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Abstract. We construct an algebra embedding of the quantum group Uq(g) into a cen-
tral extension of the quantum coordinate ring Oq[G

w0,w0/H] of the reduced big double
Bruhat cell in G. This embedding factors through the Heisenberg double Hq of the quan-
tum Borel subalgebra U≥0, which we relate to Oq[G] via twisting by the longest element
of the quantum Weyl group. Our construction is inspired by the Poisson geometry of the
Grothendieck-Springer resolution studied in [10], and the quantum Beilinson-Bernstein the-
orem investigated in [3] and [38].

Introduction

A basic and much-studied problem in the theory of quantum groups concerns finding
embeddings of them into certain simpler algebras, which often lead to insights into their
ring-theoretic and representation-theoretic properties. A well-known example of such an
embedding is provided by the Feigin homomorphisms [2, 34] from the positive part Uq(n+)
of a Drinfeld-Jimbo quantized enveloping algebra to a quantum torus algebra. For each
reduced decomposition w0 = si1 · · · sil of the longest element of the Weyl group, one has an

algebra embedding of Uq(n+) into the algebra generated by variables X±1
1 , . . . , X±1

l subject

to the q-commutativity relations XiXj = qbijXjXi. Other examples of quantum groups
which have been shown to admit similar embeddings into quantum torus algebras include the
quantum coordinate ring Oq[G] of a simple Lie group G, as well as the quantum coordinate
rings Oq[Gu,v] of its double Bruhat cells constructed by Berenstein and Zelevinsky in [6] and
shown to bear an explicit structure of a quantum cluster algebra in [18]. These realizations
of quantum groups are closely connected with the theory of quantum cluster ensembles [11],
the Feigin homomorphism playing the role of quantum factorization parameters, and the
Berenstein-Zelevinsky realizations playing the role of generalized minors.

The problem of embedding the full quantized enveloping algebra Uq(g) into a quantum
torus appears to be more subtle than the previous examples. In the construction of principal
series representations for quantized enveloping algebras in [13, 19, 21], homomorphisms from
a certain modular double of Uq(g) to a quantum torus were obtained by explicitly writing
formulas for the images of the Chevalley generators, and verifying by direct computation that
the defining relations were satisfied. In particular, this method depends intricately upon the
Dynkin type of g. When g is of type A, different embeddings into the non-commutative frac-
tion field of a quantum torus can also be obtained from representations of Uq(g) of Gelfand-
Zetlin type [31], which led to the proof of the Gelfand-Kirillov conjecture in [12]. These
embeddings, too, are constructed by explicitly verifying the relations in the Chevalley-Serre
presentation of Uq(g). Subsequently, analogs of such representations for any quantum affine
Kac-Moody algebra Uq(g) were proposed in [14].

In this paper, we present a new approach to the construction of quantum torus realizations
of Uq(g). Our construction is geometrically motivated, and requires no calculations with
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generators and relations, yet the homomorphism we obtain can be explicitly computed, see
Corollary 7.5. Our strategy is to construct an algebra embedding of Uq(g) into the algebra
Oq[Gw0,w0/H] ⊗ T , where Oq[Gw0,w0/H] is the quantum coordinate ring of the big double
Bruhat cell in G reduced by the maximal torus H, and T is the commutative torus subalgebra
of Uq(g). The desired embedding of Uq(g) into a quantum torus algebra can then be obtained
in one of two ways. On the one hand, we can embed Oq[Gw0,w0/H] via its coproduct into
the algebra Uq(b+)⊗Uq(b−), and then apply the Feigin homomorphisms as explained in [2].
Alternatively, one can appeal directly to the the quantum torus realization of Oq[Gw0,w0/H]
in terms of quantum generalized minors conjectured in [6] and proven in [18]. In the language
of cluster algebras, the latter approach delivers the quantum cluster A-coordinates, while the
former can be regarded a quantum analog of the factorization coordinates on the group G.

The geometric motivation for our construction comes from the Grothendieck-Springer reso-
lution of the complex simple Lie group G. Recall [7] that the Grothendieck-Springer resolution
for the Lie algebra g can be regarded as the moment map

µ0 : T ∗(B̃)/H −→ g

for the Hamiltonian action of G on T ∗(B̃)/H, the quotient of the cotangent bundle of the

base affine space B̃ = G/N by the maximal torus H ⊂ G. In particular, the resolution map
µ0 is Poisson, where g carries the Kirillov-Kostant-Souriau Poisson structure. Quantizing the
resolution yields an embedding of the enveloping algebra U(g) into the ring of H-invariant

global differential operators on B̃, which is a key ingredient in the construction of the cel-
ebrated Beilinson-Bernstein equivalence of categories. Moreover, by restricting to the open

Schubert cell in B̃ one obtains the familiar realization of U(g) in terms of the Weyl algebra
of differential operators on the big cell.

In [10], building upon the fundamental work of Semenov-Tian-Shansky [36, 37], it was
shown that there is also a Poisson geometric interpretation of the multiplicative Grothendieck-
Springer resolution

µ : X −→ G

where X is the variety consisting of pairs (g,B′) of an element g ∈ G and a Borel subgroup
B′ ⊂ G containing g, and the map µ is the projection forgetting B′. An important result
of [10] is that X and G can be equipped with non-trivial Poisson structures in such a way
that the resolution map µ becomes Poisson. The Poisson structure on G may be regarded
as the semiclassical limit of the quantum group Uq(g), or more precisely its ad-integrable
part Fl(Uq(g)). It is thus natural to expect that quantizing the resolution µ would yield an
interesting realization of Uq(g), just as its degeneration µ0 did for U(g).

We have endeavored to construct such a realization in the following fashion. Using quantum
Hamiltonian reduction, we define an algebra Cq[X] which plays the role of the quantized
algebra of global functions on X, together with an algebra embedding of Fl(Uq(g)) into
Cq[X]. This is closely related to the approach of [3, 4] and [38, 39, 40] to the quantum
Beilinson-Bernstein equivalence. Our next step is to find an appropriate analog of the weakly

H-equivariant differential operators on the big cell of the basic affine space B̃. This role
is played by the algebra of torus invariants in the Heisenberg double of Uq(b+), which we

denote by HT−q . Then, using a certain twisting by the longest element Tw0 of the quantum
Weyl group of Uq(g), we construct an isomorphism of HT−q with Oq[Gw0/H] ⊗ T , where
Oq[Gw0/H] is the quantum coordinate ring of the reduced big Bruhat cell in G. This gives us
an embedding of Fl(Uq(g)) into Oq[Gw0/H]⊗ T , and induces an embedding of the reduction
of Fl(Uq(g)) by any central character into Oq[Gw0/H]. Finally, in order to extend our algebra
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embedding from the ad-integrable part Fl(Uq(g)) to all of Uq(g), we must further localize the
target to obtain Oq[Gw0,w0/H]⊗T , where Oq[Gw0,w0/H] is the quantized algebra of functions
on the reduced big double Bruhat cell in G.

We end our introduction by outlining some directions that we do not fully pursue here
but which we plan to address in future work. Firstly, it seems useful to explicitly study the
embedding we construct using the quantum cluster coordinates on Oq[Gw0,w0/H] from [2, 6].
In particular, it is interesting to understand the significance of quantum cluster mutations
for Uq(g). In a forthcoming work, we use these quantum mutations to find an explicit iso-
morphism between the quantum torus realization presented here and the one given in [13].
Finally, in recent papers [16, 17] a regular cluster structure on the semiclassical limit of
Fl(Uq(gln)) was constructed. Again, it seems interesting to find an explicit sequence of mu-
tations identifying that structure with the semiclassical limit of our realization.

The article is organized as follows. In Section 1, we recall the Poisson geometry of the
Grothendieck-Springer resolution of G, mostly following [10]. In Section 2, we provide a short
phrase-book between the main objects in the quantum part of the paper and their Poisson
counterparts. Section 3 contains some definitions and standard facts regarding quantum
groups that we use extensively throughout the paper. In section 4, we take a minor detour
from the main objective of our paper, and discuss the quantized algebra Cq[X] of global func-
tions on the Grothendieck-Springer resolution. While, strictly speaking, we do not require
this algebra itself to obtain our main result, we nonetheless consider it an interesting interme-
diate step in analogy with the Poisson geometric picture outlined in Section 1. It also relates
our work to the various approaches to the quantum Beilinson-Bernstein localization theorem,
see [3, 4] and [38, 39, 40]. In Section 5, we embed the ad-integrable part of Uq(g) into the
Heisenberg double Hq of the quantum Borel subalgebra U≥0. In Section 6, we show that
certain localization of Oq[G] is isomorphic to the subalgebra of T -invariants in Hq. Section 7
contains our main result, namely, the algebra embedding Uq(g)→ Oq[Gw0,w0/H]⊗T . Finally,
in Section 8, we provide a detailed example of all our constructions in the case g = sl2.
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1. Poisson geometry

In this section we recall the construction of the Grothendieck-Springer simultaneous reso-
lution and its Poisson geometry. Our exposition mainly follows [36, 10].

1.1. Conventions. Throughout this section we will use the following conventions. Let G
be a complex simple Lie group, B = B+ and B− a fixed pair of opposite Borel subgroups,
N = N+ and N− their unipotent radicals, and H = B/N the corresponding torus. We
denote by g, b, n, and h the associated Lie algebras. The root system and the set of positive
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roots of g are denoted by Π and Π+ respectively. The Weyl group W = NormG(H)/H acts
naturally on the torus H. Let B = G/B be the flag variety, whose points we identify with
Borel subgroups of G.

For any X ∈ ∧kg we denote by XL, XR the corresponding left and right invariant k-vector
fields that take values XL(e) = XR(e) = X at the identity element e ∈ G.

1.2. The standard Poisson-Lie structure and related constructions. The various
Poisson structures on G that we shall consider can be conveniently described in terms of the
group D = G×G, which we call the double of G. We write d = g⊕ g for its Lie algebra. Let
〈 , 〉 denote (a nonzero scalar multiple of) the Killing form on g. Then the pairing

〈〈(x1, y1), (x2, y2)〉〉 = 〈x1, x2〉 − 〈y1, y2〉 , x1, x2, y1, y2 ∈ g (1.1)

defines a non-degenerate, ad-invariant symmetric bilinear form on d. The pairing (1.1) thus
gives rise to the Manin triple (g, g∆, g

∗), where

g∆ = {(x, x) |x ∈ g}
and

g∗ = {(x+ + y, x− − y) |x± ∈ n±, y ∈ h} .
Let ξi ∈ g∆ and ξi ∈ g∗ be a pair of dual bases satisfying

〈〈
ξi, ξ

j
〉〉

= δij . Then the
canonical tensor

rD =
1

2

∑
i

ξi ∧ ξi ∈ d ∧ d (1.2)

gives rise to the bivector field

π−D = rRD − rLD
which equips the double D with the structure of a Poisson-Lie group.

Notation 1.1. In what follows we denote the Poisson-Lie group (D,π−D) by D−.

Let G∆ and G∗ be the connected Lie subgroups of D with Lie bialgebras g∆ and g∗

respectively. They take form

G∆ ' G = {(g, g) | g ∈ G}
and

G∗ =
{

(u+t, t
−1u−) |u± ∈ N±, t ∈ H

}
.

The bivector fields

π− = π−D|G∆
π∗− = −π−D|G∗

turn (G, π−) and (G∗, π∗−) into a dual pair of Poisson-Lie groups. Note that (G, π−) and
(G∗, π∗−) are Poisson-Lie subgroups of D.

Notation 1.2. We abbreviate (G, π−) and (G∗, π∗−) by G− and G∗ respectively.

We can give an equivalent definition of the Poisson-Lie group G− as follows. Let b+, b− ⊂ g
be a pair of opposite Borel subalgebras. If xi ∈ n+ and xi ∈ n− are dual bases satisfying〈
xi, x

j
〉

= δij , the canonical tensor

r =
1

2

∑
i

xi ∧ xi ∈ g ∧ g.

is called the standard r-matrix for g. The bivector π− can be written as

π− = rR − rL.
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Another Poisson structure on G crucial for the sequel is given by the bivector field

π+ = rR + rL.

Unlike π−, π+ is not a multiplicative Poisson structure. Therefore while (G, π+) carries the
structure of a Poisson variety, it is not a Poisson-Lie group.

Notation 1.3. We abbreviate (G, π+) by G+.

Let w0 ∈W be the longest element of the Weyl group of G.

Lemma 1.4. (1) Inversion ι : g 7→ g−1 is a Poisson automorphism of G+;
(2) Conjugation σ : g 7→ w0gw

−1
0 is an anti-Poisson automorphism of G−;

(3) The following two maps G− −→ G+

g 7→ gw0 and g 7→ w0g

are respectively Poisson and anti-Poisson isomorphisms.

Proof. Point 1) follows from the fact that ι∗x
L = −xR for any left invariant vector field xL

on G+. Points 2) and 3) follow from the identity σ(r) = −r. �

1.3. Poisson reductions of the double. Now let us consider the bivector field on D defined
by

π+
D = rRD + rLD

with rD given by (1.2). It defines on D the structure of a Poisson variety (but not a Poisson-
Lie group.)

Notation 1.5. In what follows we denote (D,π+
D) by D+.

The Poisson variety D+ is often referred to as the symplectic double of G.

Proposition 1.6. [10, Lemma 6.3] Consider the projections

µ1 : D −→ D/G∆ ' G, (g1, g2) 7→ g1g
−1
2 ,

µ2 : D −→ G∆\D ' G, (g1, g2) 7→ g−1
2 g1.

Then there exist unique Poisson structures π∗1, π
∗
2 on G such that the maps µ1, µ2 are Poisson.

Moreover, the Poisson structures π∗1, π
∗
2 are such that the maps

η1 : G∗ −→ (G,µ1(π+
D)), (b+, b−) 7→ b+b

−1
− , (1.3)

η2 : G∗ −→ (G,µ2(π+
D)), (b+, b−) 7→ b−1

− b+ (1.4)

are Poisson.

Notation 1.7. In what follows we write (G, π∗) for (G, π∗1).

In what follows, we shall refer to µ1 and µ2 as moment maps. Indeed, it is immediate
from the definitions that the action of D− by left/right multiplication on D+ is Poisson. Let
D′ = µ−1

1 (B+B−) and D′′ = µ−1
2 (B−B+). Then we have the following well-known result (see,

e.g. [32, Example 3.3]).

Proposition 1.8. The action of G∆ ⊂ D− on D′ ⊂ D+ by left multiplication admits a
group-valued moment map m1 : D′ −→ D′/G∆ ' G∗ such that η1 ◦m1 = µ1. In a similar
fashion, µ2 arises from the moment map for the right action of G∆ on D′′.

Now, consider the Poisson action of B∆ ⊂ D− on D+ by right multiplication.



6 GUS SCHRADER, ALEXANDER SHAPIRO

Proposition 1.9. [10, Proposition 4.2] The subvariety Q = {(gb, g) | g ∈ G, b ∈ B} ⊂ D+

is coisotropic in D+. The quotient Q/B∆ is a Poisson subvariety of (D/B∆, φ(π+
D)) where

φ : D −→ D/B∆ is the natural projection.

We may identify Q with the direct product G×B via

Q ' G×B, (g1, g2) 7→ (g2, g
−1
2 g1).

The B∆ action on Q then reads

(G×B)×B −→ G×B ((g, b), a) 7→ (ga, a−1ba). (1.5)

We denote the B-orbit through a point (g, b) by [g, b].

Corollary 1.10. The set X = G ×B B of B-orbits under the action (1.5) is a Poisson
variety, with Poisson bivector πX = φ(π+

D)|Q/B∆
.

Since the actions of G∆ and B∆ on D+ by left and right multiplication respectively com-
mute, the Poisson variety X carries a residual Poisson action of G− given by

G×X −→ X, (g′, [g, b]) 7→ [g′g, b]. (1.6)

In view of Proposition 1.8 we have

Corollary 1.11. The action (1.6) admits the following moment map

µ : X −→ G, [g, b] 7→ gbg−1 (1.7)

with Poisson bivectors πX on the source and π∗ on the target.

Remark 1.12. The map (1.7) was also shown in [8] to be the group-valued moment map in
the sense of [1].

1.4. Grothendieck-Springer resolution. Let G̃ = {(g,B′) |B′ ∈ B, g ∈ B′} be the set of
pairs consisting of a Borel subgroup B′ ⊂ G and an element g ∈ B′. Equivalently, it may
may be thought of as the set of pairs of a flag (preserved by B′) and an element g preserving
that flag. Since every element of G is contained in a Borel, and all Borels are conjugate under
G, we have

Proposition 1.13. The map

$ : X −→ G̃, [g, b] 7→ (gbg−1, gBg−1) (1.8)

is an isomorphism of varieties.

Let

p : G̃ −→ G, (g,B′) 7→ g

be the projection onto the first factor. Note that the following diagram commutes

X

µ
��

$ // G̃

p

��
G

Definition 1.14. The projection p is called the Grothendieck-Springer (simultaneous) reso-
lution. Throughout the paper we will refer to the moment map (1.7) by the same name.
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Consider the map α : G̃ −→ H defined by α([g, b]) = bN ∈ B/N ' H. Let β : G −→ H//W
be the Chevalley restriction map, coming from the inclusion C[H]W ' C[G]G ↪→ C[G]. If

we let Greg denote the locus of regular elements of G, and write G̃reg = p−1(Greg), then the
diagram

G̃reg
α //

p

��

H

��
Greg

β // H//W

(1.9)

is Cartesian.

Corollary 1.15. There is an isomorphism of coordinate rings

C[G] ' C[X]W . (1.10)

Proof. Since the regular locus Greg is of codimension 3 in G, we have C[Greg] = C[G] and

C[G̃reg] = C[G̃]. In view of (1.9), we have an isomorphism

C[X] ' C[G]⊗C[H]W C[H]. (1.11)

Taking W -invariants on both sides we obtain (1.10). �

1.5. From the standard Poisson structure to its dual. Consider the homogeneous space
G/H = {gH | g ∈ G}. For any g ∈ B+B− ⊂ G define [g]′0 ∈ H to be the image of g under
the projection G −→ N+\G/N−. Since AdH(r) = r, there is a unique Poisson tensor π+

G/H

on G/H with the property that the projection G −→ G/H is Poisson.

Proposition 1.16. The map

D′′+ −→ G/H ×H, (g1, g2) 7→
(
g1H,

[
g−1

2 g1

]′
0

)
is Poisson, where the Poisson structure on G/H ×H is defined by the bivector (π+

G/H , 0).

Proof. Let {yi} be a basis for h such that 2 〈yi, yj〉 = δij . Then the bivectors r and rD can
be written as

r =
1

2

∑
α∈Π+

Eα ∧ E−α

and

rD =
1

2

r∑
i=1

(yi,−yi) ∧ (yi, yi) +
1

2

∑
α∈Π+

(
(Eα, 0) ∧ (E−α, E−α) + (0,−E−α) ∧ (Eα, Eα)

)
respectively. Now it is clear that the bivector field π+

D maps to π+ under the projection onto
the first factor (g1, g2) 7→ g1.

Recall the moment map

µ2 : D′′ −→ G, (g1, g2) 7→ g−1
2 g1.

It is easy to see that µ2

(
(x, x)L

)
= 0, µ2

(
(x, 0)R

)
= xR, and µ2

(
(0, x)R

)
= −xL. Therefore,

µ2(π+
D) =

r∑
i=1

yLi ∧ yRi +
∑
α∈Π+

EL−α ∧ ERα +
1

2

∑
α∈Π+

(
ERα ∧ ER−α − EL−α ∧ ELα

)
.

Further projection G −→ N+\G/N− maps ERα and EL−α to 0, so µ2(π+
D) =

∑r
i=1 y

L
i ∧ yRi .

This bivector vanishes on the torus H which finishes the proof. �
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Denote by G◦ the open cell B−B+ ⊂ G. Any element g ∈ G◦ admits unique decomposition
g = [g]−[g]0[g]+ with [g]± ∈ N± and [g]0 ∈ H. Now, consider the projection

X −→ G/B, [g, b] 7→ gB,

and let X◦ be the preimage of G◦.

Proposition 1.17. The map

ψ : G◦+/H ×H −→ X◦, (u−u+H, t) 7→ (u−, u+t)B

is an isomorphism of Poisson varieties.

Proof. It is immediate that the inverse map is given by [g, b]B 7→ (gbH, [b]0). It follows from
Proposition 1.16 that the isomorphism ψ is Poisson. �

Proposition 1.18. The map

τ : G−/H ×H −→ G+/H ×H, (gH, t) 7→ (gw0H, t).

is an isomorphism of Poisson varieties.

Proof. The bivector field π− vanishes on H ⊂ G, and thus descends to G−/H. By Proposi-
tion 1.4 the map G− −→ G+ given by g 7→ gw0 is a Poisson isomorphism, which descends to
a Poisson isomorphism G−/H ' G+/H since w0H = Hw0. �

Corollary 1.19. Let ◦G = B−w0B− be the big Bruhat cell in G. Then the map

◦G−/H ×H −→ (G, π∗) (gH, t) 7→ gw0t[gw0]−1
−

is Poisson and coincides with the composition µ ◦ ψ ◦ τ .

We conclude this section with a few remarks on the isomorphism ψ. Note that every
element of g ∈ G/H can be uniquely written as g = u−u+H where u± ∈ N±. Consider the
free right action of H on B− ×B+ defined by

(B− ×B+)×H −→ (B− ×B+),
(
(b−, b+), t

)
7→ (b−t, t

−1b+t)

and denote by H = (B− × B+)/H the corresponding quotient. The following proposition
shows that the isomorphism ψ factors through H. The proofs are immediate since each map
has a well-defined inverse.

Proposition 1.20. We have isomorphisms

G◦/H ×H −→ H, (u−u+H, t) 7→ (u−, u+t)H,

H −→ X◦, (b−, b+)H 7→ [b−, b+]B.

In particular, H is endowed with the structure of a Poisson variety.

2. A short guide to the rest of the paper

In order to help the reader keep track of various quantum algebras that we use in the sequel,
as well as their relation with the Poisson geometry outlined in Section 1, we provide here
a brief phrase-book. The quantum algebras appearing in the table below may be regarded
as quantizations of the algebras of global functions on the corresponding Poisson varieties.
In general, the entries of the right column are associative algebras, and carry the further
structure of a Hopf algebra if their underlying Poisson variety is a Poisson-Lie group.
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Poisson varieties Quantum algebras

G− Oq[G]

G+
ROq[G]

H HT−q
X Cq[X]
G∗ Uq(g)

G∗ Fl(U) ' FOq[G]

The quantum algebras in the table above appear in the following order. In section 3.2
we introduce the quantum group Uq(g). Its Hopf dual Oq[G] is recalled in Sections 3.3
and 3.6. Section 3.7 explains relation between Oq[G] and quantum Borel subalgebras Uq(b±).
In Section 3.8 we introduce the ad-integrable part Fl(U) of the quantum group Uq(g) and
explain its relation to the quantum coordinate ring. Section 3.9 is devoted to the Heisenberg
double Hq of the quantum Borel subalgebra. The quantum analogue Cq[X] of the coordinate
ring of the Grothendieck-Springer resolution is constructed and studied in Section 4. Finally,
the R-twisted quantum coordinate ring ROq[G] appears in Section 6. At the quantum level,
our construction is based on the interplay between the algebras Oq[G], ROq[G], and FOq[G],
which are all modelled on the same underlying vector space, but carry different associative
algebra structure. Of these three algebras, only Oq[G] is a Hopf algebra. This is completely
parallel to the Poisson geometric picture, where we have three Poisson structures G−, G+,
and G∗ on the same underlying variety G, with only G− being a Poisson-Lie group.

We summarize the various maps we construct between these quantum algebras in the
diagram below:

Fl(U)

ξ̂ $$

ζ̂

))

Φ

))
Cq[X] // HT−q Oq[G◦/H]⊗ TI

'
oo Oq[Gw0/H]⊗ TιY

'
oo

FOq[G]

'J

OO

ξ
::

ζ

55

Let us remark that the maps ξ̂ and ζ̂ are in fact restrictions of maps ξ̃ and ζ̃ defined on
Fl(U) ⊗Z U0, the extension of Fl(U) over its Harish-Chandra center Z, see Section 4.4.
Finally, the map Φ can be extended to a map Φ′ : Uq(g) → O′q[Gw0,w0/H] ⊗ T ′, where the
algebra O′q[Gw0,w0/H] ⊗ T ′ is obtained from Oq[Gw0,w0/H] ⊗ T by adjoining certain square
roots, see Section 7.

3. Preliminaries on quantum groups

In this section, we recall the definitions and various well-known properties of the quantum
groups that will be used extensively in the sequel. Our conventions match those of of [22].
We refer the reader to [30, 22, 24] for further details and proofs of many of the results in this
section.

3.1. Conventions. In what follows, g will denote a finite-dimensional complex simple Lie
algebra of rank r, equipped with a choice of Cartan subalgebra h and a set of simple roots
{α1, . . . , αr}. We write P,Q for the weight and root lattices associated to the corresponding
root system Π, and denote the fundamental weights by ω1, . . . , ωr. Denote by (·, ·) the unique
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symmetric bilinear form on h∗ invariant under the Weyl group W , such that (α, α) = 2 for

all short roots α ∈ Π. Let k = C(q1/N ) be the field of rational functions in a formal variable

q1/N , where N ∈ N is such that 1
2(λ, µ) ∈ 1

NZ for any pair of weights λ, µ ∈ P . If A is a
Hopf algebra, we denote by Aop the Hopf algebra with the opposite multiplication to A, and
denote by Acop the Hopf algebra with the opposite comultiplication to A. We will use the
Sweedler notation

∆(a) =
∑

a1 ⊗ a2

to express coproducts. Throughout the paper, all modules for the quantum group Uq(g) are
assumed to be of type I.

3.2. Quantized enveloping algebras. The (simply-connected) quantized universal en-

veloping algebra U
def
= Uq(g) is the k-algebra generated by elements

{Ei, Fi,Kλ | i = 1, . . . , r, λ ∈ P}

subject to the relations

KλEi = q(λ,αi)EiK
λ, KλKµ = Kλ+µ,

KλFi = q−(λ,αi)FiK
λ, [Ei, Fj ] = δij

Ki −K−1
i

qi − q−1
i

.

together with the quantum Serre relations (see [22], p.53). In the relations above we have set

Ki
def
= Kαi and qi = q(αi,αi)/2. The algebra U is a Hopf algebra, with the comultiplication

∆(Kλ) = Kλ ⊗Kλ, ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi

the antipode

S(Kλ) = K−λ, S(Ei) = −K−1
i Ei, S(Fi) = −FiKi

and the counit

ε(Kλ) = 1, ε(Ei) = 0, ε(Fi) = 0.

Let U≥0 denote the subalgebra of U generated by all Kλ, Ei, and U≤0 denote the subalgebra
generated by all Kλ, Fi. We also write U0 for the subalgebra generated by Kλ, λ ∈ P . The
algebras U≥0, U≤0, U0 are Hopf subalgebras in U . Recall that (U≤0)cop stands for the co-
opposite Hopf algebra to U≤0. There is a non-degenerate Hopf pairing

〈·, ·〉 : U≥0 × (U≤0)cop −→ k (3.1)

defined by

〈Kλ,Kµ〉 = q−(λ,µ), 〈Kλ, Ei〉 = 0 = 〈Kλ, Fi〉, 〈Ei, Fj〉 = − δij

qi − q−1
i

.

Let U+ and U− denote the subalgebras generated by all Ei and by all Fi respectively.
Then the quantum group U admits a triangular decomposition: the natural multiplication
map defines an isomorphism of C(q)-modules

U+ ⊗ U0 ⊗ U− −→ U (3.2)

The algebra U is graded by the root lattice Q. Indeed, setting

Uν =
{
u ∈ U | Kλu = q(λ,ν)uKλ

}
, (3.3)
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we have U =
⊕

ν∈Q Uν . If we set U+
ν = U+ ∩ Uν and U−ν = U− ∩ Uν , then the pairing (3.1)

has the orthogonality property

〈U+
ν , U

−
−µ〉 = 0 if µ 6= ν. (3.4)

Remark 3.1. The Hopf algebra U can be described as a quotient of the Drinfeld double of
the dual pair (U≥0, U

cop
≤0 ), which in particular implies the relation

xy = 〈x1, y1〉〈x3, Sy3〉y2x2 for all x ∈ U≥0, y ∈ U≤0. (3.5)

3.3. Quantized coordinate rings. Let G be the connected, simply connected algebraic
group with Lie algebra g. The quantized algebra of functions on G, which we denote by
Oq[G], is defined to be the Hopf algebra of matrix elements of finite-dimensional U -modules.
For a finite-dimensional U -module V of highest weight λ and a pair of elements v ∈ V and
f ∈ V ∗ we denote the corresponding matrix element by cλf,v, or simply by cf,v when it does
not cause ambiguity. By construction, there is a Hopf pairing

〈〈·, ·〉〉 : Oq[G]⊗ U −→ k (3.6)

defined by evaluation of matrix elements against elements of U . Pairing (3.6) is non-
degenerate, since no non-zero element of U acts as zero in all finite-dimensional represen-
tations [22].

The algebra Oq[G] is a left U⊗U cop module algebra via the left and right coregular actions

((x⊗ y) ◦ ψ)(u) = ψ(Syux) where x, u ∈ U, y ∈ U cop, ψ ∈ Oq[G]. (3.7)

As a U ⊗ U cop-module, Oq[G] admits the Peter-Weyl decomposition

Oq[G] =
⊕
λ∈P+

L(λ)∗ ⊗ L(λ)

where L(λ) is the finite-dimensional U -module of highest weight λ, and L(λ)∗ is its dual.
The algebra Oq[G] is graded by two copies of the weight lattice P as follows

Oq[G] =
⊕
λ,µ∈P

Oq[G]λ,µ

where

Oq[G]λ,µ =
{
ψ ∈ Oq[G] | (Kν ⊗Kρ)ψ = q(µ,ν)+(λ,ρ)ψ

}
.

If V is a representation of U and v ∈ V satisfies Kλv = q(λ,µ)v for all λ ∈ P , we say that v
is a weight vector of weight µ, and write wt(v) = µ. The subspace Oq[G]λ,µ is spanned by
matrix elements cf,v with wt(f) = λ, wt(v) = µ. Note that S(Oq[G]λ,µ) = Oq[G]µ,λ and for
xν ∈ Uν , ψλ,µ ∈ Oq[G]λ,µ we have

ψλ,µ(xν) 6= 0 =⇒ ν + λ+ µ = 0

Moreover, if ψ ∈ Oq[G]λ,µ its coproduct takes the form

∆(ψ) =
∑
i

ψλ,νi ⊗ ψ−νi,µ where ψα,β ∈ Oq[G]α,β .
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3.4. Quantum Weyl group. Let Û be the completion of U with respect to the weak topol-
ogy generated by all matrix elements of finite-dimensional U -modules (see [26, Section 3]).

As an algebra Û , is isomorphic to
∏
λ∈P+

EndC(q)L(λ). We will also regard an element u ∈ Û
as a functional on Oq[G] via the evaluation pairing 〈〈cf,v, u〉〉 = f(uv).

Definition 3.2. [30] Define an element Ti of Û which acts on any weight vector v by

Ti(v)
def
=

∑
a,b,c≥0

a−b+c=(wt(v),αi)

(−1)bqac−bF
(a)
i E

(b)
i F

(c)
i (v).

By [30, Theorem 39.4.3], the elements Ti generate an action of the braid group on any

finite-dimensional U -module. The subalgebra of Û generated by U together with the Ti
is often referred to as the quantum Weyl group, and it is known [27] to in fact be a Hopf
algebra. Moreover, let w0 be the longest element of the Weyl group, and w = si1 . . . sik any
of its reduced decompositions into simple reflections. Then the element Tw0 defined by

Tw0 = Ti1 . . . Tik (3.8)

is independent of the choice of reduced expression for w0.

3.5. Quantum minors. We now recall the definition of certain elements of Oq[G] that will
prove useful in the sequel. For each dominant weight λ ∈ P+, we fix a highest weight vector
vλ ∈ L(λ). Then, as in [26], we define the corresponding lowest weight vectors vw0(λ) ∈ L(λ)
by

Tw0vw0(λ) = (−1)〈2λ,ρ
∨〉q−2(λ,ρ)vλ

Proposition 3.3. [26, Comment 5.10] The vectors vλ, vw0(λ) satisfy

Tw0vλ = vw0(λ).

For each λ ∈ P+, there is a unique pairing

〈−,−〉λ : L(−w0(λ))⊗ L(λ) −→ k

satisfying conditions

〈v−λ, vλ〉λ = 1 and 〈xw, v〉λ = 〈w, Sxv〉λ
for all x ∈ U , v ∈ L(λ), and w ∈ L(−w0(λ)). The following definition coincides with the one
given in [6].

Definition 3.4. The quantum principal minor ∆λ is the element of Oq[G] whose value on
any x ∈ U is given by

∆λ(x) = 〈v−λ, xvλ〉λ
Given (u, v) ∈ W ×W we choose reduced decompositions u = sil · · · si1 and v = sjl′ · · · sj1
and set

nk = 〈si1 · · · sik−1
(α∨ik), λ〉, mk = 〈sj1 · · · sjk−1

(α∨ik), λ〉.
Then the quantum minor ∆λ

u,v is defined by

∆λ
u,v(x) = ∆λ

(
E

(n1)
i1
· · ·E(nl)

il
xF

(ml′ )
jl′

· · ·F (m1)
j1

)
where a(n) stands for the n-th q-divided power of a.
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3.6. Oq[G] as a co-quasitriangular Hopf algebra. Write Θν for the canonical element in
U+
ν ⊗ U−ν with respect to the pairing 3.1. If V,W are two finite-dimensional representations

of U , then the action of the formal sum Θ =
∑

ν∈Q Θν is well defined in the tensor product
V ⊗W . Let fV,W be the operator in V ⊗W defined by

fV,W (v ⊗ w) = q−(wt(v),wt(w))(v ⊗ w)

for any weight vectors v, w ∈ V,W . Then define RVW to be the following operator in V ⊗W
RVW (v ⊗ w) = Θ ◦ fVW

The operator R gives rise to a bilinear form r : Oq[G]×Oq[G] −→ k defined by

r(cf,v, cg,w) = (f ⊗ g)(RVW (v ⊗ w))

=
∑
α

q−(wt(v),wt(w))f(Θαv)g(Θ−αw).

The form r equips Oq[G] with the structure of a co-quasitriangular Hopf algebra [24, 25].
This means that, for all triples φ, ψ, ρ ∈ Oq[G], we have

r(φ1, ψ1)φ2ψ2 = ψ1φ1r(φ2, ψ2), (3.9)

r(φψ, ρ) = r(φ, ρ1)r(ψ, ρ2), (3.10)

r(ρ, φψ) = r(ρ1, ψ)r(ρ2, φ). (3.11)

As the following Proposition shows, the form r is closely related to the longest element Tw0

of the quantum Weyl group.

Proposition 3.5. [27, 26] Let C be the element of Û defined by

C(v) = q(wt(v),ρ)−(wt(v),wt(v))/2v

where ρ is the half-sum of positive roots. Then setting

Y = CTw0 , (3.12)

we have the following equality in Oq[G]∗ ⊗Oq[G]∗

r = (Y −1 ⊗ Y −1)∆(Y ). (3.13)

3.7. l-operators. Let Oq[G]∗ be the full linear dual of Oq[G], and define maps

l±, ′l± : Oq[G] −→ Oq[G]∗

by

l+(φ) = r(·, φ), ′l+(φ) = r(·, S−1φ),
′l−(φ) = r(φ, ·), l−(φ) = r(Sφ, ·).

Lemma 3.6. [25, Lemma 1.4] The maps l± : Oq[G] → Oq[G]∗ are anti-homomorphisms of
algebras, while the maps ′l± are homomorphisms of algebras. Additionally, we have

l+, ′l+ : Oq[G] −→ U≥0, l−, ′l− : Oq[G] −→ U≤0

with explicit formulas given by

l+(cf,v) =
∑
α

f(Θ−αv)ΘαK
−wt(v)

′l−(cf,v) =
∑
α

f(Θαv)Θ−αK
−wt(v)
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We also have

Lemma 3.7. Let ∆, SU denote the coproduct and antipode in U . Then
′l± = SU ◦ l±

and

∆ ◦ l±(φ) = l±(φ1)⊗ l±(φ2),

∆ ◦ ′l±(φ) = ′l±(φ2)⊗ ′l±(φ1).

Proof. These identities follow directly from the properties (3.10), (3.11) of r, together with
the non-degeneracy of the Hopf pairing between U and Oq[G]. �

We will make frequent use of the following lemma relating the universal r-form to the Hopf
pairing (3.1).

Lemma 3.8. Let 〈·, ·〉 be the pairing (3.1) of U≥0 with U≤0. Then

〈l+(φ), ′l−(ψ)〉 = r(ψ, φ)

Proof. We verify the claim for any pair of matrix elements cf,v, cg,w ∈ Oq[G]. Let us expand
Θ =

∑
i Θ+i ⊗Θ−i where 〈Θ+i,Θ−j〉 = δij . Then using the relation

〈Θ+iK
λ,Θ−jK

µ〉 = q−(λ,µ)δij

from [22, 6.13] we compute

〈l+(cg,w), ′l−(cf,v)〉 =
∑
i,j

g(Θ−iw)f(Θ+jv)〈Θ+iK
−wt(w),Θ−jK

−wt(v)〉

=
∑
i

q−(wt(v),wt(w))f(Θ+iv)g(Θ−iw) = r(cf,v, cg,w).

�

3.8. The ad-integrable part of U . Consider the left (right) adjoint actions adl (respec-
tively, adr) of U on itself defined by

adl(x)(y) = x1ySx2 (3.14)

adr(x)(y) = Sx1yx2 (3.15)

Definition 3.9. The left ad-integrable part of U is defined as the subset

Fl(U) = {x ∈ U | dim adl(U)x <∞}
Similarly, the right ad-integrable part of U is defined as the subset

Fr(U) = {x ∈ U | dim adr(U)x <∞}

Proposition 3.10. [24] The ad-integrable parts Fl(U), Fr(U) are subalgebras in U . More-
over, they are left and right coideals respectively:

∆(Fl(U)) ⊂ U ⊗ Fl(U), ∆(Fr(U)) ⊂ Fr(U)⊗ U.

Now consider the maps

I : Oq[G] −→ U≥0 ⊗ U≤0, I = (l+ ⊗ ′l−) ◦∆ (3.16)

and
J : Oq[G] −→ U, J = m ◦ I (3.17)
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where

m : U≥0 ⊗ U≤0 −→ U, u+ ⊗ u− 7→ u+u−

is the multiplication in U . Note also that the action (3.15) induces a coadjoint action
ad∗r : U ⊗Oq[G] −→ Oq[G] given by

〈ad∗r(x)(ψ), y〉 = 〈ψ, S(x1)yx2〉, x, y ∈ U, ψ ∈ Oq[G]. (3.18)

The following theorem was proven by Joseph and Letzter in [23], building on results of Caldero
[9].

Theorem 3.11. [23] The map J is an injection of U -modules, with respect to the ac-
tion (3.14) on U and the action (3.18) on Oq[G]. Its image is

Fl(U) =
⊕
λ∈P+

(adlU)(K−2λ) (3.19)

Since S(Fl(U)) = Fr(U), the theorem implies that the map

J ′
def
= S ◦ J : Oq[G] −→ Fr(U)

is also an isomorphism of U -modules. Indeed, for all x ∈ U , φ ∈ Oq[G] we have

x2J
′(φ)S−1x1 = J ′(ad∗r(S

−2x)φ) (3.20)

Despite being a morphism of U -modules, the map J is not a morphism of algebras. However,
as explained in [25], one can equip Oq[G] with a twisted algebra structure so that J becomes
an algebra homomorphism:

Proposition 3.12. The following formula defines an associative product •F in Oq[G]

φ •F ψ = r(φ1, ψ2)r(φ3, Sψ1)φ2ψ3

= r(φ2, ψ3)r(φ3, Sψ1)ψ2φ1

If we write FOq[G] for the algebra obtained by equipping Oq[G] with the product •F , then the
map J : FOq[G] −→ Fl(U) is an isomorphism of U -module algebras.

Similarly, the map J ′ is an isomorphism of algebras (FOq[G])op ' Fr(U).

3.9. The Heisenberg double of U≥0. We define the Heisenberg double of U≥0 to be the
smash product Hq = U≥0#U≤0 of the dual pair of Hopf algebras U≥0 and U cop≤0 with respect

to the pairing (3.1). The product in Hq can be written explicitly as

(a#x)(b#y) = 〈b2, x2〉ab1 ⊗ x1y

Let us make a few remarks on the structure of Hq that will prove useful in the sequel.
Consider the torus

T = U0 ⊗ U0 ⊂ Hq
and the following three subtori

T+ = U0 ⊗ 1, T− = 1⊗ U0, and Tc = (1⊗ S) ◦∆(U0).

The Heisenberg double Hq has the following T−-module algebra structure

(1⊗Kλ) ◦ (a#x) = (1#Kλ)(a#x)(1#K−λ) = 〈Kλ, a2〉a1#KλxK−λ.

It also admits a T+-module algebra structure given by

(Kµ ⊗ 1) ◦ (a#x) = 〈Kµ, x1〉a#x2
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Since the actions of T+ and T− commute, we may combine them into an action of T on Hq.
Using the grading (3.3), the restriction of this T-action to the subalgebras T− and Tc can be
computed explicitly as

(1⊗Kρ) ◦ (xνK
λ#yαK

µ) = q(ρ,α−λ)xνK
λ#yαK

µ

(Kρ ⊗K−ρ) ◦ (xνK
λ#yαK

µ) = q(ρ,λ−α−µ)xνK
λ#yαK

µ

for any xν ∈ U+
ν and yα ∈ U−α . Therefore, we have

Proposition 3.13. The T− invariants in Hq coincide with the subalgebra

HT−q =
⊕
ν∈Q+

U+K−ν#U−−νT,

the T c invariants coincide with the subalgebra

HTcq =
⊕

λ∈P, ν∈Q+

U+Kλ#U−−νK
λ+ν , (3.21)

and the T-invariants coincide with the subalgebra

HT
q =

⊕
λ∈P, ν∈Q+

U+K−ν#U−−ν .

Note that, the subalgebra of T− invariants HT−q commute with the subalgebra 1#T . Hence
we obtain

Corollary 3.14. Multiplication in Hq yields an algebra isomorphism

HT
q ⊗ T −→ HT

−
q , (a#x)⊗ (1#Kρ) 7−→ a#xKρ.

Remark 3.15. The torus T(A) is naturally embedded into the Drinfeld double of the dual
pair (U≥0, U

cop
≤0 ). The action of T used in this section arises from the action of the Drinfeld

double on the Heisenberg double considered in [29].

The following formula defines an action of Hq on U≥0

(a#x) ◦ b = 〈x, b2〉ab1 (3.22)

where a#x ∈ Hq and b ∈ U≥0. We have the following lemma regarding the restriction of this

action to the subalgebra HT−q ⊂ Hq.

Lemma 3.16. As HT−q -modules, we have

U≥0 =
⊕
λ∈P

U+Kλ

Proof. It suffices to check that K−ν#y−ν ∈ HT−q preserves U+Kλ. This follows from the
orthogonality property (3.4) of the pairing 〈·, ·〉 and the fact that given x ∈ U+

α , its coproduct
can be expanded as

∆(x) =
∑
β

xα−βK
β ⊗ xβ

where xβ ∈ U+
β and xα−β ∈ U+

α−β . �
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4. Quantum Grothendieck-Springer resolution

In this section, we describe an analog of the Grothendieck-Springer map (1.7) at the level
of quantum groups. The story is closely related to the work of Backelin-Kremnizer [4] and
Tanisaki [39, 40] on the quantum Beilinson-Bernstein equivalence. Indeed, in [4] the authors

consider an algebra Γ(D̃Bq) of global sections of the sheaf of quantum differential operators
on the quantum base affine space. This algebra is very closely related to the algebra Cq[X]
constructed in this section; for the precise description of the relation between the two, see
Remark 4.3. Similar algebras have also been considered by Tanisaki [40], who pointed out
certain technical problems with the computation of global sections given by Backelin and
Kremnizer in [4]. So for the convenience of the reader and to take account of the technical
differences between the our construction and that of Backelin and Kremnizer, we provide
self-contained proofs of all results concerning Cq[X] that we shall use in the sequel.

4.1. Quantum differential operators on G. Following [37, 3], we define the ring Dq of
quantum differential operators on G, to be the smash product algebra

Dq = Oq[G]op#U cop.

The multiplication in Dq is given by the formula

φ#u · ψ#v = ψ2(u2)ψ1φ#u1v

Since Fr(U) is a right coideal, the algebra Dq contains a subalgebra

Dfinq = Oq[G]op#Fr(U). (4.1)

We can parameterize Dfinq using the algebra isomorphism J ′ : (FOq[G])op −→ Fr(U). Under

this identification, one checks that product in Dfinq becomes

(φ#J ′(ρ)) · (ψ#J ′(ν)) = r(S−1ρ3, ψ2)r(S−1ν1S
−2ν3ψ3, S

−1ρ1)ψ1φ#J ′(ν2ρ2). (4.2)

4.2. Construction of Cq[X]. We are now ready to describe our construction of Cq[X], the
quantized algebra of global functions on the Grothendieck-Springer resolution. The idea is
to obtain Cq[X] as the quantum hamiltonian reduction of Dq under an appropriate action
of U≥0, analogously to the construction of X as the quotient of the coisotropic subvariety
Q ⊂ D+ by the Poisson action of B∆ in Proposition 1.9.

Remark 4.1. Philosophically, the construction of Cq[X] presented in this section is very
similar to the one of global sections of the sheaf of quantum differential operators in [3, 4].
However, there appear to be some technical differences between the two constructions, so we
provide independent proofs of the results we shall use.

For the reader’s convenience, we briefly recall the notion of quantum Hamiltonian re-
duction. Suppose that H is a Hopf algebra, A is an associative algebra, µ : H → A is a
homomorphism of associative algebras, and I is a 2-sided ideal in H preserved by the left
adjoint action of H. Then by the ad-invariance of I, the action of H on A defined by the
formula

h ◦ a = µ(h1)aµ(Sh2)

descends to an action of H on the A-module A/Aµ(I). The quantum Hamiltonian reduction of
A by the quantum moment map µ : H → A at the ideal I is defined as the set of H-invariants

(A/Aµ(I))H = {a ∈ A/Aµ(I) | h ◦ a = ε(h)a for all h ∈ H}
which one checks inherits a well-defined associative algebra structure from that of A.



18 GUS SCHRADER, ALEXANDER SHAPIRO

In order to obtain Cq[X] as quantum hamiltonian reduction of the ring Dq, the above
construction requires some technical modifications which we shall now explain. Consider the
algebra embedding of U into Dq = Oq[G]op#U cop given by

µ : U −→ Dq, u 7−→ 1#u.

Regarding this algebra embedding as a quantum moment map, one obtains the following
U cop-module algebra structure on Dq

x ◦ (φ#u) = (1#x2)(φ#u)(1#S−1x1) = φ2(x3)φ1#x2uS
−1x1. (4.3)

This action preserves the subalgebra Dfinq ⊂ Dq defined in (4.1), and restricts to U≥0 ⊂ U as
follows

x ◦ φ#J ′(ρ) = (S−1ρ1S
−2ρ3φ2)(x)φ1#J ′(ρ2) (4.4)

where x ∈ U and φ#J ′(ρ) ∈ Dfinq .
Consider now the C(q)-linear map

Dfinq −→ Oq[G]cop ⊗ U≤0, φ#J ′(ρ) 7−→ φ#′l−(S−1ρ)

and denote by I the kernel of this map.

Proposition 4.2. I is a left ideal in Dfinq , and I is preserved by the action (4.3) of U≥0.

Proof. Consider φ, ψ ∈ Oq[G] so that ′l−(φ) = 0. Then for all ρ ∈ Oq[G] we have

〈′l−(φ •F ψ), ρ〉 = r(φ2, ψ3)r(φ3, Sψ1)r(ψ2φ1, ρ) = r(φ2, ψ3)r(φ3, Sψ1)r(ψ2, ρ1)r(φ1, ρ2)

= r(φ, Sψ1ψ3ρ2)r(ψ2, ρ1) = 〈′l−(φ), Sψ1ψ3ρ2〉r(ψ2, ρ1) = 0

which implies ′l−(φ •F ψ) = 0. Hence the assertion that I is a left ideal follows from for-

mula (4.2) for the product in Dfinq .
Let us now show that I is preserved under the action (4.3) of U≥0. By formula (3.20)

it suffices to show that for all x ∈ U≥0 and φ ∈ Oq[G] such that ′l−(φ) = 0, we have
′l−(ad∗r(S

−2x)φ) = 0. Since l+ is surjective, we may write x = l+(ν) for some ν ∈ Oq[G].
Then for all η ∈ Oq[G], we get

〈l−(ad∗r(S
−2x)φ), η〉 = φ3(S−2x2)φ1(S−1x1)〈′l−(φ2), η〉

= r(φ3, S
2ν2)r(φ1, Sν1)r(φ2, η) = r(φ, S2ν2ηSν1) = 0

which shows that ′l−(ad∗r(S
−2x)φ) = 0, completing the proof.

�

It follows from Proposition 4.2 that the action (4.3) descends to a well-defined action on

the quotient Dfinq /I. We now define Cq[X] to be the set of U≥0-invariants in Dfinq /I with
respect to action (4.3)

Cq[X]
def
=
(
Dfinq /I

)U≥0

.

Remark 4.3. This definition of Cq[X] is related to the algebra Γ(D̃Bq) of global quantum
differential operators on the flag variety considered in [4] as follows. Since ′l− : Oq[G]→ U≤0

is surjective, we have an identification of U≥0-modules

Dfinq /I ' Oq[G]op ⊗ U≤0, φ#J ′(ρ) + I 7−→ φ#′l−(S−1(ρ)) (4.5)

A straightforward computation parallel to the proof of Proposition 5.4 shows that the uni-

versal Verma module M̃Bq considered in [4] is a direct sum of 2r copies of the U≥0-module



QUANTUM GROUPS AND QUANTUM TORI 19

U≤0 in the second tensor factor of 4.5. Hence, the algebra Γ(D̃Bq) can be regarded as a 2r : 1
fold covering of Cq[X].

Proposition 4.4. The formula

(z + I) · (w + I) = zw + I, z + I, w + I ∈ Cq[X] (4.6)

equips Cq[X] with a well-defined associative product.

Proof. First, let us verify that (4.6) provides a well-defined map Cq[X]⊗2 → Dfinq /I. All we

must check is that I is a two-sided ideal in Dfinq . It suffices to show that given a U≥0-invariant
z + I ∈ Cq[X] and an element ν ∈ Oq[G] satisfying ′l−(ν) = 0 we have (1#J ′(ν)) · z ∈ I.

Let z =
∑

k φ
k#J ′(ρk), then the U≥0-invariance of z is equivalent to the condition that

for all ψ ∈ Oq[G], we have

(id⊗′l−)

(
l+(ψ) ◦

(∑
k

φk#ρk
))

=
∑
k

r(S−1ρk1S
−2ρk3φ

k
2, ψ)φk1#′l−(ρk2)

= ε(ψ)
∑
k

φk#′l−(ρk).
(4.7)

So by (4.2) and the invariance condition (4.7), we get

(id⊗ ′l−)(1#J ′(ν)) · (z + I) =
∑
k

r(S−1ν3, φ
k
2)r(S−1ρk1S

−2ρk3φ
k
3, S

−1ν1)φk1#′l−(ρk2ν2)

=
∑
k

r(S−1ν2, φ
k
2)φk1#l′−(ρkν1)

This implies that for all η ∈ Oq[G], we have

〈(id⊗ ′l−)(1#J ′(ν) · z), id⊗ η〉 =
∑
k

r(S−1ν2, φ
k
2)〈′l−(ρkν1), η〉φk1

=
∑
k

r(ν2, Sφ
k
2)r(ρkν1, η)φk1 =

∑
k

r(ν2, Sφ
k
2)r(ρk, η1)r(ν1, η2)φk1

=
∑
k

r(ν, Sφk2η2)r(ρk, η1)φk1 = 0

where ′l−(ν) = 0 is used in the last equality. Thus, (1#J ′(ν)) · z ∈ I as claimed.
To complete the proof that (4.6) is a well-defined product on Cq[X], we must check that

z + I, w + I ∈ Cq[X] implies zw + I ∈ Cq[X].

Indeed, since (4.3) defines on Dq the structure of a U cop-module algebra, it follows from the
first part of the proof that

a ◦ (zw + I) = a ◦ (zw) + I = (a2 ◦ z)(a1 ◦ w) + I = (ε(a2)z + I)(ε(a1)w + I) = ε(a)zw + I
which completes the verification that Cq[X] is an algebra.

�

The algebra structure of Cq[X] can also be described in terms of its model (4.5).

Proposition 4.5. The algebra structure of Cq[X] = (Oq[G]op ⊗ U≤0)U≥0 is given by

(φ#x) · (ψ#y) = ψ2(x2)ψ1φ#x1y (4.8)

Thus Cq[X] may be regarded as a subalgebra in the smash product Oq[G]op#U cop≤0 ⊂ Dq.
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Proof. Choose elements ρ, ν ∈ Oq[G] so that ′l−(S−1ρ) = x, and ′l−(S−1ν) = y. The U≥0

invariance condition (4.7) for ψ#J ′(ν) + I implies

(id⊗′l− ◦ S−1)
(
(φ#J ′(ρ)) · (ψ#J ′(ν))

)
= r(S−1ρ2, ψ2)ψ1φ#′l−(S−1(νρ1))

= ψ2(′l−(S−1ρ2)ψ1φ#′l−(S−1ρ1)′l−(S−1ν) = ψ2(x2)ψ1φ#x1y.

�

Corollary 4.6. The map

l+ ⊗ id : (Oq[G]op ⊗ U≤0)U≥0 ' Cq[X] −→ Hq (4.9)

is a homomorphism of algebras.

Proof. Suppose that φ#x, ψ#y ∈ Cq[X] with x = ′l−(ρ). Then

(l+(φ)#x) · (l+(ψ)#y) = 〈x2, l
+(ψ)2〉l+(φ)l+(ψ1)#x1y = 〈x2, l

+(ψ)2〉l+(φ)l+(ψ1)#x1y

= 〈′l−(ρ1), l+(ψ2)〉l+(φ)l+(ψ1)#′l−(ρ2)y = r(ρ1, ψ2)l+(ψ1φ)#′l−(ρ2)y

= ψ2(′l−(ρ1))l+(ψ1φ)#′l−(ρ2)y = ψ2(x2)l+(ψ1φ)#x1y = (l+ ⊗ id)((φ#x) · (ψ#y)).

�

4.3. Construction of the resolution. Consider the map

% : FOq[G] −→ Dfinq , φ 7−→ S−1φ3φ1#φ2

Proposition 4.7. One has %(FOq[G]) ⊂
(
Dfinq

)U
, where U acts via (4.3).

Proof. Let x ∈ U and φ ∈ FOq[G]. Then by (4.4) we get

x ◦ %(φ) = (S−1φ3S
−2φ5S

−1φ6φ2)(x) S−1φ7φ1#φ4 = ε(x)S−1φ3φ1#φ1 = ε(x)%(φ).

�

Corollary 4.8. The image of the natural map ξ : FOq[G] −→ Dfinq /I obtained by composing

% with the quotient projection is contained in Cq[X] =
(
Dfinq /I

)U≥0

.

Identifying Cq[X] with Oq[G]op#U≥0 via (4.5), we get

ξ(φ) = S−1φ3φ1#′l−(S−1φ2)

Theorem 4.9. The map ξ : FOq[G] −→ Cq[X] is a homomorphism of algebras.

Proof. We have

ξ(φ •F ψ) = r(φ2, ψ3)r(φ3, Sψ1)ξ(ψ2φ1)

= r(φ4, ψ5)r(φ5, Sψ1)S−1(φ3)S−1(ψ4)ψ2φ1#′l−(S−1(ψ3φ2))

= r(φ3, ψ4)r(S−1φ5, ψ1)S−1(ψ5)S−1(φ4)ψ2φ1#′l−(S−1(ψ3φ2))

= r(φ3, ψ4)r(S−1φ4, ψ2)S−1(ψ5)ψ1S
−1(φ5)φ1#′l−(S−1(ψ3φ2)).
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On the other hand, using formula (4.8) for the product in Cq[X] we have

ξ(φ) · ξ(ψ) = S−1φ3φ1#′l−(S−1φ2) • S−1ψ3ψ1#′l−(S−1ψ2)

= 〈S−1(ψ4)ψ2,
′l−(S−1φ3)〉S−1ψ5ψ1S

−1(φ4)φ1#′l−(S−1(ψ3φ2))

= r(S−1φ3, S
−1(ψ4)ψ2)S−1ψ5ψ1S

−1(φ4)φ1#′l−(S−1(ψ3φ2))

= r(φ3, ψ4)r(S−1φ4, ψ2)S−1(ψ5)ψ1S
−1(φ5)φ1#′l−(S−1(ψ3φ2))

= ξ(φ •F ψ).

�

Precomposing with the isomorphism J−1 : Fl(U)→ FOq[G] defined in (3.17) we obtain

Corollary 4.10. The map

ξ̂ : Fl(U) −→ Cq[X], ξ̂ = ξ ◦ J−1

is a homomorphism of algebras.

4.4. Restriction of ξ̂ to the center of U . The homomorphism ξ̂ bears an interesting
relation to the center Z of U . This center can be described in several ways. Firstly, we have
the quantum Harish-Chandra map ϑ : U −→ U0, which is defined in terms of the triangular
decomposition (3.2) of U :

ϑ : U ' U>0 ⊗ U0 ⊗ U<0 −→ U0, a⊗ t⊗ x 7−→ ε(a)ε(x)t

The restriction of ϑ to Z ⊂ U is an injective algebra homomorphism [33]. To describe its
image, let

ρ =
1

2

∑
α∈Π+

α

be the half-sum of positive roots, and consider the C(q)-algebra automorphism κ : U0 −→ U0

defined by
κ(Kλ) = q(ρ,λ)Kλ

The Weyl group W acts on U0 by

w ·Kλ = Kw(λ)

and we denote by UW0 its fixed point subalgebra. Finally, we write

U0, even =
⊕
λ∈P

K2λ (4.10)

We have the following quantum analog of Harish-Chandra’s theorem:

Proposition 4.11. [22, Chapter 6] The map ϑ : Z −→ κ
(
UW0, even

)
is an isomorphism of

algebras.

On the other hand, we have Z = Fl(U)U , and this subalgebra of invariants may be described
explicitly in terms of the Joseph-Letzter decomposition (3.19) of Fl(U). Indeed, the map J
yields an identification of Z with the space of matrix elements

Oq[G]U = {φ ∈ Oq[G] | φ(Su1vu2) = ε(u)φ(v) for all u, v ∈ U} (4.11)

Note that by the ad(U0)-invariance, we have Oq[G]U ⊂
⊕

λ∈P Oq[G]−λ,λ.

Proposition 4.12. Suppose that φ ∈ Oq[G]U . Then

ξ(φ) = 1#′l−(S−1φ) (4.12)
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Proof. Using the invariance condition (4.11), we obtain(
S−1(φ3)φ1 ⊗ S−1φ2, u⊗ v

)
= φ3(S−1u1)φ1(u2)φ2(S−1v) = φ(u2S

−1vS−1u1)

= ε(u)φ(S−1v)

for all u, v ∈ U . By the nondegenerate of the evaluation pairing between U and Oq[G], we
conclude that the equality

S−1(φ3)φ1 ⊗ S−1(φ2) = 1⊗ S−1(φ)

holds in Oq[G]⊗2, and the result follows. �

The restriction of ξ̂ to Z ⊂ Fl(U) is closely related to the quantum Harish-Chandra
homomorphism. Indeed, note that for φ =

∑
j φj ∈ Oq[G]U with φj ∈ Oq[G]−λj ,λj , we have

ξ(φ) =
∑
j

ε(φj)(1#Kλj )

On the other hand, if φ ∈ Oq[G]U , we have

(ϑ ◦ J)(φ) =
∑
j

ε(φj)K
−2λj

Introducing the embedding

υ : 1#U0 → U0, 1#Kµ 7−→ K−2µ

we have established

Proposition 4.13. The Harish-Chandra map ϑ may be written as

ϑ = υ ◦ ξ̂ (4.13)

For λ ∈ P+, let L(λ) be the finite-dimensional simple U module with highest weight λ,
and let χλ ∈ Oq[G] be its character. Define functionals

τλ(u) = χλ(uKρ)

where ρ is the half-sum of positive roots.

Lemma 4.14. The functionals τλ are elements of Oq[G]U .

Proof. The U -invariance of τλ follows from cyclicity of the trace together with the fact that
S2(u) = K−ρuKρ for all u ∈ U . �

Observe that

ξ(τλ) =
∑
µ∈P

q(µ,ρ) dimL(λ)µKµ = κ
(∑
µ∈P

dimL(λ)µKµ
)

so that (κ−1 ◦ ξ)(τλ) coincides with the formal character of L(λ).

Corollary 4.15. The restriction of ξ̂ to Z gives an isomorphism of algebras ξ̂ : Z −→ κ(UW0 )

Proof. The orbit sums {m(λ) =
∑

ν∈W ·λK
ν | λ ∈ P+} form a C(q)-basis for UW0 , and the

set of formal characters {(κ−1 ◦ ξ)(τλ) | λ ∈ P+} is triangular with respect this basis under
the dominance order on P+. �

Using the homomorphism ξ̂ : Z → 1#U0, we may regard U0 as a Z-module. Then, in view
of Proposition 5.6 in the following section, we have
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Corollary 4.16. The map ξ̂ extends to an embedding of algebras

ξ̃ : Fl(U)⊗Z U0 −→ Cq[X], u⊗ t 7−→ ξ̂(u)t

Based on the isomorphism (1.11) in the classical picture, it is natural to make the following

Conjecture 4.17. The map ξ̃ : Fl(U)⊗Z U0 −→ Cq[X] is an algebra isomorphism.

The analogous statement at the roots of unity is appears as Conjecture 5.2 in [40].

5. Embedding Fl(U) into the Heisenberg double Hq.

Composing maps ξ, ξ̂ with the algebra homomorphism from Corollary 4.6, we obtain

Proposition 5.1. The maps

ζ : FOq[G] −→ Hq, φ 7−→ l+(S−1φ3φ1)#′l−(S−1φ2) (5.1)

ζ̂ : Fl(U) −→ Hq, ζ̂ = ζ ◦ J−1 (5.2)

are homomorphisms of algebras.

Proposition 5.2. The image of ζ is contained in the subalgebra HT−q of T− invariants.

Proof. Suppose that ψ ∈ Oq[G]λ,µ. Then we may expand

∆2(ψ) =
∑
ν1,ν2

ψλ,ν1 ⊗ ψ−ν1,ν2 ⊗ ψ−ν2,µ

with ψα,β ∈ Oq[G]α,β . Note that

S−1ψ−ν2,µψλ,ν1 ∈ Oq[G]λ+µ,ν1−ν2 and S−1ψ−ν1,ν2 ∈ Oq[G]ν2,−ν1

and recall that ψα,β(xρ) is non-zero only if ρ+ α+ β = 0. Therefore we have

ζ(ψ) =
∑

ν1,ν2,α,β

(S−1ψ−ν2,µψλ,ν1)(Θ−α)ΘαK
−ν1+ν2#(S−1ψ−ν1,ν2)(Θβ)Θ−βK

−ν1

=
∑
ν1,β

(S−1ψν1−β,µψλ,ν1)(Θ−λ−µ−β)(S−1ψν1,ν1−β)(Θβ)Θλ+µ+βK
−β#Θ−βK

−ν1

which implies ζ(ψ) ∈ HT−q . �

Recall the defining representation (3.22) of Hq on U≥0. Pulling this representation back
under the algebra homomorphism (5.2), we obtain an action of the algebra Fl(U) on U≥0.
In studying this representation, it will be convenient to describe U≥0 by means of the sur-
jective homomorphism l+ : Oq[G] → U≥0. The following formula is easily deduced from the
formula (5.1) for ζ, the coquasitriangularity of r, and Lemma 3.8.

Lemma 5.3. The action of J(ψ) ∈ Fl(U) on l+(ϕ) ∈ U≥0 induced by ζ̂ is given by

J(ψ) · l+(ϕ) = r(S−1ψ3, ϕ1) l+(S−1ψ2ϕ2ψ1)

Since ζ(FOq[G]) ⊂ HT−q , it follows from Lemma 3.16 that the space U≥0 decomposes as an
Fl(U)-module as

U≥0 =
⊕
λ∈P

U+Kλ (5.3)
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We will now identify the Fl(U)-modules U+Kλ. Recall the definition of the contragredient
Verma module M(µ)∨ for U . Let Cµ be the one-dimensional U≥0-module with basis wµ and
U≥0-module structure defined by

a · wµ = 〈a,Kµ〉,
which is a slight abuse of notation for µ /∈ P . Regard U as a U≥0 module via the action
a · u = uS(a). Then

M(µ)∨
def
= HomU≥0

(U,Cµ)

where HomU≥0
denotes the restricted (graded) Hom of U≥0-modules. The action of U on

M(µ)∨ is then given by

(u · φ)(v) = φ(Suv).

Note that because of the triangular decomposition of U , elements of M(µ)∨ are uniquely
determined by their values on U≤0 ⊂ U .

Proposition 5.4. The Fl(U)-module U+Kλ in the decomposition (5.3) is isomorphic to the
restriction to Fl(U) of the contragredient Verma module M(λ/2)∨.

Proof. Given a ∈ U+Kλ, define an element φa ∈M(λ/2)∨ by declaring

φa(y) = 〈aK−λ/2, y〉

for all y ∈ U≤0. We claim that the map a 7→ φa is an isomorphism of Fl(U)-modules. By the
non-degeneracy of 〈·, ·〉, it is an isomorphism of linear spaces. To show that it respects the
Fl(U)-module structure, we compute the action of the subalgebras U≥0 and U≤0 on M(λ/2)∨.

Suppose first that z ∈ U≤0, with Sz ∈ U−Kρ. Then for all y ∈ U≤0 we have

(z · φa)(y) = φa(Szy) = 〈aK−λ/2, Szy〉 = 〈a1K
−λ/2, Sz〉〈a2K

−λ/2, y〉 = q
1
2

(λ,ρ)〈a1, Sz〉φa2(y)

At the same time, for b ∈ U+Kρ, we have

(b · φa)(y) = φa(Sby) = 〈Sb3, y3〉〈b1, y1〉φa(y2Sb2) = 〈Sb3, y3〉〈b1, y1〉〈Sb2,Kλ/2〉〈aK−λ/2, y2〉

= 〈b1aK−λ/2Sb3, y〉〈Sb2,Kλ/2〉 = q
1
2

(λ,ρ)φb1aSb2(y).

Here we used formula (3.5) for the product in U , together with the homogeneity of the
coproduct in U≥0. Now given ψ ∈ FOq[G]γ,µ, we compute the action of J(ψ) = l+(ψ1)′l−(ψ2)
on φa ∈M(λ/2)∨ with the help of Lemma 5.3. Note that in the expansion

∆(ψ) =
∑
ν

ψγ,ν ⊗ ψ−ν,µ

we have
′l−(S−1ψ−ν,µ) ∈ U−Kν and l+(ψγ,ν) ∈ U+K−ν .

Then

J(ψ) · φa = l+(ψ1) ·
(
q

1
2

(λ,ν)〈a1,
′l−(S−1ψ2)〉φa2

)
= 〈a1,

′l−(S−1ψ3)〉φl+(ψ1)a2l+(S−1ψ2).

Therefore taking a = l+(ϕ), we find

J(ψ) · φa = r(S−1ψ3, ϕ1)φl+(S−1ψ2ϕ2ψ1) = φψ·a

which shows that the map a 7→ φa intertwines the two actions of Fl(U). �

Corollary 5.5. The homomorphisms ζ̂ and ξ̂ are injective.
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Proof. For any λ ∈ P+, the contragredient Verma module M(λ)∨ contains the finite-
dimensional U -module L(λ) as a submodule. Hence the corollary follows from the fact [22,
5.11] that no non-zero element of U acts by zero in all finite-dimensional representations. �

As in Corollary 4.16, we may extend ζ̂ to obtain a homomorphism of algebras

ζ̃ : Fl(U)⊗Z U0 −→ HT
−

q , u⊗ t 7→ µ(u)t. (5.4)

Proposition 5.6. The homomorphism ζ̃ is injective.

Proof. Since U0 ' C[P ] we may regard Ũ
def
= Fl(U) ⊗Z U0 as a quasi-coherent sheaf on

SpecC[P ], whose stalk at λ ∈ C[P ] we denote by
(
Ũ
)
λ
. We may similarly regard HT−q as a

sheaf over SpecC[P ] and denote its stalk at λ ∈ C[P ] by
(
HT−q

)
λ
. Let ζ̃λ :

(
Ũ
)
λ
−→

(
HT−q

)
λ

be the induced map. Then ker ζ̃ is a subsheaf of Ũ , and ker ζ̃λ is its stalk at point λ. Thus,

it is enough to show that ker ζ̃λ = 0 for any λ.

Let Iλ ⊂ Ũ denote the ideal generated by
〈
1⊗Kµ − q〈λ,µ〉

〉
µ∈P and Jλ ⊂ HT−q denote

the ideal generated by
〈
1#Kµ − q〈λ,µ〉

〉
µ∈P . Let Uλ be the quotient of U by the central

character of the Verma module of weight λ. Note, that Ũ/Iλ ' Uλ. Set Hλq
def
= HT−q /Jλ and

let ζ̂λ : Uλ −→ Hλq be the induced homomorphism. By quantum Duflo theorem, we know that

Uλ acts faithfully on the Verma module M(λ). In view of Proposition 5.4 and the existence
of a nondegenerate pairing between a Verma module and the corresponding contragredient

Verma module, we obtain ker ζ̂λ = 0.
Now, let C[P ]λ denote the local ring at λ and mλ be its maximal ideal. Then one has

Uλ =
(
Ũ
)
λ
/mλ

(
Ũ
)
λ

and Hλq =
(
HT−q

)
λ
/mλ

(
HT−q

)
λ
,

so that
mλ ker ζ̃λ = ker ζ̃λ.

At this point the Proposition would from Nakayama’s lemma if ker ζ̃λ were a finitely-generated

C[P ]λ module. Therefore, it remains to filter ker ζ̃λ by finitely generated submodules. There

is a natural filtration on
(
Ũ
)
λ

(by the sum of modulus of exponents in the Poincaré-Birkhoff-

Witt basis), so let kern ζ̃λ denote the intersection of the n-th filtered component with ker ζ̃λ.

Then the submodules kern ζ̃λ are finitely generated (as submodules of a finitely generated

module over a Noetherian ring) and deliver the required filtration on ker ζ̃λ. �

6. The R-twisted quantum coordinate ring

In this section we introduce the R-twist ROq[G] of the quantum coordinate ring Oq[G],
and explain its relation with the Heisenberg double Hq.

6.1. The Heisenberg double and ROq[G].

Proposition 6.1. The following formula defines an associative product •R in Oq[G]

φ •R ψ = r(φ1, ψ1)φ2ψ2 (6.1)

Proof. This follows straightforwardly from the co-quasitriangularity properties (3.9) of the
universal r-form. �

Definition 6.2. We define ROq[G] to be the associative algebra with multiplication defined
by (6.1).
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Proposition 6.3. The map I given by (3.16) defines an embedding of algebras

I : ROq[G] −→ Hq.

Proof. That I is injective follows from the injectivity of the map J = m ◦ I. To prove that
I is a homomorphism of algebras, we compute

I(φ •R ψ) = r(φ1, ψ1)I(φ2ψ2) = r(φ1, ψ1)l+(φ2ψ2)#′l−(φ3ψ3)

On the other hand, in Hq we have

I(φ) · I(ψ) =
(
l+(φ1)#′l−(φ2)

)
·
(
l+(ψ1)#′l−(ψ2)

)
=
〈
l+(ψ1)2,

′l−(φ2)2

〉
l+(φ1)l+(ψ1)1#′l−(φ2)1

′l−(ψ2)

=
〈
l+(ψ2), ′l−(φ2)

〉
l+(φ1)l+(ψ1)#′l−(φ3)′l−(ψ3)

= r(φ2, ψ2)l+(ψ1φ1)#′l−(φ3ψ3)

= r(φ1, ψ1)l+(φ2ψ2)#′l−(φ3ψ3)

= I(φ •R ψ)

�

Proposition 6.4. The image I(ROq[G]) ⊂ Hq is contained in the subalgebra HT cq of T c-
invariants.

Proof. Suppose that ψ ∈ Oq[G]λ,µ, and

∆(ψ) =
∑
ν

ψλ,ν ⊗ ψ−ν,µ

Then

I(ψ) =
∑

ψλ,ν(Θ−α)ψ−ν,µ(Θβ)ΘαK
−ν#Θ−βK

−µ

The only non-zero terms in the sum must have β + µ− ν = 0, λ+ ν − α = 0. Hence we find

I(ψ) =
∑

ψλ,µ+β(Θ−λ−µ−β)ψ−µ−β,µ(Θβ)Θλ+µ+βK
−µ−β#Θ−βK

−µ ∈ HTcq
�

Although I : ROq[G] → HTcq is an embedding, it is not surjective. In order to obtain an

isomorphism, we must localize at certain elements of ROq[G]. We define elements φ±i ∈ Oq[G]
by

φ+
i = (q−1

i − qi)
−1∆ωi

si,1
,

φ−i = (q−1
i − qi)

−1∆ωi
1,si
.

Lemma 6.5. The following equalities hold

I(∆ωi) = K−ωi#K−ωi ,

I(φ+
i ) = EiK

−ωi#K−ωi ,

I(φ−i ) = K−ωi#FiK
αi−ωi .

Proof. One can see that

φ+
i = (1− q−2

i )−1ad∗r(Ei)(∆
ωi) and φ−i = (q−1

i − qi)
−1ad∗r(Fi)(∆

ωi).

The rest of the proof is a straightforward calculation using the U -equivariance of J . �
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Proposition 6.6. The algebra HTcq is generated by I
(
ROq[G]

)
together with the elements

Kωi#Kωi = q(ωi,ωi)I (∆ωi)−1 .

Hence, we have the isomorphism

I : ROq[G][(∆ωi)−1]ri=1 −→ HTcq (6.2)

Proof. Existence of the map and its injectivity follow from the fact that I(∆ωi) is invertible
in Hq, with inverse given by

I(∆ωi)−1 = q−(ωi,ωi)Kωi#Kωi

The surjectivity follows from Lemma 6.5 together with the description (3.21) of HTcq . �

Set

Oq[G◦]
def
= Oq[G][(∆ωi)−1]ri=1

and let

Oq[G◦/H]
def
=
{
φ ∈ Oq[G◦] | (Kλ ⊗ 1) · φ = φ for any λ ∈ P

}
.

be the subalgebra of U0-invariants in Oq[G◦] under the coregular action defined by (3.7).

Corollary 6.7. The restriction of the map (6.2)

I : ROq[G◦/H] −→ HT
q

is an isomorphism of algebras.

6.2. Images of the Chevalley generators under ζ̂. By Lemma 6.5, it suffices to calculate
ζ(∆ωi), ζ(φ±i ). First, suppose that φ ∈ Oq[G]λ,µ satisfies φ(xu) = ε(x)φ(u) for all x ∈ U−,

u ∈ U . Then we have l+(φ) = ε(φ)Kλ, so

ζ(φ) = (1#Kλ)I(S−1φ)

which implies

ζ(∆ωi) = q−(ωi,ωi)I(∆ωi) · I(S−1∆ωi)tωi ,

ζ(φ−i ) = q−(ωi,ωi)I(∆ωi) · I(S−1φ−i )tωi ,

where tλ stands for 1#Kλ.
In order to calculate ζ(φ+

i ), suppose that φ ∈ Oq[G]λ,µ satisfies φ(ua) = ε(a)φ(u) for all
a ∈ U+ and u ∈ U . Then we have J(φ) = l+(φ)K−µ, and hence

∆U (J(φ)) = l+(φ1)K−µ ⊗ J(φ2), (6.3)

where ∆U denotes the comultiplication in U . In turn, this implies

ζ(φ+
i ) = q−(ωi,ωi)

(
I(φ+

i ) · I(S−1∆ωi)tωi + q(αi−ωi,ωi)I(∆α−i ) · I(∆ωi)−1 · I(S−1φ+
i )tωi−αi

)
,

where α−i ∈ P+ is defined by αi = 2ωi − α−i .

Corollary 6.8. We have

ζ̂(K−2ωi) = q−(ωi,ωi)I(∆ωi) · I(S−1∆ωi)tωi ,

ζ̂(FiK
αi−2ωi) = q−(ωi,ωi)q−1

i I(∆ωi) · I(S−1φ−i )tωi ,

ζ̂(EiK
−2ωi) = q−(ωi,ωi)I(φ+

i ) · I(S−1∆ωi)tωi + q−(α−i ,ωi)I(∆α−i ) · I(∆ωi)−1 · I(S−1φ+
i )tωi−αi .
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6.3. An isomorphism between ROq[G] and Oq[G]. We now explain how to use the quan-
tum Weyl group to construct an isomorphism between ROq[G] and Oq[G]. Recall the element
Y defined by (3.12). Then the identity (3.13) implies the following proposition.

Proposition 6.9. The element Y defines an isomorphism of algebras

ιY : Oq[G] −→ ROq[G], φ 7−→ 〈Y, φ1〉φ2

Proof. Using the relation (3.13), we compute

ιY (φ) •R ιY (ψ) = 〈Y, φ1〉〈Y, ψ1〉φ1 •R ψ2 = 〈Y, φ1〉〈Y, ψ1〉r(φ2, ψ2)φ3ψ3

= 〈Y, φ1〉〈Y, ψ1〉〈(Y −1 ⊗ Y −1)∆(Y ), φ2 ⊗ ψ2〉φ3ψ3

= 〈∆(Y ), φ1 ⊗ ψ1〉φ2ψ2 = 〈Y, φ1ψ1〉φ2ψ2 = ιY (φψ).

�

Definition 6.10. Let θ be the Dynkin diagram automorphism such that w0si = sθ(i)w0 holds
for all simple reflections si.

Using the definition of Y one obtains the following explicit formulas for ιY in terms of
generalized minors.

Lemma 6.11. One has

(ιY )−1(∆ωi) = q(ωi,ρ+ωi/2)∆ωi
w0,1

(ιY )−1(S−1∆ωi) = (−1)〈2ωi,ρ
∨〉q(ωi,ρ+ωi/2)∆

ωθ(i)
1,w0

(q−1
i − qi)(ιY )−1(φ+

i ) = −q(ωi,ρ+ωi/2)∆ωi
w0si,1

(q−1
i − qi)(ιY )−1(S−1φ+

i ) = (−1)〈2ωi,ρ
∨〉+1q−1

i q(ωi,ρ+ωi/2)∆
ωθ(i)
1,siw0

(q−1
i − qi)(ιY )−1(S−1φ−i ) = (−1)〈2ωi,ρ

∨〉qiq
(ωi,ρ+ωi/2)∆

ωθ(i)
sθ(i),w0

Corollary 6.12. The map ιY establishes an isomorphism between the localizations

ιY : Oq[G][(∆ωi
w0,1

)−1]i=1,...,r −→ ROq[G][(∆ωi)−1]i=1,...,r.

As explained in [6], the algebra Oq[G][(∆ωi
w0,1

)−1]i=1,...,r can be regarded as the quantum

coordinate ring Oq[Gw0 ] of the big open Bruhat cell Gw0 = B+w0B+ ⊂ G.

7. Main results

Let us introduce the notation

Oq[Gw0/H]
def
=
{
φ ∈ Oq[Gw0 ] | (Kλ ⊗ 1) · φ = φ for any λ ∈ P

}
for the subalgebra of U0-invariants in Oq[Gw0 ] under the coregular action defined by (3.7).
By Corollary 6.7 and Corollary 6.12 the map

(ι−1
Y ◦ I

−1)⊗ id : HT
q ⊗ T ' HT−q −→ Oq[Gw0/H]⊗ T (7.1)

is an isomorphism of algebras. Combining this isomorphism with Corollary 3.14, we arrive
at

Theorem 7.1. The map Φ obtained by composing the homomorphism ζ̃ defined in (5.4) with
the isomorphism (7.1) is an embedding of algebras

Φ: Fl(U)⊗Z U0 −→ Oq[Gw0/H]⊗ T.
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Remark 7.2. Note that by Corollary 6.8, in order to extend the homomorphism Φ to the
entire quantum group Uq(g), we must localize further by inverting the products ∆ωi

w0,1
∆
ωθ(i)
1,w0

for all i = 1, · · · r. Hence the target of the homomorphism becomes Oq[Gw0,w0/H], the
quantum coordinate ring of the reduced big double Bruhat cell in G. In fact, we must also

adjoin the square roots
(

∆ωi
w0,1

∆
ωθ(i)
1,w0

)1/2
to Oq[Gw0,w0/H], although this poses no difficulties.

This phenomenon is related to the fact that the maps ηi : G
∗ → G∗ in (1.3), (1.4), while local

diffeomorphisms, are in fact 2r-fold coverings.

Notation 7.3. O′q[Gw0,w0/H] denotes the algebra obtained by adjoining
(

∆ωi
w0,1

∆
ωθ(i)
1,w0

)1/2

for i = 1, . . . , r to Oq[Gw0,w0/H]. Similarly, T ′ stands for C[P/2] ⊃ T .

Corollary 7.4. Let χ : T → C be a character of the torus T . Denote by the same letter the

induced character of the center Z ⊂ Uq(g) coming from the embedding ξ̂|Z : Z ↪→ T . Then
Φ extends to an embedding Φ′ : Uq(g)→ O′q[Gw0,w0/H]⊗ T ′ such that the following diagram
commutes

Uq(g)
Φ′ //

��

O′q[Gw0,w0/H]⊗ T ′

id⊗χ
��

Uq(g)/Iχ // O′q[Gw0,w0/H]

where Iχ is the ideal generated by the kernel of χ.

Corollary 7.5. One has the following explicit formulas for Φ′

Φ′(K−2ωi) = (−1)〈2ωi,ρ
∨〉q2(ωi,ρ)∆ωi

w0,1
∆
ωθ(i)
1,w0

tωi ,

Φ′(F̂iK
αi) = qi∆

ωθ(i)
sθ(i),w0

(
∆
ωθ(i)
1,w0

)−1
,

Φ′(Êi) = −
(

∆ωi
w0si,1

(
∆ωi
w0,1

)−1
+ q−1

i ∆
[αi]−
w0,1

∆
ωθ(i)
1,w0sθ(i)

(
∆
ωθ(i)
1,w0

)−1 (
∆ωi
w0,1

)−2
t−αi

)
,

where Êi = (q−1
i − qi)Ei and F̂i = (q−1

i − qi)Fi.
Proof. This follows from combining Corollary 6.8 with Lemma 6.11. �

Remark 7.6. As mentioned in the Introduction, the Feigin homomorphisms [2] allow us
to further explicitize our formulas for Φ′ and compare our realization of Uq(g) to those of
[13, 35]. While we save the full details of this comparison for a forthcoming paper, let
us present the essential idea in the case g = sln. In [35], the quantized moduli space of
decorated PGLn-local systems on a punctured disk with two boundary marked points was
used to construct an embedding of Uq(g) into a quantum torus. That quantum torus arises as
a quantum cluster chart on the moduli space, corresponding to an ideal triangulation of the
punctured disk in which two triangles are glued by two sides. In [20], it was checked that this
geometric approach reproduces the embedding of [13]. On the other hand, one can consider
the quantum cluster chart corresponding to a self-folded triangulation of the punctured disk;
this quantum torus is related to the original one by an explicit sequence of

(
n+1

3

)
quantum

cluster mutations. Now recall that to specify a Feigin homomorphism amounts to picking
a pair of reduced expressions i1, i2 for the longest element w0 of the Weyl group; for an
appropriate choice of i1, i2 one verifies that Φ′ coincides with the embedding of Uq(g) into
the quantum cluster chart corresponding to the self-folded triangulation. Thus the quantum
torus realization of Uq(g) presented here is mutation equivalent to those of [13, 35].
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We end this section with the following conjecture based on the classical isomorphism (1.11)
and Proposition 1.20.

Conjecture 7.7. We have an isomorphism of non-commutative fraction fields

Frac (Fl(U)⊗Z U0) = Frac (Oq[G/H]⊗ T ) .

In particular, Frac (Fl(U)⊗Z U0) coincides with a non-commutative fraction field of a quan-
tum torus algebra, i.e. the quantum Gelfand-Kirillov property holds for Fl(U)⊗Z U0.

8. Example for g = sl2

We conclude by providing a detailed example of our construction for the case g = sl2. Let
us write E,F,K1/2 for the generators of the simply-connected form of Uq(sl2). Recall that
the fundamental representation of Uq(sl2) on C2 is determined by

E 7→
(

0 1
0 0

)
, F 7→

(
0 0
1 0

)
, K1/2 7→

(
q1/2 0

0 q−1/2

)
.

The Hopf algebra Oq(SL2) is generated by the matrix coefficients of the fundamental repre-
sentation. More explicitly, Oq(SL2) has generators 〈x11, x12, x21, x22〉 subject to the relations

x11x12 = qx12x11 x12x22 = qx22x12 x12x21 = x21x12

x11x21 = qx21x11 x21x22 = qx22x21 [x11, x22] = (q − q−1)x12x21

as well as the quantum determinant relation

x11x22 − qx12x21 = 1.

The coalgebra structure of Oq(SL2) is given by

∆(xij) = xi1 ⊗ x1j + xi2 ⊗ x2j and ε(xij) = δij

while the antipode is given by

S(x11) = x22, S(x12) = −q−1x12, S(x21) = −qx21, S(x22) = x11.

The quantum coordinate ring of the big Bruhat cell Bw0B ⊂ SL2 is

Oq[SLw0
2 ] = Oq[SL2][x−1

21 ]

while the quantum coordinate ring of the big double Bruhat cell Bw0B ∩B−w0B− ⊂ SL2 is
given by

Oq[SLw0,w0
2 ] = Oq[SL2][x−1

12 x
−1
21 ].

The quantum coordinate ring of the reduced big double Bruhat cell Oq[SLw0,w0
2 /H] ⊗ T

embeds into the quantum torus algebra

A = C〈u±1, v±1, z±1〉
/

(uv = q2vu, zu = uz, zv = vz)

via the identification

u = −q2x22x21, v = −q−1x−1
12 x

−1
21 , z = t.

As in Corollary 7.5, we introduce the normalized generators of Uq(sl2)

Ê = (q−1 − q)E and F̂ = (q−1 − q)F.
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Then the values of the l-operators on the matrix coefficients xij are easily computed to be

l+(x11) = K−1/2 ′l−(x11) = K−1/2

l+(x12) = 0 ′l−(x12) = F̂K1/2

l+(x21) = ÊK−1/2 ′l−(x21) = 0

l+(x22) = K1/2 ′l−(x22) = K1/2

It follows that the isomorphism J : Oq(SL2) −→ Fl(Uq(sl2)) is given by

J(x11) = K−1, J(x12) = qF̂ , J(x21) = ÊK−1, J(x22) = K + qÊF̂ .

The homomorphism ζ : Oq(SL2) −→ HT−q takes the form

ζ(x11) =
(
1 + q−1ÊK−1#F̂

)
· t

ζ(x12) = −q
(
K−1#F̂

)
· t

ζ(x21) =
(
Ê#1 + q−1Ê2K−1#F̂

)
· t−

(
Ê#1

)
· t−1

ζ(x22) = −q
(
ÊK−1#F̂

)
· t+ t−1

where we write t = 1#K1/2 ∈ HT−q .
The isomorphism ιY : Oq(SL2) −→ ROq(SL2) is given by

ιY (x11) = −q−3/4x21, ιY (x21) = q−3/4x11,

ιY (x12) = −q−3/4x22, ιY (x22) = q−3/4x12.

and the isomorphism I : ORq (SL2)[∆−1
i ]ri=1 −→ HTcq is

I(x11) = K−1/2#K−1/2 I(x21) = ÊK−1/2#K−1/2

I(x12) = K−1/2#F̂K1/2 I(x22) = K1/2#K1/2 + ÊK−1/2#F̂K1/2

The algebra embedding Φ: Fl(Uq(sl2)) −→ Oq[SLw0
2 /H]⊗T in Theorem 7.1 takes the form

K−1 7→ −qx12x21t,

F̂ 7→ −q2x22x21t,

ÊK−1 7→ qx11x12t+ x11x
−1
21 t
−1.

(8.1)

As explained in Remark 7.2, in order to embed Uq(sl2) we must localize further at x12x21

and adjoin (x12x21)1/2. Therefore let A′ be the quantum torus algebra obtained from A by

adjoining the elements v1/2 and z1/2. Then we obtain the following quantum torus algebra
realization of Uq(sl2):

Φ′ : Uq(sl2) −→ A′

K1/2 7→ v1/2z−1/2, F̂ 7→ uz, Ê 7→ z−1u−1(qv1/2 − q−1v−1/2)(v−1/2z − v1/2z−1).
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Annales scientifiques de l’École Normale Supérieure 23, no. 3 (1990): 445-467.



QUANTUM GROUPS AND QUANTUM TORI 33

[34] D. Rupel. “The Feigin Tetrahedron.” Symmetry, Integrability and Geometry: Methods and Applications
11, no. 0 (2015): 24-30.

[35] G. Schrader, A. Shapiro. “A cluster realization of Uq(sln) from quantum character varieties.”
arXiv:1607.00271 (2016).

[36] M. Semenov-Tian-Shansky. “Dressing transformations and Poisson group actions.” Publications of the
Research Institute for Mathematical Sciences 21, no. 6 (1985): 1237-1260.

[37] M. Semenov-Tian-Shansky. “The quantum duality principle and the twisted quantum double.” Theoretical
and Mathematical Physics 93, no. 2 (1992): 1292-1307.

[38] T. Tanisaki. “The Beilinson-Bernstein correspondence for quantized enveloping algebras.” Mathematische
Zeitschrift 250, no. 2 (2005): 299-361.

[39] T. Tanisaki. “Differential operators on quantized flag manifolds at roots of unity.” Advances in Mathe-
matics 230, no. 4 (2012): 2235-2294.

[40] T. Tanisaki. “Differential operators on quantized flag manifolds at roots of unity II.” Nagoya Mathematical
Journal 214 (2014): 1-52.

Department of Mathematics, University of California, Berkeley, CA 94720, USA


