torus algebra, see [1,39].

Remark 6 As in the proof of Proposition 3, let X be a monomial in cluster

variables of the quiver Dsf+
n that arises as the leading term of a PBW monomial

in Uq(b+) under the embedding ι. Then one can check that the exponent of the
quantum root vector Eij is expressed in terms of the degrees of cluster variables
of X by the formula (31) with respect to the shaded rhombi in Figure 9. Define
χt0 : ZN → Z with N =

(
n+2

2

)
+ n− 1 to be the function

χt0 = min
16i6j6n

(nij + sij − eij − wij) , (33)

where the minimum is taken over all shaded rhombi in Figure 9. The condition
that a cluster monomial X appears as the leading term of a PBW basis element
is thus equivalent to the condition χt0(X) > 0.

Let us now consider the triangle in Figure 9 whose sides contain vertices
{10, 11, 12}, {8, 3, 15}, and {18, 17, 16} respectively. By rotating the above tri-
angle by ±2π/3 one obtains two more families of shaded rhombi, and we define
functions χ± by the same formula as (33) but with respect to these new fam-
ilies. Finally, let us define Wt : ZN → Z by

Wt = min {χ0, χ+, χ−} . (34)

The function Wt is the tropicalized potential function on the moduli space of
framed G-local systems on a 3-gon, defined in [18] by Goncharov and Shen.
As shown in [18], there is a bijection between lattice points z ∈ ZN such that
Wt(z) > 0 and the so-called “hives” introduced by Knutson and Tao in [31].

6 The Dehn twist on a twice punctured disk

In order to describe the coalgebra structure of Uq(sln+1), we will need to con-

sider the moduli space XŜ2,PGLn+1
of PGLn+1-local systems on Ŝ2, a disk with

two punctures p1, p2, and two marked points x1, x2 on its boundary. To obtain
a quantum cluster chart on this moduli space, we consider the quiver corre-
sponding to the (n+ 1)-triangulation of the left-most disk in Figure 10. Note
that this quiver is formed by amalgamating two Dn-quivers by one column of
frozen variables, see Figure 3. An example of two amalgamated D2-quivers is
shown in Figure 11, where one should disregard the gray arrows. We refer to
the result of this amalgamation as the Zn-quiver and denote the corresponding
quantum torus algebra by Zn.
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Figure 10 shows four different ideal triangulations of a twice punctured disk
with two marked points on the boundary; the arrows correspond to flips of ideal
triangulations. Note that the right-most disk may be obtained from the left-
most one by applying the half-Dehn twist rotating the left puncture clockwise
about the right one. Hence this half-Dehn twist may be decomposed into a
sequence of 4 flips. Let Z ′n be the quiver obtained from the (n+1)-triangulation
of the right-most disk. It is evident from inspecting the corresponding (n+ 1)-
triangulations that there exists an isomorphism σ between the Zn- and the
Z ′n-quivers that preserves all frozen variables. On the other hand, since there
is no nontrivial automorphism of the Zn-quiver fixing its frozen variables, we
conclude that the isomorphism σ is unique.

a

b

c

d

e

f

g

Fig. 10: The half Dehn twist as a sequence of 4 flips.

Let us now describe σ explicitly. Recall that each (n + 1)-triangulated
triangle contains exactly n solid oriented paths parallel to each of its sides.
We number them starting from the opposite vertex. For example, in the 4-
triangulation shown in Figure 1, the paths 1 → 2, 3 → 4 → 5, and 6 → 7 →
8 → 9, are respectively the 1-st, the 2-nd, and the 3-rd paths parallel to the
side BC. Now, consider the second disk in Figure 10, recall that the (n+ 1)-
triangulation of the pair of triangles in the middle is shown in the right part
of Figure 2. For i = 1, . . . , n we define the i-th permutation cycle to

• follow the i-th solid path parallel to the side a in the triangle ∆abc along
the orientation,
• follow the θ(i)-th solid path parallel to the side d in the triangle ∆bde in

the direction opposite to the orientation,
• follow the i-th solid path parallel to the side g in the triangle ∆efg along

the orientation,
• follow the θ(i)-th solid path parallel to the side d in the triangle ∆cdf in

the direction opposite to the orientation.

Now, the isomorphism σ is defined as follows: each vertex in the i-th permu-
tation cycle is moved i steps along the cycle, frozen variables are left intact,
the rest of the vertices are rotated by 180◦. In Figure 11, the 2 cycles in the
quiver Z2 and the rotation of vertices 9 and 11 are shown by gray arrows; the
action of σ reads

σ = (2 7 15 17 13 4) (3 16 18) (8 10 12) (9 11),

where the 2nd permutation cycle breaks into (3 16 18) (8 10 12).
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Fig. 11: Permutation on the Z2-quiver.

7 Cluster realization of the R-matrix

In this section we shall need an ~-formal version of the algebra Dn. Let Dn be
an associative algebra over the ring C[~] defined by generators

{Ei, Fi, Hi, H
′
i | i = 1, . . . , n}

subject to the relations (11), (12), and (13) where

q = e~ and Ki = qHi = e~Hi .

Then, the ~-formal version U~(sln+1) of the quantum group is defined as the
quotient of the algebra Dn by relations

Hi +H ′i = 0 (35)

for i = 1, . . . , n. Note, that Dn and Uq(sln+1) are topological subalgebras of
Dn and U~(sln+1) respectively.

Recall that the universal R-matrix of Dn is an element

R ∈ Dn⊗̃Dn

of a completion of its tensor square, with resect to the ~-adic topology. The
image ofR under the quotient by relations (35) gives rise to a braiding operator
on the category of finite dimensional U~(sln+1)-modules. It was shown in [38,
30,32] that the universal R-matrix admits decomposition

R = R̄K.

where
K = q

∑
i,j cijHi⊗H

′
j ,



28 Gus Schrader, Alexander Shapiro

and (cij) is the inverse of the Cartan matrix. The tensor R̄ is called the quasi
R-matrix and is given by the formula

R̄ =
→∏

α∈∆+

Ψ q (−Eα ⊗ Fα) , (36)

where the product is ordered consistently with the previously chosen normal
ordering ≺ on ∆+.

We shall also make use of the ~-formal version of the algebra Dn. Let
{Xi | i = 1, . . . , N} be the vertices of the Dn-quiver, and (εij) be its incidence
matrix, here N = n(n + 3). We define Dn to be an algebra over C[~] with
generators {xi | i = 1, . . . , N} subject to relations

[xi, xj ] = −2~εij .

Then, the assignment q = e~ and the map

Xi 7−→ exi

make Dn into a topological subalgebra of Dn. Combining the latter map with
the embedding ι : Dn → Dn one gets

Hi 7−→ vi,−i + vi,1−i + · · ·+ vi,i, (37)

H ′θ(i) 7−→ Λi,−i + Λi,1−i + · · ·+ Λi,i, (38)

where Vi,j = exp(vi,j) and Λi,j = exp(Λij).
Let AdK and AdR̄ denote the automorphisms of Dn ⊗Dn that conjugate

by K and R̄ respectively. One can check that both automorphism restrict to
the topological subalgebra Dn ⊗Dn. It is also clear that AdR̄ extends to an
automorphisms of Dn ⊗ Dn. Formulas (37) and (38) allow one to define an
action of AdK on the algebra Dn ⊗ Dn, which in turn restricts to an auto-
morphisms of Dn⊗Dn. Finally, we write P for the automorphism of Dn⊗Dn
permuting the tensor factors:

P (X ⊗ Y ) = Y ⊗X.

Recall the isomorphism of quivers described in the previous section. It
defines a permutation of cluster variables Xi 7→ Xσ(i) which we also denote
by σ with a slight abuse of notation. Note that each of the 4 flips shown in
Figure 10 corresponds to a sequence of

(
n+2

3

)
cluster mutations, as explained

at the end of Section 2. Let

N = 4 ·
(
n+ 2

3

)
and µN . . . µ1 be the sequence of quantum cluster mutations constituting the
half-Dehn twist. Now we are ready to formulate the next main result of the
paper.
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Theorem 2 The composition

P ◦AdR : Dn ⊗Dn −→ Dn ⊗Dn

restricts to the subalgebra Zn. Moreover, the following automorphisms of Zn
coincide:

P ◦AdR = µN . . . µ1 ◦ σ,
where the sequence of quantum cluster mutations µN . . . µ1 constitutes the half
Dehn twist.

Proof By Lemma 1 we have

µN . . . µ1 = ΦN ◦MN ,

where MN is a monomial transformation, and ΦN is a conjugation by a se-
quence of N quantum dilogarithms. The result of the theorem then follows
from Proposition 4 and Corollary 4 below.

Proposition 4 The following automorphisms of Zn coincide:

P ◦AdK = MN ◦ σ. (39)

Proof We define the ΛVi-path in the Zn-quiver as the concatenation of the
Λθ(i)-path in the left Dn-quiver with the Vi-path in the right Dn-quiver. For
example, in the notations of Figure 11, the ΛV1-path consists of vertices 1, 7,
16, 9, 3, 4, 5. Each mutation from the sequence µN . . . µ1 happens at a vertex
that belongs to a certain ΛVi-path, has exactly two outgoing edges within this
path, and has exactly two incoming edges from vertices that do not belong to
the path. This claim can be easily verified by inspecting the Zn-quiver and the
sequence of mutations under discussion. In turn, it implies that the monomial
transformation MN restricts to each ΛV-path. In other words, for a cluster
variable X in ΛVi-path the expression MN (X) depends only on the variables
from ΛVi-path, and MN (X) = X if X does not belong to any ΛV-path. The
action of MN on the ΛVi-path is shown in Figure 12, where

Z− = q2θ(i) ·X1X2 . . . X2θ(i)+1 · Y1,

Z0 = q−2n ·X−1
2θ(i) . . . X

−1
2 X−1

1 · Y −1
2i . . . Y −1

2 Y −1
1 ,

Z+ = q2i ·X1 · Y1Y2 . . . Y2i+1.

On the other hand, the automorphism P ◦AdK acts as P on all nonfrozen
variables in the product Dn ⊗Dn. This follows from the fact that Hi ⊗ 1 and
1 ⊗H ′j commute with all nonfrozen variables for all i, j = 1, . . . , n. It is also
easy to verify that P ◦ AdK acts on the frozen variables of Zn, and on those
variables that used to be frozen before the amalgamation, as follows:

P (AdK(X2θ(i)+1)) = q2θ(i) ·X1X2 . . . X2θ(i)+1 · Y1,

P (AdK(X1Y1)) = q−2n ·X−1
2θ(i) . . . X

−1
2 X−1

1 · Y −1
2i . . . Y −1

2 Y −1
1 ,

P (AdK(Y2i+1)) = q2i ·X1 · Y1Y2 . . . Y2i+1.
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X2θ(i)+1 X2θ(i) X2 X1Y1 Y2 Y3 Y2i−1 Y2i Y2i+1

. . . . . .

Z− Y2 Y3 Y2i−1 Y2i Z0 X2θ(i) X2 Z+

. . . . . .

Fig. 12: Action of MN on the ΛVi-path.

Let us prove the first equality; proofs of the other two are similar. First, note
that X2θ(i)+1 = Vi,−i⊗ 1 and Y1 = 1⊗Vi,−i. Now, using formula (37), we get

[Hr ⊗H ′s, vi,−i ⊗ 1] = air~(1⊗H ′s),

where (ari) is the Cartan matrix of type An. Summing over r and s we obtain[
n∑

r,s=1

crsHr ⊗H ′s, vi,−i ⊗ 1

]
=

n∑
r,s=1

aircrs~(1⊗H ′s) = ~(1⊗H ′i).

Therefore,

K
(
X2θ(i)+1

)
K−1 = e~(1⊗H′i)X2θ(i)+1 = X2θ(i)+1 ⊗K ′i.

Finally, we note that

P (X2θ(i)+1) = Y1 and P (K ′i) = q2θ(i)X1X2 . . . X2θ(i)+1,

which yields the desired formula. In particular, for all frozen variables X, we
see that MN (X) = P ◦ AdK(X). Thus, the algebra homomorphism M−1

N ◦
P ◦ AdK : Zn → Z ′n is given by a coordinate permutation of cluster variables
which fixes all frozen variables. Since there are no nontrivial automorphisms
of the quivers Zn and Z ′n fixing the frozen variables, we conclude that the
permutation σ must satisfy the equation (39).

Remark 7 The composition of the comultiplication map ∆ with the tensor
square of the embedding ι factors through the subalgebra Zn: we have

(ι⊗ ι) ◦∆ : Dn → Zn ⊂ Dn ⊗Dn.

Let us refer to the concatenation of the two Vi-paths in a pair of amalgamated
Dn-quivers as a VVi-path. Then, the formula for ∆(Ei) is obtained by con-
jugating the first (frozen) variable in the VVi-path by quantum dilogarithms
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with arguments running over consecutive vertices in the VVi-path not includ-
ing the last (frozen) vertex, and multiplying the result by i. In particular, in
the notations of Figure 11 one gets

∆(E1) = iX1(1 + qX2(1 + qX3(1 + qX4))),

∆(E2) = iX6(1 + qX7(. . . (1 + qX12(1 + qX13)) . . . )).

The coproduct ∆(Ki) is equal to the product of all the variables along the
VVi-path multiplied by q4i. Again, in the notations of Figure 11 one gets

∆(K1) = q4X1X2X3X4X5,

∆(K2) = q8X6X7X8X9X10X11X12X13X14.

Formulas for ∆(Fθ(i)) and ∆(K ′θ(i)) can be obtained from those for ∆(Ei) and

∆(Ki) via rotating the Zn-quiver by 180◦. Similarly, one can get formulas for
iterated coproducts ∆k(A), A ∈ Dn, by amalgamating k + 1 copies of the
Dn-quiver.

8 Factorization of the R-matrix

In this section, we show that the embedding (1) gives rise to the refined fac-
torization of the R-matrix of Uq(sln+1) used in the proof of Theorem 2. We
begin with some preparatory lemmas and remarks.

Lemma 2 The image of Eij ∈ Dn under the embedding ι can be written as

Eij = (−q)j−i
∑

riB···Brj

wrii w
ri+1

i+1 . . . w
rj
j (40)

where the sum is taken over all tuples of integers {rs | i 6 s 6 j} satisfying
i > ri B ri+1 B · · · B rj > −j. Similarly, the image of Fij ∈ Dn under the
embedding ι can be written as

Fij =
∑

rjC···Cri

mri
θ(i)m

ri+1

θ(i+1) . . .m
rj
θ(j) (41)

where the sum is taken over all tuples of integers {rs | θ(j) 6 s 6 θ(i)} satis-
fying −θ(j) 6 rj C rj−1 C · · ·C ri < θ(i).

Proof We prove the formula (40) by induction on the difference j − i. The
base of induction follows readily from relations (23). Now, let us prove the
step. Since

Ei,j+1 =
EijEj − qEjEij

q − q−1
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we have

Ei,j+1 =
(−q)j−i

q − q−1

 ∑
riB···Brj

wrii w
ri+1

i+1 . . . w
rj
j

j∑
t=−j−1

wtj+1

− q

j∑
t=−j−1

wtj+1

∑
riB···Brj

wrii w
ri+1

i+1 . . . w
rj
j

 .

Using notations (28) and the fact that wri and wsj commute if |i− j| > 1, we
further obtain

Ei,j+1 =
(−q)j−i

q − q−1

∑
riB···BrjBt

(
1− q2

)
wrii w

ri+1

i+1 . . . w
rj
j w

t
j+1

= (−q)j+1−i
∑

riB···Brj+1

wrii w
ri+1

i+1 . . . w
rj+1

j+1 .

This finishes the proof of (40); formula (41) is proved in a similar fashion.

Let us introduce a few more notations. For any fixed integer s we set

E
↓s−
i,j = (−q)j−i

∑
sBri

riB···Brj

W r̄
[i,j], E

↓s+
i,j = (−q)j−i

∑
sCri

riB···Brj

W r̄
[i,j],

E
↑s−
i,j = (−q)j−i

∑
rjCs

riB···Brj

W r̄
[i,j], E

↑s+
i,j = (−q)j−i

∑
rjBs

riB···Brj

W r̄
[i,j].

where W r̄
[i,j] = wrii w

ri+1

i+1 . . . w
rj
j . Similarly, we define

F
↓s−
i,j =

∑
riCs

rjC···Cri

M r̄
[θ(i),θ(j)], F

↓s+
i,j =

∑
riBs

rjC···Cri

M r̄
[θ(i),θ(j)],

F
↑s−
i,j =

∑
sBrj

rjC···Cri

M r̄
[θ(i),θ(j)], F

↑s+
i,j =

∑
sCrj

rjC···Cri

M r̄
[θ(i),θ(j)].

with M r̄
[θ(i),θ(j)] = mri

θ(i)m
ri+1

θ(i+1) . . .m
rj
θ(j).

Corollary 2 For every −i 6 r < i and −j 6 s < j there exist decompositions

Ei+1,j = E
↓r−
i+1,j + E

↓r+
i+1,j , Ei,j−1 = E

↑s−
i,j−1 + E

↑s+
i,j−1

where the summands satisfy

wriE
↓r±
i+1,j = q±1E

↓r±
i+1,jw

r
i , wsjE

↑s±
i,j−1 = q±1E

↑s±
i,j−1w

s
j . (42)

Similarly, for every −θ(i) 6 r < θ(i) and −θ(j) 6 s < θ(j) there exist
decompositions

Fi+1,j = F
↓r−
i+1,j + F

↓r+
i+1,j , Fi,j−1 = F

↑s−
i,j−1 + F

↑s+
i,j−1
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where the summands satisfy

mr
θ(i)F

↓r±
i+1,j = q±1F

↓r±
i+1,jm

r
θ(i), ms

θ(j)F
↑s±
i,j−1 = q±1F

↑s±
i,j−1m

s
θ(j).

Corollary 3 For any i < r < j the elements Eij and Fij can be written as
follows

Eij = −q
j−1∑
s=−j

E
↑s+
i,j−1w

s
j = q2

r−1∑
s=−r

E
↑s+
i,r−1w

s
rE
↓s−
r+1,j = −q

i−1∑
s=−i

wsiE
↓s−
i+1,j , (43)

Fij =

θ(j)−1∑
s=−θ(j)

F
↑s+
i,j−1m

s
θ(j) =

θ(r)−1∑
s=−θ(r)

F
↑s+
i,r−1m

s
θ(r)F

↓s−
r+1,j =

θ(i)−1∑
s=−θ(i)

ms
θ(i)F

↓s−
i+1,j

(44)

We say that formulas (43) show decompositions of Eij with respect to the Vi-,
Vr-, and Vj-paths. Similarly, formulas (44) show decompositions of Fij with
respect to the Λθ(i)-, Λθ(r)-, and Λθ(j)-paths.

Lemma 3 For all a < b, we have(
E
↑a+
i,j−1w

a
j

)(
E
↑b+
i,j−1w

b
j

)
= q−2

(
E
↑b+
i,j−1w

b
j

)(
E
↑a+
i,j−1w

a
j

)
, (45)(

F
↑a+
i,j−1m

a
θ(j)

)(
F
↑b+
i,j−1m

b
θ(j)

)
= q−2

(
F
↑b+
i,j−1m

b
θ(j)

)(
F
↑a+
i,j−1m

a
θ(j)

)
, (46)

and(
E
↑a+
i,j−1w

a
jE
↓a−
j+1,k

)(
E
↑b+
i,j−1w

b
jE
↓b−
j+1,k

)
= q−2

(
E
↑b+
i,j−1w

b
jE
↓b−
j+1,k

)(
E
↑a+
i,j−1w

a
jE
↓a−
j+1,k

)
. (47)

Proof We shall only prove the first relation as the proofs of the other two are
similar. First, we note that

waj

(
E
↑b+
i,j−1w

b
j

)
= q−1

(
E
↑b+
i,j−1w

b
j

)
waj

by equalities (29) and (42). Let us set

Ea5bi,j−1 = E
↑a+
i,j−1 − E

↑b+
i,j−1.

Then we have
E
↑b+
i,j−1w

b
j = q−1wbjE

↑b+
i,j−1

and it only remains to commute Ea5bi,j−1 through E
↑b+
i,j−1w

b
j . Since

Ea5bi,j−1w
b
j = qwbjE

a5b
i,j−1,

it is enough to show that

Ea5bi,j−1E
↑b+
i,j−1 = q−2E

↑b+
i,j−1E

a5b
i,j−1.
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We finish the proof by induction on j. To check the base of induction we
set j = i+ 1. Then

Ea5bi =
∑

rBa, rCb

wri , E
↑b+
i =

∑
sBb

wsi

and the proof follows from relation (29). In order to make the step of induction

we assume that (45) hold for all j < k. Let us decompose both Ea5bi,k−1 and

E
↑b+
i,k−1 with respect to the Vk−1-path:

Ea5bi,k−1 = −q
∑

rBa, rCb

E
↑r+
i,k−2w

r
k−1, E

↑b+
i,k−1 = −q

∑
sBb

E
↑s+
i,k−2w

s
k−1.

Applying (45) for j = k − 1 we conclude that it holds as well for j = k.

Lemma 4 For i < j we have

Ei,jEk =


q−1EkEi,j if k = j,

qEkEi,j if k = i,

EkEi,j if i < k < j.

(48)

Proof Using equations (23) and (43) we can write

Ei,jEj = −q
j−1∑

r,s=−j
E
↑s+
i,j−1w

s
jw

r
j = −

j−1∑
r,s=−j

wsjE
↑s+
i,j−1w

r
j = q−1EjEi,j .

The other two cases are treated in a similar way.

For any i < j let us declare

F>s
i,j =

∑
r>s

F
↑r+
i,j−1m

r
θ(j). (49)

Note that

F>s
i,j =

{
F
↑s+
i,j if s < 0,

F
↑s+
i,j−1m

s
θ(j) + F

↑s+
i,j if s > 0.

We shall also use the following shorthand:

ψ(x) = Ψ q(−x)

Note that the pentagon identity (10) now reads

ψ(v)ψ(u) = ψ(u)ψ(−quv)ψ(v) (50)

for any u and v satisfying vu = q2uv.

Lemma 5 We have

ψ
(
Ei,j ⊗ F ↑s+i,j

)
ψ
(
Ei,j+1 ⊗ F>s

i,j+1

)
ψ
(
Ej+1 ⊗ms

θ(j+1)

)
= ψ

(
Ej+1 ⊗ms

θ(j+1)

)
ψ
(
Ei,j ⊗ F ↑s+i,j

)
ψ
(
Ei,j+1 ⊗ F>s+1

i,j+1

)
.

(51)
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Proof By definition (49) and equality (9), there exists a factorization

ψ
(
Ei,j+1 ⊗ F>s

i,j+1

)
=
∏
r≥s

ψ
(
Ei,j+1 ⊗ F ↑r+i,j mr

θ(j+1)

)
,

where the product is taken in ascending order. Note that the dilogarithm

ψ
(
Ej+1 ⊗ms

θ(j+1)

)
commutes with all but the left-most factor in this prod-

uct. Hence the left-hand side of (51) may be re-ordered so that we have a
triple of adjacent factors

ψ
(
Ei,j ⊗ F ↑s+i,j

)
ψ
(
Ei,j+1 ⊗ F ↑s+i,j ms

θ(j+1)

)
ψ
(
Ej+1 ⊗ms

θ(j+1)

)
.

Let us introduce the following notations:

A = ψ
(
Ei,j ⊗ F ↑s+i,j

)
, B = ψ

(
Ei,j+1 ⊗ F ↑s+i,j ms

θ(j+1)

)
,

C = ψ
(
Ej+1 ⊗ms

θ(j+1)

)
.

Now, it suffices to prove that

ABC = CA.

We also set

Ar = ψ
(
−qE↑r+i,j−1w

r
j ⊗ F

↑s+
i,j

)
, C−r = ψ

(
E
↓r−
j+1 ⊗m

s
θ(j+1)

)
,

Br = ψ
(
q2E

↑r+
i,j−1w

r
jE
↓r−
j+1 ⊗ F

↑s+
i,j ms

θ(j+1)

)
, C+

r = ψ
(
E
↑r+
j+1 ⊗m

s
θ(j+1)

)
.

Formulas (43) imply

A = A−jA1−j . . . Aj−1, B = B−jB1−j . . . Bj−1,

and by Lemma 3, we have

AkBl = AlBk for k > l.

On the other hand, for any −j 6 r 6 j − 1 we can factor

C = C−r C
+
r .

The pentagon identity (50) yields

ArBrC
−
r = C−r Ar,

and therefore for any −j 6 r 6 j − 1 we get

ArBrC = ArBrC
−
r C

+
r = C−r ArC

+
r = CAr

where we have used that C+
r and Ar commute. Finally we obtain

ABC = (A−jA1−j . . . Aj−1) (B−jB1−j . . . Bj−1)C

= (A−jB−j) (A1−jB1−j) . . . (Aj−1Bj−1)C

= CA−jA1−j . . . Aj−1

= CA.
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Theorem 3 The quasi R-matrix of Uq(sln+1) can be factored as follows:

R̄n =ψ
(
E1 ⊗m−nn

)
ψ
(
E2 ⊗m1−n

n−1

)
· · ·ψ

(
En ⊗m−1

1

)
·ψ
(
E1 ⊗m1−n

n

)
ψ
(
E2 ⊗m2−n

n−1

)
· · ·ψ

(
En−1 ⊗m−1

2

)
...

·ψ
(
E1 ⊗m−2

n

)
ψ
(
E2 ⊗m−1

n−1

)
·ψ
(
E1 ⊗m−1

n

)
·ψ
(
E1 ⊗m0

n

)
·ψ
(
E2 ⊗m0

n−1

)
ψ
(
E1 ⊗m1

n

)
...

·ψ
(
En−1 ⊗m0

2

)
ψ
(
En−2 ⊗m1

3

)
· · ·ψ

(
E1 ⊗mn−2

n

)
·ψ
(
En ⊗m0

1

)
ψ
(
En−1 ⊗m1

2

)
· · ·ψ

(
E1 ⊗mn−1

n

)
.

(52)

Equivalently, we have

R̄ =

n∏
k=1

θ(k)∏
j=1

j−1∏
i=−j

ψ
(
wij ⊗m

k−θ(j)−1
θ(j)

)

·
n∏
k=1

n∏
j=θ(k)

θ(j)−1∏
i=−θ(j)

ψ
(
wiθ(j) ⊗m

j−θ(k)
j

)
,

(53)

where the products are taken in ascending order2 and expanded from left to
right, that is one should first expand the formula in k, then in j, and then in i.

Example 6 In the case of Uq(sl3), formula (53) yields a factorization of the
quasi R-matrix into the following 16 factors:

R̄ =ψ
(
w−1

1 ⊗m−2
2

)
ψ
(
w0

1 ⊗m−2
2

)
ψ
(
w−2

2 ⊗m−1
1

)
ψ
(
w−1

2 ⊗m−1
1

)
·ψ
(
w0

2 ⊗m−1
1

)
ψ
(
w1

2 ⊗m−1
1

)
ψ
(
w−1

1 ⊗m−1
2

)
ψ
(
w0

1 ⊗m−1
2

)
·ψ
(
w−1

1 ⊗m0
2

)
ψ
(
w0

1 ⊗m0
2

)
ψ
(
w−2

2 ⊗m0
1

)
ψ
(
w−1

2 ⊗m0
1

)
·ψ
(
w0

2 ⊗m0
1

)
ψ
(
w1

2 ⊗m0
1

)
ψ
(
w−1

1 ⊗m1
2

)
ψ
(
w0

1 ⊗m1
2

)
.

Proof Choosing the normal ordering

α1 ≺ (α1 + α2) ≺ (α1 + · · ·+ αn) ≺ α2 ≺ · · · ≺ (α2 + · · ·+ αn) ≺ · · · ≺ αn

in the formula (36), we can write

R̄n+1 = ψ (E1 ⊗ F1)ψ (E1,2 ⊗ F1,2) · · ·ψ (E1,n+1 ⊗ F1,n+1) · R̄n. (54)

2 In fact, one only needs to order the product over k, for the reason that all factors with a
fixed k commute. However, it is slightly easier to check that formulas (53) and (57) coincide
if all three products are ordered.
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where we may assume by induction that R̄n factors as follows:

R̄n =ψ
(
E2 ⊗m−nn

)
ψ
(
E3 ⊗m1−n

n−1

)
· · ·ψ

(
En+1 ⊗m−1

1

)
...

·ψ
(
E2 ⊗m−2

n

)
ψ
(
E3 ⊗m−1

n−1

)
·ψ
(
E2 ⊗m−1

n

)
·ψ
(
E2 ⊗m0

n

)
·ψ
(
E3 ⊗m0

n−1

)
ψ
(
E2 ⊗m1

n

)
...

·ψ
(
En ⊗m0

2

)
ψ
(
En−1 ⊗m1

3

)
· · ·ψ

(
E2 ⊗mn−2

n

)
·ψ
(
En+1 ⊗m0

1

)
ψ
(
En ⊗m1

2

)
· · ·ψ

(
E2 ⊗mn−1

n

)
.

(55)

By Lemma 4, we may shuffle the prefix of (54) and the first row of (55) into
the following form:

ψ
(
E1 ⊗ F1

)
ψ
(
E1,2⊗F1,2

)
ψ
(
E2 ⊗m−nn

)
. . . ψ

(
E1,n ⊗ F1,n

)
·ψ
(
En ⊗m−2

2

)
ψ
(
E1,n+1 ⊗ F1,n+1

)
ψ
(
En+1 ⊗m−1

1

)
.
(56)

We can then apply Lemma 5 to write

ψ
(
E1 ⊗ F1

)
ψ
(
E1,2 ⊗ F1,2

)
ψ
(
E2 ⊗m−nn

)
= ψ

(
E1 ⊗m−n−1

n+1

)
ψ
(
E1 ⊗ F ↑(−n)+

1

)
ψ
(
E1,2 ⊗ F1,2

)
ψ
(
E2 ⊗m−nn

)
= ψ

(
E1 ⊗m−n−1

n+1

)
ψ
(
E2 ⊗m−nn

)
ψ
(
E1 ⊗ F ↑(−n)+

1

)
ψ
(
E1,2 ⊗ F ↑(1−n)+

1,2

)
.

After repeated applications of Lemma 5, the last of these being to write

ψ
(
E1,n ⊗ F ↑(−1)+

1,n

)
ψ
(
E1,n+1 ⊗ F1,n+1

)
ψ
(
En+1 ⊗m−1

1

)
= ψ

(
En+1 ⊗m−1

1

)
ψ
(
E1,n ⊗ F ↑(−1)+

1,n

)
ψ
(
E1,n+1 ⊗ F>0

1,n+1

)
,

we arrive at the following form of (56):

ψ
(
E1 ⊗m−n−1

n+1

)
ψ
(
E2 ⊗m−nn

)
· · ·ψ

(
En+1 ⊗m−1

1

)
· ψ
(
E1 ⊗ F ↑(−n)+

1

)
· · ·ψ

(
E1,n ⊗ F ↑(−1)+

1,n

)
ψ
(
E1,n+1 ⊗ F>0

1,n+1

)
.
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We can now repeat this reasoning for each of the next n − 1 rows in the
product (55). This results in an expression for R̄n+1 of the form

R̄n+1 =ψ
(
E1 ⊗m−n−1

n+1

)
ψ
(
E2 ⊗m−nn

)
· · ·ψ

(
En+1 ⊗m−1

1

)
·ψ
(
E1 ⊗m−nn+1

)
ψ
(
E2 ⊗m−n+1

n

)
· · ·ψ

(
En ⊗m−1

2

)
...

·ψ
(
E1 ⊗m−2

n+1

)
ψ
(
E2 ⊗m−1

n

)
·ψ
(
E1 ⊗m−1

n+1

)
·ψ
(
E1 ⊗m0

n+1

)
·ψ
(
E1 ⊗ F ↑0+

1

)
ψ
(
E1,2 ⊗ F>0

1,2

)
· · ·ψ

(
E1,n+1 ⊗ F>0

1,n+1

)
·ψ
(
E2 ⊗m0

n

)
·ψ
(
E3 ⊗m0

n−1

)
ψ
(
E2 ⊗m1

n

)
...

·ψ
(
En+1 ⊗m0

1

)
ψ
(
En ⊗m1

2

)
· · ·ψ

(
E2 ⊗m0

n

)
.

Note that the first n + 2 rows of factors in this product are now in the
desired form. Now we need to focus on the following factor:

ψ
(
E1 ⊗ F ↑0+

1

)
ψ
(
E1,2 ⊗ F>0

1,2

)
· · ·ψ

(
E1,n+1 ⊗ F>0

1,n+1

)
·ψ
(
E2 ⊗m0

n

)
·ψ
(
E3 ⊗m0

n−1

)
ψ
(
E2 ⊗m1

n

)
...

·ψ
(
En+1 ⊗m0

1

)
ψ
(
En ⊗m1

2

)
· · ·ψ

(
E2 ⊗m0

n

)
.

By Lemma 4, we can reshuffle this block so that it begins with an adjacent
triple of terms

ψ
(
E1 ⊗ F ↑0+

1

)
ψ
(
E1,2 ⊗ F>0

1,2

)
ψ
(
E2 ⊗m0

n

)
=ψ

(
E2 ⊗m0

n

)
ψ
(
E1 ⊗ F ↑0+

1

)
ψ
(
E1,2 ⊗ F ↑0+

1,2

)
=ψ

(
E2 ⊗m0

n

)
ψ
(
E1 ⊗m1

n+1

)
ψ
(
E1 ⊗ F ↑1+

1

)
ψ
(
E1,2 ⊗ F ↑0+

1,2

)
,

where we once again used Lemma 5. Note that now this recovers the correct
form of row (n+ 3) in (52), continuing in a similar fashion one arrives at the
desired expression for R̄.
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Corollary 4 Let µN . . . µ1 be the sequence of mutations from Theorem (2),
and

µN . . . µ1 = ΦN ◦MN

be the decomposition from Lemma 1. Then the following automorphisms of Zn
coincide:

AdP (R̄) = ΦN .

Proof Consider the factorization (53) of the quasi R-matrix obtained in The-
orem 3. On the other hand, we have a different factorization of the R-matrix
from inspecting the sequence of flips realizing the Dehn twist along with the
corresponding sequence of mutations. The latter factorization reads

P
(
R̄
)

=
n−1∏
k=0

n+1∏
j=θ(k)

θ(k+1)∏
i=1

ψ
(
m
i−θ(k)
j−i ⊗ w−ii+θ(j)

)

·
n−1∏
k=0

n+1∏
j=θ(k)

θ(k+1)∏
i=1

ψ
(
m
i−θ(k)
j−i ⊗ wθ(j)i+θ(j)

)

·
n∏
k=1

n+1∏
j=k+1

k∏
i=1

ψ
(
mi−1
i+θ(j) ⊗ w

k−j
j−i

)

·
n∏
k=1

n+1∏
j=k+1

k∏
i=1

ψ
(
mi−1
i+θ(j) ⊗ w

k−i
j−i

)
,

(57)

where all three products are taken in ascending order and expanded from
left to right. Each row in the formula (57) corresponds to one of the 4 flips
constituting the half Dehn twist. For example, the first row can be expanded
as

n∏
i=1

ψ
(
m
i−(n+1)
n+1−i ⊗ w

−i
i

)
·
n−1∏
i=1

(
ψ
(
mi−n
n−i ⊗ w

−i
i+1

)
ψ
(
mi−n
n+1−i ⊗ w

−i
i

))
...

·
1∏
i=1

(
ψ
(
m−1

1 ⊗ w−1
n

)
ψ
(
m−1

2 ⊗ w
−1
n−1

)
. . . ψ

(
m−1
n ⊗ w−1

1

))
.

Note that the above formula consists of n rows, while for every i = 1, . . . , n
the i-th row is a product of i(n− i) quantum dilogarithms. We leave it as an
exercise to an interested reader to check that the i-th row corresponds to the
i-th step of the flip, as described in the last paragraph of Section 2.

Now, it suffices to show that formulas (53) and (57) coincide. Let us write
(a1, . . . , aN ) for the sequence of dilogarithm arguments appearing in the factor-
ization (53), read from left to right. Similarly, we write (b1, b2, . . . , bN ) for the
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sequence of dilogarithm arguments appearing in the factorization (57), again
read from left to right. It is easy to see that the underlying sets (a1, . . . , aN )
and (b1, . . . , bN ) coincide. Moreover, we claim that for every pair (bi, bj) with
i < j such that (bi, bj) = (ak, al) for some k > l, we have [bi, bj ] = 0. This
follows from commutation relations

wriw
s
i = q2 sgn(r−s)wsiw

r
i ,

wriw
s
j = wsjw

r
i if |i− j| > 1,

wriw
s
i+1 =

{
qwsi+1w

r
i if r C s,

q−1wsi+1w
r
i if r B s,

and similar relations for variables mr
i , all of which can be read from the Dn-

quiver. Hence one can freely re-order the dilogarithms ψ(bi) to match the order
arising in (53), and the Proposition is proved.

9 Comparison with Faddeev’s results

We conclude by comparing the rank 1 case of our results with Faddeev’s em-
bedding (2) as promised in the introduction. Consider the quiver in Figure 4.
The corresponding quantum cluster D1 has initial variables 〈X1, X2, X3, X4〉
subject to the relations

XiXi+1 = q−2Xi+1Xi and XiXi+2 = Xi+2Xi where i ∈ Z/4Z.

In this case, the embedding (1) takes the form

E 7→ iX1(1 + qX2), K 7→ q2X1X2X3,

F 7→ iX3(1 + qX4), K ′ 7→ q2X3X4X1,

while our formula (52) for the universal R-matrix reads R = R̄K, with

R̄ = Ψ q (X1 ⊗X3)Ψ q (qX1 ⊗X3X4) ·
Ψ q (qX1X2 ⊗X3)Ψ q

(
q2X1X2 ⊗X3X4

)
.

(58)

Hence, Faddeev’s formulas (2) and (3) are recovered from ours under the mono-
mial change of variables

w1 7→ X1, w2 7→ qX1X2, w3 7→ X3, w4 7→ qX3X4. (59)

Acknowledgements We would like to thank Vladimir Fock for sharing his insights and
expertise, and for his suggestion to study quantum groups via quantization of the moduli
spaces of framed local systems considered in his work with Alexander Goncharov. We are
grateful to Arkady Berenstein for many inspiring discussions. Our gratitude also goes to
Nicolai Reshetikhin for his support and helpful suggestions throughout the course of this
work. We thank Linhui Shen for careful reading of the first version of this manuscript, for
teaching us a trick used in the proof of Proposition 2, and for providing many excellent
remarks, which led in particular to a significant simplification in the exposition of Lemma
7.6. We are grateful to David Hernandez for his hospitality in Paris, where the first version
of this paper was completed. Finally, we would like to thank the anonymous referee for
valuable comments which helped us improve exposition of the paper.



Cluster realization of Uq(sln) 41

References

1. A. Berenstein. “Group-like elements in quantum groups and Feigin’s conjecture.”
arXiv:q-alg/9605016

2. A. Berenstein, S. Fomin, A. Zelevinsky. “Parametrizations of canonical bases and totally
positive matrices.” Advances in Mathematics 122, no. 1 (1996): 49-149.

3. A. Berenstein, A. Zelevinsky. “String bases for quantum groups of type Ar.” Advances
in Soviet Mathematics 16, no. 1 (1993): 51-89.

4. A. Berenstein, A. Zelevinsky. “Quantum cluster algebras.” Advances in Mathematics
195, no. 2 (2005): 405-455.

5. A. Braverman, M. Finkelberg, H. Nakajima. “Towards a mathematical definition of
Coulomb branches of 3-dimensional N = 4 gauge theories, II.” arXiv:1601.03586
(2016).

6. A. Bytsko, J. Teschner. “R-operator, Co-Product, and Haar-Measure for the Modular
Double of Uq(sl(2,R)).” Communications in mathematical physics 240, no. 1-2 (2003):
171-196.

7. S. Cautis, H. Williams. “Cluster theory of the coherent Satake category.”
arXiv:1801.08111 (2018).

8. V. Drinfeld. “Quantum groups.” Proceedings of the International Congress of Mathe-
maticians, Berkeley (1986): 798820.

9. L. Faddeev. “Modular Double of Quantum Group.” arXiv:math/9912078 (1999).
10. M. Finkelberg, A Tsymbaliuk. “Multiplicative slices, relativistic Toda and shifted quan-

tum affine algebras.” arXiv:1708.01795 (2017).
11. V. Fock, A. Goncharov. “Moduli spaces of local systems and higher Teichmüller theory.”
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