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ABSTRACT. We construct an algebra embedding of the quantum group Uq(g) into a cen-
tral extension of the quantum coordinate ring O,[G"¥°*°/H] of the reduced big double
Bruhat cell in G. This embedding factors through the Heisenberg double H, of the quan-
tum Borel subalgebra Usq, which we relate to O4[G] via twisting by the longest element
of the quantum Weyl group. Our construction is inspired by the Poisson geometry of the
Grothendieck-Springer resolution studied in [10], and the quantum Beilinson-Bernstein the-
orem investigated in [3] and [38].

INTRODUCTION

A basic and much-studied problem in the theory of quantum groups concerns finding
embeddings of them into certain simpler algebras, which often lead to insights into their
ring-theoretic and representation-theoretic properties. A well-known example of such an
embedding is provided by the Feigin homomorphisms [2, 34] from the positive part Uy(ny)
of a Drinfeld-Jimbo quantized enveloping algebra to a quantum torus algebra. For each
reduced decomposition wg = s;, - - - s;, of the longest element of the Weyl group, one has an
algebra embedding of U,(n, ) into the algebra generated by variables X 1117 o X lil subject
to the g-commutativity relations X;X; = qbifXjXZ-. Other examples of quantum groups
which have been shown to admit similar embeddings into quantum torus algebras include the
quantum coordinate ring O4[G] of a simple Lie group G, as well as the quantum coordinate
rings Oy [G™"] of its double Bruhat cells constructed by Berenstein and Zelevinsky in [6] and
shown to bear an explicit structure of a quantum cluster algebra in [18]. These realizations
of quantum groups are closely connected with the theory of quantum cluster ensembles [11],
the Feigin homomorphism playing the role of quantum factorization parameters, and the
Berenstein-Zelevinsky realizations playing the role of generalized minors.

The problem of embedding the full quantized enveloping algebra Ug,(g) into a quantum
torus appears to be more subtle than the previous examples. In the construction of principal
series representations for quantized enveloping algebras in [13, 19, 21], homomorphisms from
a certain modular double of Uy(g) to a quantum torus were obtained by explicitly writing
formulas for the images of the Chevalley generators, and verifying by direct computation that
the defining relations were satisfied. In particular, this method depends intricately upon the
Dynkin type of g. When g is of type A, different embeddings into the non-commutative frac-
tion field of a quantum torus can also be obtained from representations of U,(g) of Gelfand-
Zetlin type [31], which led to the proof of the Gelfand-Kirillov conjecture in [12]. These
embeddings, too, are constructed by explicitly verifying the relations in the Chevalley-Serre
presentation of Uy(g). Subsequently, analogs of such representations for any quantum affine
Kac-Moody algebra U,(g) were proposed in [14].

In this paper, we present a new approach to the construction of quantum torus realizations
of Uy(g). Our construction is geometrically motivated, and requires no calculations with
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generators and relations, yet the homomorphism we obtain can be explicitly computed, see
Corollary 7.5. Our strategy is to construct an algebra embedding of U,(g) into the algebra
OG0 /H] @ T, where O4[G"*"° /H] is the quantum coordinate ring of the big double
Bruhat cell in G reduced by the maximal torus H, and 7T is the commutative torus subalgebra
of Uy(g). The desired embedding of U,(g) into a quantum torus algebra can then be obtained
in one of two ways. On the one hand, we can embed O4[G"°"°/H] via its coproduct into
the algebra U,(b4) ® Uy(b—), and then apply the Feigin homomorphisms as explained in [2].
Alternatively, one can appeal directly to the the quantum torus realization of O4[G"**° /H]
in terms of quantum generalized minors conjectured in [6] and proven in [18]. In the language
of cluster algebras, the latter approach delivers the quantum cluster A-coordinates, while the
former can be regarded a quantum analog of the factorization coordinates on the group G.

The geometric motivation for our construction comes from the Grothendieck-Springer reso-
lution of the complex simple Lie group G. Recall [7] that the Grothendieck-Springer resolution
for the Lie algebra g can be regarded as the moment map

po: T*(B)/H — g

for the Hamiltonian action of G on T*(B)/H, the quotient of the cotangent bundle of the
base affine space B=aG /N by the maximal torus H C G. In particular, the resolution map
1o is Poisson, where g carries the Kirillov-Kostant-Souriau Poisson structure. Quantizing the
resolution yields an embedding of the enveloping algebra U(g) into the ring of H-invariant
global differential operators on g, which is a key ingredient in the construction of the cel-
ebrated Beilinson-Bernstein equivalence of categories. Moreover, by restricting to the open
Schubert cell in B one obtains the familiar realization of U(g) in terms of the Weyl algebra
of differential operators on the big cell.

In [10], building upon the fundamental work of Semenov-Tian-Shansky [36, 37|, it was
shown that there is also a Poisson geometric interpretation of the multiplicative Grothendieck-
Springer resolution

w: X —G

where X is the variety consisting of pairs (g, B') of an element g € G and a Borel subgroup
B’ C G containing ¢, and the map p is the projection forgetting B’. An important result
of [10] is that X and G can be equipped with non-trivial Poisson structures in such a way
that the resolution map p becomes Poisson. The Poisson structure on G may be regarded
as the semiclassical limit of the quantum group Ug,(g), or more precisely its ad-integrable
part Fj(Uy(g)). It is thus natural to expect that quantizing the resolution p would yield an
interesting realization of U,(g), just as its degeneration po did for U(g).

We have endeavored to construct such a realization in the following fashion. Using quantum
Hamiltonian reduction, we define an algebra C,[X| which plays the role of the quantized
algebra of global functions on X, together with an algebra embedding of F;(U,(g)) into
C4[X]. This is closely related to the approach of [3, 4] and [38, 39, 40] to the quantum
Beilinson-Bernstein equivalence. Our next step is to find an appropriate analog of the weakly
H-equivariant differential operators on the big cell of the basic affine space B. This role
is played by the algebra of torus invariants in the Heisenberg double of U,(b;.), which we
denote by 7-[5‘. Then, using a certain twisting by the longest element T,,, of the quantum
Weyl group of U,(g), we construct an isomorphism of HqT* with O,[G"/H] ® T, where
0,4|G"0/H] is the quantum coordinate ring of the reduced big Bruhat cell in G. This gives us
an embedding of Fj(U,(g)) into Oy[G*°/H] ® T, and induces an embedding of the reduction
of Fi(Uy(g)) by any central character into O,[G"°/H]. Finally, in order to extend our algebra
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embedding from the ad-integrable part F}(U,(g)) to all of U,(g), we must further localize the
target to obtain Oy (G0 /H]®T, where O4[G"0"° /H] is the quantized algebra of functions
on the reduced big double Bruhat cell in G.

We end our introduction by outlining some directions that we do not fully pursue here
but which we plan to address in future work. Firstly, it seems useful to explicitly study the
embedding we construct using the quantum cluster coordinates on O4[G"°*° /H] from [2, 6].
In particular, it is interesting to understand the significance of quantum cluster mutations
for Uy(g). In a forthcoming work, we use these quantum mutations to find an explicit iso-
morphism between the quantum torus realization presented here and the one given in [13].
Finally, in recent papers [16, 17] a regular cluster structure on the semiclassical limit of
Fi(Uy(gl,,)) was constructed. Again, it seems interesting to find an explicit sequence of mu-
tations identifying that structure with the semiclassical limit of our realization.

The article is organized as follows. In Section 1, we recall the Poisson geometry of the
Grothendieck-Springer resolution of G, mostly following [10]. In Section 2, we provide a short
phrase-book between the main objects in the quantum part of the paper and their Poisson
counterparts. Section 3 contains some definitions and standard facts regarding quantum
groups that we use extensively throughout the paper. In section 4, we take a minor detour
from the main objective of our paper, and discuss the quantized algebra C,[X] of global func-
tions on the Grothendieck-Springer resolution. While, strictly speaking, we do not require
this algebra itself to obtain our main result, we nonetheless consider it an interesting interme-
diate step in analogy with the Poisson geometric picture outlined in Section 1. It also relates
our work to the various approaches to the quantum Beilinson-Bernstein localization theorem,
see [3, 4] and [38, 39, 40]. In Section 5, we embed the ad-integrable part of U,(g) into the
Heisenberg double H, of the quantum Borel subalgebra Usg. In Section 6, we show that
certain localization of O4[G] is isomorphic to the subalgebra of T-invariants in H,. Section 7
contains our main result, namely, the algebra embedding U,(g) — O4[G"*"°/H]®T. Finally,
in Section 8, we provide a detailed example of all our constructions in the case g = sls.
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1. POISSON GEOMETRY

In this section we recall the construction of the Grothendieck-Springer simultaneous reso-
lution and its Poisson geometry. Our exposition mainly follows [36, 10].

1.1. Conventions. Throughout this section we will use the following conventions. Let G
be a complex simple Lie group, B = B, and B_ a fixed pair of opposite Borel subgroups,
N = Ny and N_ their unipotent radicals, and H = B/N the corresponding torus. We
denote by g, b, n, and b the associated Lie algebras. The root system and the set of positive
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roots of g are denoted by IT and II respectively. The Weyl group W = Normg(H)/H acts
naturally on the torus H. Let B = G/B be the flag variety, whose points we identify with
Borel subgroups of G.

For any X € A*g we denote by X, X the corresponding left and right invariant k-vector
fields that take values X% (e) = X*(e) = X at the identity element e¢ € G.

1.2. The standard Poisson-Lie structure and related constructions. The various
Poisson structures on G that we shall consider can be conveniently described in terms of the
group D = G x G, which we call the double of G. We write 0 = g @ g for its Lie algebra. Let
(, ) denote (a nonzero scalar multiple of) the Killing form on g. Then the pairing

(((z1,71), (z2,92))) = (T1,22) — (Y1, Y2) 5 r1,%2,Y1,Y2 €9 (1.1)

defines a non-degenerate, ad-invariant symmetric bilinear form on 9. The pairing (1.1) thus
gives rise to the Manin triple (g, ga, g*), where

ga ={(z,2)|z € g}
and
9" ={(z+ +y,2- —y)|zr €Eng,y €h}.
Let & € ga and & € g* be a pair of dual bases satisfying <<§i,§j>> = 0;j. Then the
canonical tensor

rD:éZgiAgiea/\a (1.2)

gives rise to the bivector field
Tp = rg — rlL)

which equips the double D with the structure of a Poisson-Lie group.
Notation 1.1. In what follows we denote the Poisson-Lie group (D, 7,) by D_.

Let Ga and G* be the connected Lie subgroups of D with Lie bialgebras ga and g*
respectively. They take form

Ga=G={(9:9)9€G}
and
G* = {(ust,t 'u_)|ur € Ny, t € H}.
The bivector fields
T_ =T7plaa Tt = —7p|g
turn (G,7_) and (G*,7*) into a dual pair of Poisson-Lie groups. Note that (G,7_) and
(G*,7* ) are Poisson-Lie subgroups of D.

Notation 1.2. We abbreviate (G,7_) and (G*,7*) by G_ and G* respectively.

We can give an equivalent definition of the Poisson-Lie group G_ as follows. Let by, b_ C g
be a pair of opposite Borel subalgebras. If z; € ny and 2" € n_ are dual bases satisfying
<:1ci, x’ > = 0;5, the canonical tensor

1 .
r:§in/\a:Z€g/\g.
7

is called the standard r-matriz for g. The bivector m_ can be written as

- :TR—’I“L.
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Another Poisson structure on G crucial for the sequel is given by the bivector field
T+ = Pt + rl.

Unlike 7_, 74 is not a multiplicative Poisson structure. Therefore while (G, 7) carries the
structure of a Poisson variety, it is not a Poisson-Lie group.

Notation 1.3. We abbreviate (G, m) by G+.

Let wg € W be the longest element of the Weyl group of G.

Lemma 1.4. (1) Inversion v: g+ g~' is a Poisson automorphism of G ;

(2) Conjugation o: g — wogwal s an anti-Poisson automorphism of G_;
(3) The following two maps G_ — G4+

g — guwg and g — wopg
are respectively Poisson and anti-Poisson isomorphisms.

Proof. Point 1) follows from the fact that t,z” = —z for any left invariant vector field z”
on G4. Points 2) and 3) follow from the identity o(r) = —r. O

1.3. Poisson reductions of the double. Now let us consider the bivector field on D defined

by

+ _ R L
TFD—TD+TD

with rp given by (1.2). It defines on D the structure of a Poisson variety (but not a Poisson-
Lie group.)

Notation 1.5. In what follows we denote (D, 7},) by D-.
The Poisson variety D is often referred to as the symplectic double of G.
Proposition 1.6. [10, Lemma 6.3] Consider the projections
p:D— D/GA~G,  (g1,92) = 9195
p2: D — GaA\D ~G,  (g1,92) — g5 ' g1.

Then there exist unique Poisson structures 7y, m5 on G such that the maps ji1, pu2 are Poisson.
Moreover, the Poisson structures mi,m5 are such that the maps

n- G* — (Gv H1 (ﬁB)), (b+¢ b*) = b+b:17 (13)
n2: G* — (Ga Mz(ﬂ-l—g))? (b+7 b—) = b:1b+ (14)
are Poisson.

Notation 1.7. In what follows we write (G, 7*) for (G, 77).

In what follows, we shall refer to p; and ps as moment maps. Indeed, it is immediate
from the definitions that the action of D_ by left/right multiplication on D is Poisson. Let
D' = pu;Y(ByB_) and D" = pu; ' (B_By). Then we have the following well-known result (see,
e.g. [32, Example 3.3]).

Proposition 1.8. The action of GaA C D_ on D' C Dy by left multiplication admits a
group-valued moment map my: D' — D'/GA ~ G* such that my omy = p1. In a similar
fashion, ps arises from the moment map for the right action of Ga on D".

Now, consider the Poisson action of BA C D_ on D by right multiplication.
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Proposition 1.9. [10, Proposition 4.2] The subvariety Q = {(gb,g)|g € G,b € B} C Dy

is coisotropic in Dy. The quotient Q/Ba is a Poisson subvariety of (D/Ba, (7)) where

¢: D — D/Ba is the natural projection.
We may identify @ with the direct product G x B via
Q~GxB,  (91,92) = (92,95 3).
The Ba action on () then reads
(GxB)xB—GxB ((g,b),a) — (ga,a'ba). (1.5)
We denote the B-orbit through a point (g, b) by [g, b].

Corollary 1.10. The set X = G xp B of B-orbits under the action (1.5) is a Poisson
variety, with Poisson bivector mx = d)(wB)\Q/BA.

Since the actions of GA and Ba on D, by left and right multiplication respectively com-
mute, the Poisson variety X carries a residual Poisson action of G_ given by

GxX— X, (d',19,0]) = [d'g,b]. (1.6)
In view of Proposition 1.8 we have
Corollary 1.11. The action (1.6) admits the following moment map
w: X — G, [9,b] — gbg™! (1.7)
with Poisson bivectors mx on the source and w* on the target.

Remark 1.12. The map (1.7) was also shown in [8] to be the group-valued moment map in
the sense of [1].

1.4. Grothendieck-Springer resolution. Let G = {(g, B')| B’ € B,g € B’} be the set of
pairs consisting of a Borel subgroup B’ C G and an element g € B’. Equivalently, it may
may be thought of as the set of pairs of a flag (preserved by B’) and an element g preserving
that flag. Since every element of G is contained in a Borel, and all Borels are conjugate under
G, we have

Proposition 1.13. The map
@: X — G, [g.b]— (gbg™", gBg ") (1.8)
is an isomorphism of varieties.

Let
p:G—>G> (gaB/)'_)g

be the projection onto the first factor. Note that the following diagram commutes

X 7.0

RN

G

Definition 1.14. The projection p is called the Grothendieck-Springer (simultaneous) reso-
lution. Throughout the paper we will refer to the moment map (1.7) by the same name.
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Consider the map a: G — H defined by a([g,b]) = bN € B/N ~ H. Let 8: G —s H//W
be the Chevalley restriction map, coming from the inclusion C[H]W ~ C[G]¢ — C[G]. If
we let Gy denote the locus of regular elements of G, and write ereg = p_l(Greg), then the
diagram

Greg —— H (1.9)

|,
Greg — H/|W
is Cartesian.
Corollary 1.15. There is an isomorphism of coordinate rings
C[G] ~ C[x]™V. (1.10)

Proof. Since the regular locus G4 is of codimension 3 in G, we have C[G,¢y] = C[G] and

(C[éreg] = C[G]. In view of (1.9), we have an isomorphism
C[X] ~ C[G] QcHw C[H]. (1.11)
Taking W-invariants on both sides we obtain (1.10). O

1.5. From the standard Poisson structure to its dual. Consider the homogeneous space
G/H = {gH |g € G}. For any g € ByB_ C G define [g]; € H to be the image of g under
the projection G — N, \G/N_. Since Adg(r) = r, there is a unique Poisson tensor WE/H

on G/H with the property that the projection G — G/H is Poisson.
Proposition 1.16. The map

DY — G/H x H, (91, 92) — (ng, [gz_lgl]g>
is Poisson, where the Poisson structure on G/H x H is defined by the bivector (ﬂg/H, 0).

Proof. Let {y;} be a basis for h such that 2 (y;,y;) = d;;. Then the bivectors r and rp can

be written as )
r=; Y EJANE_,
CXEH+

and
T

o= 2 00 A () + 5 3 (B 0) A (B B) 4 (0.~F-0) A (B o)

=1 a€clly

respectively. Now it is clear that the bivector field ﬂ]s maps to m4 under the projection onto
the first factor (g1, g2) — g1.
Recall the moment map

pe: D" — G, (91.92) = g3 91
It is easy to see that po ((z,2)%) =0, p2 ((z,0)%) = 28, and py ((0,2)%) = —a. Therefore,

T

1

pa(np) =yl nyff+ Y EL AER+ 3 > (BENER,—E', ANEL).
i=1 aclly aclly

Further projection G — N4\G/N_ maps EZ and EL, to 0, so us(nh) = S.i_, yF A yE.
This bivector vanishes on the torus H which finishes the proof. 0
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Denote by G° the open cell B_B, C G. Any element g € G° admits unique decomposition
g = [9]-[glolg]+ with [g]+ € N+ and [g]o € H. Now, consider the projection

X — G/B, [g,b] — gB,
and let X° be the preimage of G°.
Proposition 1.17. The map
Y: GL/H x H— X°, (u—uy H,t) — (u_,ust)B
18 an isomorphism of Poisson varieties.

Proof. It is immediate that the inverse map is given by [g,b]B — (gbH, [b]o). It follows from
Proposition 1.16 that the isomorphism v is Poisson. U

Proposition 1.18. The map
7:G_/HxH — G./H x H, (gH,t) — (qwoH,t).
is an isomorphism of Poisson varieties.

Proof. The bivector field 7_ vanishes on H C G, and thus descends to G_/H. By Proposi-
tion 1.4 the map G_ — G4 given by g — gwyq is a Poisson isomorphism, which descends to
a Poisson isomorphism G_/H ~ G /H since woH = Huwy. O

Corollary 1.19. Let °G = B_woB_ be the big Bruhat cell in G. Then the map
°G_/H x H — (G,7") (gH,t) — gwot[gwo) "
1s Poisson and coincides with the composition o or.

We conclude this section with a few remarks on the isomorphism . Note that every
element of g € G/H can be uniquely written as g = u_u4 H where uy € Ni. Consider the
free right action of H on B_ x By defined by

(B_ x By) x H— (B_ x B}), ((b=,by),t) = (b_t,t " byt)

and denote by H = (B_ x B;)/H the corresponding quotient. The following proposition
shows that the isomorphism 1 factors through #. The proofs are immediate since each map
has a well-defined inverse.

Proposition 1.20. We have isomorphisms
G°/H x H— H, (u—uy H,t) = (u_,uyt)H,
H— X°, (b—,b4)H > [b_,b4]B.

In particular, H is endowed with the structure of a Poisson variety.

2. A SHORT GUIDE TO THE REST OF THE PAPER

In order to help the reader keep track of various quantum algebras that we use in the sequel,
as well as their relation with the Poisson geometry outlined in Section 1, we provide here
a brief phrase-book. The quantum algebras appearing in the table below may be regarded
as quantizations of the algebras of global functions on the corresponding Poisson varieties.
In general, the entries of the right column are associative algebras, and carry the further
structure of a Hopf algebra if their underlying Poisson variety is a Poisson-Lie group.
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Poisson varieties H Quantum algebras

G- 0,|G]

G+ "0,[G]

H He-

X Cy[X]

G" Uq(a)

G, FU) ~T0,G]

The quantum algebras in the table above appear in the following order. In section 3.2
we introduce the quantum group U,(g). Its Hopf dual O4[G] is recalled in Sections 3.3
and 3.6. Section 3.7 explains relation between O,4[G] and quantum Borel subalgebras Uy (b4.).
In Section 3.8 we introduce the ad-integrable part Fj(U) of the quantum group U,(g) and
explain its relation to the quantum coordinate ring. Section 3.9 is devoted to the Heisenberg
double H, of the quantum Borel subalgebra. The quantum analogue C,[X] of the coordinate
ring of the Grothendieck-Springer resolution is constructed and studied in Section 4. Finally,
the R-twisted quantum coordinate ring ROq [G] appears in Section 6. At the quantum level,
our construction is based on the interplay between the algebras O,[G], #O,[G], and ¥'O,[G],
which are all modelled on the same underlying vector space, but carry different associative
algebra structure. Of these three algebras, only O4[G] is a Hopf algebra. This is completely
parallel to the Poisson geometric picture, where we have three Poisson structures G_, G,
and G, on the same underlying variety G, with only G_ being a Poisson-Lie group.

We summarize the various maps we construct between these quantum algebras in the
diagram below:

e Cy[X] W™ <L 0JG°/H| @ T <2 0,/G™/H| & T
13
//
ente

Let us remark that the maps E and QA“ are in fact restrictions of maps E and Z defined on
F(U) ®z Uy, the extension of Fj(U) over its Harish-Chandra center Z, see Section 4.4.
Finally, the map ® can be extended to a map ®': Uy(g) — Oy [G**"°/H] @ T', where the
algebra Of[G"0"0 /H] @ T" is obtained from O,[G"*"°/H] ® T by adjoining certain square
roots, see Section 7.

3. PRELIMINARIES ON QUANTUM GROUPS

In this section, we recall the definitions and various well-known properties of the quantum
groups that will be used extensively in the sequel. Our conventions match those of of [22].
We refer the reader to [30, 22, 24] for further details and proofs of many of the results in this
section.

3.1. Conventions. In what follows, g will denote a finite-dimensional complex simple Lie
algebra of rank r, equipped with a choice of Cartan subalgebra § and a set of simple roots
{aq,...,a,;}. We write P, Q for the weight and root lattices associated to the corresponding
root system II, and denote the fundamental weights by wy, ... ,w,. Denote by (-, -) the unique
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symmetric bilinear form on h* invariant under the Weyl group W, such that (a, ) = 2 for
all short roots o € II. Let k = C(¢'/N) be the field of rational functions in a formal variable
¢/N, where N € N is such that %()\,u) S %Z for any pair of weights \,u € P. If Ais a
Hopf algebra, we denote by A°? the Hopf algebra with the opposite multiplication to A, and
denote by AP the Hopf algebra with the opposite comultiplication to A. We will use the
Sweedler notation

Ala) =) a1 ®a

to express coproducts. Throughout the paper, all modules for the quantum group U,(g) are
assumed to be of type L.

3.2. Quantized enveloping algebras. The (simply-connected) quantized universal en-
veloping algebra U ot U,(g) is the k-algebra generated by elements
{E;,F;i, K} | i=1,...,7,\ € P}

subject to the relations

K E; = ¢M) B K, K KM = KM,
oy K;— K1
K Fy = g~ MR, [Ei, Fj] = bi qz- — qjl :
i i

together with the quantum Serre relations (see [22], p.53). In the relations above we have set
K; L' Ko and ¢ = ¢\@2)/2 The algebra U is a Hopf algebra, with the comultiplication
AKN =K @ K" AE)=E®1+K®E, AF)=FK '+1®F
the antipode
S(KM =K  S(E)=-K 'E;, S(F)=-FK,
and the counit
(KN =1, €E)=0, €F)=0.

Let U>( denote the subalgebra of U generated by all K A F;, and U< denote the subalgebra

generated by all K*, F;. We also write Uy for the subalgebra generated by K*, A\ € P. The

algebras Usq, U<q, Uy are Hopf subalgebras in U. Recall that (U<()“” stands for the co-
opposite Hopf algebra to U<g. There is a non-degenerate Hopf pairing
<-, > : UZO X (USQ)COP — k (31)
defined by
5
<K)\7K'u> :qi()\”u% <K)\7EZ> :0: <K)\7F”Z>7 <E’L7Fj> :_%
qi — g,

Let Ut and U~ denote the subalgebras generated by all E; and by all F; respectively.
Then the quantum group U admits a triangular decomposition: the natural multiplication
map defines an isomorphism of C(g)-modules

Ut@UyeU- — U (3.2)
The algebra U is graded by the root lattice ). Indeed, setting
U,={uel]| KMy = q(’\’”)uK/\}, (3.3)
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we have U = @,cq Uy If we set Uf = UT NU, and U, = U~ NU,, then the pairing (3.1)
has the orthogonality property

(US U,y =0 if p#uv (3.4)

Remark 3.1. The Hopf algebra U can be described as a quotient of the Drinfeld double of
the dual pair (Usg, UZY)), which in particular implies the relation

xy = (z1,y1)(x3, Syz)yaxa for all = € Usg, y € U<p. (3.5)

3.3. Quantized coordinate rings. Let G be the connected, simply connected algebraic
group with Lie algebra g. The quantized algebra of functions on G, which we denote by
O,4[G], is defined to be the Hopf algebra of matrix elements of finite-dimensional U-modules.
For a finite-dimensional U-module V of highest weight A and a pair of elements v € V and
f € V* we denote the corresponding matrix element by C?,uv or simply by ¢y, when it does
not cause ambiguity. By construction, there is a Hopf pairing

((,)) 1 O4[Gl@U — k (3.6)

defined by evaluation of matrix elements against elements of U. Pairing (3.6) is non-
degenerate, since no non-zero element of U acts as zero in all finite-dimensional represen-
tations [22].

The algebra O,[G] is a left U @ U®? module algebra via the left and right coregular actions

((x ®y) o) (u) = Y(Syur) where z,2ue U, yeU™P, e O4G]. (3.7)
As a U ® U“P-module, O4[G] admits the Peter-Weyl decomposition
0,Gl = P L © L)
Aep+

where L(\) is the finite-dimensional U-module of highest weight A\, and L(\)* is its dual.
The algebra O4[G] is graded by two copies of the weight lattice P as follows

04Gl = P 04(Glx,
A\ pueEP
where

OglGlay = {0 € OG] | (K¥ @ KP)p = g+ ey,

If V is a representation of U and v € V satisfies K*v = ¢ for all A € P, we say that v
is a weight vector of weight x, and write wt(v) = p. The subspace O,4[G]y ,, is spanned by
matrix elements ¢y, with wt(f) = A, wt(v) = p. Note that S(O,4[G]x ) = Oy4[G],\ and for
x, € Uy, Yo € O4[Gly,, we have

Yap(@) #0 = v A+pu=0

Moreover, if 1) € O4[G]y, its coproduct takes the form

A(y) = ZT/D\,W ®Y_y, n where 1,5 € Oy Glas-
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3.4. Quantum Weyl group. Let U be the completion of U with respect to the weak topol-
ogy generated by all matrix elements of finite-dimensional U-modules (see [26, Section 3]).
As an algebra U , is isomorphic to [ ], P, Endg(g) L(A). We will also regard an element u € U
as a functional on O,4[G] via the evaluation pairing ((cs.,u)) = f(uv).

Definition 3.2. [30] Define an element T; of U which acts on any weight vector v by

Tw) =Y (e OB R ).

a,b,c>0
a—b+c=(wt(v),a;)

By [30, Theorem 39.4.3], the elements 7; generate an action of the braid group on any
finite-dimensional U-module. The subalgebra of U generated by U together with the T;
is often referred to as the quantum Weyl group, and it is known [27] to in fact be a Hopf
algebra. Moreover, let wg be the longest element of the Weyl group, and w = s;, ...s;, any
of its reduced decompositions into simple reflections. Then the element T,, defined by

Tw, =T, ... T, (3.8)
is independent of the choice of reduced expression for wy.
3.5. Quantum minors. We now recall the definition of certain elements of O,[G] that will
prove useful in the sequel. For each dominant weight A € PT, we fix a highest weight vector
vy € L(A). Then, as in [26], we define the corresponding lowest weight vectors vy, () € L())
by
Too Vg (x) = (_1)(2)\,pv>q—2(z\,ﬂ)0)\
Proposition 3.3. [26, Comment 5.10] The vectors vy, Uy (x) Satisfy
TwOU)\ = ’Uwo()\).
For each A € PT, there is a unique pairing
(= =t L(=wo(A) @ L(A) — k
satisfying conditions
(v_x,vp)y, =1 and (zw,v), = (w, Szv),
forallz € U, v € L()\), and w € L(—wp(A)). The following definition coincides with the one

given in [6].

Definition 3.4. The quantum principal minor A is the element of O,[G] whose value on
any x € U is given by
AMNz) = (v_y, vp),

Given (u,v) € W x W we choose reduced decompositions u = s;, ---s;; and v = s, -+ -5,
and set

Nk = <5i1 T Sik71(az\'§c)’ )‘>7 my = (Sjl Sk (a;;)v)‘>

Then the quantum minor Aﬁw is defined by

AY (@) = A (B B )

1 Ji J1

where a(™ stands for the n-th ¢-divided power of a.
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3.6. O4|G] as a co-quasitriangular Hopf algebra. Write ©, for the canonical element in
Ut @ U, with respect to the pairing 3.1. If V, W are two finite-dimensional representations
of U, then the action of the formal sum © =3, ©, is well defined in the tensor product
V@ W. Let fyw be the operator in V ® W defined by

fvw (@ w) = q*(wt(v),wt(w))(v ® w)
for any weight vectors v,w € V, W. Then define Ry to be the following operator in V@ W
Ryw(v®@w) =00 fyw
The operator R gives rise to a bilinear form r: O4[G] x O4[G] — k defined by
r(cfv cgw) = (f ® 9)(Rvw (v @ w))
= 37 ) £(0,0)g(O ).

The form r equips O4[G] with the structure of a co-quasitriangular Hopf algebra [24, 25].
This means that, for all triples ¢,v, p € O4[G], we have

(@1, Y1) a2 = P1917(d2,¢2), (3.9)
r(¢¢¢p) = T(¢7 pl)r(wapZ)v (310)
(p, o) = r(p1,¥)r(p2; @) (3.11)

As the following Proposition shows, the form 7 is closely related to the longest element T,
of the quantum Weyl group.

Proposition 3.5. [27, 26] Let C be the element ofﬁ defined by
Clv) = q(wt().p) = (wi(v),wt(v))/2,,

where p is the half-sum of positive roots. Then setting

Y = CT,,, (3.12)
we have the following equality in O4[G]* @ O,4G]*
r=YTeY HAY). (3.13)

3.7. l-operators. Let O4[G]* be the full linear dual of O,[G], and define maps
=, 15 0,[G] — O0,G)
by
I"(¢) = (- 9), 1(¢) =r(-,8719),
1(d) =r(6,4), 7(¢) = r(5¢, ).

Lemma 3.6. [25, Lemma 1.4] The maps I+ : O,[G] — O4[G]* are anti-homomorphisms of
algebras, while the maps '1* are homomorphisms of algebras. Additionally, we have

l+,/l+: Oq[G] — Uzo, l_,/l_: Oq[G] — USO
with explicit formulas given by

(et Zf O_a0)0 K )

“(ctw) Zf (Ov)0_ QK TVH)
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We also have
Lemma 3.7. Let A, Sy denote the coproduct and antipode in U. Then
=Sy ol*
and
Ao l¥(g) =1*(¢1) @ 1*(¢2),
Ao'I(g) ="1H(¢2) @ T (d1).

Proof. These identities follow directly from the properties (3.10), (3.11) of 7, together with
the non-degeneracy of the Hopf pairing between U and O,[G]. O

We will make frequent use of the following lemma relating the universal r-form to the Hopf
pairing (3.1).

Lemma 3.8. Let (-,-) be the pairing (3.1) of Uso with U<g. Then
I (e), ")) = (v, ¢)

Proof. We verify the claim for any pair of matrix elements ¢, ¢gw € O4[G]. Let us expand
©=>,04;®0O_; where (04;,0_;) = 0;;. Then using the relation

(01K, 0 K"y = ¢~ Msy;
from [22, 6.13] we compute

(I (cgu), T (cr)) =D g(O_iw) f(O40)(O KW 0K ~)
iyJ

=37 ¢ W) (0, 0)g(O_iw) = r(cfo, cpu).

O

3.8. The ad-integrable part of U. Consider the left (right) adjoint actions ad; (respec-
tively, ad,) of U on itself defined by

ad;(z)(y) = z1ySxa (3.14)
ady(z)(y) = Sz1yzs (3.15)
Definition 3.9. The left ad-integrable part of U is defined as the subset
F(U)={z €U | dimad;(U)z < oo}
Similarly, the right ad-integrable part of U is defined as the subset
F.(U)={x €U | dimad,(U)x < oo}

Proposition 3.10. [24] The ad-integrable parts Fi(U), F.(U) are subalgebras in U. More-
over, they are left and right coideals respectively:

A(FU)) cUe FU),  AFU) CFEU) U
Now consider the maps
I: O4|G] — Uso ® U<y, I=(1"®'T7)oA (3.16)

and
J: O4[G] — U, J=mol (3.17)
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where
m: Uso ® U<g — U, Ut QU = UpU—
is the multiplication in U. Note also that the action (3.15) induces a coadjoint action
ady: U ® O4|G] — O4[G] given by
(ady(2)(),y) = (b, S(z1)yza), =,y €U, ¢ € Og[Gl. (3.18)
The following theorem was proven by Joseph and Letzter in [23], building on results of Caldero

[9].

Theorem 3.11. [23] The map J is an injection of U-modules, with respect to the ac-
tion (3.14) on U and the action (3.18) on O4[G]. Its image is

F(U) = D (adU)(K~*) (3.19)
Aep+
Since S(F;(U)) = F-(U), the theorem implies that the map
J S0 J: 0,G) — F.(U)
is also an isomorphism of U-modules. Indeed, for all z € U, ¢ € O,4[G] we have
2] (¢)S ) = J'(ad(S72x) ) (3.20)

Despite being a morphism of U-modules, the map J is not a morphism of algebras. However,
as explained in [25], one can equip O,[G] with a twisted algebra structure so that J becomes
an algebra homomorphism:

Proposition 3.12. The following formula defines an associative product e in O4G|

¢ op Y = 1(¢1,Y2)r(d3, St1)datbs
= 1(02,93)r(¢3, S1h1)h21

If we write ' O4[G] for the algebra obtained by equipping O4[G] with the product ep, then the
map J: FO,[G] — F,(U) is an isomorphism of U-module algebras.

Similarly, the map J’ is an isomorphism of algebras (¥'0,[G])? ~ F,.(U).

3.9. The Heisenberg double of U>y. We define the Heisenberg double of Usq to be the
smash product H, = U>o#U<q of the dual pair of Hopf algebras Usq and U, ;oop with respect
to the pairing (3.1). The product in #H, can be written explicitly as

(a#tx)(b#y) = (b, x2)aby ® z1y
Let us make a few remarks on the structure of H, that will prove useful in the sequel.

Consider the torus

T=Uy® Uy CHy
and the following three subtori

T, =Up®1, T_ =1® Uy, and T.=(1®5) o A(Uy).
The Heisenberg double H, has the following 7_-module algebra structure
(1® KM o (a#tz) = (1# KN (a#tx)(1#K ) = (KN, ag)ay # K o K.

It also admits a T -module algebra structure given by

(KM ®1) o (a#tx) = (K", x1)a#z
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Since the actions of Ty and 7_ commute, we may combine them into an action of T on H,.
Using the grading (3.3), the restriction of this T-action to the subalgebras T and 7T, can be
computed explicitly as

(1@ K?) o (2, K #ya K*) = ¢ N, K 4y, K*
(KP @ K)o (2, K hya K*) = g2 W, Ky, K*
for any z,, € U;S and y, € U, . Therefore, we have

Proposition 3.13. The T_ invariants in H, coincide with the subalgebra
Hi-= @ UTK"#U-,T,
veQ4
the T invariants coincide with the subalgebra
quTc — @ UTK U— KM, (3.21)
AePveQ+
and the T-invariants coincide with the subalgebra

M= P UK "#U-,

AEP,vEQ+

Note that, the subalgebra of T_ invariants HqT’ commute with the subalgebra 1#7. Hence
we obtain

Corollary 3.14. Multiplication in H, yields an algebra isomorphism
HERT — HI™,  (a#2) @ 1#KP) — affzKP.
Remark 3.15. The torus T(A) is naturally embedded into the Drinfeld double of the dual

pair (Uso, UZY). The action of T used in this section arises from the action of the Drinfeld

double on the Heisenberg double considered in [29].

The following formula defines an action of H, on Uxg
(a#tx) o b= (x,ba)ab; (3.22)

where a#tx € Hy and b € Usg. We have the following lemma regarding the restriction of this
action to the subalgebra HqT_ C Hy.

Lemma 3.16. As HqT’ -modules, we have

Uso =P UTK*
AepP

Proof. It suffices to check that K"#y_, € 7_‘37 preserves Ut K*. This follows from the
orthogonality property (3.4) of the pairing (-, -) and the fact that given € U7, its coproduct
can be expanded as

A(z) = Zxa_BKB ®x3
B
where xg € Ug and x,_g € U;_ﬂ. ]
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4. QUANTUM GROTHENDIECK-SPRINGER RESOLUTION

In this section, we describe an analog of the Grothendieck-Springer map (1.7) at the level
of quantum groups. The story is closely related to the work of Backelin-Kremnizer [4] and
Tanisaki [39, 40] on the quantum Beilinson-Bernstein equivalence. Indeed, in [4] the authors
consider an algebra I'(Dg ,) of global sections of the sheaf of quantum differential operators
on the quantum base affine space. This algebra is very closely related to the algebra Cy[X]
constructed in this section; for the precise description of the relation between the two, see
Remark 4.3. Similar algebras have also been considered by Tanisaki [40], who pointed out
certain technical problems with the computation of global sections given by Backelin and
Kremnizer in [4]. So for the convenience of the reader and to take account of the technical
differences between the our construction and that of Backelin and Kremnizer, we provide
self-contained proofs of all results concerning C,[X] that we shall use in the sequel.

4.1. Quantum differential operators on G. Following [37, 3], we define the ring D, of
quantum differential operators on G, to be the smash product algebra

Dy = Oy[G]PHUP.
The multiplication in D, is given by the formula

H#u - Y#v = o (u2)19#urv
Since F;.(U) is a right coideal, the algebra D, contains a subalgebra

D" = 0,[G]P#F, (V). (4.1)

We can parameterize D} using the algebra isomorphism J': (¥ O,G))? — F,.(U). Under
this identification, one checks that product in D™ becomes

(¢#J'(p)) - (WS (V) = r(S 3, ¥2)r(S ™ S vsws, S~ p1) 1 d# T (vap2). (4.2)

4.2. Construction of C,[X]. We are now ready to describe our construction of C,[X], the
quantized algebra of global functions on the Grothendieck-Springer resolution. The idea is
to obtain C,[X] as the quantum hamiltonian reduction of D, under an appropriate action
of Usp, analogously to the construction of X as the quotient of the coisotropic subvariety
@ C D4 by the Poisson action of Ba in Proposition 1.9.

Remark 4.1. Philosophically, the construction of C,[X| presented in this section is very
similar to the one of global sections of the sheaf of quantum differential operators in [3, 4].
However, there appear to be some technical differences between the two constructions, so we
provide independent proofs of the results we shall use.

For the reader’s convenience, we briefly recall the notion of quantum Hamiltonian re-
duction. Suppose that H is a Hopf algebra, A is an associative algebra, u: H — A is a
homomorphism of associative algebras, and I is a 2-sided ideal in H preserved by the left
adjoint action of H. Then by the ad-invariance of I, the action of H on A defined by the
formula

hoa= ,u(hl)a,u(ShQ)
descends to an action of H on the A-module A/Apu(I). The quantum Hamiltonian reduction of
A by the quantum moment map p: H — A at the ideal [ is defined as the set of H-invariants

(AJAp(IN? ={a e AJAu(I) | hoa =e(h)a forall he H}

which one checks inherits a well-defined associative algebra structure from that of A.
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In order to obtain C,;[X] as quantum hamiltonian reduction of the ring D,, the above
construction requires some technical modifications which we shall now explain. Consider the
algebra embedding of U into Dy = Oy [G]PH#UP given by

p: U — Dy, u — 1#u.
Regarding this algebra embedding as a quantum moment map, one obtains the following
UP-module algebra structure on D,

z o (¢p#u) = (1#z2) (d#u)(1#S 1x1) = do(x3)pr#xousS 1oy, (4.3)

This action preserves the subalgebra ng C D, defined in (4.1), and restricts to Uso C U as
follows

zo ¢#J (p) = (S~ p1S 2 pag) (x)p1#J (p2) (4.4)
where = € U and ¢#J'(p) € DI™.
Consider now the C(g)-linear map

DI — O4fGI? @ U<o,  ¢#J'(p) — o#'17(S™'p)
and denote by Z the kernel of this map.
Proposition 4.2. 7 is a left ideal in ng, and T is preserved by the action (4.3) of Uso.
Proof. Consider ¢, 1 € O,4[G] so that I (¢) = 0. Then for all p € O,[G] we have

(I"(pop ), p) = (P2, ¥3)r(¢3, SY1)r (261, p) = 7(P2, 13)r(d3, SY1)r (12, pr)r(d1, p2)
= 7(¢, SY13p2)r (2, p1) = (17 (), St13h3p2)r (12, p1) = 0

which implies ‘I (¢ e 1)) = 0. Hence the assertion that Z is a left ideal follows from for-
mula (4.2) for the product in D[{m.

Let us now show that Z is preserved under the action (4.3) of Usg. By formula (3.20)
it suffices to show that for all z € Uso and ¢ € O4[G] such that I (¢) = 0, we have
17 (ad(S72x)¢) = 0. Since [T is surjective, we may write z = [T (v) for some v € O4[G].
Then for all n € O,4[G], we get

(I” (ady(S™2)¢),n) = ¢3(S 2w2) 1 (S~ 1) (1 (¢2), m)
= (g3, S°va)r (1, Sv1)r(da,n) = r(¢, SPvanSwi) = 0
which shows that /I~ (ad}(S~2x)¢) = 0, completing the proof.
O

It follows from Proposition 4.2 that the action (4.3) descends to a well-defined action on
the quotient D} /Z. We now define Cy[X] to be the set of Usg-invariants in D™ /T with
respect to action (4.3)

C,[X] (Dg; in /I) =

Remark 4.3. This definition of C,[X] is related to the algebra F(ﬁBq) of global quantum
differential operators on the flag variety considered in [4] as follows. Since 'I”: O4[G] — U<
is surjective, we have an identification of U>¢-modules

D" /T ~ O4fGI” @ Uco,  ¢#J'(p) + T ¢#'17 (S (p)) (4.5)
A straightforward computation parallel to the proof of Proposition 5.4 shows that the uni-
versal Verma module M, B, considered in [4] is a direct sum of 2" copies of the Usg-module
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U<p in the second tensor factor of 4.5. Hence, the algebra F(ﬁBq) can be regarded as a 2" : 1
fold covering of C,[X].

Proposition 4.4. The formula
(24I) (w+ZI)=z2w+7I, 2+ZI,w+7eCylX] (4.6)
equips Cy[X] with a well-defined associative product.

Proof. First, let us verify that (4.6) provides a well-defined map Cy[X]®2 — D} /Z. All we

must check is that 7 is a two-sided ideal in Dg " 1t suffices to show that given a Us¢-invariant
z+Z € Cy[X] and an element v € O,4[G] satistying I~ (v) = 0 we have (1#.J'(v)) -z € Z.

Let z = Y, ¢"4#.J'(p¥), then the Uso-invariance of z is equivalent to the condition that
for all ¢ € O,4|G], we have

() (17w o (Lot ) ) = (s ks 2ok vk
k k (4.7)
= (1) > ¢ #I(p).
k
So by (4.2) and the invariance condition (4.7), we get

(id @ 1) (AT W) - (4+T) = S (S v, oh)r(S~1 kS 2koh, S~ 1) ok 1™ (i)
k

= r(S v, 5) ek #1 (M)
k

This implies that for all n € O4[G], we have

((d@"17) (1T (v) - 2),id @ n) =Y (S va, 95) (17 (F11), m) ot
k

= r(va, SEE)r(pt v, et =D r(va, SE5)r (0", m)r(vi, )by
k

k

= " (v, Sehne)r(pt,m) ok = 0
k

where "I~ (v) = 0 is used in the last equality. Thus, (1#J'(v)) - z € Z as claimed.
To complete the proof that (4.6) is a well-defined product on C,[X], we must check that

z2+Z,w+7Z e CyX] implies zw+Z e Cy[X].

Indeed, since (4.3) defines on D, the structure of a UP-module algebra, it follows from the
first part of the proof that

ao(zw+7Z)=ao(zw)+Z = (azoz2)(agow)+Z = (e(az)z+ZI)(e(a))w+7I)=c¢la)zw+T

which completes the verification that C4[X] is an algebra.
g

The algebra structure of C,[X| can also be described in terms of its model (4.5).

Proposition 4.5. The algebra structure of Cy[X] = (O4[G]? @ U<o)V=° is given by

(o#x) - (V#ty) = Y2(z2)19#T1Y (4.8)
Thus C4[X] may be regarded as a subalgebra in the smash product Oy4[G|PHULT C Dy.
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Proof. Choose elements p,v € O,[G] so that 'I7(S71p) = z, and 'I7(S~v) = y. The Usg
invariance condition (4.7) for ¢#J'(v) + Z implies

)
(d @1 0 57 ((p#S'(p)) - (W#J'(v))) = (S p2, h2)p1d#' 1~ (S (vp1))
=o('17(S™ ﬂ2)¢1¢#l (S7' )17 (S71w) = ho(wa)hr#a1y.

Corollary 4.6. The map
I @id: (OG]P ® U<g)V20 ~ C,[X] — H, (4.9)
is a homomorphism of algebras.
Proof. Suppose that ¢p#z,y#y € Cy[X| with 2 ='I"(p). Then
(I (o)) - (1T () #y) = (w2, T ()2) T () (Y1) Ft21y = (22,17 ()2) 1T (@)1 (V1) #21y
= (17 (p1), 1T () I (@) (1) #' 1 (p2)y = r(p1, Y2)l T (¥19)#' 1™ (p2)y
LI (P (01 0)# 1 (p2)y = Pa(a2)lT (P19) a1y = (1T @id)((d#) - (V#y)).
O

4.3. Construction of the resolution. Consider the map

0: TO[G] — D", b+ ST dsdr#ten
\U
Proposition 4.7. One has o(f' O,[G]) C (ng) , where U acts via (4.3).

Proof. Let z € U and ¢ € I'O,[G]. Then by (4.4) we get
20 0(d) = (S 1035 %055 1 ea)(x) S~ rd1#ds = e(2)S ™ padr#d1 = e(x)0(0).

O

Corollary 4.8. The image of the natural map &: FOq[G] — D(J;m/I obtained by composing

. U
o0 with the quotient projection is contained in Cy[X] = <D(J;m/I) =
Identifying C,[X]| with O4[G]P#U>¢ via (4.5), we get
£(9) = S g3 #17 (S ¢2)
Theorem 4.9. The map &: F'O,[G] — C4[X] is a homomorphism of algebras.
Proof. We have

E(p or ) = (b2, 13)7(¢3, S11)E(Y2hr)

(G, 95)7 (05, S11) S~ (93)S ™ (Ya) o #17 (S~ (¥3¢2))
( )r(

( )r(

=7

b3, 00)r (ST 5, 101) ST H(05) ST H(a) b1 1 (ST HW3¢2))
= 7(¢3, ¥a)r (S~ a, 102) ST (W5) 1 ST (d5) o1 # T (S (W36h2)).

=r
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On the other hand, using formula (4.8) for the product in C,[X] we have
§(9) - &(v) = ST 3 #17 (S o) @ ST s #17 (S ¢hn)
= (571 (a2, 1T (571 65)) S~ sy S~ (@a) o1 #' 1 (S (1362))
= (5™ 3, 57 (Ya)th2) S s 1 ST (Pa) i # 1 (S T (¥32))
(63, )7 (S~ ba, h2) ST (W5)11S ™ (5) o1 #'1 (S~ (h32))
=E(pop ).

=r

O
Precomposing with the isomorphism J~1: F;(U) — F'O,[G] defined in (3.17) we obtain
Corollary 4.10. The map
§: F(U) — CglX], §=¢oJ !
18 a homomorphism of algebras.
4.4. Restriction of E to the center of U. The homomorphism fA bears an interesting
relation to the center Z of U. This center can be described in several ways. Firstly, we have

the quantum Harish-Chandra map 9: U — Uy, which is defined in terms of the triangular
decomposition (3.2) of U:

V: U ~Uso®Uy®Ucy — Up, a®t®x—s ela)e(x)t

The restriction of ¥ to Z C U is an injective algebra homomorphism [33]. To describe its

image, let
1
p=32. ¢
acllp
be the half-sum of positive roots, and consider the C(g)-algebra automorphism x: Uy — Uy
defined by
/{(KA) — q(pA)K)\
The Weyl group W acts on Uy by

w- K = Kv®)
and we denote by UOW its fixed point subalgebra. Finally, we write
UO, even — @ Kz)\ (410)
AeP

We have the following quantum analog of Harish-Chandra’s theorem:

Proposition 4.11. [22, Chapter 6] The map ¥: Z — Kk (Ué/’Veven) is an isomorphism of
algebras.

On the other hand, we have Z = F;(U)Y, and this subalgebra of invariants may be described
explicitly in terms of the Joseph-Letzter decomposition (3.19) of Fj(U). Indeed, the map J
yields an identification of Z with the space of matrix elements

0,G)Y = {6 € O,G] | p(Survuz) = e(u)p(v) for all w,v € U} (4.11)
Note that by the ad(Up)-invariance, we have O4[G]Y C @, p Og[G]-x 1.
Proposition 4.12. Suppose that ¢ € O,[G]Y. Then
£(9) = 1#17(57'9) (4.12)
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Proof. Using the invariance condition (4.11), we obtain
(Sil(qf)g)qﬁl &® Silgﬁz, U 1)) = (ﬁg(Sflul)QZ)l (’LLQ)QZ)Q(S?LU) = gf)(UQSilUSflul)
= e(w)d(S™ ')

for all u,v € U. By the nondegenerate of the evaluation pairing between U and O,[G], we
conclude that the equality

S7H(93)d1 @ S (92) =1® 5 1(9)
holds in O,4[G]®?, and the result follows. O

The restriction of §A to Z C Fi(U) is closely related to the quantum Harish-Chandra
homomorphism. Indeed, note that for ¢ =3, ¢; € Oy[G1Y with ¢; € O4[G]-, »,, we have

§(¢) =D e(d))(1#K™)

j
On the other hand, if ¢ € O4[G]Y, we have

(WoJ)(¢) = e(¢)) KN

J
Introducing the embedding

v: 1#Uy — Uy, I#KH — K72
we have established
Proposition 4.13. The Harish-Chandra map ¥ may be written as
V=vof (4.13)
For A € P*, let L()\) be the finite-dimensional simple U module with highest weight )\,
and let x* € Oy[G] be its character. Define functionals
) = M (uK?)
where p is the half-sum of positive roots.

Lemma 4.14. The functionals 7 are elements of O,[G]Y.

Proof. The U-invariance of 7 follows from cyclicity of the trace together with the fact that
S?(u) = K~PuKP for all u € U. O

Observe that
€)= 3 ¢ dim LYK = “(Z dimL()\)“K”)
wepP nepP
so that (k="' 0 &)(7}) coincides with the formal character of L(\).

Corollary 4.15. The restriction ofgto Z gives an isomorphism of algebras E: Z — R(UOW)

Proof. The orbit sums {m(X) = Y}, ey, K” | A € PT} form a C(g)-basis for U}", and the
set of formal characters {(k~! o &)(7}) | A € Pt} is triangular with respect this basis under
the dominance order on P*. O

Using the homomorphism E 1 Z — 14#Up, we may regard Uy as a Z-module. Then, in view
of Proposition 5.6 in the following section, we have
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Corollary 4.16. The map E extends to an embedding of algebras
& RU)©7Us— ClX],  uwt—s Eu)t
Based on the isomorphism (1.11) in the classical picture, it is natural to make the following
Conjecture 4.17. The map &: Fy(U) @z Uy —> Cq4[X] is an algebra isomorphism.

The analogous statement at the roots of unity is appears as Conjecture 5.2 in [40].

5. EMBEDDING Fj(U) INTO THE HEISENBERG DOUBLE H,.
Composing maps &, {A with the algebra homomorphism from Corollary 4.6, we obtain
Proposition 5.1. The maps
C:FOG) — Hyy b T (S h31)# 1 (S o) (5.1)
C:RU)—Hy,, C(=CoJ ! (5.2)
are homomorphisms of algebras.
Proposition 5.2. The image of ¢ is contained in the subalgebra HqT* of T_ invariants.

Proof. Suppose that ¢ € Oy[G]y . Then we may expand
AQ(d}) = Z ¢/\,u1 & ¢—V1,y2 ® w—ug,u

v1,V2

with ¥, 3 € O4[Ga 3. Note that

Sillﬁ—uz,;ﬂ/})\,ul € Oq[G])\+/J,,u1—u2 and Sillﬁ—m,uz € OQ[G]VQ,—Vl
and recall that v, g(x,) is non-zero only if p + o + f = 0. Therefore we have
C(y) = Z (S_I@Z’fuz,u@bx\,m)(@fa)GaK_Vl—i—yz#(S_lq/Lm,l/2)(@B)@—,BK_Vl
v1,v2,0,83
=Y (57 it ) (O A 8) (S Wy 11— 5)(Op)Ort s K PHO s K™
v1,B
which implies ¢ () € He . O

Recall the defining representation (3.22) of H, on Us(. Pulling this representation back
under the algebra homomorphism (5.2), we obtain an action of the algebra Fj(U) on Usg.
In studying this representation, it will be convenient to describe Us¢ by means of the sur-
jective homomorphism [T: O4[G] — Usq. The following formula is easily deduced from the
formula (5.1) for ¢, the coquasitriangularity of r, and Lemma 3.8.

Lemma 5.3. The action of J(¢) € F;(U) on I (p) € Usg induced by C is given by
J() -1 () = r(S™ s, 1) 1H(S™ haipathn)

Since ¢(FO,[G]) C HqT_, it follows from Lemma 3.16 that the space Uso decomposes as an
F;(U)-module as

Uso =P UK (5.3)
AepP
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We will now identify the Fj(U)-modules UTK?. Recall the definition of the contragredient
Verma module M (p)" for U. Let C,, be the one-dimensional Usg-module with basis w,, and
Usop-module structure defined by

a-wy, = (a, K"),

which is a slight abuse of notation for ¢ ¢ P. Regard U as a Usg module via the action
a-u=uS(a). Then

M ()Y def Homy (U, C,)
where Homy., denotes the restricted (graded) Hom of Usg-modules. The action of U on
M (p)Y is then given by
(u- @) (v) = ¢(Suv).
Note that because of the triangular decomposition of U, elements of M (u)Y are uniquely
determined by their values on U<y C U.

Proposition 5.4. The F;(U)-module Ut K* in the decomposition (5.3) is isomorphic to the
restriction to Fj(U) of the contragredient Verma module M (\/2)Y .

Proof. Given a € UTK?, define an element ¢, € M(A\/2)V by declaring

a(y) = (aK 2, y)

for all y € U<g. We claim that the map a — ¢, is an isomorphism of F;(U)-modules. By the

non-degeneracy of (-,-), it is an isomorphism of linear spaces. To show that it respects the

F(U)-module structure, we compute the action of the subalgebras Uso and U<p on M ()\/2)".
Suppose first that z € U<g, with Sz € U7 K”. Then for all y € U<y we have

(2 ¢a)(4) = Ga(Szy) = (aK ™2 Szy) = (@K 2 S2)(aa K2 ) = 23 (a1, §2) by (1)

At the same time, for b € UTK”, we have

(b- ¢a)(y) = Gal(Sby) = (Sbs, ys) (b1, y1)Pa(y2Sbs) = (Sbs, ys) (b1, y1)(Sba, KM} (aK /2 )
= (b1aK 28bs, y)(Sba, KN?) = g2 Gy 0, (1)

Here we used formula (3.5) for the product in U, together with the homogeneity of the
coproduct in Usq. Now given 1) € £'Oy[G],, ., we compute the action of J(v) = 1T (1)1 (12)
on ¢, € M()\/2)" with the help of Lemma 5.3. Note that in the expansion

A(w) = Z¢V,V & 1/}—1/,/1

we have
(S Yp_y,) €eUTKY and It(¢,,) eUTK ™.
Then

W) b0 = U (W1) - (000, 17(S™2))bn ) = (@1, 17 (S~ ) B (g yasts (5 1)
Therefore taking a = [ (), we find

J() - da = r(S7 U3, 01) B+ (5-19pnpar) = Pvra
which shows that the map a — ¢, intertwines the two actions of F;(U). O

Corollary 5.5. The homomorphisms E and {A are injective.
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Proof. For any A € P*, the contragredient Verma module M(\)Y contains the finite-
dimensional U-module L(\) as a submodule. Hence the corollary follows from the fact [22,
5.11] that no non-zero element of U acts by zero in all finite-dimensional representations. [J

As in Corollary 4.16, we may extend E to obtain a homomorphism of algebras
CRU) @70 — HE . uete put. (5.4)
Proposition 5.6. The homomorphism Z s injective.

Proof. Since Uy ~ C[P] we may regard U Y Fl(~U ) ®z Up as a quasi-coherent sheaf on
Spec C[P], whose stalk at A € C[P] we denote by (U))\. We may similarly regard 7—[57 as a
sheaf over Spec C[P] and denote its stalk at A € C[P] by (H7 ),. Let Cx: (ﬁ)A — (HI),
be the induced map. Then ker ¢ is a subsheaf of U, and ker (, is its stalk at point A. Thus,

it is enough to show that ker ), = 0 for any A.
Let Z, C U denote the ideal generated by <1 ® K¥ — q()‘7“>> pand Jy C ’HqT’ denote

e
the ideal generated by <1#K“ — q</\7“>>uep. Let U be the quotient of U by the central
character of the Verma module of weight \. Note, that U/Zy ~ U*. Set ”H;‘ & "HZL /I and
let E UM — Hf]‘ be the induced homomorphism. By quantum Duflo theorem, we know that
U? acts faithfully on the Verma module M (). In view of Proposition 5.4 and the existence
of a nondegenerate pairing between a Verma module and the corresponding contragredient
Verma module, we obtain ker (* = 0.

Now, let C[P]y denote the local ring at A and m) be its maximal ideal. Then one has

U= (U),/ma(U),  and My = (M), /ma(Hg ),
so that _ _
my ker C)\ = ker C)\.
At this point the Proposition would from Nakayama’s lemma if ker Z \ were a finitely-generated

C[P]) module. Therefore, it remains to filter ker ZA by finitely generated submodules. There
is a natural filtration on (U ) A (by the sum of modulus of exponents in the Poincaré-Birkhoff-

Witt basis), so let ker,, Z,\ denote the intersection of the n-th filtered component with ker E A-
Then the submodules ker,, ¢\ are finitely generated (as submodules of a finitely generated
module over a Noetherian ring) and deliver the required filtration on ker . O

6. THE R-TWISTED QUANTUM COORDINATE RING

In this section we introduce the R-twist O,[G] of the quantum coordinate ring O,[G],
and explain its relation with the Heisenberg double H,.

6.1. The Heisenberg double and %0,[G].

Proposition 6.1. The following formula defines an associative product e in O4G|

P oR Y = 1(d1,Y1)P2v2 (6.1)
Proof. This follows straightforwardly from the co-quasitriangularity properties (3.9) of the
universal r-form. O

Definition 6.2. We define #O,[G] to be the associative algebra with multiplication defined
by (6.1).
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Proposition 6.3. The map I given by (3.16) defines an embedding of algebras
I: R(’)q[G] — Hy.

Proof. That [ is injective follows from the injectivity of the map J = m o I. To prove that

I is a homomorphism of algebras, we compute

I(¢er ) = r(¢1,91)I(dap2) = r(d1, 1)l (dathe) #'1 (d31)3)
On the other hand, in ‘H, we have

I(¢) - I(¢) = (l+(¢1)#/l (¢2)) (I () # 1 (v2))
= (IT(¥1)2, 17 (¢2)2) I (p1)IT (1)1 41T (¢2)1"1™ (¥2)
= (1" (th2), 17 (¢2)) I (1)1 (1) #'17 (¢3)'1™ (¥3)
= r(¢o, Y2)l* (Y11 )

J# 1 (P393
(o1 )l+(¢2¢2)#ll (¢3¢3)
I(¢er 1))

Proposition 6.4. The image 1(RO,4[G]) C Hq is contained in the subalgebra HL" of T°-

mvariants.

Proof. Suppose that ¢ € O4[G]) ,,, and
= Z w)\,u ® w—u,p,

Then
I(¥) = Uru(©-a)t-1u(0p)OuK V' #O_sK

0

The only non-zero terms in the sum must have §+py —v =0, A+ v — a = 0. Hence we find

I(y) = Z ¢A,u+ﬁ(@fkfu*ﬁ)wfufﬁ,u(@B)@AMHBK_M_/B#@*BK_M € ch

0

Although I : R(’)q[G} — ch is an embedding, it is not surjective. In order to obtain an
isomorphism, we must localize at certain elements of 0O, [G]. We define elements ¢ € O,[G]

by
of = (7" —q) AL,
¢0r = (q; ' —a) AT,
Lemma 6.5. The following equalities hold
I(AY) = K™Yi4# K™
I(¢f) = BiK K,
I(¢;) = K™ F, K,

Proof. One can see that

oF = (1— g Mad2(B)(A%)  and ¢ = (g7 — q) adi(F)(A%).

The rest of the proof is a straightforward calculation using the U-equivariance of J.

O
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Proposition 6.6. The algebra quTc s generated by I (ROq[GD together with the elements
K@K = @il (A9~

Hence, we have the isomorphism
I: RO, [GI(AY) Ty — Hye (6.2)

Proof. Existence of the map and its injectivity follow from the fact that I(A“") is invertible
in H4, with inverse given by

I(sz')—l _ q—(wi,wi)Kwi#Kwi
The surjectivity follows from Lemma 6.5 together with the description (3.21) of ”HqTC. O

Set
o1 def wi\—117
O4[G°] = Og[GII(A*) 7 1]isy
and let
O G /H] & {p € O,[G) | (K*©1)-¢=¢ forany A€ P}.
be the subalgebra of Up-invariants in Oy[G°] under the coregular action defined by (3.7).
Corollary 6.7. The restriction of the map (6.2)
1: 7o [G°/H] — ]
s an isomorphism of algebras.

6.2. Images of the Chevalley generators under Z . By Lemma 6.5, it suffices to calculate
C(A%),¢(¢F). First, suppose that ¢ € Oy[G]y,, satisfies ¢p(zu) = e(2)p(u) for all € U™,
u € U. Then we have [*(¢) = e(¢)K?, so

() = (I#KEMNI(S'¢)
which implies
((A%) = g~ @I T(A%) - T(ST A%,
(o) = a= @ 1(a=) - 1(S™h e )E,

where t} stands for 1#K*.
In order to calculate ((¢; ), suppose that ¢ € O4[G]y,, satisfies p(ua) = e(a)p(u) for all
a € UT and u € U. Then we have J(¢) =T (¢) K *, and hence

Ay (J(9)) =1 (01) K" @ J(2), (6.3)
where Ay denotes the comultiplication in U. In turn, this implies
() = g~ ) (I(gbj) I(STEARE  glem ) [AR ) T(A) T I(S_l(;ﬁj')twi_o‘i),
where a; € P is defined by a; = 2w; — o] .
Corollary 6.8. We have
CR2) = g p(a) - 1(s7 e,
C(F K 240) = g T (A% - 1(S™ ey )1,
C(EK29) = - @) () - I(STIA® )19 4 g~ (@0 @I [(A%) - T(A®) ™1 I(S7 g yteimes,
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6.3. An isomorphism between ?0,[G] and O,[G]. We now explain how to use the quan-
tum Weyl group to construct an isomorphism between #0,[G] and O,[G]. Recall the element
Y defined by (3.12). Then the identity (3.13) implies the following proposition.

Proposition 6.9. The element Y defines an isomorphism of algebras
ty: OgG] — "O,[G], ¢+ (Y, 61)62
Proof. Using the relation (3.13), we compute

ty (@) er 1y (V) = (Y, 1) (Y, 1)1 or 2 = (Y, 1) (Y, 1)1 (02, 12) p31)3
= (Y, o) (Y, o) (YT @ Y THA(Y), 62 @ ¢2) 393
= (A(Y), 1 @ Y1)datha = (Y, p191) datho = 1y (¢0).
O

Definition 6.10. Let 6 be the Dynkin diagram automorphism such that wos; = sg(;)wo holds
for all simple reflections s;.

Using the definition of Y one obtains the following explicit formulas for ¢ty in terms of
generalized minors.

Lemma 6.11. One has

glnrrenlD g
wo,

(oy)HAY) =
(Ly) ( 1sz) ) (2wi,pV') (w“p—&-wi/Z)A‘;O(i)

) =

)

,Wo
(7" — @) (ey) (o)
(g7 — @) () (STl ) = (— 1)(2wip” qu_lq(w“”“’l/z)ATZ(QUO

_ Y ) we (i
(qi 1 @) (y)” (S ¢Z )= (-1 )(wap )qiq(wup-l—wz/?)Asj((i))’wo
Corollary 6.12. The map vy establishes an isomorphism between the localizations

vy OglGI(AG, ) imt,er — FOGGI(A) izt

wo,1

_ gt /2) s

wos;,1

As explained in [6], the algebra Oy[G][(A%: 1) Yiz1,..» can be regarded as the quantum
coordinate ring O4[G"°] of the big open Bruhat cell G*° = B, wyB; C G.
7. MAIN RESULTS
Let us introduce the notation
O G /H| € {¢ € O,[G] | (K} @1)-¢=¢ forany Xe P}

for the subalgebra of Up-invariants in O4[G"°] under the coregular action defined by (3.7).
By Corollary 6.7 and Corollary 6.12 the map

(ty' oI ™M @id: Hy @ T =~ HI™ — Oy[G™/H]® T (7.1)

is an isomorphism of algebras. Combining this isomorphism with Corollary 3.14, we arrive
at

Theorem 7.1. The map ® obtained by composing the homomorphism E defined in (5.4) with
the isomorphism (7.1) is an embedding of algebras

O: Fj(U)®z Uy — Q4G /H| @ T
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Remark 7.2. Note that by Corollary 6.8, in order to extend the homomorphism ® to the
entire quantum group U, (g), we must localize further by inverting the products A}’ IAT%;)

for all 4 = 1,---r. Hence the target of the homomorphism becomes O [Gwo’“’o /H ], the
quantum coordinate ring of the reduced big double Bruhat cell in G. In fact we must also

‘ N 1/2
adjoin the square roots (AfuzlATif)Z.?) to Oq[G™o"0 /H], although this poses no difficulties.

This phenomenon is related to the fact that the maps 7;: G* — G, in (1.3), (1.4), while local
diffeomorphisms, are in fact 2"-fold coverings.

N 1/2
Notation 7.3. O,[G"*"°/H] denotes the algebra obtained by adjoining (Aﬁg 1A01Jif;2>
fori=1,...,7 to Oy[G">"0 /H]. Similarly, T" stands for C[P/2] D T.
Corollary 7.4. Let x: T — C be a character of the torus T. Denote by the same letter the
induced character of the center Z C Uy(g) coming from the embedding €|z: Z — T. Then

® extends to an embedding @' : Uy(g) — Of[G*"° /H] @ T" such that the following diagram
commutes

Uglg) —2= O4Gvo0 /H) & T"

S e

Uq(g)/Ix O:; [Goo [H]
where I, is the ideal generated by the kernel of x.

Corollary 7.5. One has the following explicit formulas for ®’
(K2 = (~1) P Peon A AT,

So()wo \ S 1,wo
(I)/ E sz Awi -1 —1A[O¢z]7Aw9(l) Awﬂ(i) Awl —2 t_ai
( Z) woSs;,1 wo,1 wo,1 1 »WO59(4) 1,wo wo,1 )

where EZ = (q[l —qi)E; and E = (q;1 —q)F;.

~ o\ —1
YRR = a5 (A00)

Proof. This follows from combining Corollary 6.8 with Lemma 6.11. g

Remark 7.6. As mentioned in the Introduction, the Feigin homomorphisms [2] allow us
to further explicitize our formulas for ® and compare our realization of U,(g) to those of
[13, 35]. While we save the full details of this comparison for a forthcoming paper, let
us present the essential idea in the case g = sl,. In [35], the quantized moduli space of
decorated PGLy,-local systems on a punctured disk with two boundary marked points was
used to construct an embedding of U,(g) into a quantum torus. That quantum torus arises as
a quantum cluster chart on the moduli space, corresponding to an ideal triangulation of the
punctured disk in which two triangles are glued by two sides. In [20], it was checked that this
geometric approach reproduces the embedding of [13]. On the other hand, one can consider
the quantum cluster chart corresponding to a self-folded triangulation of the punctured disk;
this quantum torus is related to the original one by an explicit sequence of ("+1) quantum
cluster mutations. Now recall that to specify a Feigin homomorphism amounts to picking
a pair of reduced expressions ij,is for the longest element wy of the Weyl group; for an
appropriate choice of ij,iy one verifies that ®' coincides with the embedding of U,(g) into
the quantum cluster chart corresponding to the self-folded triangulation. Thus the quantum
torus realization of Uj,(g) presented here is mutation equivalent to those of [13, 35].
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We end this section with the following conjecture based on the classical isomorphism (1.11)
and Proposition 1.20.

Conjecture 7.7. We have an isomorphism of non-commutative fraction fields
Frac (F1(U) ®z Up) = Frac (O4[G/H] @ T) .

In particular, Frac (Fj(U) ®z Up) coincides with a non-commutative fraction field of a quan-
tum torus algebra, i.e. the quantum Gelfand-Kirillov property holds for F;(U) @z U.

8. EXAMPLE FOR g = sls

We conclude by providing a detailed example of our construction for the case g = sly. Let
us write E, F, K'/2 for the generators of the simply-connected form of Uq(slz). Recall that
the fundamental representation of Uy (sl2) on C? is determined by

(I B ) B S A

The Hopf algebra Oy(SLs) is generated by the matrix coefficients of the fundamental repre-
sentation. More explicitly, O4(SL2) has generators (x11, 12, 21, £22) subject to the relations

L11212 = 412711 L12222 = 22712 T12T21 = T21712

T11T21 = qT1T11 T21T22 = (T22%21 (211, %22] = (q — ¢ ")w12221
as well as the quantum determinant relation

T11%22 — qT12%21 = L.
The coalgebra structure of Oy(SLy) is given by
Axij) =xi @1y + 22 @a9; and  e(w5) = 4

while the antipode is given by

S(z11) = z22, S(w12) = —q ‘w12, S(z21) = —qm21, S(z22) = 711
The quantum coordinate ring of the big Bruhat cell BwogB C SLs is

Oy[SL5"] = Og[SLa][a3;]

while the quantum coordinate ring of the big double Bruhat cell BwgB N B_woB_ C SLs is
given by
Oy[SLy""°] = O[S Lo][x75 23]

The quantum coordinate ring of the reduced big double Bruhat cell O,[SLy*"°/H] ® T
embeds into the quantum torus algebra

A= Clw v 2 [ (uwv = ¢Pou, 2u = uz, 20 = v2)
via the identification
u=—q’ToTo1, v = —q’lml_;azgll, z =1.
As in Corollary 7.5, we introduce the normalized generators of Uy(slz)

E = (q_1 —q)FE and F = (q_1 —q)F.
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Then the values of the l-operators on the matrix coefficients z;; are easily computed to be

I (zn) = K12 T (xn) = K712
T (212) =0 1 (212) = FK'Y/?
[T (xy1) = EK /2 1 (z91) =0

I (299) = K'/? T (299) = K'/?

It follows that the isomorphism J: Oy(SLa) — Fi(U,(slz)) is given by
J(n) =K', J(xe)=qF, J(@a)=EK',  J(zn)=K +EF.
The homomorphism (: Oy(SLy) — 7—[5’ takes the form
((z1) = (1+ g L EKY#F) -t
((z12) = —Q(Kfl#ﬁ) -t
C(w21) = (B#1 + ¢ T EPKY#F) -t — (E#1) -7
C(x92) = —q(EK_l#F\) gttt

where we write t = 1#K1/2 € HqT*.
The isomorphism vy : Oy(SLay) — f0O,(SLy) is given by

vy (211) = —q a1, vy (221) = ¢~ ¥,
vy (z12) = = wan, iy (222) = ¢ ans.
and the isomorphism I: Of(SLg)[Ai_l]gzl — Hleis
I(z11) = K24k 1/? I(z1) = EK V24 K12
I(z12) = KV24FK/? I(x99) = K'?#KY? + EK -4 FK'/?

The algebra embedding ®: F;(Uy(sly)) — Oy[SLy°/H]®T in Theorem 7.1 takes the form
K™ —qzipaant,
Fs — 290201t (8.1)
EK ' qri1r1ot + $11$2_11t_1.

As explained in Remark 7.2, in order to embed Ug(sly) we must localize further at ziox2
and adjoin (a:lga;gl)l/ 2. Therefore let A’ be the quantum torus algebra obtained from A by
adjoining the elements v'/2 and z'/2. Then we obtain the following quantum torus algebra
realization of Uy (sl):

D' Uy(sly) — A

K2 12,7172, F s uz, E s 2z N qo'? — ¢ Lo V2 (012 — o227,
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