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Recent advances in realizing optical frequency combs using nonlinear parametric processes in integrated photonic resona-
tors have revolutionized on-chip optical clocks, spectroscopy and multichannel optical communications. At the same time, the
introduction of topological physics in photonic systems has allowed the design of photonic devices with novel functionalities
and inherent robustness against fabrication disorders. Here we use topological design principles to theoretically propose the
generation of optical frequency combs and temporal dissipative Kerr solitons in a two-dimensional array of coupled ring resona-
tors that creates a synthetic magnetic field for photons and exhibits topological edge states. We show that these topological
edge states constitute a travelling-wave super-ring resonator that leads to the generation of coherent nested optical frequency
combs, as well as the self-formation of nested temporal solitons and Turing rolls that are remarkably phase-locked over more
than 40rings. Moreover, we show that the topological nested solitons are robust against defects in the lattice, and a single
nested soliton achieves a mode efficiency of over 50%, an order of magnitude higher than single-ring frequency combs. Our
topological frequency comb works in a parameter regime that can be readily accessed using existing low-loss integrated pho-

tonic platforms like silicon nitride.

hile optical frequency combs naturally emerge in

mode-locked ultrafast lasers'~, the use of nonlinear

parametric processes—particularly the Kerr effect—in
integrated photonic resonators offers a much more convenient
and compact route to generate optical frequency combs**. Of
particular significance is the regime of coherent optical frequency
combs where the intrinsic dispersion and dissipation of a pho-
tonic resonator are counterbalanced by nonlinearity-induced dis-
persion and parametric gain, respectively, and this double-balance
leads to the self-formation of stationary temporal solutions called
dissipative Kerr solitons (DKSs)°. DKSs have been demonstrated
in a variety of single-resonator geometries, and diverse mate-
rial platforms such as silica glass, silicon nitride, and so on™*’.
More recently, DKSs have been explored in photonic molecules,
that is, a configuration of two coupled resonators, which allows
the exploration of collective coherence or self-organization of
solitons as well as solitonic solutions that are inaccessible using a
single resonator'*-"".

In parallel, advances in the field of topological photonics have
allowed access to new paradigms that can be used to design pho-
tonic devices with novel functionalities'*"'*. On one hand, topologi-
cal photonic systems use complex arrays of hundreds of coupled
waveguides or ring resonators'’~". On the other hand, such systems
exhibit remarkably simple features such as edge states, which are
dictated only by the global topology and therefore are independent
of local details of the system. This unique property of edge states
protects them against local defects and disorders in the system,
enabling the realization of robust photonic devices such as opti-
cal delay lines'”'®%, lasers”*, switches**, photonic crystal wave-
guides and cavities”’~>, fibres™, etc. Lately, topological edge states
have also been used in conjunction with nonlinear parametric

processes for the efficient and tunable generation of quantum states
of light via spontaneous four-wave mixing’'~*’, optical frequency
conversion’®, as well as to explore spatial solitons in coupled
waveguide arrays*’.

Here we theoretically investigate the generation of coherent
optical frequency combs and temporal DKSs in a topological pho-
tonic system consisting of a two-dimensional lattice of coupled
(micro)ring resonators. We exploit the fact that the topologi-
cal edge states circulate around the boundary of the lattice, and
because of their unidirectionality, they constitute a travelling-wave
super-ring resonator formed of multiple single-ring resonators
(Fig. le). We show that pumping the edge state super-ring reso-
nator with a continuous-wave (CW) laser—of optimal frequency
and power—Ileads to the self-formation of temporal patterns, par-
ticularly Turing rolls and nested DKSs. More importantly, these
temporal patterns are phase-locked across all the ring resona-
tors on the edge of the lattice, indicating collective coherence or
self-organization across more than 40 oscillators. In the regime of
nested solitons, the spectral output of our device corresponds to
that of a coherent nested optical frequency comb (Fig. 1f). We find
that the nested solitons inherit the topological protection of a lin-
ear system and are robust against any defects in the lattice. From
an application perspective, in the regime of a single nested soli-
ton, the topological frequency comb achieves a mode efficiency of
>50%, an order of magnitude higher than single-ring frequency
combs*~* that are theoretically limited to only ~5%. Our design
can be readily implemented with the existing nanofabrication
technology (Supplementary Section 3), and similar topological
ring resonator systems with nonlinear parametric processes have
already been realized to enhance and engineer the generation of
quantum states of light**2,
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Fig. 1| Working of the topological frequency comb. a,b, Schematic of a single-ring resonator (a) and its power spectrum in the linear regime (b).

¢, Temporal and spectral response at the output of the ring resonator in the regime of a single Kerr soliton. The temporal output consists of a series

of pulses separated by z, the round-trip time of the ring resonator. The spectral output consists of a series of narrow lines separated by FSR €2;.d, An
indicative spatiotemporal intensity distribution in the ring, showing different operating regimes as a function of input pump frequency detuning éw, from
cold-cavity resonance (Supplementary Fig. 3). e, Schematic of a two-dimensional array of ring resonators that simulates the anomalous quantum Hall
model for photons and exhibits topological edge modes at its boundary. f, Power spectrum in the linear regime showing edge state resonances (shaded)
and bulk bands. The edge states extend throughout the boundary of the lattice and constitute a super-ring resonator, with longitudinal mode separation
;. The transmission spectrum repeats every FSR £2; of the ring resonators. When pumped by a CW laser near one of the edge mode resonances, the

topological super-ring can host nested solitons with indicative spatial intensity profile shown by yellow-coloured pulses. g, Schematic of the temporal and
spectral output of the topological frequency comb in the regime of a single nested soliton. The output temporal profile consists of a series of soliton pulses
separated by single-ring round-trip time z; (fast time), modulated by a series of super-soliton pulses separated by the round-trip time z¢; (slow time) of
the edge mode super-ring. The output spectral profile shows a nested comb, that is, a series (comb) of edge mode resonances (longitudinal modes of the

super-ring; slow frequency) oscillating in each FSR (fast frequency) of the the single-ring resonators.

Topological system and simulation framework

Our topological system consists of a square lattice with a site-ring res-
onator located at each of its lattice sites (Fig. 1e)*>** (Supplementary
Section 1). The site-ring resonators are coupled to their nearest and
next-nearest neighbours, using another set of link rings, such that
a non-zero local synthetic magnetic field for photons with flux =
threads a half-unit cell, but the flux threading a complete unit cell
is zero. Close to a given longitudinal mode resonance of the site
rings, the lattice simulates a Haldane-like anomalous quantum
Hall model for photons. Accordingly, its power spectrum (or the
energy-momentum band structure) exhibits a topological edge band
sandwiched between two bulk bands (Fig. 1f and Supplementary
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Section 1). The edge states propagate all along the boundary of
the lattice in a single direction (set by the input port"') and there-
fore constitute a travelling-wave super-ring resonator (Fig. le and
Supplementary Fig. 1). The multiple longitudinal modes of the
super-ring—equally separated in frequency by free spectral range
(FSR) Qg —are clearly evident in the edge band of the power spec-
trum. Furthermore, this structure of an edge band sandwiched
between two bulk bands repeats in frequency every FSR (longitudi-
nal mode spacing £2;) of the individual ring resonators. Therefore,
our topological system effectively involves three dimensions—two
real dimensions in space and one synthetic dimension in frequency
that is associated with the longitudinal modes of the ring resonators.
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To generate an optical frequency comb in this lattice, we couple
one ring at the edge of the lattice to an input-output waveguide, as
shown in Fig. le. At the input port of this waveguide, we injecta CW
pump laser with frequency close to one of the longitudinal mode
resonances of the ring resonators (indexed by an integer u=0).
The intrinsic Kerr nonlinearity of the ring resonators leads to spon-
taneous four-wave mixing and subsequently stimulates the genera-
tion of photons in other longitudinal modes (¢ #0) in the form of a
frequency comb.

To simulate the generation of an optical frequency comb in
the lattice, we derive the coupled driven-dissipative nonlinear
Schrodinger equations, also called Lugiato-Lefever equations®*>*,
which dictate the complete spatial, spectral and temporal evolution
of site-ring fields as
dfimtw = —i(wou — rp — C’]p) Ampu — ]<Z> An,u e

n

I any +i LTRd G125 —iwyT )
nu 1= f T (‘am,r‘ am,r) €
0

(m) ¢
- (Kex 5m,IO + Kin) Amu + 5m,IO 5;4,0 E.

Here a,,, is the photon field for the site ring at spatial position m
for a given longitudinal mode y; J is the coupling strength between
the ring resonators and is the same for both nearest-neighbour
(indicated by (m,n)) and next-nearest-neighbour (indi-
cated by ((m,n))) couplings. The hopping phase ¢umn =%
for nearest-neighbour couplings and ¢, =0 for the next-
nearest-neighbour couplings (Supplementary Section 1). Further,
7 is the strength of the nonlinear interaction, «,, is the coupling
rate of the input-output (IO) ring (indicated by §,,,,) to the input-
output waveguide, and «;, is the loss rate of the ring resonators; &
is the normalized input pump field, which is coupled only to the
IO ring, and is in the longitudinal mode =0 (indicated by §,,).
Also, w,, is the resonance frequency of the site-ring resonators
for a longitudinal mode with index y and includes second-order
anomalous dispersion D, such that

D
W0 = wo + (R p + 72 e (2)

The input pump frequency is denoted by w, and the pumped lon-
gitudinal mode corresponds to 4 =0 with resonance frequency .
The coupled equations (1) have been written in a reference frame
rotating at frequency £2;/2x such that the FSR of the individual ring
resonators is an independent parameter (equations (1) and (2)).
Also, note that we have not made any assumptions regarding the
spectral position, bandwidth or dispersion of the edge state reso-
nances within a longitudinal mode y (Supplementary Section 8).

In equation (1), the nonlinear four-wave mixing interaction
between different longitudinal mode resonances is represented in
the time domain 7 (in [0,7;]), which corresponds to the round-trip
time within a single-ring resonator**’. Specifically, in a reference
frame rotating at frequency €2;/2n=1/7y, am,. represents the spatio-
temporal field within a ring, at lattice location m, and is related to
the spectral field within the ring as

TR
1 ~ -
amp = — | dzdm.e” """, (3)
TR
0

We emphasize that the spectral and temporal dynamics of our
system, as dictated by equation (1), involves two disparate fre-
quency and time scales: (1) fast frequency associated with the lon-
gitudinal mode resonances of individual rings (indexed by x and
separated by £2;) and corresponding fast timescale 7 in [0,7;] that
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depicts the spatiotemporal field within individual rings; (2) slow
frequency (w,,,) associated with the longitudinal mode resonances
of the super-ring resonator (separated by Q;), that is, the frequency
response close to a given longitudinal mode resonance of the indi-
vidual rings and the corresponding slow time t=1/J that depicts
the evolution of fields within the super-ring with round-trip time
7. While equations (1) and (3) directly yield the fast-time and
fast-frequency response, the Fourier transform of the slow-time (¢)
evolution of a,,,, allows us to reconstruct the slow-frequency (wy,,)
spectrum of the topological comb.

For our numerical simulations, we consider a 12x 12]attice of
site rings and 256 FSRs of individual rings. We use dimensionless
parameters**® such that the relevant frequency (@,,, @, Keo Kin»
£ and D,) and time (zy and f) scales are normalized by coupling
strength J, and the fields (a,,,) are normalized by ratio \/J/y (effec-
tively, J=1and y = 1; Supplementary Section 2). We chose x,, = 0.050
and k;, =0.005 such that the individual edge state resonances in the
edge band are resolved, and D,=0.00025.

Turing rolls and collective coherence
To understand the generation of an optical frequency comb in our
topological device, we first fix the (normalized) input pump field
at e=1.1, and observe the output spectra of the generated photons
across multiple FSRs (fast frequency, indexed by p) as we tune the
input pump frequency in one of the FSRs (4 =0; Fig. 2a,b). We find
that the generation of the frequency comb (bright light intensity
across multiple FSRs) is efficient only when the input pump fre-
quency is close to one of the edge mode resonances. Furthermore,
as we will show later, on pumping near the edge mode resonances,
the bright frequency comb is generated only in the ring resonators
that lie on the edge of the lattice. By contrast, when the input pump
frequency is in the bulk bands, the generation of light in FSRs other
than the pumped FSR is very weak and the frequency comb is ineffi-
cient. This enhanced generation of the optical frequency comb in the
edge band is due to the travelling-wave super-ring resonator formed
by the edge states that efficiently reinforces the optical frequency
comb. The bulk states, on the other hand, do not have a well-defined
direction of flow of photons in the lattice (Supplementary Fig. 1).
Having established that the topological optical frequency
comb is efficient only when the input pump frequencies excite
the edge modes, we now focus on pump frequencies near a single
edge mode of the lattice. Figure 2c shows the total pump power

(Zmeedge|am’/‘:0|2) in the super-ring resonator as a function of

pump frequency detuning. To reveal the self-formation of temporal
features, weplot 3 .4 ge |@m,c|* (Fig. 2d), that is, the spatiotemporal
(or fast-time 7) intensity distribution integrated over the rings on the
edge of the lattice, as a function of the input pump frequency. The
presence of sharp features in this plot indicates both self-formation
of temporal (or equivalently, spatial) features within individual ring
resonators and self-organization of these features across the rings.
Randomly varying features in this plot indicate randomness in the
spatial intensity distribution within the rings or a lack of coherence
between the rings. This plot can be compared with the correspond-
ing plot of a single-ring resonator frequency comb (Fig. 1d and
Supplementary Fig. 3).

When the input pump frequency is at dwp, = 0.111] in
Fig. 2d, we observe a regularly oscillating pattern along the
fast-time 7 axis, which indicates the formation of Turing rolls>
(Supplementary Fig. 3). To confirm this, we plot the spatiotempo-
ral intensity distribution within each ring of the lattice (Fig. 2e),
that is, |@,.|*, where m= (m,m,) indicates the location of a ring
in the lattice (Supplementary Fig. 1). Indeed, all the rings on the
edge of the lattice exhibit equally spaced pulses, called Turing rolls
(or perfect soliton crystals)>°. Also, the light intensity in the bulk of
the lattice is negligible. Remarkably, we find that the phase of the
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Fig. 2 | Operation of topological comb in the regimes of Turing rolls and chaos. a, Total pump power in the super-ring resonator as a function of the

2
input pump frequency detuning (@, - ,)/J, with normalized input pump field e=1.1. b, Spectral power of the generated frequency comb (ZKeX |0|O,;4‘ )

in different FSRs (indexed by g, the fast frequency). ¢, Total pump power in the super-ring resonator, for pump frequencies in one of the edge

state resonances. d, Spatiotemporal (or fast-time) intensity distribution in the ring resonators, integrated over the rings on the edge of the lattice
(Zmeedge\am,f\z), as a function of pump frequency detuning. This plot can be compared with that of a single-ring resonator, as shown in Fig. 1d. We
analyse two different pump frequencies, namely, 6wy, = 0.111J and 6wp, = 0.080J, as indicated in ¢ and d. e-h, Spatial intensity distribution in the lattice
(e,f) and output comb spectra (g h) at swp, (e,g) and Swp, (fh), in the regimes of phase-locked Turing rolls and chaos, respectively. The insets in e and

f show the spatiotemporal intensity distribution in the input-output ring. The insets in g and h show the slow-frequency spectra for a given longitudinal
mode p. For plotting the comb spectra, we chose £, =20. i-I, Slow-frequency spectra (i,j) and slow-time temporal profiles (k) at the output for pump

frequencies dwp, and dwy,, respectively.

Turing rolls is locked throughout the edge of the lattice. This shows
self-organization or collective spectrotemporal coherence between
all the 44 rings on the edge. In fact, there exists a broad region with a
bandwidth of ~0.01], where we observe coherent Turing rolls. From
Fig. 2¢, we also see that the pump power in the super-ring smoothly
varies in this region of coherent Turing rolls (Supplementary Fig. 3).

For lower pump frequencies (near dwp, in Fig. 2¢,d), we find
a chaotic region where the pump power rapidly varies as we tune
the input pump frequency. More importantly, the spatiotemporal
intensity distribution within each ring, as well as the distribution
across rings, is now random without any coherence whatsoever. We
emphasize that the pump frequency is still in the edge band, and
consequently, the comb intensity is confined to the edge of the lat-
tice and the intensity in the bulk is negligible.

Figure 2g,h shows the output comb spectra for the two pump
frequencies dwp, and dwp,. For dwp,, the frequency comb spec-
trum predominantly consists of discrete spectral lines, separated
by 18 FSRs. As in the case of a single-ring frequency comb, this
number exactly corresponds to the number of Turing rolls in each
ring (Fig. 2e). Furthermore, we have confirmed that the number of
Turing rolls decreases as /y/D; (refs. ®*>*) (Supplementary Fig. 4).
At Swy,, that is, in the chaotic region, the discrete lines in the

n72

primary comb merge together, and there are no distinct features in
the frequency spectrum.

Because g, ~] <K€, the slow-frequency spectrum of the
comb is not resolved in Fig. 2g,h, which shows the spectra along
the fast-frequency axis (FSRs, p). Therefore, to better visualize
the slow-frequency response of the topological comb, we plot the
slow-frequency spectrum within each FSR (Fig. 2i,j). Here wy,,
(x axis) is calculated as the detuning from the corresponding lon-
gitudinal mode resonance frequency @, , and the input pump fre-
quency, such that wg,,={(®,-w,,) - (@,-w,)}/], where w, is the
frequency of generated light in longitudinal mode p.

At dwp,, that is, in the region of coherent Turing rolls (Fig. 2i),
the slow-frequency spectrum within each bright FSR (fast fre-
quency, u) exhibits a single mode centred around the comb line (a
cross-section of this plot is shown in Fig. 2g, inset). The oscillation
of a single edge mode within each oscillating FSR is consistent with
the observation of uniform spatial intensity distribution on the edge
of the lattice (Fig. 2¢). This can also be inferred from Fig. 2k, which
shows that the fast-time () intensity distribution at the output
remains constant with the evolution of slow time .

At Swy,, that is, in the chaotic region, we observe the oscillation
of multiple modes in the edge band (w,,=(-1,1)]) of each FSR.
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Fig. 3 | Operation of topological comb in the regime of a nested solitons. a, Spatiotemporal (or fast-time) intensity distribution integrated over edge rings.
b, Total pump power in the super-ring resonator as a function of the input pump frequency, with input pump field e=1.56. ¢,d, Spatial intensity profiles in
the lattice at wp,, for two different slow times, §t=100 (c) and 6t=118 (d), showing the propagation of a single nested soliton (Supplementary Video 1).
The inset shows the phase (or position) of the soliton, which is the same for each ring resonator. e f, Propagation of two nested solitons at pump frequency
dwp,, at two different slow times t=104 (e) and 6t=120 (f) (also see Supplementary Video 2). The phases of the solitons in individual rings (shown in the
insets) are different in the two nested solitons. g h, Temporal profiles at the output for pump frequencies swp, (g) and sy, (h). i,j, Output comb spectra
for wp, (i) and Swp, (§). The inset in i shows the slow-frequency spectrum (for a given longitudinal mode ) where multiple equidistant edge modes are
oscillating. k, Slow-frequency spectrum at @y, showing the oscillation of individual edge mode resonances with an effectively linear dispersion.

This oscillation of multiple edge modes in the chaotic regime is also
evident from the non-uniformity of the spatial intensity distribu-
tion in the lattice (Fig. 2f), and the dynamics of the output temporal
profile (Fig. 21) that randomly varies with slow time ¢. Furthermore,
spectral power in the bulk modes (wg,,<—1J and wg,,> 1)) is
two orders of magnitude smaller compared with those of the edge
modes. This validates the observation of negligible light intensity in
the bulk of the lattice (Fig. 2f). Note that the oscillating edge modes
(Fig. 2j) also show the underlying quadratic dispersion of the ring
resonators in different FSRs.

Temporal Kerr super-solitons

To show the presence of nested solitons in the topological frequency
comb, we increase the normalized input pump field to £ =1.56. From
the spatiotemporal intensity distribution in the super-ring resona-
tor (Fig. 3a), in addition to the coherent Turing rolls and chaotic
regions, we observe a new regime (0-0.02]) where the light intensity
is confined to very narrow regions (thin strands) in the ring resona-
tors. A quick comparison with the analogous spatiotemporal inten-
sity distribution of a single-ring optical frequency comb (Fig. 1d)
reveals that this region hosts solitons in the topological frequency
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comb. Figure 3b shows the total pump power in the super-ring reso-
nator where—similar to a single-ring comb—we see the emergence
of kinks in the region where we expect solitons.

We analyse two different pump frequencies, namely,
dwp, = 0.0070] and Swp, = 0.0135], in this region, as indicated
in Fig. 3. From the spatial intensity distribution (Fig. 3c), we see
that at dwp,, the topological frequency comb exhibits nested soli-
tons: the intensity distribution along the super-ring resonator
(edge) of the lattice is confined to a small region of the edge in the
form of a super-soliton, and the intensity distribution within each
ring is also confined to a narrow region in the form of a soliton.
This nested soliton then circulates along the edge of the lattice in
an anticlockwise direction as slow time t evolves (Supplementary
Video 1). Remarkably, the spatiotemporal phase of the solitons in
individual rings of the super-soliton is locked (Fig. 3¢, inset) as this
nested soliton structure circulates around the edge of the lattice.
This observation once again highlights the collective coherence or
self-organization of multiple nonlinear ring resonators on the edge
of the lattice. The corresponding temporal spectrum (Fig. 3g) at
the output of the topological frequency comb then shows pulses of
light that are separated by g, the round-trip time of the super-ring
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Fig. 4 | Robustness of the topological comb. a, Schematic of the lattice with a deliberately located defect on the boundary. b-d, Robust propagation of a
single nested soliton around the defect, at different slow times 5t =136 (b), 140 (c) and 148 (d), without any loss of phase-locking or any scattering into

the bulk (Supplementary Video 3).

resonator. Note that our simulations are carried out in a reference
frame that is rotating at frequency £;/2x, that is, co-propagating
with the solitons in individual rings. Therefore, the solitons in each
ring are circulating with time period 7y, and each super-soliton
pulse (shown in Fig. 3g) is actually a burst of pulses separated by
time 7y, (Fig. 1g).

At input pump frequency dwp,, we observe two sets of nested
solitons that are simultaneously circulating along the edge of the
lattice (Fig. 3e,f and Supplementary Video 2). Furthermore, while
the phases of the individual ring solitons within each nested soliton
are locked, the corresponding phases in the two nested solitons are
not the same (Fig. 3e,f, insets). In contrast to a single nested soliton,
the temporal spectrum at the output of the topological frequency
comb now consists of two bursts of pulses in each round-trip time
7 of the super-ring resonator. At other pump frequencies in the
super-soliton region, we can also observe three nested solitons.

Next, we discuss the frequency spectrum at the output of the
topological frequency comb (Fig. 3i,j). In the case of a single nested
soliton, that is, at dwy,, the output frequency spectrum is—in gen-
eral—smooth, which indicates that it is phase-locked (except for
few phase jumps; Supplementary Fig. 4). By contrast, in the case of
two nested solitons, that is, at dwp,, the frequency spectrum shows
small variations (Fig. 3j). This behaviour of the frequency spectra is
similar to that observed in single-ring resonator frequency combs
where the spectrum is phase-locked only when a single soliton
exists in the ring>®*>,

Furthermore, by resolving the slow-frequency (wy,,,) response of
the topological comb (Fig. 3k), we find multiple edge modes that are
oscillating within each FSR (Fig. 3i, inset). More importantly, the
oscillating edge modes are equally spaced within a given FSR and
across FSRs, that is, the intrinsic (linear) dispersion of the longitudi-
nal modes—of both individual ring resonators and super-ring reso-
nator—has now been exactly cancelled by the dispersion induced
by the Kerr nonlinearity. Therefore, the frequency spectrum in the
regime of a single nested soliton indeed corresponds to that of a
coherent nested frequency comb (Fig. 1g). The slow-frequency
response also explains the emergence of kinks, as shown in
Fig. 3i—these are the regions in which the dispersion curves from
two different edge modes interfere and lead to phase jumps in the
otherwise coherent frequency comb. This slow-frequency spec-
trum in the soliton regime can be compared with that of the chaotic
regime (Fig. 2j and Supplementary Fig. 5), where multiple modes in
the edge band are oscillating but there is no cancellation of disper-
sion and no phase coherence.

A figure of merit for optical frequency combs operating in the
regime of a single soliton is the mode efficiency at the output of
the device, that is, the fraction of power that resides in the comb
lines other than the pumped mode (Supplementary Section 4). For
single-ring resonator optical frequency combs, the mode efficiency
in the regime of a single soliton is limited to ~5%, irrespective of
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the length, quality factor or material of the resonator*-*>. This is
because the pulse width of a single soliton is much smaller than the
round-trip time of the resonator, which leads to a very small tempo-
ral overlap with a CW pump. In comparison, in the regime of a sin-
gle nested soliton of the topological comb, we observe that 53% of
the total output power (in the waveguide) is contained in the comb
lines other than the pumped edge mode. This mode efficiency is an
order of magnitude higher than that of single-ring resonators and is
due to the fact that a single nested soliton pulse (in the super-ring)
spans multiple phase-locked ring resonators, with each ring sup-
porting its own single soliton pulse. This enhances the temporal
overlap of the nested soliton pulse with the pump. We note that a
single-ring comb can also achieve higher efficiency when multiple
solitons are present in the ring resonator’. However, in this case, the
phase (position along the ring) of each soliton pulse is different, and
therefore, the comb spectrum is not smooth. In the case of a topo-
logical nested soliton, a single ring hosts only a single soliton, and
the phase of the solitons across multiple rings is exactly the same,
which leads to a smooth spectrum (Fig. 3g). We note that the theo-
retical limit on the conversion efficiency of the topological nested
frequency comb (in the regime of a single nested soliton) could be
higher for other parameter regimes.

In the linear regime, the edge states have been demonstrated to be
topologically protected against defects in the lattice'>***. To inves-
tigate whether the edge states preserve their robustness in the non-
linear regime as well, we explore the propagation of nested solitons
in the presence of a deliberately located point defect in the lattice.
Specifically, we detune one of the site-ring resonators on the edge of
the lattice by 20] (Fig. 4a) such that it is effectively decoupled from
the rest of the lattice. Figure 4b—d shows the slow-time evolution
of the observed single nested soliton in this lattice (Supplementary
Video 3). We see that the nested soliton simply routes around the
defect as it circulates along the boundary of the lattice, without los-
ing its phase coherence. We do not observe any light pulses that are
reflected from the defect or scattered into the bulk of the lattice.
This clearly shows that the nested solitons are indeed topologically
robust against defects in the lattice.

Discussion and outlook

The emergence of coherent temporal features, such as Turing rolls
and nested solitons, and the characteristics of a nested frequency
comb in the topological super-ring resonator closely resemble those
of a single-ring resonator frequency comb in the regime of anoma-
lous dispersion. This allows us to qualitatively depict the phase
diagram of the topological frequency comb, as shown in Fig. 5. We
perform numerical simulations at different pump powers (¢). Using
spatiotemporal (fast-time) intensity distributions integrated over the
edge rings (similar to Figs. 2d and 3a), we locate the regions of pump
frequency detuning that lead to Turing rolls, chaos and nested soli-
tons. In this phase diagram, we have also indicated (upper x axis) the
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Fig. 5 | Qualitative phase diagram of the topological frequency comb.
Different operating regimes of the topological comb as a function of the
input pump frequency and pump power. The dots indicate the numerical
simulation results.

pump frequency detuning from the respective cold-cavity (linear)
edge mode resonance (wq,) and normalized it by its bandwidth
(BW,qg.). Similar to the case of a single-ring resonator (Fig. 1d and
Supplementary Fig. 2), we observe Turing rolls at low pump pow-
ers and for pump frequencies near the cold-cavity edge resonance
(@%4q¢)- In this regime, the longitudinal modes of the individual rings
are phase-locked, which manifests as phase-locking of the Turing
rolls across rings. However, only a single mode of the super-ring res-
onator is excited (Fig. 2g,i). At pump frequencies further away from
the cold-cavity edge resonance, we observe a chaotic regime where
multiple longitudinal modes of the super-ring resonator are excited
in each longitudinal mode of the single rings. But these modes are
not phase-locked. Note that in the chaotic regime, the pump fre-
quency and intensity distribution in the lattice still correspond to
those of the edge states. This clearly indicates that merely exciting
the edge states of the system does not lead to self-organisation or
phase-locking. The nested soliton region appears at input pump
power £x1.3 and at pump frequencies that are far red-detuned
from the cold-cavity edge resonance. In this regime, both sets of
longitudinal modes (those of single rings and the super-ring) are
phase-locked (Supplementary Section 6). This phase-locking is
enabled by the unidirectionality and the approximately linear dis-
persion of the topological edge states (Supplementray Section 8). We
observe that the soliton region narrows down, and it completely dis-
appears at higher pump powers, probably leading to another chaotic
regime. We note that this qualitative phase diagram was estimated
for a given value of dispersion, in one of the edge mode resonances
near the centre of the edge band.

While we have shown the presence of many features that are
analogous to a single-ring resonator frequency comb, we have
only analysed a small subset of parameters that control the topo-
logical frequency comb. Therefore, one can expect the appearance
of many other known and unknown phases that can emerge from
the interaction of edge and bulk modes. It would be intriguing, for
example, to explore breathing Turing rolls and nested solitons, dark
nested solitons, and platicons in the normal dispersion region®*. In
the limit of weak pump powers, our results could pave the way for
the generation of quantum optical frequency combs and photonic
cluster states entangled in higher dimensions using frequency-time
multiplexing*°. Our system could be translated to other frequency
regimes of the electromagnetic spectrum, for example, to the micro-
wave domain using circuit quantum electrodynamics platform to
implement topological arrays of coupled resonators™. One could
also explore other topological lattice models to engineer the band
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structure and therefore the dispersion of edge and bulk states. In
fact, one could go beyond Euclidean geometries and explore the
hierarchy of solitons in non-Euclidean curved space, for example,
hyperbolic lattices*. Therefore, our results open the route to engi-
neer nonlinear parametric processes, spontaneous formation, and
self-organization of temporal solitons using synthetic magnetic
fields and topological design principles.
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ing summaries, source data, extended data, supplementary infor-
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