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Abstract. Given a dual pair of topological Hopf algebras A,A∗, under
mild conditions there exists a natural associative algebra homomorphism
D(A) → H(A) between the corresponding Drinfeld double D(A) and
Heisenberg double H(A). We construct this homomorphism using a
pair of commuting quantum moment maps, and then use it to provide a
homomorphism of certain reflection equation algebras. We also explain
how the quantization of the Grothendieck-Springer resolution arises in
this context.

1. Introduction

The Grothendieck-Springer simultaneous resolution of a complex simple
Lie group G plays a central role in the geometric representation theory.
Recall that if B ⊂ G is a Borel subgroup in G, and we write g, b for the Lie
algebras of G,B respectively, then the Grothendieck-Springer resolution is
the following map of Poisson varieties:

G×B b −→ g, (g, x)B 7−→ gxg−1. (1.1)

Indeed, the Poisson map (1.1) admits a quantization, yielding an embedding
of the enveloping algebra U(g) into the ring of global differential operators
on the principal affine space G/N .

It was shown in [EL07] that both sides of the multiplicative Grothendieck-
Springer resolution

G×B B −→ G, (g, b)B 7−→ gbg−1 (1.2)

admit natural, nontrivial Poisson structures such that the resolution map is
Poisson. In [SS15], we showed that the resolution (1.2) can be also quantized,
this time to yield an embedding of the quantized universal enveloping algebra
Uq(g) into a certain ring of quantum differential operators on G/N .

One remarkable property of Uq(g) is that it can be realized as a quotient of
the Drinfeld double D(Uq(b)) of a quantum Borel subalgebra Uq(b) ⊂ Uq(g).
In this note, we observe that an analog of the quantization of the resolu-
tion (1.2) exists under mild conditions for the Drinfeld double D(A) of a
topological Hopf algebra A. The key to the construction of this quantization
is the existence of a pair µL, µR : D(A)→ H(D(A)∗,op) of commuting quan-
tum moment maps from D(A) to the Heisenberg double of a certain Hopf
algebra D(A)∗,op opposite dual to D(A). In this general setting, the role of
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quantum differential operators on G/N is played by the quantum Hamilton-
ian reduction of H(D(A)∗,op) by µL(A), and the resolution map is given by
the residual quantum moment map µR : D(A)→ H(D(A)∗,op)//µL(A).

Although a similar construction has appeared before in the context of
the quantum Beilinson-Bernstein theorem, we believe that the following re-
sults are new. First, we show that the quantum Hamiltonian reduction
H(D(A)∗,op)//µL(A) is isomorphic to the Heisenberg double H(A). Recall
[Mon93] that the Heisenberg double H(A) of a finite-dimensional Hopf alge-
bra A is isomorphic to the algebra of its endomorphisms End(A). Thus, the
natural action of D(A) on A yields a homomorphism D(A) → H(A). We
show that it coincides with the map µR : D(A)→ H(A) when A is finite dim-
sensional. Second, we provide an explicit Faddeev-Reshetikhin-Takhtajan
type presentation of the map µR in terms of universal R-matrices, which
leads to a homomorphism between certain reflection equation algebras.

The article is organized as follows. In Section 2, we recall the Poisson
geometric constructions of [EL07] in the setting of the double D(G) of an
arbitrary Poisson-Lie group G. It serves as a quasi-classical limit of con-
structions in Sections 3 and 4. In Section 3, we review some of the no-
tions from the theory of Hopf algebras and their doubles that we use in
the sequel. Section 4 contains the construction of the quantum resolution,
and explains how the general construction specializes to the case of the
Grothendieck-Springer resolution. Finally, we conclude in Section 5 by pro-
viding a Faddeev-Reshetikhin-Takhtajan presentation of our construction
using universal R-matrices.
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2. Poisson geometry

2.1. Preliminaries. Recall that a Poisson-Lie group is a Lie group G with a
Poisson structure such that the multiplication map G×G→ G is a morphism
of Poisson varieties. Let G∗ be the (connected, simply-connected) Poisson-
Lie dual of G, and D(G) be the double of G. The Lie algebra d = Lie(D(G))
can be written as d = g⊕g∗. We will say that there exist local isomorphisms

D(G) ' G×G∗ ' G∗ ×G.
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Let us consider a pair of dual bases (xi) and (xi) of the Lie algebras g
and g∗ respectively. Then the element r ∈ d ∧ d defined by

r =
1

2

∑
i

(xi, 0) ∧ (0, xi)

is independent of the choice of bases. Let XR, XL denote respectively
the right- and left-invariant tensor fields on a Lie group, taking the value
XR(e) = XL(e) = X at the identity element of the group. Then the bivec-
tors

π± = rR ± rL

define a pair of Poisson structures on the Lie group D(G). We abbreviate
the resulting Poisson manifolds by D±(G). In fact, D−(G) is a Poisson-Lie
group, while D+(G) is only a Poisson manifold.

Remark 2.1. As a manifold, the group D−(G) is locally isomorphic to
D−(G)∗. In general, however, this is neither an isomorphism of Lie groups,
or of Poisson manifolds.

The action of a Poisson-Lie group G on a Poisson variety P is said to be
Poisson, if so is the map G×P → P . Given a Poisson map P → G∗, one can
obtain a local Poisson action G × P → P using the group-valued moment
map. Recall that the group-valued moment map is defined (see [Lu91]) as
follows.

Definition 2.2. Let π be the Poisson bivector field defining the Poisson
structure on the manifold P . A map µ : P → G∗ is said to be a moment
map for the Poisson action G× P → P , if for every X ∈ g one has

µX =
〈
π, µ∗XR ⊗−

〉
,

where µX is the vector field on P generated by the action µexp(tX).

Remark 2.3. A moment map is Poisson, if exists.

Remark 2.4. Recall that there are open subsets of factorizable elements
G∗ · G and G · G∗ in the double D−(G). Hence we may regard G∗ as a
submanifold in D−(G)/G, and may regard the moment map µ in Definition
2.2 as taking values in D−(G)/G or G\D−(G).

The following theorem is well-known (see e.g. [STS85, Lu91]).

Proposition 2.5. Let G be a Poisson-Lie group, and D±(G) its double with
Poisson bivectors π±. Then

(1) the actions of D−(G) on D+(G) by left and right multiplications are
Poisson;

(2) the moment map for the Poisson action of the subgroup G ⊂ D−(G)
on D+(G) by left (resp. right) multiplication is the natural projection
D(G)→ D(G)/G (resp. D(G)→ G\D(G)).
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Remark 2.6. Let P be the category of Poisson-Lie groups. Consider a
Poisson-Lie group G and its connected, simply-connected Poisson-Lie dual
G∗. Then the assignment G → G∗ defines a functor P → Pop. Therefore,
any Poisson-Lie subgroup H ⊂ G induces a map p : G∗ → H∗. Now consider
a Poisson action G× P → P with the moment map µG. It gives rise to the
Poisson action H × P → P with the moment map µH = p ◦ µG.

2.2. Double of the double construction. Now, let us start with the
Poisson-Lie group D = D−(G) and consider its double D(D) = D(D(G)).
The Lie algebra D = Lie(D(D)) may be written as D = d ⊕ d = d∆ ⊕ d∗

where

d∆ = {((x, α), (x, α)) ∈ g⊕ g∗ ⊕ g⊕ g∗}
is the diagonal embedding of d into d⊕ d and

d∗ = {((y, 0), (0, β)) ∈ g⊕ g∗ ⊕ g⊕ g∗} .

Using the local isomorphism D(D) ' D∆ × D∗ we may coordinatize the
moment map νr for the right Poisson action of D∆ ⊂ D−(D) on D+(D) as

νr : D+(D) −→ D∗, (dg, dα) 7−→ α−1g

for any triple of elements g ∈ G, α ∈ G∗, d ∈ D(D(G)). Similarly, using the
local isomorphism D(D) ' D∗ × D∆ we write the moment map νl for the
left Poisson action of D∆ ⊂ D−(D) on D+(D) as

νl : D+(D) −→ D∗, (gd, αd) 7−→ gα−1.

2.3. Hamiltonian reduction. Consider the Poisson action of the subgroup
D∆ ⊂ D−(D) on D+(D) by left multiplications and the Poisson action of
G ⊂ D∆ ⊂ D−(D) on D+(D) by right multiplications. Clearly, the two
actions commute, because so do the left and right actions of D−(D). We
illustrate these actions as follows

D∆ y D+(D) x D∆ ⊃ G.

By Remark 2.6, the moment map µr for the right action of G is given as

µr : D+(D) −→ (G×D)\D+(D).

The Hamiltonian reduction of D+(D) by the moment map µr becomes

µ−1
r (e)/G∆ = {(dg, d) | d ∈ D, g ∈ G} /G∆.

Therefore, we can identify

µ−1
r (e)/G∆ ' D ×G G,

where D ×G G denotes the set of G-orbits through D × G under the right
action

(D ×G)×G −→ D ×G, ((d, g), h) 7−→ (dh, h−1gh)

with g, h ∈ G and d ∈ D.
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On the other hand, since the left and right D∆-actions on D(D) commute,
the variety D×GG admits the residual D∆-action by left multiplication. The
corresponding moment map is

µl : D ×G G −→ D(D)/D∆.

As explained in Remark 2.1, we may use local diffeomorphism of D with D∗

to write a local expression for the map µl as µl ((q, g)G) = qgq−1 ∈ D.
The following Proposition follows easily from considering Poisson bivec-

tors for the Poisson varieties under consideration.

Proposition 2.7. There is a local Poisson isomorphism

D+(G) −→ D ×G G, αg 7−→ (α, g)G,

where g ∈ G, α ∈ G∗ and we identify D(G) ' G∗ ×G.

Under this identification, the moment map µl becomes

D+(G) −→ D−(G), αg 7−→ αgα−1. (2.1)

3. Reminder on Hopf algebras

To fix our notations, we will recall some standard notions from the theory
of Hopf algebras. In what follows, we choose to work in the setting of
topological Hopf algebras over the ring k[[~]] of formal power series over a
ground field k. In particular, all tensor products are to be understood as
completed in the ~-adic topology.

3.1. Basic notations. Let A be a topological Hopf algebra over K := k[[~]],
with the quadruple (m,∆, ε, S) denoting the multiplication, comultiplica-
tion, counit, and antipode of A respectively. We say that a pair of topologi-
cal Hopf algebras A and A∗ form a dual pair if there exists a non-degenerate
Hopf pairing 〈−,−〉 : A⊗A∗ → K, that is a non-degenerate pairing satisfying

(1) 〈ab, x〉 = 〈a⊗ b,∆(x)〉
(2) 〈a, xy〉 = 〈∆(a), x⊗ y〉
(3) 〈1A,−〉 = εA∗ and 〈−, 1A∗〉 = εA
(4) 〈S(a), x〉 = 〈a, S(x)〉

for all a, b ∈ A and x, y ∈ A∗. In fact, condition (4) follows from the other
three, see [KS97, Section 1.2.5, Proposition 9]. We will also use the notation
Aop for the Hopf algebra (A,mop,∆, S−1), and Acop for the Hopf algebra
(A,m,∆op, S−1).

3.2. Module algebras. The category of modules ModA over a Hopf algebra
A has a monoidal structure determined by the coproduct ∆: A→ A⊗A. We
say that M is an A-module algebra if it is an algebra object in the monoidal
category ModA, that is

a · 1M = ε(a)1M and a · (mn) = (a1 ·m)(a2 · n)

for any a ∈ A and m,n ∈M .
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A Hopf algebra A can be naturally regarded as a module algebra over
itself using the adjoint action

ad: A⊗A −→ A, a⊗ b 7−→ a . b := a1bSa2.

A Hopf algebra A∗ dually paired with A can also be regarded as a module
algebra over A using the left coregular action

coreg : A⊗A∗ −→ A∗, a⊗ x 7−→ a ⇀ x := 〈a, x2〉x1.

There is also a right coregular action of Aop on A∗, defined by

a⊗ x 7−→ x ↼ a := 〈a, x1〉x2.

3.3. The Drinfeld double. Suppose A,A∗ is a dual pair of Hopf alge-
bras. In what follows, we assume that the pairing 〈·, ·〉 is such that a topo-
logical basis {ai} for A gives rise to a dual topological basis {xi} in A∗

with the property that 〈ai, xj〉 = δji , and there is a well-defined element∑
i ai ⊗ xi ∈ A ⊗ A∗, where as usual tensor product is completed in the

~-adic topology. For instance, this hypothesis will be satisfied whenever A
and A∗ are a dual pair of QUE-algebras in the sense of Drinfeld [Dri86], and
of course whenever A is finitely generated and projective over k[[~]].

Under the above assumption, there exists a Hopf algebra D(A) called the
Drinfeld double of A, with the following properties:

(1) as a coalgebra, D(A) ' (A∗)cop ⊗A;
(2) the maps a 7→ 1⊗a and x 7→ x⊗1 are embeddings of Hopf algebras;
(3) let (ai) and (xi) be dual bases for A and A∗ respectively. Then the

canonical element

R =
∑
i

(1⊗ ai)⊗ (xi ⊗ 1) ∈ D(A)⊗2,

called the universal R-matrix of the Drinfeld double, satisfies

R∆D(d) = ∆op
D (d)R

for all d ∈ D(A).

From the above properties one derives the following explicit formula for the
multiplication in D(A):

(x⊗ a)(y ⊗ b) = 〈a1, y3〉〈a3, S
−1y1〉xy2 ⊗ a2b. (3.1)

It also follows from the definition of the double, that the R-matrix is invert-
ible, with inverse

R−1 = (SD ⊗ id)(R)

and that the Yang-Baxter equation

R12R13R23 = R23R13R12 ∈ D(A)⊗3

holds in the triple tensor product D(A)⊗3.
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Proposition 3.1. If A is a Hopf algebra and D(A) its Drinfeld double, the
following formula equips A with the structure of a D(A)-module algebra:

(1⊗ a) · b = a1bSa2

(x⊗ 1) · b = b ↼ S−1x
(3.2)

In the action (3.2), the Hopf subalgebra A ⊂ D(A) acts adjointly on A,
while the Hopf subalgebra (A∗)cop ⊂ D(A) acts by its right coregular action.

3.4. The dual of the Drinfeld double. In addition to the Drinfeld dou-
ble, we will also make use of another Hopf algebra T (A) = D(A)∗ dually
paired with D(A). As an algebra, we have T (A) ' Aop⊗A∗, and the pairing
〈〈·, ·〉〉 : D(A)⊗ T (A)→ k[[~]] is defined by

〈〈x⊗ a, b⊗ y〉〉 = 〈b, x〉〈a, y〉. (3.3)

The formula for its comultiplication can be found by dualizing (3.1) and
reads

∆T (a⊗ x) =
(
a1 ⊗ xrx1x

t
)
⊗
(
S−1ata2ar ⊗ x2

)
∈ T (A)⊗2.

Similarly, the antipode in T (A) can be written as

ST (a⊗ x) = arS
−1(a)S−1(at)⊗ xtS(x)xr.

3.5. The Heisenberg double. Given a Hopf algebra A and its module
algebra M , one defines their smash-product M#A as an associative algebra
on the vector space M ⊗A with the multiplication given by

(m#x)(n#y) = m(x1 · n)#y2b

for any elements x, y ∈ A and m,n ∈M . Recall [Lu94], that the Heisenberg
double H(A) of an associative algebra A is the smash product H(A) = A#A∗

with respect to the coregular action of A∗ on A. Thus, the multiplication in
H(A) is determined by the formula

(a#x)(b#y) = a(x1 ⇀ b)#x2y = 〈x1, b2〉 ab1#x2y

for any a, b ∈ A and x, y ∈ A∗. Note that one has the following inclusions
of algebras

A −→ H(A), a 7→ a#1,

A∗ −→ H(A), x 7→ 1#x.

By construction, the Heisenberg double H(A) acts on A via

(a#x) ·L (b) = a(x ⇀ b) = 〈x, b2〉 ab1 (3.4)

In fact, H(A) also acts on A via

(a#x) ·R (b) = (b ↼ S−1x)Sa = 〈x, Sb1〉 b2S−1a (3.5)

The Heisenberg double H(A) has the following well-known properties:
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Proposition 3.2. [STS92] The antipode ST of T (A), when regarded as an
operator ι : H(A)→ H(A) via

ι : H(A) −→ H(A), a⊗ x 7−→ arS
−1(a)S−1(at)⊗ xtS(x)xr, (3.6)

defines an algebra automorphism of H(A).

Note that the automorphism ι intertwines the two actions 3.4, 3.5 of H(A)
on A.

Corollary 3.3. One has the following inclusions of algebras

A −→ H(A), a 7→ ι(a#1) = arS
−1(a)S−1(at)⊗ xtxr,

A∗ −→ H(A), x 7→ ι(1#x) = arS
−1(at)⊗ xtS(x)xr.

Since the actions (A#1, ·L), (A#1, ·R) commute, we have

Proposition 3.4. [STS92] The maps

A⊗A −→ H(A), a⊗ b 7−→ (a#1)ι(b#1),

A∗ ⊗A∗ −→ H(A), x⊗ y 7−→ (x#1)ι(1#y)

are homomorphisms of associative algebras.

3.6. Quantum Hamiltonian reduction. Let us briefly recall the notion
of quantum Hamiltonian reduction. Suppose that A is a Hopf algebra, V is
an associative algebra, µ : A→ V is a homomorphism of associative algebras,
and I is a 2-sided ideal in A preserved by the adjoint action of A. Then, by
the ad-invariance of I, the action of A on V defined by the formula

a ◦ v = µ(a1)vµ(Sa2)

descends to an action of A on the V -module V/µ(I), where we abuse notation
and write µ(I) for the left ideal in V generated by µ(I). The quantum Hamil-
tonian reduction V//µ(A) of V by the quantum moment map µ : A→ V at
the ideal I is defined as the set of A-invariants

V//µ(A) := (V/V µ(I))A

={a ∈ V/V µ(I) | a ◦ v = ε(a)v for all a ∈ A}

One checks that V//µ(A) inherits a well-defined associative algebra structure
from that of V , such that V//µ(A) is an A-module algebra.

4. Construction of the quantum resolution

4.1. The double of a double. Suppose that A is a Hopf algebra, and let
D(A), T (A), and H(A) be its Drinfeld double, dual to the Drinfeld double,
and the Heisenberg double respectively. Consider the Heisenberg double

H(T (A)op) = T (A)op#D(A)cop,

of the algebra T (A)op. One has an algebra embedding

µL : D(A) −→ H(T (A)op), u 7→ 1#u ∈ H(T (A)op)
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which may be regarded as the quantum moment map for the following D(A)-
module algebra structure on H(T (A)op):

u ◦L (φ#v) = (u3 ⇀ φ)#u2vS
−1
D(A)u1. (4.1)

As in Corollary 3.3, there exists another algebra embedding defined by

µR : D(A) −→ H(T (A)op), u 7→ ι−1(1#u). (4.2)

It generates the following D(A)-module algebra structure on H(T (A)op):

u ◦R (φ#v) = (φ ↼ S−1
D(A)u)#v (4.3)

By Proposition 3.4, the subalgebras µL(D(A)) and µR(D(A)) commute
with each other in H(T (A)op). This forces the actions (4.1) and (4.3) to
commute as well.

4.2. Dual pairs of quantum moment maps. We shall now restrict the
action (4.1) to the Hopf subalgebra A ⊂ D(A), and consider the quantum
Hamiltonian reduction of H(T (A)op) at the augmentation ideal IA = ker(εA)
ofA. We denote the algebra obtained as a result of the quantum Hamiltonian
reduction by H(T (A)op)//µL(A).

We also have the moment map µR : D(A) → H(T (A)op) given in (4.2),
and the action (4.3) of D(A) on H(T (A)op) that it defines.

Proposition 4.1. The action (4.3) of D(A) on H(T (A)op) descends to a
well-defined action

D(A)×H(T (A)op)//µL(A) −→ H(T (A)op)//µL(A) (4.4)

In turn, the map µR descends to a well-defined homomorphism of D(A)-
module algebras

µR : D(A) −→ H(T (A)op)//µL(A)

which is a moment map for the action (4.4).

Proof. The Proposition is a simple consequence of the fact that the sub-
algebras µL(D(A)) and µR(D(A)) commute with one another. Indeed, this
commutativity implies that for all a ∈ A, u ∈ D(A), one has

a ◦L (µR(u) + µL(IA)) = a1µR(u)Sa2 + µL(IA)

= µR(u)a1Sa2 + µL(IA)

= ε(a) (µR(u) + µL(IA))

which shows that

µR(u) + µL(IA) ∈
(
H(T (A)op)/µL(IA)

)A
=: H(T (A)op)//µL(A).

It follows from the definition of the algebra structure of the quantum Hamil-
tonian reduction H(T (A)op)//µL(A) that µR : D(A) → H(T (A)op)//µL(A)
is a homomorphism of algebras. Regarding this homomorphism as a quan-
tum moment map, we obtain an action of D(A) on H(T (A)op)//µL(A) which
by construction descends from (4.3), and such that µR : D(A)→ H(T (A)op)
is a morphism of D(A)-module algebras. �
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4.3. H(A) from quantum Hamiltonian reduction. We now examine
the algebra structure of the Hamiltonian reduction H(T (A)op)//µL(A) in
more detail.

Proposition 4.2. There is an isomorphism of algebras

ϕ : H(T (A)op)//µL(A) −→ H(A) (4.5)

Proof. Let us begin by making explicit the structure of the Hamiltonian
reduction H(T (A)op)//µL(A). Firstly, note that we can identify the quotient
H(T (A)op)/IA with the vector space T (A)op ⊗ A∗. It is easy to check that
induced action of A on T (A)op ⊗A∗ is then given by

a ◦L
(
(b⊗ y)⊗ x

)
= (b⊗ a2 ⇀ y)⊗ ad∗a1(x)

where

ad∗a(x) = 〈a1, x3〉〈S−1a2, x1〉x2.

Hence the algebra H(T (A)op)//µL(A) of A-invariants in H(T (A)op)/IA may
be identified with H(A) = A#A∗, as a vector space, under the map

ϕ : H(A) −→ H(T (A)op)//µL(A), a#x 7−→ (a⊗ x1Sx3)⊗ x2. (4.6)

Finally, we claim that the map (4.6) is in fact an isomorphism of algebras.
Indeed, in H(T (A)op)//µL(A), one computes

ϕ(a#x)ϕ(b#y) = ((a⊗ x1Sx3)⊗ x2) ((b⊗ y1Sy3)⊗ y2)

= 〈x2, S
−1atb2ar〉(ab1 ⊗ xry1Sy3x

tx1Sx3)⊗ x3y2

= 〈x3, b2〉(ab1 ⊗ x4y1Sy3S
−1x2x1Sx6)⊗ x5y2

= 〈x1, b2〉(ab1 ⊗ x2y1Sy3Sx4)⊗ x3y2

= ϕ(〈x1, b2〉ab1 ⊗ x2y)

= ϕ ((a#x)(b#y))

which completes the proof. �

Corollary 4.3. Under the isomorphism ϕ defined in (4.5), the moment map
µR : D(A)→ H(T (A)op)//µL(A) ' H(A) takes the form

µR : D(A) −→ H(A), by 7−→ b1arSb2at#S
−1xtS−1yxr. (4.7)

Using the homomorphism µR, one can pull back the defining representa-
tion (3.4) of H(A) on A to obtain a representation of D(A). A straightfor-
ward computation establishes

Proposition 4.4. The pullback under µR of the action (3.4) coincides with
the representation (3.2) of D(A) on A.

Remark 4.5. In [Lu96], the formula (4.7) is derived in the finite-dimensional
setting from the action (3.2) of D(A), together with the fact, see e.g. [Mon93],
that H(A) ' End(A) as algebras.
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4.4. Example: quantized Grothendieck-Springer resolution. Sup-
pose now that g is a complex simple Lie algebra, and denote by U~(g) the
quantized universal enveloping algebra of g, see [Dri86, CP94]. Recall that
U~(g) may be regarded as the quantized algebra of functions on a formal
neighborhood of the identity element e ∈ G∗, where G is a simple Lie group
endowed with its standard Poisson structure. Let us apply our construc-
tions to the case A = U~(b), where U~(b) is the quantum Borel subalgebra
in U~(g). Then there is an isomorphism of algebras D(A) ' U~(g)⊗ U~(h),
where h ⊂ g is the Cartan subalgebra of g, see [Dri86]. The restriction
of the homomorphism (4.7) to U~(g) ⊂ D(A) defines a map of algebras
Φ: U~(g) → H(A). In [SS15], it was shown (in the setting of the rational
form Uq(g)) that Φ is injective, and that its image is contained in a certain

subalgebra H(A)h of U~(h)-invariants.
In the above setup, the semiclassical limit of the map Φ is closely related

to the well-known Grothendieck-Springer resolution

G×B B −→ G, (g, b)B 7−→ gbg−1

where G is a complex simple Lie group, and B ⊂ G is a Borel subgroup.
More precisely, the algebra H(A)h can be regarded as the quantized algebra
of functions on a formal neighborhood of (e, e)B ∈ G ×B B. The Poisson
geometric structure is exactly the one described in [EL07].

5. R-matrix formalism

In this section we rewrite the homomorphism (4.7) in terms of canonical
elements of the algebras D(A) and T (A). As before, let

R = R12 =
∑
i

ai ⊗ xi ∈ D(A)⊗D(A)

be the universal R-matrix of D(A). In what follows we make use of elements

R21 =
∑
i

xi ⊗ ai

and

L = R21R12 ∈ D(A)⊗D(A).

Recall [STS92] that the element L satisfies the reflection equation

L1R12L2R21 = R12L2R21L1 ∈ D(A)⊗3 (5.1)

where L1 = R31R13, L2 = R32R23. Let us also introduce canonical elements
Θ,Ω ∈ D(A)⊗H(A) defined by

Θ =
∑
i

ai ⊗ xi and Ω =
∑
i

xi ⊗ ai.
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These elements satisfy the relations

R12Θ1Θ2 = Θ2Θ1R12

R12Ω1Ω2 = Ω2Ω1R12

R12Θ1Ω−1
2 = Ω−1

2 Θ1

(5.2)

If ι is the automorphism of H(A) defined by (3.6), we write

Θ̃ = (id⊗ι) (Θ) and Ω̃ = (id⊗ι) (Ω).

The following proposition is straightforward.

Proposition 5.1. Let µR : D(A) → H(A) be the homomorphism defined
by (4.7). Then one has

(id⊗µR) (R12) = Θ̃,

(id⊗µR) (R21) = ΩΩ̃,

and hence
(id⊗µR) (L) = ΩΩ̃Θ̃.

Recall [KS97, Section 8.1.3, Proposition 5] that the element u ∈ D(A)
defined by

u = SaiSx
i ∈ D(A)

satisfies
udu−1 = S2

D(d) for all d ∈ D(A).

Proposition 5.2. The following identity holds in D(A)⊗H(A)

Θ−1Ω−1 = u1Ω̃Θ̃,

where u1 = u⊗ 1 ∈ D(A)⊗H(A).

Proof. We have

Θ−1Ω−1 =
∑

SaiSx
j ⊗ xiaj

=
∑

S(akat)S(xrxk)⊗ (ar#x
t)

=
∑

atux
r ⊗ (Sar#Sx

t)

= u1

∑
atx

r ⊗ (Sar#S
−1xt).

Using the formula

ax = 〈a(1), x(3)〉〈S−1a(3), x(1)〉x(2) ⊗ a(2)

for the multiplication in the Drinfeld double D(A), we arrive at

Θ−1Ω−1 = u1

∑
atx

r ⊗ (Sar#S
−1xt)

= u1

∑
xpaq ⊗

(
aαSaqS

−1aβ#xβS−1xpxα
)

= u1Ω̃Θ̃

which completes the proof. �
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Corollary 5.3. One has

(id⊗µR) (L) = Ωu−1
1 ΘΩ−1. (5.3)

Remark 5.4. Since the first tensor factor in L runs over the basis of D(A),
the homomorphism µR is completely defined by the formula (5.3). The latter
can be thought of as a quantization of the map (2.1), where u1 is a quantum
correction, invisible on the level of Poisson geometry.

Corollary 5.5. The element

L̂ = Ωu−1
1 ΘΩ−1 ∈ D(A)⊗H(A) (5.4)

provides a solution to the reflection equation (5.1).

Remark 5.6. In fact, one can check using the relations (5.2) that the ele-
ment

L̂′ = ΩΘΩ−1 ∈ D(A)⊗H(A)

obtained from (5.4) by omitting u−1
1 , also satisfies the reflection equation

(5.1). In general, however, the linear map D(A)→ H(A) defined by L 7→ L̂′
will fail to be a homomorphism of algebras. On the other hand, suppose
that R ∈ End(V ⊗ V ) is a scalar solution of the Yang-Baxter equation.
Then, following Faddeev-Reshetikhin-Takhtajan, one can define a reflection
equation algebra A as the algebra generated by entries of L ∈ A⊗ End(V ),
subject to the defining relations (5.1). Similarly, one can define an algebra
H generated by entries of the elements Θ,Ω ∈ H ⊗ End(V ) subject to the
relations (5.2). Then we get a well-defined homomorphism of algebras

A −→ H, L 7−→ ΩΘΩ−1.
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