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ABSTRACT

Climate change is altering precipitation regimes
globally, with expectations of intensified precipi-
tation patterns (for example, larger but fewer
rainfall events) and more frequent and extreme
drought. Both aspects of precipitation change can
impact ecosystem function individually, but it is
more likely that they will occur in combination. In
a central US mesic grassland, we imposed an ex-
treme 2-year drought (growing season precipita-
tion reduced by 66%) on plots with a long-term
(16-year) history of exposure to either ambient or
intensified precipitation patterns (average threefold
increase in event size and threefold decrease in
event number during the growing season). While
this intensified pattern did not alter total precipi-
tation amount, it generally led to ecosystem re-
sponses consistent with a drier environment (for
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example, reduced soil moisture, aboveground net
primary production (ANPP), and soil CO, flux, but
little evidence for altered root biomass). Surpris-
ingly, this history of intensified precipitation pat-
terns did not affect the response of ANPP to the
subsequent extreme drought. In contrast, previous
exposure to intensified precipitation patterns re-
duced root production and muted soil CO, flux
responses to rainfall events during drought. Re-
duced root production in plots experiencing com-
pounded precipitation extremes was driven not by
the dominant C,4 grass species, Andropogon gerardii,
but collectively by the subdominant species in the
plant community. Overall, our results reveal that
compound changes in precipitation patterns and
amount affected this grassland in ways that were
less apparent (that is, belowground) than responses
to either change individually and significantly re-
duced ecosystem carbon uptake.

Key words: belowground net primary produc-
tion; aboveground net primary production; soil
CO, flux; carbon cycling; Andropogon gerardii;
rainfall extremes.
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HiGHLIGHTS

e Rainfall intensity and drought are increasing,
with unknown ecological consequences

e Past exposure to intensified rainfall altered the
impacts of drought belowground

e Forecasts of drought impacts should include
rainfall history and belowground dynamics

INTRODUCTION

Climate change is expected to intensify precipita-
tion regimes by increasing the size of individual
rainfall events as well as the number and length of
anomalously dry periods (that is, droughts), with
evidence for these changes already emerging (Dai
2013; Fischer and Knutti 2016; Huntington 2006;
IPCC 2013; USGCRP 2017). For example, much of
the world is experiencing larger, more intense
precipitation events without corresponding in-
creases in total precipitation amount (Fischer and
Knutti 2016; Fowler and others 2021; IPCC 2013).
A shift toward fewer but larger precipitation events
and longer durations between events can affect
myriad ecosystem processes (Fay and others 2008;
Knapp and others 2008; Zeppel and others 2014).
Concurrently, droughts are becoming more fre-
quent and extreme in many regions. Drought, de-
fined as a period of marked precipitation deficiency
relative to the local long-term average, is a well-
known climate extreme that has been studied
extensively (Dai 2013; Eziz and others 2017; Gao
and others 2019; Lei and others 2016; Slette and
others 2019; Wu and others 2011). Given that both
dimensions of precipitation change are increasing,
it is likely that future droughts will occur against a
backdrop of intensified precipitation patterns (cf.
Harrison and others 2018). However, most research
to date has focused on these different aspects of
precipitation change individually, and their com-
bined effects are thus unresolved.

Ecosystem responses to combined weather
events, or compound events (Seneviratne and
others 2012), are likely not predictable from studies
that focus on individual events (Dodd and others
2021; Zscheischler and others 2018). Instead, one
dimension of change might precondition an
ecosystem and alter its response to another
(Zscheischler and others 2020). That is, a chronic
“press”’ change such as long-term intensification of
precipitation patterns might alter the impacts of a
“pulse” event such as a short-term extreme
drought. For example, Hoover and others (2015)

found that a short-term extreme ‘““pulse drought”
had a larger negative impact on plant production
and mortality when it occurred against a backdrop
of a milder and longer-term ‘‘press drought.”” Other
previous studies have also found amplifying im-
pacts of compound climate extremes more gener-
ally, though neutral and mitigating effects have
also been reported (Anderegg and others 2020;
Backhaus and others 2014; Dreesen and others
2014; Hoover and others 2021; Hughes and others
2019). Consensus on the effects of compounded
climate changes is therefore lacking. Understanding
press—pulse interactions, such as how exposure to
intensified precipitation patterns might precondi-
tion ecosystem responses to drought, has important
implications for improving understanding of car-
bon cycling in a changing climate.

Grasslands are important ecosystems in which to
assess compounded effects of precipitation changes
because they are structurally and functionally
controlled by water availability (Morgan and others
2008; Mowll and others 2015; Sala and others
1988), they experience high inter- and intra-an-
nual precipitation variability (Knapp and Smith
2001), and they are sensitive to changes in pre-
cipitation amount and pattern (Felton and others
2020; Gherardi and Sala 2015; Heisler-White and
others 2008, 2009; Hoover and others 2014; Hux-
man and others 2004a, b, ¢; Knapp and others
2002, 2008, 2015, 2020; Li and others 2019; Lu and
others 2021; Thomey and others 2011). Grass-
dominated systems are also globally extensive
(Dixon and others 2014; White and others 2000)
and play a key role in the global carbon cycle
(Pendall and others 2018; Scurlock and Hall 1998).
Belowground responses such as belowground net
primary production (BNPP) and soil CO, flux are of
particular interest here because grasslands allocate
a substantial portion of total net primary produc-
tion to roots and store most of their carbon
belowground (Hui and Jackson 2006; Risser and
others 1981; Silver and others 2010; Smith and
others 2008; Soussana and others 2004). Root
production and soil CO, flux are key {factors
determining the size of the soil carbon pool, which
is at least twice as large as the atmospheric carbon
pool and plays an important role in global carbon
cycling and climate regulation (Kochy and others
2015; Scharlemann and others 2014). Although
root mass production is useful for comparing
aboveground versus belowground NPP and their
relative contributions to carbon cycling, the
capacity of plants to acquire soil resources is likely
better reflected by root length than mass because
length better reflects the volume of soil that plants
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can access (Casper and Jackson 1997; Jackson and
others 1996; Wilson 2014). We thus assessed both
length and mass production of roots.

The objective of this study was to assess the
ecosystem impacts of compounded precipitation
changes in a mesic grassland. Specifically, we tested
how long-term extreme intensification of precipi-
tation patterns might alter ecosystem responses to a
subsequent extreme drought, as well as recovery
after drought. Our research builds on the Rainfall
Manipulations Plots (RaMPs; Fay and others 2000)
experiment which altered growing season precipi-
tation patterns, but not amount, for 16 years. The
RaMPs experiment intensified precipitation pat-
terns by imposing fewer and larger precipitation
events with longer intervening dry periods, com-
pared to ambient patterns. Prior results from the
RaMPs study revealed that the intensified precipi-
tation pattern resulted in drier soils, increased plant
water stress, reduced aboveground net primary
production (ANPP) and soil CO, flux, altered soil
microbial community composition, and altered
genotypic structure of the dominant plant species
compared to ambient precipitation patterns (Avolio
and Smith 2013; Avolio and others 2013; Evans
and Wallenstein 2012; Fay and others 2002, 2003,
2011; Harper and others 2005; Knapp and others
2002; Nippert and others 2009). We predicted that
this history of intensified precipitation patterns
would exacerbate the impacts of drought, com-
pared to a history of ambient precipitation patterns.
To test this prediction, we imposed an extreme 2-
year drought (66% reduction in growing season
rainfall) in grassland plots with and without pre-
vious long-term exposure to an intensified precip-
itation regime and assessed key carbon cycling
processes (for example, ANPP, BNPP and soil CO,
flux) during and after drought.

METHODS
Study Site

The Konza Prairie Biological Station (KPBS) is a
3487-ha unplowed tallgrass prairie in northeast
Kansas, USA (39° 05’ N, 96° 35" W) and is a USA
Long-Term Ecological Research (LTER) site. The
plant community is primarily composed of native
C, grasses (average 77% of total biomass in the
RaMPs experiment over 16 years), dominated by
Andropogon gerardii and also including Sorghastrum
nutans, Sporobolus asper, and Panicum virgatum. The
rest of the plant community is composed mostly of
an array of C; forb species (mainly Solidago
canadensis, Aster ericoides, S. missouriensis), with

woody species accounting for a very small percent
of total biomass and cover in the RaMPs experi-
ment (Fay and others 2000; Knapp and others
1998). The climate is temperate with warm, wet
summers and cold, dry winters. The mean annual
temperature is 13°C (Knapp and others 1998) and
the mean annual precipitation is 851 mm, almost
70% of which occurs during the growing season.
Our experiment was located on deep silty clay loam
soils in the Tully series (Collins and Calabrese 2012;
Ransom and others 1998). Frequent fires are a
historical feature of this grassland and are essential
for maintaining grass dominance and reducing
woody plant encroachment (Briggs and others
2005; Knapp and others 1998), and our experiment
was burned annually in mid-March.

The RaMPs Experiment Design
and Treatments

The RaMPs experiment included 12 fixed-location
shelters (9 x 14 m) arranged in a randomized
complete block design (see Fay and others 2000 for
details). Each shelter consisted of a clear (UV
transparent) polyethylene roof that excluded all
precipitation, gutters and storage tanks for rainfall
collection, and an overhead irrigation system for
rainfall application. Each RaMP was isolated
belowground to a depth of 1.2 m via a subsurface
barrier. Sampling occurred in a 6 x 6 m area di-
vided into four 2 x 2 m subplots. Each RaMP re-
ceived either the ambient or intensified
precipitation pattern from 1998 to 2013. In RaMPs
receiving the ambient precipitation pattern, col-
lected rainfall was applied each time a natural rain
event occurred. In RaMPs receiving the intensified
precipitation pattern, rainfall timing and event size
were altered by delaying rainfall applications. The
dry interval between rainfall events was increased
by 50% and all ambient rainfall during the
lengthened dry interval was collected, stored and
applied as a single large event. Thus, the ambient
and intense treatments received the same amount
of rain, but the intense treatment received fewer
and larger rainfall events with longer intervening
dry periods. Manipulations occurred only during
the growing season (May-September). Rainfall
events were defined as daily total > 5 mm, as
smaller amounts are almost entirely intercepted by
the canopy (Seastedt 1985). The intense treatment
imposed a statistically extreme precipitation pat-
tern, compared to long-term ambient rainfall pat-
terns at the KPBS (Nippert and others 2006; Smith
2011).
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After 16 years of ambient versus intense precip-
itation patterns, an extreme drought was imposed
on all plots. In 2014 and 2015, total growing season
precipitation in all RaMPs was reduced to about
34% of the 1998-2013 experiment average (fol-
lowing Knapp and others 2017). Each rainfall event
was reduced in size by 66% and event timing fol-
lowed the ambient pattern. Similar reductions have
imposed statistically extreme droughts at the KPBS
in the past (Hoover and others 2014). The size and
timing of all rainfall events were the same for all
plots, to facilitate direct comparisons of how past
exposure to intensified precipitation would impact
responses to a common drought treatment. To as-
sess recovery after drought, all ambient precipita-
tion was applied to all RaMPs in 2016 with event
size and timing matching the ambient pattern.

Field Measurements

Key ecosystem processes (for example, photosyn-
thesis, ANPP, N mineralization) at the KPBS are
strongly linked to soil moisture in the top about
30 cm below the surface (Blair 1997; Briggs and
Knapp 1995; Knapp and others 1993; Nippert and
Knapp 2007). Thus, soil volumetric water content
(VWC) was measured at 15 cm and 30 cm soil
depths at 30 min intervals in all RaMPs for the
duration of the experiment using Time Domain
Reflectometry (TDR) probes (Fay and others 2000).
Annual ANPP was estimated each year (1998-—
2016) from end-of-growing-season vegetation
harvests of 16 total 0.1 m? quadrats per RaMP (four
per subplot) performed by clipping all vegetation
rooted within the quadrat to the soil surface with
scissors. Because the site is burned annually and
not grazed, the collected biomass represents ANPP.
The dominant species, A. gerardii, often drives re-
sponses in this system (Smith and Knapp 2003),
and it was separated from subdominant species. All
biomass was dried at 60°C for 48 h and weighed.
The cumulative impact of the ambient versus
intense precipitation treatments on total root bio-
mass was estimated by taking four soil cores per
RaMP (5 cm diameter, 60 cm deep, one per sub-
plot) at the end of the last growing season before
the drought. Each core was divided into 10-cm
depth increments. Roots were removed from each
increment, washed free of soil, dried at 60°C for
48 h and weighed. Annual BNPP was estimated
during the last year of drought (2015) and first year
after drought (2016) by using root ingrowth cores
to estimate fine root production. At the start of the
growing season (late April), three soil cores (5 cm
diameter, 30 cm deep) were taken from each plot,

plus 10 from unaltered grassland adjacent to the
RaMP (for use as controls) and discarded. This
depth captures most root production at our study
site and other grasslands (Jackson and others 1996;
Nippert and others 2012; Schenk and Jackson
2002; Sun and others 1997, Weaver and Darland
1949). A cylindrical mesh basket filled with sieved,
root-free soil collected adjacent to the RaMPs and
packed to approximate field bulk density was
placed into each core hole (5 cm diameter, 30 cm
deep, 2 x 2 mm mesh holes). Any space between
the ingrowth core and intact soil was filled with
sieved, root-free soil. Ingrowth cores were removed
at the end of the growing season (late September)
and stored at 4°C. Each core was divided into 10-
cm depth increments. Soil was washed off roots by
wet sieving (0.5 mm sieve) under low water pres-
sure, submerging remaining sample in a shallow
bowl of water, picking out roots with forceps, and
removing attached soil by hand. A. gerardii roots are
distinctive (Figure S1), and they were separated
from subdominant species’ roots. Roots were
scanned using an Epson Perfection photo scanner
(Epson America Inc., Long Beach, CA, USA) and
scans were analyzed for root diameter and length
using WinRhizo (Regent Instruments Inc., Québec,
Canada). Roots were dried at 60°C for 48 h and
weighed. BNPP was calculated as root mass pro-
duction per m? ground area.

Soil CO, flux was measured in situ between
10:00 a.m. and 2:00 p.m. local time approximately
weekly throughout the 2015 and 2016 growing
seasons using a LiCOR 8100 portable gas exchange
system (LiCOR Inc., Lincoln, NE, USA). Per RaMP,
eight polyvinyl chloride (PVC) collars (two per
subplot) were installed (10 cm diameter x 8 cm
tall, buried 6 cm into the soil) between plant tillers/
stems. Any litter and vegetation within the collar
were removed (via clipping with scissors or by hand
if loose) so that measurements included only CO,
flux from the soil. To assess flux responses to
rainfall, additional measurements were taken
immediately before and approximately 24 h after
individual rainfall applications.

Statistical Analyses

We performed all analyses in R (R Core Team
2018), using plot-level and annual-scale data. We
used the psych package (Revelle 2020) for sum-
mary statistics (Table S1). To determine the impacts
of ambient versus intense treatments during 1998-
2013 on total, A. gerardii, and subdominant species
ANPP and on soil moisture at 15 cm and 30 cm, we
used linear models (nlme package; Pinheiro and
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others 2020) and type 3 sum of squares analyses of
variance (“ANOVAs"’; car package; Fox and Weis-
berg 2019) to assess the main effects of treatment
(nested within block) and vyear, and the
year x treatment interaction. We similarly assessed
the main effect of treatment (nested within block)
and depth increment, and the treatment x depth
increment interaction on root biomass. To deter-
mine the impacts of ambient versus intense treat-
ment history during the last year of drought and
the first year after drought, we used linear models
and type 3 sum of squares ANOVAs to assess the
main effects of treatment history (nested within
block) and year, and the year x treatment history
interaction (Table S2). We analyzed ANPP, BNPP,
NPP, and the BNPP:ANPP ratio for all species, A.
gerardii, and subdominant species in this way, as
well as soil moisture at 15 cm and 30 ¢cm and soil
CO, flux (growing season average, before rainfall
events and after rainfall events). In the BNPP
model, we also included the main effect of depth
increment and the interactions of depth increment
with treatment history and with year. For each
dependent variable, we used pairwise contrast
comparisons (emmeans package; Lenth 2020) to
determine in which years there were differences
between treatments. We considered p val-
ues < 0.05 significant.

REsuLTS

Ecosystem Responses to an Intensified
Precipitation Pattern

Results from various time periods during the
RaMPs experiment have been reported previously
(for example, Avolio and others 2013; Fay and
others 2000, 2002, 2003, 2011; Harper and others
2005; Knapp and others 2002), but none from its
full 16-year duration. We updated a subset of past
analyses and here report results from the entire
experiment. The intense treatment reduced the
number of growing season rainfall events almost
threefold (30 £ 2 ambient vs. 12 = 1 intense)
while increasing rainfall event size by a similar
proportion (13 £ 1 mm ambient Versus
33 £+ 2 mm intense; Figure 1), on average. Despite
no differences in total rainfall between treatments,
the intense pattern led to drier soils at 15 cm during
the growing season (22.2 + 5.9% vwc intense vs.
255+ 4.5% VWC ambient; Fy 125 = 49.5,
p < 0.001) and a 14% reduction in ANPP
(675 4+ 17 gm™? intense vs. 737 £18gm *
ambient; F;; =4.93, p < 0.001), averaged over
16 years. A. gerardii composed ~ 40% of total

ANPP on average during this time (Figure 2). At
the end of the experiment, standing crop root
biomass did not differ between treatments overall
(792 £ 59 gm™? intense vs. 809 £ 61 gm >
ambient; Fj 36 = 1.01, p = 0.32) or in any individ-
ual depth increment (Figure S2).

How an Intensified Precipitation Pattern
Affected Drought Responses

Reducing the size of each ambient precipitation
event by 66% resulted in growing season precipi-
tation amounts below the 5th percentile of the
RaMPs rainfall record (1998-2013) and the long-
term (112-year) KPBS rainfall record (Hoover and
others 2014). Thus, based on site-specific historical
precipitation amounts, we imposed a statistically
extreme drought (Smith 2011).

During the last year of the drought (2015), soil
moisture did not differ by treatment history at ei-
ther 15cm (F;,7=1.13, p=0.30) or 30 cm
(Fy17 = 0.46, p = 0.50) depths, but it was 55%
(15 cm) and 40% (30 cm) lower than the pre-
drought ambient RaMPs average. Similarly, ANPP
during the last year of the drought did not differ by
treatment history (F; g = 0.086, p = 0.78), but it
was 36% lower than the pre-drought ambient
RaMPs average. Thus, a history of intensified pre-
cipitation did not alter the response of ANPP to
drought (Figure 2). In contrast, BNPP during the
last year of the drought was lower in historically
intense versus ambient plots (Figure 2; F; g = 7.14,
p = 0.028). BNPP in historically intense plots was
70% of BNPP in historically ambient plots. This was
collectively driven by the subdominant species.
BNPP of the subdominant species in the historically
intense plots was 46% of that in the historically
ambient plots (F; g = 18.19, p = 0.0027). Surpris-
ingly, BNPP of the dominant species, A. gerardii, did
not differ by treatment history (F;g=2.43,
p =0.16). Despite differences in BNPP, NPP
(ANPP + BNPP; F,5=0.64, p=0.45) and the
overall ratio of BNPP:ANPP did not differ by treat-
ment history (F, g = 2.17, p = 0.18). However, the
ratio of subdominant species BNPP:ANPP in his-
torically intense plots was just 50% of that in
ambient plots (Fy g = 6.09, p = 0.039). In the last
year of the drought, A. gerardii was 32 and 59% of
total BNPP in historically ambient and intense
plots, respectively, and it was 44 and 48% of total
ANPP in ambient and intense plots, respectively
(Figure 2).

Historical precipitation intensification reduced
subdominant species BNPP in each depth incre-
ment (Figure 3; 0-10 cm: p = 0.046; 10-20 cm:
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Figure 1. Growing season precipitation in each year of the RaMPs experiment (solid line) and 1998-2013 average (dashed
line). From 1998 to 2013 (non-shaded area), the intense treatment received fewer and larger rainfall events. A common
drought was imposed on both historical treatments in 2014 and 2015 (yellow-shaded area), and all plots received all ambient
rainfall in 2016 (green-shaded area). Insets: 1998-2013 average (+ 1 standard error) growing season number of rain events,
size of rain events, soil moisture at 15 ¢cm, aboveground net primary production (ANPP) and root biomass (2013 only) in
ambient and intense precipitation pattern treatments. *Significant difference between ambient versus intense treatments.
Photos: the RaMPs experiment (/eft), closer view of a RaMPs experiment shelter (right).

p = 0.0099; 20-30 cm: p = 0.021) in the last year of
drought. In addition, there was a significant effect
of depth on subdominant species BNPP
(F3,28 = 4.37, p = 0.022) but not A. gerardii BNPP
(Fy28 = 1.80, p =0.18). That is, A. gerardii BNPP
was more evenly distributed among depths. In
historically intense plots, A. gerardii produced more
root mass (p = 0.040) and a greater proportion of
its total root mass (p = 0.014) in the deepest
increment sampled, compared to subdominant
species.

Similar to BNPP, root length production was
lower in historically intense versus ambient plots
during the last year of drought (Figure 4;
Fy7=29.6, p < 0.001). This difference was also
due to responses of subdominant species
(Fy7=9.65, p=20.038), not of A gerardii
(Fp7=2.65, p=0.65). A. gerardii made up a
smaller proportion of total root length versus mass
production (20% vs. 30% ambient, 30% vs. 60%
intense, respectively), due to its smaller specific
root length (SRL; 67.4 + 7.7 m g~ ') compared to
subdominant species (160 = 16 m g~ '; p < 0.001;
Figure S1). There was no difference in root tissue
density (RTD) of A. gerardii versus subdominant
species (Figure S1; p = 0.25). There was also no
effect of treatment history and no difference be-
tween drought versus after-drought years on SRL
or RTD of A. gerardii or subdominant species
(p > 0.05).

Growing season average soil CO, flux during
drought did not differ by treatment history during
the last year of drought (Figure 5; F;g= 1.34,
p = 0.28), but short-term flux increases after rain-
fall did. Soil CO, flux was higher in historically
ambient versus intense plots after rainfall
(F18 = 1.93, p = 0.044). Thus, a history of intensi-
fied precipitation dampened the response of soil
CO, flux to rainfall during drought.

Recovery After Drought

The first year after the drought (2016) was wetter
than usual, with ambient precipitation almost 40%
higher than the pre-drought RaMPs average (Fig-
ure 1). In this year, soil moisture did not differ by
treatment history at either 15 cm (F;; = 0.013,
p=0.91) or 30 cm (F, 7 =2.96, p = 0.13) depths.
Total ANPP (F;g=0.017, p =0.99), A. gerardii
ANPP (F; s =0.162, p = 0.70), and subdominant
species ANPP (F; g = 0.0041, p = 0.95) also did not
differ by treatment history (Figure 2). A. gerardii
was 50% of total ANPP in both historically ambient
and intense plots (Figure 2). As expected, total
ANPP was higher after versus during drought,
(ambient: p < 0.001; intense: p < 0.001) as was
ANPP of A. gerardii and of subdominant species.
Compared to the 16-year pre-drought ambient
RaMPs average, ANPP during the wet recovery year
was slightly (6%) reduced (Fj44 = 2.90,
p = 0.096). However, A. gerardii ANPP was higher
(9.5%) whereas subdominant species ANPP was
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lower (26%) than the pre-drought ambient aver-
age.

After drought, total BNPP (F, 3 = 0.29, p = 0.61),
A. gerardii BNPP (F, g = 0.04, p = 0.85), and sub-
dominant species BNPP (F; g = 0.59, p = 0.47) did
not differ by treatment history. A. gerardii was 60%
of total BNPP in both historically ambient and in-

tense plots (Figure 2). Total BNPP (ambient:
p = 0.049; intense: p = 0.025) and A. gerardii BNPP
(ambient: p = 0.014; intense: p = 0.048) were

higher after versus during drought, but subdomi-
nant BNPP did not differ after versus during
drought (ambient: p = 0.14; intense: p = 0.10; Fig-
ure 2). The BNPP:ANPP ratio for all species and for
subdominants was lower after versus during
drought in  Thistorically ambient (p = 0.019,
p = 0.022, respectively) but not intense plots
(p=0.71, p=0.99, respectively), whereas the
BNPP:ANPP ratio for A. gerardii did not differ in

either historical treatment (ambient: p = 0.18; in-
tense: p = 0.78).

Consistent with BNPP, root length production
did not differ by treatment history in the first year
after drought (Figure 4; F; s = 0.35, p = 0.58). To-
tal (ambient: p = 0.049; intense: p = 0.019) and A.
gerardii (ambient: p = 0.014; intense: p = 0.045)
root length production were higher after versus
during drought, but subdominant species root
length production was not different after versus
during drought (ambient: p = 0.86; intense:
p = 0.064).

Finally, growing season average soil CO, flux did
not differ by treatment history in the first year after
drought (Figure 5; F; g =1.19, p = 0.31) and was
higher after versus during drought (p < 0.001).
The short-term flux increase after rainfall did differ
by treatment history. Soil CO, flux was higher in
historically ambient versus intense precipitation
plots after rainfall (F; o, = 4.49, p = 0.037).
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Figure 3. Average (+ one standard error) BNPP of A.
gerardii and subdominant species by depth in historically
ambient and intense precipitation treatments during the
last year of drought. *Significant difference between
historical treatments in a depth increment. VSignificant
main effect of depth on BNPP. After drought, there were
no significant differences between historical treatments
in BNPP at any depth, for either A. gerardii or
subdominant species.

DiscussioN

Long-term exposure of this mesic grassland to an
intensified precipitation pattern reduced soil mois-
ture and ANPP, as reported previously (Fay and
others 2002, 2003, 2011; Knapp and others 2002).
But when exposure to extreme precipitation pat-
terns was compounded with extreme drought,
there were no legacy effects of past precipitation
pattern on ANPP. This contrasts sharply with re-

fied precipitation patterns amplified reductions in
BNPP during drought and reduced the size of the
soil CO, flux increase following rainfall events both
during and after drought. Thus, our findings add to
growing evidence that grassland belowground re-
sponses to precipitation change should not be in-
ferred from aboveground responses (Byrne and
others 2013; Carroll and others 2021; Chou and
others 2008; Post and Knapp 2020; Wilcox and
others 2015, 2017). The negative effect of past
exposure to intensified precipitation belowground
has implications for long-term ecosystem carbon
cycling and sequestration, given the important role
of soils, especially grassland soils, in global carbon
storage (Hui and Jackson 2006; Kochy and others
2015; Risser and others 1981; Scharlemann and
others 2014; Silver and others 2010; Smith and
others 2008; Soussana and others 2004). Our re-
sults thus suggest that, as precipitation patterns
continue to intensify, the negative impacts of
droughts on plant production and ecosystem car-
bon uptake might be underestimated if below-
ground dynamics are not fully considered.
Although it is possible that BNPP differed be-
tween ambient and intense precipitation plots prior
to drought (this was not quantified), root biomass
did not differ between treatments in the last year of
the experiment (Figures 1, S2), suggesting that any
differences in annual root production between
treatments were likely small and did not accumu-
late to affect standing root biomass. However, we
found that root production did differ between
ambient and intense treatment plots when precip-

sponses belowground, where a history of intensi- itation intensification was compounded with
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Figure 4. Average (+ one standard error) root length production of all species, A. gerardii, and subdominant species from
historically ambient and intense treatments in the last year of drought and first year after drought. *Significant difference
between historically ambient versus intense precipitation treatments within a year (drought or after-drought).
<«Significant difference between drought versus after-drought years, within historical precipitation treatment (ambient
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Figure 5. Growing season average (+ one standard
error) soil CO, flux and average (+ one standard error)
soil CO, flux approximately 24 h after rainfall in
historically ambient and intense treatments in the last
year of drought and the first year after drought.
Horizontal dashed line = pre-drought ambient RaMPs
average. *Significant difference between historically
ambient versus intense precipitation treatments within
a year (drought or after-drought). «Significant difference
between drought versus after-drought years, within
historical precipitation treatment (ambient or intense).

drought. The negative effect of intensified precipi-
tation on BNPP during drought was due to re-
sponses of the subdominant species. The BNPP
distribution of A. gerardii was deeper than that of
subdominant species, which likely contributed to
the different responses during and after drought.
Indeed, previous research has linked changes in
root distribution within the top ~ 30 ¢cm to chan-
ges in total plant production even when maximum
rooting depth is greater than 30 cm (Nippert and
Holdo 2015). We also found that A. gerardii made
up a smaller proportion of total root length pro-
duction versus root mass production. The lower
dominance of A. gerardii root length versus mass
was driven by its low SRL. A lower SRL likely
indicates ““outsourcing”” of resource acquisition to
mycorrhizae, versus a ‘“do-it-yourself”” acquisition
strategy of plants with higher SRL (Bergmann and
others 2020). We did not assess mycorrhizal
abundance, but past research has shown that A.
gerardii is highly mycorrhizal dependent (Smith
and others 1999; Wilson and Hartnett 1997, 1998).
It is thus possible that greater mycorrhizal associa-
tion of A. gerardii versus subdominant species also
contributed to their different responses during and
after drought. BNPP of subdominant species dif-
fered between historical ambient versus intense
treatments during drought but not after drought,
suggesting that the impacts of precipitation pattern

intensification are relatively short-lived and re-
versible. The impact of drought might be longer
lasting, as BNPP of subdominant species remained
below control plot levels after drought did not in-
crease after drought, even in a wet year.

Previous research and theory have suggested that
increased proportional allocation belowground
provides an advantage in dry conditions by
increasing water uptake (Bloom and others 1985;
Chapin and others 1987; Chou and others 2008;
Milchunas and Lauenroth 2001; Poorter and others
2012). Based on this, we expected to find higher
BNPP:ANPP ratios during versus after drought.
However, we only found evidence for this in the
former ambient precipitation treatment. This re-
sponse was driven by an almost twofold higher
BNPP:ANPP ratio of the subdominant species dur-
ing versus after drought. That is, whereas BNPP and
ANPP of A. gerardii changed by the same relative
proportion in both historical treatments, subdomi-
nant species shifted to produce proportionally more
root mass versus shoot mass during drought, but
only in historically ambient precipitation plots. This
could indicate greater plasticity of production allo-
cation in response to water availability of sub-
dominant species compared to A. gerardii, or that
resources other than water (for example, carbon)
were also limiting during drought. The mechanism
explaining how a history of intensified precipita-
tion altered the responsiveness of BNPP:ANPP
allocation patterns to drought remains to be re-
solved.

Intensified precipitation patterns decreased
average soil CO, flux (Harper and others 2005), but
when intensified precipitation patterns were com-
pounded with drought, there was no effect of past
precipitation pattern on growing season average
soil CO, flux. However, previous exposure to
intensified precipitation patterns did decrease the
response of soil CO, flux to individual precipitation
events during and after drought. Our results are
consistent with well-documented patterns of soil
CO, flux correlating with soil moisture, for exam-
ple, declining during drought and increasing after
individual rainfall events, with larger increases
after larger rain events and wetter antecedent
conditions (for example, after vs. during drought;
Birch 1958; Bremer and others 1998; Feldman and
others 2021; Fierer and Schimel 2003; Harper and
others 2005; Hoover and others 2016; Liu and
others 2002; Post and Knapp 2020, 2021). Specifi-
cally, the muted response of soil CO, flux to pre-
cipitation  events in  historically intense
precipitation plots (vs. historically ambient precip-
itation plots) is consistent with previous research
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reporting that soils from this treatment were less
responsive to moisture pulses pre-drought (Evans
and Wallenstein 2012) and had lower microbial
respiration following drying and re-wetting (Veach
and Zeglin 2020). Thus, this difference in the re-
sponse of soil CO, flux to soil moisture between
intense versus ambient treatments appears to be
longer lasting than other pre-drought differences
(for example, lower ANPP in intense vs. ambient
treatments). This has important implications for
ecosystem carbon dynamics, given that soil CO,
flux is a large part of the carbon budget in tem-
perate grasslands and a substantial proportion of
soil CO, flux occurs after rainfall events (Chen and
others 2008, 2009; Gale and others 1990; Ham and
others 1995; Huxman and others 2004a, 2004b;
Kim and others 1992; Yan and others 2014). Our
results indicate that grassland ecosystems might
release less total CO, from the soil to atmosphere
under conditions of increased precipitation pattern
intensity and drought.

Drought can have a persistent negative effect on
grassland ANPP post-drought, though positive and
insignificant impacts of previous droughts have also
been reported (Griffin-Nolan and others 2018;
Hoover and others 2014; Sala and others 2012).
Total ANPP in our study recovered to near the pre-
drought average 1 year after drought. This was
likely due at least in part to above-average total
precipitation in that year. Regardless, our results
are consistent with past research identifying the
important role of the dominant species in restoring
ecosystem function after drought. One year after
drought, ANPP of A. gerardii was higher than the
long-term pre-drought average, while ANPP of the
subdominant species remained below average.
Previous grassland drought experiments have re-
ported that, aboveground, grasses recover better
than forbs (included in ‘“subdominant species’)
after drought (De Boeck and others 2018; Hoover
and others 2014). We expand on this response by
showing that BNPP of A. gerardii also recovered
more than BNPP of subdominant species after
drought.

In summary, we found that the compound ef-
fects of long-term precipitation pattern intensifica-
tion and drought were evident primarily
belowground in this mesic grassland. We conclude
that as precipitation patterns intensify and drought
frequency and severity continue to increase glob-
ally, predicting and modeling changes in global
terrestrial carbon cycling will require greater
understanding of how ecosystems respond to
multiple compounded precipitation changes, espe-
cially belowground.
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