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While optical frequency combs naturally emerge in 
mode-locked ultrafast lasers1–3, the use of nonlinear 
parametric processes—particularly the Kerr effect—in 

integrated photonic resonators offers a much more convenient 
and compact route to generate optical frequency combs4–8. Of 
particular significance is the regime of coherent optical frequency 
combs where the intrinsic dispersion and dissipation of a pho-
tonic resonator are counterbalanced by nonlinearity-induced dis-
persion and parametric gain, respectively, and this double-balance 
leads to the self-formation of stationary temporal solutions called 
dissipative Kerr solitons (DKSs)5. DKSs have been demonstrated 
in a variety of single-resonator geometries, and diverse mate-
rial platforms such as silica glass, silicon nitride, and so on5,6,9. 
More recently, DKSs have been explored in photonic molecules, 
that is, a configuration of two coupled resonators, which allows 
the exploration of collective coherence or self-organization of 
solitons as well as solitonic solutions that are inaccessible using a  
single resonator10–13.

In parallel, advances in the field of topological photonics have 
allowed access to new paradigms that can be used to design pho-
tonic devices with novel functionalities14–16. On one hand, topologi-
cal photonic systems use complex arrays of hundreds of coupled 
waveguides or ring resonators17–19. On the other hand, such systems 
exhibit remarkably simple features such as edge states, which are 
dictated only by the global topology and therefore are independent 
of local details of the system. This unique property of edge states 
protects them against local defects and disorders in the system, 
enabling the realization of robust photonic devices such as opti-
cal delay lines17,18,20, lasers21–24, switches25,26, photonic crystal wave-
guides and cavities27–29, fibres30, etc. Lately, topological edge states 
have also been used in conjunction with nonlinear parametric  

processes for the efficient and tunable generation of quantum states 
of light via spontaneous four-wave mixing31–33, optical frequency 
conversion34,35, as well as to explore spatial solitons in coupled 
waveguide arrays36–39.

Here we theoretically investigate the generation of coherent 
optical frequency combs and temporal DKSs in a topological pho-
tonic system consisting of a two-dimensional lattice of coupled 
(micro)ring resonators. We exploit the fact that the topologi-
cal edge states circulate around the boundary of the lattice, and 
because of their unidirectionality, they constitute a travelling-wave 
super-ring resonator formed of multiple single-ring resonators 
(Fig. 1e). We show that pumping the edge state super-ring reso-
nator with a continuous-wave (CW) laser—of optimal frequency 
and power—leads to the self-formation of temporal patterns, par-
ticularly Turing rolls and nested DKSs. More importantly, these 
temporal patterns are phase-locked across all the ring resona-
tors on the edge of the lattice, indicating collective coherence or 
self-organization across more than 40 oscillators. In the regime of 
nested solitons, the spectral output of our device corresponds to 
that of a coherent nested optical frequency comb (Fig. 1f). We find 
that the nested solitons inherit the topological protection of a lin-
ear system and are robust against any defects in the lattice. From 
an application perspective, in the regime of a single nested soli-
ton, the topological frequency comb achieves a mode efficiency of 
>50%, an order of magnitude higher than single-ring frequency 
combs40–42 that are theoretically limited to only ~5%. Our design 
can be readily implemented with the existing nanofabrication 
technology (Supplementary Section 3), and similar topological 
ring resonator systems with nonlinear parametric processes have 
already been realized to enhance and engineer the generation of 
quantum states of light31,32.
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Recent advances in realizing optical frequency combs using nonlinear parametric processes in integrated photonic resona-
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generation of optical frequency combs and temporal dissipative Kerr solitons in a two-dimensional array of coupled ring resona-
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edge states constitute a travelling-wave super-ring resonator that leads to the generation of coherent nested optical frequency 
combs, as well as the self-formation of nested temporal solitons and Turing rolls that are remarkably phase-locked over more 
than 40 rings. Moreover, we show that the topological nested solitons are robust against defects in the lattice, and a single 
nested soliton achieves a mode efficiency of over 50%, an order of magnitude higher than single-ring frequency combs. Our 
topological frequency comb works in a parameter regime that can be readily accessed using existing low-loss integrated pho-
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Topological system and simulation framework
Our topological system consists of a square lattice with a site-ring res-
onator located at each of its lattice sites (Fig. 1e)43,44 (Supplementary 
Section 1). The site-ring resonators are coupled to their nearest and 
next-nearest neighbours, using another set of link rings, such that 
a non-zero local synthetic magnetic field for photons with flux π 
threads a half-unit cell, but the flux threading a complete unit cell 
is zero. Close to a given longitudinal mode resonance of the site 
rings, the lattice simulates a Haldane-like anomalous quantum 
Hall model for photons. Accordingly, its power spectrum (or the 
energy-momentum band structure) exhibits a topological edge band 
sandwiched between two bulk bands (Fig. 1f and Supplementary 

Section 1). The edge states propagate all along the boundary of 
the lattice in a single direction (set by the input port44) and there-
fore constitute a travelling-wave super-ring resonator (Fig. 1e and 
Supplementary Fig. 1). The multiple longitudinal modes of the 
super-ring—equally separated in frequency by free spectral range 
(FSR) ΩSR—are clearly evident in the edge band of the power spec-
trum. Furthermore, this structure of an edge band sandwiched 
between two bulk bands repeats in frequency every FSR (longitudi-
nal mode spacing ΩR) of the individual ring resonators. Therefore, 
our topological system effectively involves three dimensions—two 
real dimensions in space and one synthetic dimension in frequency 
that is associated with the longitudinal modes of the ring resonators.
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Fig. 1 | Working of the topological frequency comb. a,b, Schematic of a single-ring resonator (a) and its power spectrum in the linear regime (b).  
c, Temporal and spectral response at the output of the ring resonator in the regime of a single Kerr soliton. The temporal output consists of a series 
of pulses separated by τR, the round-trip time of the ring resonator. The spectral output consists of a series of narrow lines separated by FSR ΩR. d, An 
indicative spatiotemporal intensity distribution in the ring, showing different operating regimes as a function of input pump frequency detuning δωp from 
cold-cavity resonance (Supplementary Fig. 3). e, Schematic of a two-dimensional array of ring resonators that simulates the anomalous quantum Hall 
model for photons and exhibits topological edge modes at its boundary. f, Power spectrum in the linear regime showing edge state resonances (shaded) 
and bulk bands. The edge states extend throughout the boundary of the lattice and constitute a super-ring resonator, with longitudinal mode separation 
ΩSR. The transmission spectrum repeats every FSR ΩR of the ring resonators. When pumped by a CW laser near one of the edge mode resonances, the 
topological super-ring can host nested solitons with indicative spatial intensity profile shown by yellow-coloured pulses. g, Schematic of the temporal and 
spectral output of the topological frequency comb in the regime of a single nested soliton. The output temporal profile consists of a series of soliton pulses 
separated by single-ring round-trip time τR (fast time), modulated by a series of super-soliton pulses separated by the round-trip time τSR (slow time) of 
the edge mode super-ring. The output spectral profile shows a nested comb, that is, a series (comb) of edge mode resonances (longitudinal modes of the 
super-ring; slow frequency) oscillating in each FSR (fast frequency) of the the single-ring resonators.
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To generate an optical frequency comb in this lattice, we couple 
one ring at the edge of the lattice to an input–output waveguide, as 
shown in Fig. 1e. At the input port of this waveguide, we inject a CW 
pump laser with frequency close to one of the longitudinal mode 
resonances of the ring resonators (indexed by an integer μ = 0).  
The intrinsic Kerr nonlinearity of the ring resonators leads to spon-
taneous four-wave mixing and subsequently stimulates the genera-
tion of photons in other longitudinal modes (μ ≠ 0) in the form of a 
frequency comb.

To simulate the generation of an optical frequency comb in 
the lattice, we derive the coupled driven-dissipative nonlinear 
Schrödinger equations, also called Lugiato–Lefever equations6,45,46, 
which dictate the complete spatial, spectral and temporal evolution 
of site-ring fields as

dam,μ
dt = −i (ω0,μ −ΩR μ − ωp) am,μ − J

∑
⟨n⟩

an,μ e−iϕm,n

−J
∑
⟨⟨n⟩⟩

an,μ + iγ 1
τR

τR∫
0
dτ

(
|ãm,τ |

2ãm,τ
)
e−iωμτ

− (κex δm,IO + κin) am,μ + δm,IO δμ,0 E .

(1)

Here am,μ is the photon field for the site ring at spatial position m 
for a given longitudinal mode μ; J is the coupling strength between 
the ring resonators and is the same for both nearest-neighbour 
(indicated by 〈m,n〉) and next-nearest-neighbour (indi-
cated by 〈〈m,n〉〉) couplings. The hopping phase ϕm,n = ±

π
4 

for nearest-neighbour couplings and ϕm,n = 0 for the next- 
nearest-neighbour couplings (Supplementary Section 1). Further,  
γ is the strength of the nonlinear interaction, κex is the coupling 
rate of the input–output (IO) ring (indicated by δm,IO) to the input– 
output waveguide, and κin is the loss rate of the ring resonators; ε 
is the normalized input pump field, which is coupled only to the 
IO ring, and is in the longitudinal mode μ = 0 (indicated by δμ,0).  
Also, ω0,μ is the resonance frequency of the site-ring resonators  
for a longitudinal mode with index μ and includes second-order 
anomalous dispersion D2 such that

ω0,μ = ω0 +ΩR μ +

D2
2 μ

2. (2)

The input pump frequency is denoted by ωp and the pumped lon-
gitudinal mode corresponds to μ = 0 with resonance frequency ω0. 
The coupled equations (1) have been written in a reference frame 
rotating at frequency ΩR/2π such that the FSR of the individual ring 
resonators is an independent parameter (equations (1) and (2)). 
Also, note that we have not made any assumptions regarding the 
spectral position, bandwidth or dispersion of the edge state reso-
nances within a longitudinal mode μ (Supplementary Section 8).

In equation (1), the nonlinear four-wave mixing interaction 
between different longitudinal mode resonances is represented in 
the time domain τ (in [0,τR]), which corresponds to the round-trip 
time within a single-ring resonator47,48. Specifically, in a reference 
frame rotating at frequency ΩR/2π = 1/τR, ãm,τ represents the spatio-
temporal field within a ring, at lattice location m, and is related to 
the spectral field within the ring as

am,μ =

1
τR

τR∫

0

dτ ãm,τe−iω0,μτ . (3)

We emphasize that the spectral and temporal dynamics of our 
system, as dictated by equation (1), involves two disparate fre-
quency and time scales: (1) fast frequency associated with the lon-
gitudinal mode resonances of individual rings (indexed by μ and 
separated by ΩR) and corresponding fast timescale τ in [0,τR] that 

depicts the spatiotemporal field within individual rings; (2) slow 
frequency (ωslow) associated with the longitudinal mode resonances 
of the super-ring resonator (separated by ΩSR), that is, the frequency 
response close to a given longitudinal mode resonance of the indi-
vidual rings and the corresponding slow time t ≈ 1/J that depicts 
the evolution of fields within the super-ring with round-trip time 
τSR. While equations (1) and (3) directly yield the fast-time and 
fast-frequency response, the Fourier transform of the slow-time (t) 
evolution of am,μ allows us to reconstruct the slow-frequency (ωslow) 
spectrum of the topological comb.

For our numerical simulations, we consider a 12 × 12 lattice of 
site rings and 256 FSRs of individual rings. We use dimensionless 
parameters45,46 such that the relevant frequency (ω0,μ, ωp, κex, κin, 
ΩR and D2) and time (τR and t) scales are normalized by coupling 
strength J, and the fields (am,μ) are normalized by ratio 

√
J/γ  (effec-

tively, J = 1 and γ = 1; Supplementary Section 2). We chose κex = 0.050 
and κin = 0.005 such that the individual edge state resonances in the 
edge band are resolved, and D2 = 0.00025.

Turing rolls and collective coherence
To understand the generation of an optical frequency comb in our 
topological device, we first fix the (normalized) input pump field 
at ε = 1.1, and observe the output spectra of the generated photons 
across multiple FSRs (fast frequency, indexed by μ) as we tune the 
input pump frequency in one of the FSRs (μ = 0; Fig. 2a,b). We find 
that the generation of the frequency comb (bright light intensity 
across multiple FSRs) is efficient only when the input pump fre-
quency is close to one of the edge mode resonances. Furthermore, 
as we will show later, on pumping near the edge mode resonances, 
the bright frequency comb is generated only in the ring resonators 
that lie on the edge of the lattice. By contrast, when the input pump 
frequency is in the bulk bands, the generation of light in FSRs other 
than the pumped FSR is very weak and the frequency comb is ineffi-
cient. This enhanced generation of the optical frequency comb in the 
edge band is due to the travelling-wave super-ring resonator formed 
by the edge states that efficiently reinforces the optical frequency 
comb. The bulk states, on the other hand, do not have a well-defined 
direction of flow of photons in the lattice (Supplementary Fig. 1).

Having established that the topological optical frequency 
comb is efficient only when the input pump frequencies excite 
the edge modes, we now focus on pump frequencies near a single 
edge mode of the lattice. Figure 2c shows the total pump power (∑

m∈edge|am,μ=0|
2
)
 in the super-ring resonator as a function of 

pump frequency detuning. To reveal the self-formation of temporal 
features, we plot 

∑
m∈edge|ãm,τ |

2 (Fig. 2d), that is, the spatiotemporal 
(or fast-time τ) intensity distribution integrated over the rings on the 
edge of the lattice, as a function of the input pump frequency. The 
presence of sharp features in this plot indicates both self-formation 
of temporal (or equivalently, spatial) features within individual ring 
resonators and self-organization of these features across the rings. 
Randomly varying features in this plot indicate randomness in the 
spatial intensity distribution within the rings or a lack of coherence 
between the rings. This plot can be compared with the correspond-
ing plot of a single-ring resonator frequency comb (Fig. 1d and 
Supplementary Fig. 3).

When the input pump frequency is at δωp1 = 0.111J  in 
Fig. 2d, we observe a regularly oscillating pattern along the 
fast-time τ axis, which indicates the formation of Turing rolls5,6 
(Supplementary Fig. 3). To confirm this, we plot the spatiotempo-
ral intensity distribution within each ring of the lattice (Fig. 2e),  
that is, |ãm,τ |

2, where m = (mx,my) indicates the location of a ring 
in the lattice (Supplementary Fig. 1). Indeed, all the rings on the 
edge of the lattice exhibit equally spaced pulses, called Turing rolls 
(or perfect soliton crystals)5,6. Also, the light intensity in the bulk of 
the lattice is negligible. Remarkably, we find that the phase of the 
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Turing rolls is locked throughout the edge of the lattice. This shows 
self-organization or collective spectrotemporal coherence between 
all the 44 rings on the edge. In fact, there exists a broad region with a 
bandwidth of ~0.01J, where we observe coherent Turing rolls. From 
Fig. 2c, we also see that the pump power in the super-ring smoothly 
varies in this region of coherent Turing rolls (Supplementary Fig. 3).

For lower pump frequencies (near δωp2 in Fig. 2c,d), we find 
a chaotic region where the pump power rapidly varies as we tune 
the input pump frequency. More importantly, the spatiotemporal 
intensity distribution within each ring, as well as the distribution 
across rings, is now random without any coherence whatsoever. We 
emphasize that the pump frequency is still in the edge band, and 
consequently, the comb intensity is confined to the edge of the lat-
tice and the intensity in the bulk is negligible.

Figure 2g,h shows the output comb spectra for the two pump 
frequencies δωp1 and δωp2. For δωp1, the frequency comb spec-
trum predominantly consists of discrete spectral lines, separated 
by 18 FSRs. As in the case of a single-ring frequency comb, this 
number exactly corresponds to the number of Turing rolls in each 
ring (Fig. 2e). Furthermore, we have confirmed that the number of 
Turing rolls decreases as 

√
γ/D2  (refs. 6,45,48) (Supplementary Fig. 4).  

At δωp2, that is, in the chaotic region, the discrete lines in the  

primary comb merge together, and there are no distinct features in 
the frequency spectrum.

Because ωslow ≈ J ≪ ΩR, the slow-frequency spectrum of the 
comb is not resolved in Fig. 2g,h, which shows the spectra along 
the fast-frequency axis (FSRs, μ). Therefore, to better visualize 
the slow-frequency response of the topological comb, we plot the 
slow-frequency spectrum within each FSR (Fig. 2i,j). Here ωslow  
(x axis) is calculated as the detuning from the corresponding lon-
gitudinal mode resonance frequency ω0,μ and the input pump fre-
quency, such that ωslow = {(ωμ – ω0,μ) – (ωp – ω0)}/J, where ωμ is the 
frequency of generated light in longitudinal mode μ.

At δωp1, that is, in the region of coherent Turing rolls (Fig. 2i), 
the slow-frequency spectrum within each bright FSR (fast fre-
quency, μ) exhibits a single mode centred around the comb line (a 
cross-section of this plot is shown in Fig. 2g, inset). The oscillation 
of a single edge mode within each oscillating FSR is consistent with 
the observation of uniform spatial intensity distribution on the edge 
of the lattice (Fig. 2e). This can also be inferred from Fig. 2k, which 
shows that the fast-time (τ) intensity distribution at the output 
remains constant with the evolution of slow time t.

At δωp2, that is, in the chaotic region, we observe the oscillation 
of multiple modes in the edge band (ωslow = (–1,1)J) of each FSR. 
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)

 

in different FSRs (indexed by μ, the fast frequency). c, Total pump power in the super-ring resonator, for pump frequencies in one of the edge 
state resonances. d, Spatiotemporal (or fast-time) intensity distribution in the ring resonators, integrated over the rings on the edge of the lattice 
(
∑

m∈edge|ãm,τ |
2), as a function of pump frequency detuning. This plot can be compared with that of a single-ring resonator, as shown in Fig. 1d. We 

analyse two different pump frequencies, namely, δωp1 = 0.111J and δωp2 = 0.080J, as indicated in c and d. e–h, Spatial intensity distribution in the lattice 
(e,f) and output comb spectra (g,h) at δωp1 (e,g) and δωp2 (f,h), in the regimes of phase-locked Turing rolls and chaos, respectively. The insets in e and 
f show the spatiotemporal intensity distribution in the input–output ring. The insets in g and h show the slow-frequency spectra for a given longitudinal 
mode μ. For plotting the comb spectra, we chose ΩR = 20. i–l, Slow-frequency spectra (i,j) and slow-time temporal profiles (k,l) at the output for pump 
frequencies δωp1 and δωp2, respectively.
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This oscillation of multiple edge modes in the chaotic regime is also 
evident from the non-uniformity of the spatial intensity distribu-
tion in the lattice (Fig. 2f), and the dynamics of the output temporal 
profile (Fig. 2l) that randomly varies with slow time t. Furthermore, 
spectral power in the bulk modes (ωslow < −1J and ωslow > 1J) is 
two orders of magnitude smaller compared with those of the edge 
modes. This validates the observation of negligible light intensity in 
the bulk of the lattice (Fig. 2f). Note that the oscillating edge modes 
(Fig. 2j) also show the underlying quadratic dispersion of the ring 
resonators in different FSRs.

Temporal Kerr super-solitons
To show the presence of nested solitons in the topological frequency 
comb, we increase the normalized input pump field to ε = 1.56. From 
the spatiotemporal intensity distribution in the super-ring resona-
tor (Fig. 3a), in addition to the coherent Turing rolls and chaotic 
regions, we observe a new regime (0–0.02J) where the light intensity 
is confined to very narrow regions (thin strands) in the ring resona-
tors. A quick comparison with the analogous spatiotemporal inten-
sity distribution of a single-ring optical frequency comb (Fig. 1d) 
reveals that this region hosts solitons in the topological frequency 

comb. Figure 3b shows the total pump power in the super-ring reso-
nator where—similar to a single-ring comb—we see the emergence 
of kinks in the region where we expect solitons.

We analyse two different pump frequencies, namely, 
δωp3 = 0.0070J  and δωp4 = 0.0135J , in this region, as indicated 
in Fig. 3. From the spatial intensity distribution (Fig. 3c), we see 
that at δωp3, the topological frequency comb exhibits nested soli-
tons: the intensity distribution along the super-ring resonator 
(edge) of the lattice is confined to a small region of the edge in the 
form of a super-soliton, and the intensity distribution within each 
ring is also confined to a narrow region in the form of a soliton. 
This nested soliton then circulates along the edge of the lattice in 
an anticlockwise direction as slow time t evolves (Supplementary 
Video 1). Remarkably, the spatiotemporal phase of the solitons in 
individual rings of the super-soliton is locked (Fig. 3c, inset) as this 
nested soliton structure circulates around the edge of the lattice. 
This observation once again highlights the collective coherence or 
self-organization of multiple nonlinear ring resonators on the edge 
of the lattice. The corresponding temporal spectrum (Fig. 3g) at 
the output of the topological frequency comb then shows pulses of  
light that are separated by τSR, the round-trip time of the super-ring 
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resonator. Note that our simulations are carried out in a reference 
frame that is rotating at frequency ΩR/2π, that is, co-propagating 
with the solitons in individual rings. Therefore, the solitons in each 
ring are circulating with time period τR, and each super-soliton 
pulse (shown in Fig. 3g) is actually a burst of pulses separated by 
time τR (Fig. 1g).

At input pump frequency δωp4, we observe two sets of nested 
solitons that are simultaneously circulating along the edge of the 
lattice (Fig. 3e,f and Supplementary Video 2). Furthermore, while 
the phases of the individual ring solitons within each nested soliton 
are locked, the corresponding phases in the two nested solitons are 
not the same (Fig. 3e,f, insets). In contrast to a single nested soliton, 
the temporal spectrum at the output of the topological frequency 
comb now consists of two bursts of pulses in each round-trip time 
τSR of the super-ring resonator. At other pump frequencies in the 
super-soliton region, we can also observe three nested solitons.

Next, we discuss the frequency spectrum at the output of the 
topological frequency comb (Fig. 3i,j). In the case of a single nested 
soliton, that is, at δωp3, the output frequency spectrum is—in gen-
eral—smooth, which indicates that it is phase-locked (except for 
few phase jumps; Supplementary Fig. 4). By contrast, in the case of 
two nested solitons, that is, at δωp4, the frequency spectrum shows 
small variations (Fig. 3j). This behaviour of the frequency spectra is 
similar to that observed in single-ring resonator frequency combs 
where the spectrum is phase-locked only when a single soliton 
exists in the ring5,6,45,46.

Furthermore, by resolving the slow-frequency (ωslow) response of 
the topological comb (Fig. 3k), we find multiple edge modes that are 
oscillating within each FSR (Fig. 3i, inset). More importantly, the 
oscillating edge modes are equally spaced within a given FSR and 
across FSRs, that is, the intrinsic (linear) dispersion of the longitudi-
nal modes—of both individual ring resonators and super-ring reso-
nator—has now been exactly cancelled by the dispersion induced 
by the Kerr nonlinearity. Therefore, the frequency spectrum in the 
regime of a single nested soliton indeed corresponds to that of a 
coherent nested frequency comb (Fig. 1g). The slow-frequency 
response also explains the emergence of kinks, as shown in  
Fig. 3i—these are the regions in which the dispersion curves from 
two different edge modes interfere and lead to phase jumps in the 
otherwise coherent frequency comb. This slow-frequency spec-
trum in the soliton regime can be compared with that of the chaotic 
regime (Fig. 2j and Supplementary Fig. 5), where multiple modes in 
the edge band are oscillating but there is no cancellation of disper-
sion and no phase coherence.

A figure of merit for optical frequency combs operating in the 
regime of a single soliton is the mode efficiency at the output of 
the device, that is, the fraction of power that resides in the comb 
lines other than the pumped mode (Supplementary Section 4). For 
single-ring resonator optical frequency combs, the mode efficiency 
in the regime of a single soliton is limited to ~5%, irrespective of 

the length, quality factor or material of the resonator40–42. This is 
because the pulse width of a single soliton is much smaller than the 
round-trip time of the resonator, which leads to a very small tempo-
ral overlap with a CW pump. In comparison, in the regime of a sin-
gle nested soliton of the topological comb, we observe that 53% of 
the total output power (in the waveguide) is contained in the comb 
lines other than the pumped edge mode. This mode efficiency is an 
order of magnitude higher than that of single-ring resonators and is 
due to the fact that a single nested soliton pulse (in the super-ring) 
spans multiple phase-locked ring resonators, with each ring sup-
porting its own single soliton pulse. This enhances the temporal 
overlap of the nested soliton pulse with the pump. We note that a 
single-ring comb can also achieve higher efficiency when multiple 
solitons are present in the ring resonator5. However, in this case, the 
phase (position along the ring) of each soliton pulse is different, and 
therefore, the comb spectrum is not smooth. In the case of a topo-
logical nested soliton, a single ring hosts only a single soliton, and 
the phase of the solitons across multiple rings is exactly the same, 
which leads to a smooth spectrum (Fig. 3g). We note that the theo-
retical limit on the conversion efficiency of the topological nested 
frequency comb (in the regime of a single nested soliton) could be 
higher for other parameter regimes.

In the linear regime, the edge states have been demonstrated to be 
topologically protected against defects in the lattice18,20,44. To inves-
tigate whether the edge states preserve their robustness in the non-
linear regime as well, we explore the propagation of nested solitons 
in the presence of a deliberately located point defect in the lattice. 
Specifically, we detune one of the site-ring resonators on the edge of 
the lattice by 20J (Fig. 4a) such that it is effectively decoupled from 
the rest of the lattice. Figure 4b–d shows the slow-time evolution 
of the observed single nested soliton in this lattice (Supplementary 
Video 3). We see that the nested soliton simply routes around the 
defect as it circulates along the boundary of the lattice, without los-
ing its phase coherence. We do not observe any light pulses that are 
reflected from the defect or scattered into the bulk of the lattice. 
This clearly shows that the nested solitons are indeed topologically 
robust against defects in the lattice.

Discussion and outlook
The emergence of coherent temporal features, such as Turing rolls 
and nested solitons, and the characteristics of a nested frequency 
comb in the topological super-ring resonator closely resemble those 
of a single-ring resonator frequency comb in the regime of anoma-
lous dispersion. This allows us to qualitatively depict the phase 
diagram of the topological frequency comb, as shown in Fig. 5. We 
perform numerical simulations at different pump powers (ε). Using 
spatiotemporal (fast-time) intensity distributions integrated over the 
edge rings (similar to Figs. 2d and 3a), we locate the regions of pump 
frequency detuning that lead to Turing rolls, chaos and nested soli-
tons. In this phase diagram, we have also indicated (upper x axis) the 

Defect

a b c d

Defect

δt = 136 δt = 140 δt = 148

Fig. 4 | Robustness of the topological comb. a, Schematic of the lattice with a deliberately located defect on the boundary. b–d, Robust propagation of a 
single nested soliton around the defect, at different slow times δt = 136 (b), 140 (c) and 148 (d), without any loss of phase-locking or any scattering into 
the bulk (Supplementary Video 3).
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pump frequency detuning from the respective cold-cavity (linear) 
edge mode resonance (ω0,edge) and normalized it by its bandwidth 
(BWedge). Similar to the case of a single-ring resonator (Fig. 1d and 
Supplementary Fig. 2), we observe Turing rolls at low pump pow-
ers and for pump frequencies near the cold-cavity edge resonance 
(ω0,edge). In this regime, the longitudinal modes of the individual rings 
are phase-locked, which manifests as phase-locking of the Turing 
rolls across rings. However, only a single mode of the super-ring res-
onator is excited (Fig. 2g,i). At pump frequencies further away from 
the cold-cavity edge resonance, we observe a chaotic regime where 
multiple longitudinal modes of the super-ring resonator are excited 
in each longitudinal mode of the single rings. But these modes are 
not phase-locked. Note that in the chaotic regime, the pump fre-
quency and intensity distribution in the lattice still correspond to 
those of the edge states. This clearly indicates that merely exciting 
the edge states of the system does not lead to self-organisation or 
phase-locking. The nested soliton region appears at input pump 
power ε ≈ 1.3 and at pump frequencies that are far red-detuned 
from the cold-cavity edge resonance. In this regime, both sets of 
longitudinal modes (those of single rings and the super-ring) are 
phase-locked (Supplementary Section 6). This phase-locking is 
enabled by the unidirectionality and the approximately linear dis-
persion of the topological edge states (Supplementray Section 8). We 
observe that the soliton region narrows down, and it completely dis-
appears at higher pump powers, probably leading to another chaotic 
regime. We note that this qualitative phase diagram was estimated 
for a given value of dispersion, in one of the edge mode resonances 
near the centre of the edge band.

While we have shown the presence of many features that are 
analogous to a single-ring resonator frequency comb, we have 
only analysed a small subset of parameters that control the topo-
logical frequency comb. Therefore, one can expect the appearance 
of many other known and unknown phases that can emerge from 
the interaction of edge and bulk modes. It would be intriguing, for 
example, to explore breathing Turing rolls and nested solitons, dark 
nested solitons, and platicons in the normal dispersion region6,46. In 
the limit of weak pump powers, our results could pave the way for 
the generation of quantum optical frequency combs and photonic 
cluster states entangled in higher dimensions using frequency–time 
multiplexing49,50. Our system could be translated to other frequency 
regimes of the electromagnetic spectrum, for example, to the micro-
wave domain using circuit quantum electrodynamics platform to 
implement topological arrays of coupled resonators51. One could 
also explore other topological lattice models to engineer the band 

structure and therefore the dispersion of edge and bulk states. In 
fact, one could go beyond Euclidean geometries and explore the 
hierarchy of solitons in non-Euclidean curved space, for example, 
hyperbolic lattices52. Therefore, our results open the route to engi-
neer nonlinear parametric processes, spontaneous formation, and 
self-organization of temporal solitons using synthetic magnetic 
fields and topological design principles.

Online content
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ing summaries, source data, extended data, supplementary infor-
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