

1 **Synergistic Effect of Metal Cations and Visible Light on 2D MoS₂**
2 **Nanosheet Aggregation**

5 Manuscript submitted to

7 *Environmental Science & Technology*

13 Bei Liu,^a Qi Han,^a Li Li,^a Sunxiang Zheng,^b Yufei Shu,^a Joel A. Pedersen,^c
14 Zhongying Wang^{a*}

17 ^a School of Environmental Science and Engineering, Southern University of Science and
18 Technology, Shenzhen 518055, China

19 ^b Andlinger Center for Energy and the Environment, Princeton University, Princeton, New
20 Jersey 08544, USA

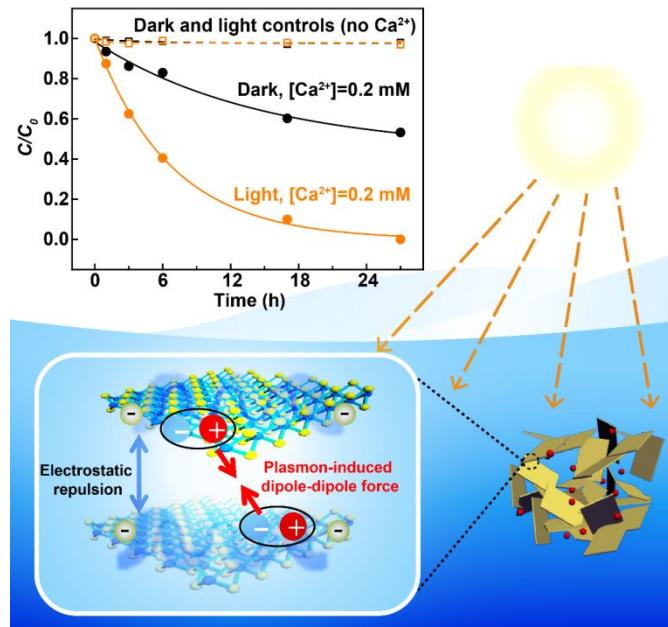
21 ^c Departments of Soil Science, Civil & Environmental Engineering, and Chemistry,
22 University of Wisconsin, Madison, Wisconsin 53706, USA

* to whom correspondence should be addressed. e-mail: wangzy6@sustech.edu.cn; tel.: +86-075588018040;

25 ABSTRACT

26 Aggregation significantly influences the transport, transformation, and bioavailability of
27 engineered nanomaterials. Two-dimensional MoS₂ nanosheets are one of the most well-studied
28 transition metal dichalcogenide nanomaterials. Nonetheless, the aggregation behavior of this
29 material under environmental conditions is not well understood. Here, we investigated the
30 aggregation of single-layer MoS₂ (SL-MoS₂) nanosheets under a variety of conditions. Trends in
31 the aggregation of SL-MoS₂ are consistent with classical DLVO colloidal theory, and the critical
32 coagulation concentrations of cations follow the order of trivalent (Cr³⁺) < divalent (Ca²⁺, Mg²⁺,
33 Cd²⁺) < monovalent cations (Na⁺, K⁺). Notably, Pb²⁺ and Ag⁺ destabilize MoS₂ nanosheet
34 suspensions much more strongly than do their divalent and monovalent counterparts. This effect
35 is attributable to Lewis soft acid–base interactions of the cations with MoS₂. Visible light
36 irradiation synergistically promotes the aggregation of SL-MoS₂ nanosheets in the presence of
37 cations, which was evident even in the presence of natural organic matter. The light-accelerated
38 aggregation was ascribed to dipole–dipole interactions due to transient surface plasmon oscillation
39 of electrons in the metallic 1T phase, which decrease the aggregation energy barrier. These results
40 reveal the phase-dependent aggregation behaviors of engineered MoS₂ nanosheets with important
41 implications for environmental fate and risk.

42 Synopsis


43 Aggregation behavior of MoS₂ nanosheets was comprehensively explored as influenced by
44 environmental factors including nature of cations, light irradiation and natural organic matter.

45 Keywords

46 2D nanomaterials, molybdenum disulfide, environmental behavior, aggregation and sedimentation,
47 visible light

48

49

Table of Contents (TOC) and Abstract Art

52 INTRODUCTION

53 Transition metal dichalcogenides (TMDCs; with the formula MX_2 , where M is a transition metal
54 from group IV, V or VI, and X is chalcogen) rank among the most promising types of next-
55 generation two-dimensional nanomaterials. Chemical, mechanical or ultrasonic exfoliation
56 methods allow formation of monolayer or few-layer TMDCs from their bulk crystals.^{1,2}
57 Molybdenum disulfide (MoS_2), a typical TMDC consisting of covalently bonded atomic trilayers
58 of sulfur-molybdenum-sulfur, has been the most intensely investigated 2D material beyond
59 graphene and has demonstrated applications in electronics,³ biomedical,⁴ catalysis,^{5,6} and energy-
60 related fields.⁷ Owing to their unique properties such as atomic thinness, suitable band gap, and
61 high affinity for heavy metals, MoS_2 nanosheets show considerable promise in environmental
62 applications such as membrane separation,⁸ photocatalysis,⁹ disinfection,¹⁰ and heavy metal
63 remediation.¹¹⁻¹³ The intensive research and potential applications of MoS_2 nanosheets point
64 toward their increasing use and inevitable subsequent release to aquatic environments, and thus a
65 thorough understanding of their fate, transformation and risks as assessment at early stage of
66 development is imperative.

67 Aggregation represents one of the most important processes influencing the environmental
68 behavior of nanomaterials. In the course of aggregation, dispersed nanomaterials assemble into
69 flocs, which decreases the “available” reactive surface area, thus can ultimately affect
70 nanomaterial mobility, degradation,^{14,15} bioavailability and toxicity to aquatic organisms.¹⁶⁻¹⁹ The
71 aggregation behavior of 2D nanosheets may also be important in the assembly of 3D
72 macrostructures.²⁰ Recently, the aggregation and sedimentation of 2D nanomaterials including
73 graphene oxide (GO), black phosphorus, and titanium carbide (MXene) nanosheets have been
74 reported,²¹⁻²⁴ revealing the influence of environmental factors (*i.e.*, cation species and

75 concentration, natural organic matter) on the aggregation rate and environmental outcomes.
76 Similar to these 2D nanomaterials, MoS₂ suspensions exhibit colloidal instability and inhibited
77 transport in the presence of hard metal cations (*viz.* Na⁺, K⁺, and Ca²⁺) or under extremely acidic
78 conditions due to charge screening decreasing electrostatic repulsion between nanosheets.²⁵⁻²⁷
79 Prior studies compared mono- and divalent hard metal cations, with the conclusion consisting with
80 the Schulze-Hardy rule.^{25,27} However, the sulfur atoms on MoS₂ nanosheets are soft Lewis bases,
81 which exhibit stronger affinity for soft Lewis acids (*e.g.*, Pb²⁺) relative to hard ones (*e.g.*, Ca²⁺,
82 Mg²⁺).²⁸ Consequently, MoS₂ nanosheets are expected to exhibit ion-specific in addition to the
83 valence-dependent aggregation behaviors that could be predicted by the Schulze-Hardy rule. Until
84 now, colloidal stability of MoS₂ as a function of cation electronegativity has not been examined.
85 Our hypothesis is that soft metal cations would interact more strongly with the S atoms of MoS₂
86 nanosheets and therefore be more effective in destabilizing them.

87 Another unique property possibly related to aggregation is that MoS₂ nanosheets are
88 photoactive and subject to light-induced transformations.^{10,29} Notably, MoS₂ mainly exists in two
89 crystal structures depending on the atom-stacking configurations: the semiconducting 2H phase
90 (trigonal prismatic) and the metallic 1T phase (octahedral).^{30,31} The bandgap energy (E_g) of
91 semiconducting 2H-MoS₂ depends on the number of stacked MoS₂ monolayers and increases from
92 1.29 eV (*i.e.*, 653 nm) for bulk MoS₂ to ~1.9 eV (*i.e.*, ~961 nm) for single-layer MoS₂.³² The strong
93 increase in E_g as crystal thickness decreases beyond 100 nm is due primarily to confinement-
94 induced increase in the indirect bandgap.³² For the 2H-MoS₂ phase, supra-bandgap illumination
95 allows electron–hole separation, which can drive photochemical reactions.^{10,18} Compared to the
96 2H phase, the metastable, metallic 1T phase possess a higher concentration of free charge carriers
97 and with sufficient Li or K doping can achieve surface plasmon resonance under visible and near

98 UV range.^{33,34} Such photoactive properties have promised the environmental behaviors of MoS₂
99 including aggregation are susceptible to illumination. Numerous studies have reported that light-
100 irradiation can alter aggregation behaviors of nanomaterials by initiating redox reactions (As₂S₃),³⁵
101 removing surface groups or coatings (carbon nanotubes,^{36,37} GO,³⁸ TiO₂³⁹), or inducing surface
102 plasmon oscillation (Ag, Au).⁴⁰⁻⁴² For MoS₂, long-term light exposure can reduce the surface
103 charge through redox reactions and thus destabilize the nanosheet.¹⁸ Until now, however, the effect
104 of light irradiation on the initial aggregation of pristine MoS₂ nanosheets remains unexplored. Such
105 information is critical to understanding the dispersion and lifetime of engineered MoS₂ nanosheets
106 in the photocatalytic applications, as well as understanding the environmental fate, transport
107 potential, nanosheet reactivity and toxicity upon sunlight irradiation in the natural environment.

108 In the present study, single-layer MoS₂ (SL-MoS₂) nanosheets without any coatings were
109 prepared *via* chemical exfoliation and extensively characterized to determine their chemical
110 composition, morphology, and surface chemistry. Aggregation kinetics of MoS₂ nanosheets were
111 measured using time-resolved dynamic light scattering (TRDLS) in the presence of mono-, di-,
112 and trivalent cations. The effects of visible light irradiation on aggregation were explored and
113 mechanisms involved in the photoinduced process were discussed. Finally, light- and cation-
114 induced aggregation was examined in the presence of natural organic matter (NOM). This detailed
115 study advances the understanding of the fate of MoS₂ nanosheets under environmental conditions.

116 MATERIALS AND METHODS

117 **Synthesis and Characterization of MoS₂ Nanosheets.** Chemicals and their purities and
118 supplies are reported in the Supporting Information. A dispersion of SL-MoS₂ nanosheets
119 containing a mixture of 1T and 2H phases was prepared by organolithium intercalation of MoS₂

120 powder followed by forced hydration as described in our previous study.⁴³ A detailed description
121 of the synthesis approach is given in the Supporting Information. Semiconducting MoS₂ (referred
122 to as 2H-MoS₂) was obtained by pressurized hydrothermal treatment of the exfoliated SL-MoS₂ in
123 N₂.⁴⁴ Specifically, 20 mL of a ~500 mg/L SL-MoS₂ suspension was deoxygenated in a N₂-filled
124 glove box, added to a Teflon-lined autoclave (50 mL volume, Wenbo Experimental Instrument
125 Co., Ltd), and subjected to the hydrothermal treatment at 200 °C for 2 h.

126 The morphologies of pristine SL-MoS₂ nanosheets, 2H-MoS₂ nanosheets, and their
127 aggregates were characterized by transmission electron microscopy (TEM; FEI Talos F200X
128 microscope equipped with a Schottky emitter gun operated at 200 kV), scanning electron
129 microscopy (SEM; Zeiss Merlin), and atomic force microscopy (AFM; MFP-3D-Stand Alone,
130 Asylum Research). We performed X-ray photoelectron spectroscopy (XPS) survey and high-
131 resolution scans with a PHI 5000 Versaprobe III equipped with a monochromatic Al anode (Al K α
132 = 1486.7 eV) as X-ray source. The powder X-ray diffraction (XRD) pattern was collected on a
133 Rikagu Smartlab diffractometer (Cu K α = 1.54 Å). Apparent zeta potentials were determined from
134 electrophoretic mobilities (Nanosizer, NanoBrook Omni, Brookhaven, U.S.A.) from three
135 replicate samples and three measurements for each with 20 cycles. UV-visible absorption spectra
136 of the dispersed MoS₂ nanosheets were obtained by ultraviolet-visible spectrophotometer (UV-vis,
137 BlueStar, LabTech). The total concentration of SL-MoS₂ prior to aggregation was accurately
138 determined by digestion in a 0.2 M HNO₃ and 0.5 M H₂O₂ solution, followed by measurement of
139 the soluble Mo concentration by inductively coupled plasma–optical emission spectrometer (ICP-
140 OES, iCAP 7400, Thermo Scientific).

141 **Aggregation Kinetics.** A SL-MoS₂ suspension was prepared by diluting an aliquot of the
142 exfoliated MoS₂ stock solution in water buffered to pH 5 with 10 mM sodium acetate (the sodium

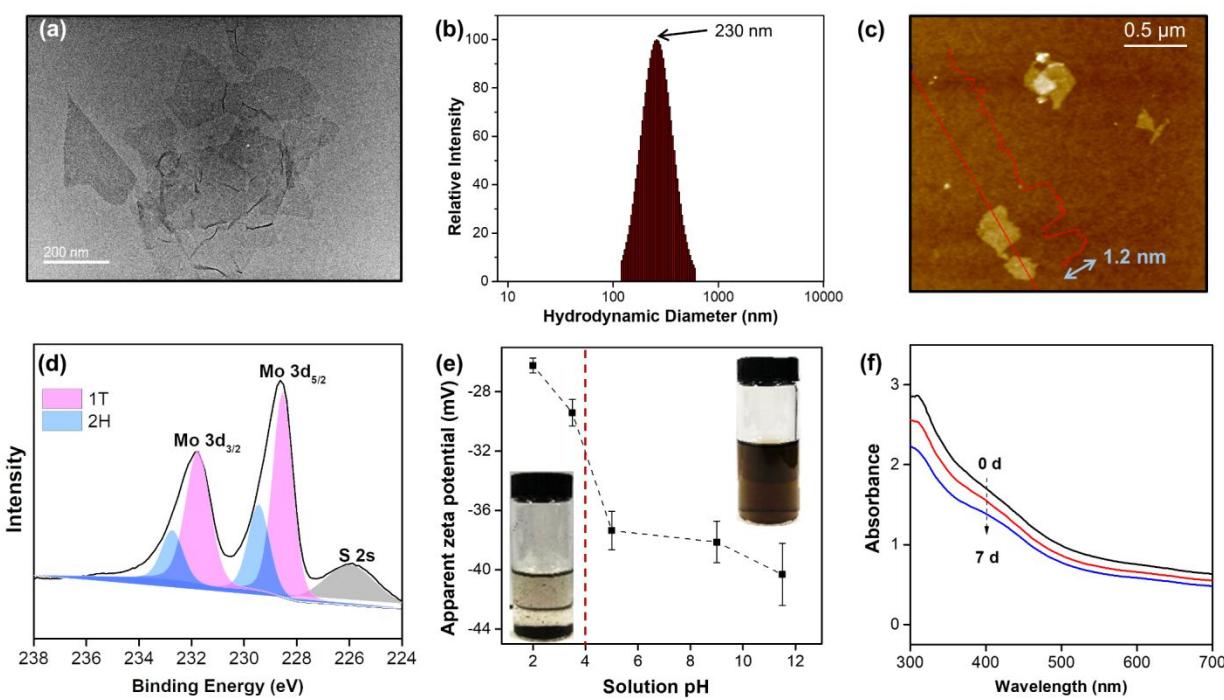
143 acetate contributed 6.5 mM Na⁺ to the solution and did not induce measurable aggregation). Time-
144 resolved DLS was used to measure the aggregation kinetics of MoS₂ nanosheet suspensions, and
145 the *z*-averaged hydrodynamic diameter (D_h) of MoS₂ nanosheets was monitored as a function of
146 time in solutions of the nitrate salts of K⁺, Na⁺, Ag⁺, Ca²⁺, Mg²⁺, Cd²⁺, Pb²⁺, and Cr³⁺ over a wide
147 range of cation concentrations (viz. 0.02-50 mM). The speciation of cations as a function of pH
148 was determined by Visual Minteq. All of these cations exist primarily as unhydrolyzed cations at
149 the pH of our experiments except Cr³⁺, which is present as Cr₃(OH)₄⁵⁺, Cr₂(OH)₂⁴⁺, Cr³⁺, CrOH²⁺,
150 Cr(OH)₂⁺, Cr(OH)₃ at pH 5 (Figure S1). Based on the speciation of chromium (III) under our
151 experimental conditions, we used an average valence of 2.82 in calculations. Measurements were
152 made every 30 s for 30 min. Attachment efficiencies (α) — the ratio between the rates of slow
153 (reaction-limited regime in the presence of energy barrier) to fast aggregation (diffusion-limited
154 regime in the absence of energy barrier) — were obtained by normalizing the initial slope of the
155 aggregation profile at each concentration by that in the fast regime:²²

$$156 \quad \alpha = \frac{k_a}{k_{a, \text{fast}}} = \frac{\frac{1}{N_0} \left(\frac{D_h(t)}{dt} \right)_{t \rightarrow 0}}{\frac{1}{N_{0, \text{fast}}} \left(\frac{D_h(t)}{dt} \right)_{t \rightarrow 0, \text{fast}}}$$

157 where the k_a are the initial aggregation rate constants, which are proportional to the initial rate of
158 D_h increase with time, and N_0 is the initial SL-MoS₂ concentration (~10 mg/L in all samples).
159 For slow aggregation at relatively low cation concentrations (i.e., up to 2–20 mM Na⁺) the slope
160 of the initial linear region was determined from the D_h versus time plot over 30 min. For the fast
161 aggregation, the slope was determined from the first recording to an average D_h of 1400 nm within
162 30 min, the range which could assure a good linear regression ($R^2 > 0.9$). The critical coagulation
163 concentrations (CCC) was determined for each cation from the intersection of extrapolated lines

164 through the diffusion- and reaction-limited regimes. Influence of NOM on the aggregation kinetics
165 was determined by the addition of Suwannee River NOM (SRNOM) as described in Text S3.

166 **Visible Light Illumination Experiments.** Visible light illumination experiments were
167 performed in a PCX50C Discover multi-channel parallel photocatalytic reaction system (Perfect
168 Light Co., Ltd.) with a 5 W white LED light ($400 \text{ nm} \leq \lambda \leq 800 \text{ nm}$). The light intensity is
169 adjustable with maximum irradiation intensity of 100 mW/cm^2 , which is comparable to the annual
170 global average intensity of natural sunlight.⁴⁵ The SL-MoS₂ dispersion (30 mL) was spiked with
171 the desired concentration of cations and was transferred into the cylindrical quartz tubes of the
172 reactor. The typical light intensity of 100 mW/cm^2 and a concentration of 2 mM Ca²⁺ was used in
173 all the irradiation experiments unless noted. During the irradiation process, the temperature of the
174 reactor was kept at 25 °C with an electronic fan, and measured with a thermometer after the
175 experiments. Optical absorbance at 450 nm was used to quantitatively describe the evolution of
176 the suspension concentration and the extent that MoS₂ aggregates sedimented, as the Beer-Lambert
177 law is valid in the concentration range where measurements were performed (Figure S2). Dark
178 control samples of the SL-MoS₂ dispersion were covered by aluminum foil, illuminated, and
179 analyzed in the same manner. The aggregation and sedimentation of SL-MoS₂ nanosheets under
180 both dark and light conditions were investigated in the presence of SRNOM as described in Text
181 S3 of Supporting Information.


182 **RESULTS AND DISCUSSION**

183 **Structural Characterization and Colloidal Properties of MoS₂ Nanosheets.**
184 Dispersions of SL-MoS₂ nanosheets were prepared via chemical exfoliation of MoS₂ powder
185 following a method published previously.^{13,43} The morphology of MoS₂ nanosheets was
186 determined by TEM and AFM imaging. A typical TEM image of the exfoliated SL-MoS₂

187 nanosheets (Figure 1a) reveals thin flakes with lateral dimensions between 100 and 300 nm,
188 consistent with the reported size of monolayer MoS₂.⁴⁶ The *z*-average D_h of the SL-MoS₂
189 nanosheets obtained from three replicates was 230 ± 6 nm as determined by DLS (Figure 1b).
190 Analysis of AFM images (Figure 1c) shows that the typical thickness of MoS₂ nanosheets is ~ 1.2
191 nm, confirming the preparation of monolayer MoS₂ without surface coatings.⁴⁶ The phase
192 composition of MoS₂ nanosheets was determined semi-quantitatively by XPS. The Mo 3d
193 spectrum of MoS₂ nanosheets (Figure 1d) reveals the coexistence of 1T- and 2H-MoS₂ in the
194 exfoliated samples, which was caused by the partial phase conversion from 2H-MoS₂ to 1T-MoS₂
195 during lithium intercalation.⁶ Deconvolution of the XPS spectrum reveals the phase composition
196 of SL-MoS₂ to be 70% 1T and 30% 2H, in agreement with the reported composition of chemically-
197 exfoliated monolayer MoS₂.⁴⁷

198 The exfoliated SL-MoS₂ nanosheets were negatively charged with apparent zeta potentials
199 of -37 to -40 mV in the pH range from 4 to 11 (Figure 1e), indicating excellent colloidal stability
200 of MoS₂ nanosheet suspension. The negative charge on the exfoliated SL-MoS₂ reportedly stems
201 from electron transfer from the organolithium reagent during the exfoliation process and is in the
202 range of approximately 0.15 to 0.25 electron per Mo atom.⁴⁸ Under more acidic conditions (pH <
203 4), however, the apparent zeta potential decreased to -26 mV and rapid aggregation ensued due to
204 the reduction of electrostatic repulsive force between the nanosheets.⁴⁸ The UV-vis absorption
205 spectra of SL-MoS₂ (Figure 1f) is featureless without apparent absorption bands, consistent with
206 metallic 1T-MoS₂ dominating the composition. At pH 6, MoS₂ nanosheets remained well-
207 dispersed at least for one week in air although the absorbance of the dispersion decreased slightly
208 due to oxidation of MoS₂ to soluble Mo(VI) (Figure 1f).⁴³ Oxidation of SL-MoS₂ nanosheets
209 would not alter colloidal stability unless adequate H⁺ was released to reduce the solution pH below

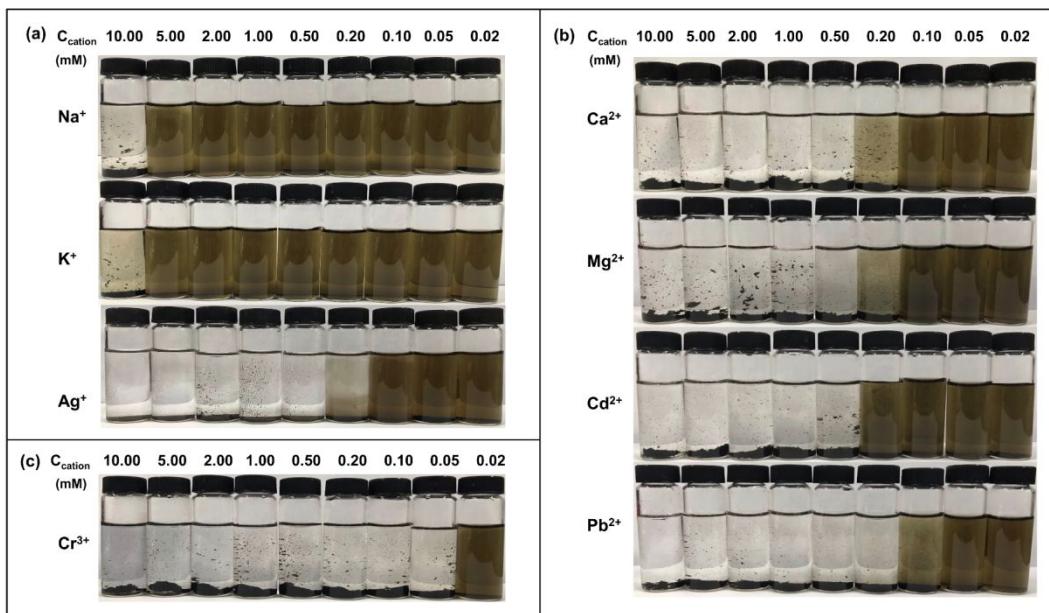
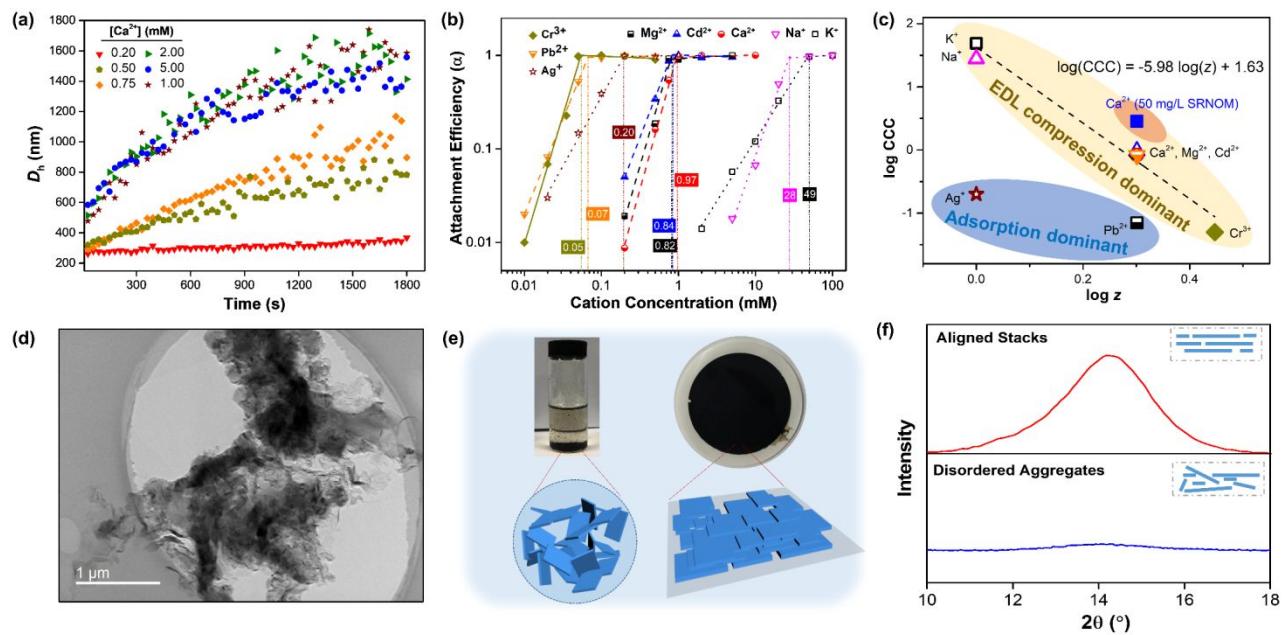

4.⁴³ The as-prepared SL-MoS₂ was stored in a N₂-filled glove box until further experimentation. Under these conditions, the suspension was stable for at least six months and no oxidation was observed. Considering the typical range of pH values in natural aquatic environments, pH variation alone would not destabilize SL-MoS₂ nanosheets, and colloidal stability can be maintained for long-term transport and exposure in the absence of the effects of co-occurring cations and/or light (see below).

Figure 1. Characterization of SL-MoS₂ dispersion: (a) representative TEM image; (b) z-averaged hydrodynamic diameter distribution determined by DLS; (c) representative AFM image of MoS₂ nanosheets, inset: line scan showing the thickness profile along the red line in the image; (d) Mo 3d XPS spectra of SL-MoS₂ showing the deconvolution of two components: metallic 1T phase (pink) and semiconducting 2H phase (blue); (e) apparent zeta potential as a function of pH with photographs of as-prepared MoS₂ dispersion showing poor stability with aggregates at pH 2 (left) and good colloidal stability at pH 9 (right); (f) time-dependent UV-vis absorbance spectra for a MoS₂ dispersion over 7 d.

Cation-induced Aggregation and Sedimentation of SL-MoS₂. Figure 2 visually demonstrates the colloidal stability of SL-MoS₂ suspensions in the presence of varying concentrations of different metal cations (as nitrate salts) after 24 h. At low electrolyte

228 concentration, the dispersion was homogenous with a dark brown color, implying good colloidal
229 stability of SL-MoS₂ nanosheets. The suspension became colloidally unstable with the formation
230 of large visible aggregates when the electrolyte concentrations were increased to specific levels,
231 which appeared to depend on the type of cation (i.e., 10 mM for Na⁺, 10 mM for K⁺, 0.2 mM for
232 Ag⁺, 0.2 mM for Ca²⁺, 0.2 mM for Mg²⁺, 0.2 mM for Cd²⁺, 0.1 mM for Pb²⁺ and 0.05 mM for
233 Cr³⁺). Generally, the efficiency of the electrolytes in destabilizing MoS₂ nanosheets follows the
234 order of trivalent > divalent > monovalent, suggesting stronger destabilization ability of cations
235 with higher valency.

236
237 **Figure 2.** Images illustrating the bulk aggregation of SL-MoS₂ dispersions containing (a) monovalent, (b)
238 divalent and (c) trivalent cations in a series of concentrations (0.02-10 mM).
239


240 To describe the aggregation kinetics more quantitatively, D_h was experimentally determined
241 as a function of cation concentration. Figure 3a shows such data for Ca²⁺. Corresponding data for
242 the other cations investigated (viz. K⁺, Na⁺, Ag⁺, Mg²⁺, Cd²⁺, Pb²⁺, and Cr³⁺) are shown in Figure
243 S3. The D_h increased more rapidly at higher cation concentration due to charge screening or

244 electrical double layer (EDL) compression, leading to rapid aggregation of the nanosheets.
245 Attachment efficiency (α) was estimated by normalizing initial aggregation rate with that at the
246 fast regime, and plotted in a log-log format as functions of concentrations of each cation.
247 Consistent with classical DLVO theory, these plots exhibit reaction-limited and diffusion-limited
248 aggregation regimes for MoS₂ nanosheets, and the transition between two regimes is referred to as
249 the CCC value, the minimum concentration of ions necessary to cause rapid coagulation of colloids
250 (Figure 3b). Starting from pure water, the energy barrier for attachment is reduced (as reflected in
251 the increase in attachment efficiency) as the cation concentration increases up to the CCC (0.97
252 mM in the case of Ca²⁺) at which point it vanishes. At electrolyte concentrations exceeding the
253 CCC, SL-MoS₂ aggregation is limited by thermal diffusion rather than surmounting the repulsive
254 energy-barrier, and thus aggregation rate becomes independent of cation concentration. The CCC
255 values of SL-MoS₂ for the cations investigated are estimated to be 49 ± 7.2 mM (K⁺), 28 ± 5.5
256 mM (Na⁺), 0.20 ± 0.04 mM (Ag⁺), 0.97 ± 0.04 mM (Ca²⁺), 0.8 ± 0.20 mM (Cd²⁺), 0.8 ± 0.1 mM
257 (Mg²⁺), 0.07 ± 0.001 mM (Pb²⁺) and 0.05 ± 0.02 mM (Cr³⁺) (Figure 3b). The CCC values of SL-
258 MoS₂ are lower than those of black phosphorous²³ (188.4 mM for Na⁺, 2.5 mM for Ca²⁺) and GO⁴⁹
259 (188 mM for Na⁺, 2.9 mM Ca²⁺) although they possess similar apparent zeta potentials, which may
260 be attributed to the stronger van der Waals (vdW) forces between MoS₂ nanosheets. Molybdenum
261 disulfide has a Hamaker constant of 296×10^{-21} J while that of GO is 49×10^{-21} J.^{25,50} To the best of
262 our knowledge, this is the first report of CCC values for bare monolayer MoS₂ nanosheets. Higher
263 CCC values (37 mM Na⁺, 3 mM Ca²⁺) were seen in the case of ethanol-coated few-layer MoS₂
264 prepared via ultrasonic exfoliation,²⁵ indicating that bare MoS₂ nanosheets in our study are more
265 prone to aggregation. Applications are likely to employ surfactant- or coating-free MoS₂ for
266 optimized catalytic, adsorptive, and conductive properties. The aggregation behavior of surface-

267 coated MoS₂ might not represent that of the material itself because surface coatings may conceal
268 MoS₂ surface properties associated with aggregation behavior and stabilize the nanosheets through
269 additional steric repulsion.

270 Generally, the CCC values of multivalent cations were significantly lower than those of the
271 monovalent cations (with exception of Ag⁺), indicating that multivalent electrolytes destabilize
272 SL-MoS₂ suspensions more effectively than monovalent electrolytes. Similar trends were
273 observed in previous reports on the aggregation of other nanomaterials including some nanosheets
274 such as GO^{22,49,51}, MXene²⁴, black phosphorous²³, consistent with the applicability of DLVO
275 theory in predicting the general aggregation behavior of 2D nanomaterials. The lower CCC values
276 for multivalent relative to the monovalent cations are in accordance with the Schulze-Hardy rule
277 ($\log (CCC) = n \log (\frac{1}{z})$), where z is the valency of the electrolyte counterions and n is constant,
278 typically 6 in 3D and 9 in 2D aggregation.^{26,52} A slope of -5.98 was obtained by the best fitting
279 ($R^2 = 0.98$) for these CCC values of cations with exception of Ag⁺ and Pb²⁺ ([Figure 3c](#)). The
280 valency exponent of 6.0 is commonly found in the aggregation of colloidal particles and suggests
281 that cation-induced aggregation of SL-MoS₂ is a random process likely leading to edge-to-face
282 interactions rather than solely face-to-face interaction which, based on theory, is expected to lead
283 to an exponent of 9. The randomness of aggregation was evidenced from the TEM ([Figure 3d](#)) and
284 SEM ([Figure S4a](#)) images of the sphere-like aggregates formed in the SL-MoS₂ dispersion
285 containing 2 mM Ca²⁺. For comparison, we prepared aligned stacks by filtration of SL-MoS₂
286 suspension through a polymer substrate ([Figure 3e](#)) as demonstrated by cross-sectional SEM
287 ([Figure S4b](#)). The random and aligned configurations were qualitatively confirmed by XRD. As
288 shown in XRD spectra ([Figure 3f](#)), the peak of aligned MoS₂ stacks was located at $2\theta = 14^\circ$,
289 corresponding to the characteristic interlayer spacing between neighboring layers of 0.62 nm.^{8,53}

290 In contrast, the XRD peak of the cation-induced aggregates of MoS₂ mostly disappeared due to
 291 the disorder structure in the randomly aggregated sample.

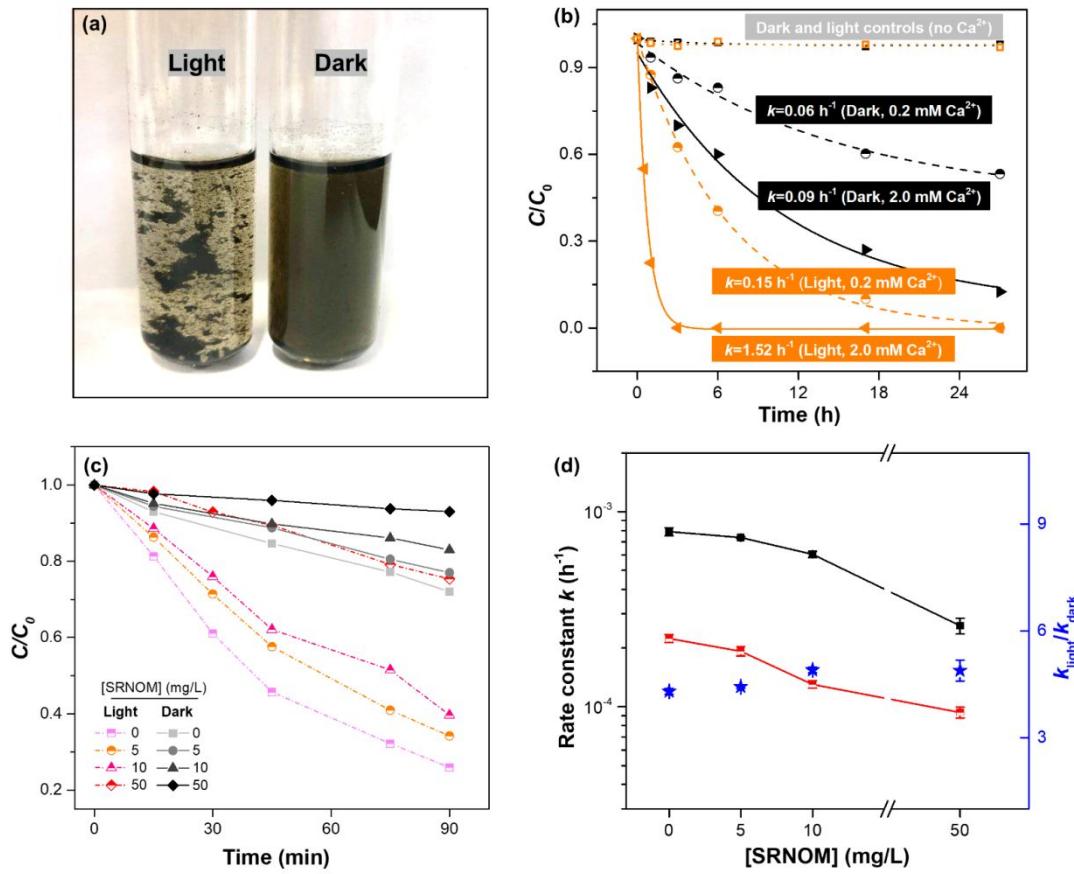
292
 293 **Figure 3.** Effects of cation type and concentration on MoS₂ nanosheet aggregation: (a) changes in hydrodynamic
 294 diameter (D_h) over 30 min after addition of Ca^{2+} (0.02-10 mM); (b) attachment efficiency (α) as a function of
 295 the concentrations of the indicated cations; (c) relationship between the critical coagulation concentration (CCC)
 296 and cation valence (z); (d) TEM image of MoS₂ aggregates formed in the presence of 2 mM Ca^{2+} ; (e) photographs
 297 and schematic illustration of disordered aggregates (left) and face-to-face aligned stacks (right); (f) X-ray
 298 diffractograms of MoS₂ aggregates and aligned stacks.

299
 300 For the cations with equivalent valency, the CCC values were ranked as $\text{K}^+ > \text{Na}^+ >> \text{Ag}^+$ and
 301 $\text{Ca}^{2+} > \text{Mg}^{2+} \approx \text{Cd}^{2+} >> \text{Pb}^{2+}$. In general, the ordering within groups of cations with equivalent
 302 valency is inversely related to the electronegativity of the cation (Figure S5a). This is attributable
 303 to cations with higher electronegativities more easily forming covalent bonds with S, leading to
 304 stronger ability to destabilize dispersions of MoS₂ nanosheets.^{54,55} We note that Ag^+ and Pb^{2+}
 305 display much lower CCC values than other monovalent and divalent cations (Figure 3c). As
 306 reported previously, Ag^+ and Pb^{2+} , as soft Lewis acids, have high affinity to the soft Lewis base S
 307 atoms and are thus more strongly adsorbed to the MoS₂ surface than are the hard (Na^+ , K^+ , Mg^{2+} ,

308 Ca^{2+}) and borderline (Cd^{2+}) cations.^{12,13,56} Adsorption of Ag^+ and Pb^{2+} ions to the MoS_2 nanosheets
309 would decrease the surface charge and weaken the electrostatic repulsion between nanosheets. For
310 cations with much weaker affinity to S, the aggregation was mostly induced by EDL compression
311 (Figure S5b).

312 Dissolved natural organic matter is a ubiquitous constituent in natural waters. Typical
313 dissolved NOM concentrations in fresh surface waters range from 2 to 30 mg/L.⁵⁷ We therefore
314 examined the effect of a reference aquatic NOM sample (viz. SRNOM) over a similar
315 concentration range on SL- MoS_2 nanosheet aggregation in the presence of Na^+ or Ca^{2+} (Figure
316 S6). The SRNOM significantly inhibited the cation-induced aggregation kinetics of SL- MoS_2
317 nanosheets. For instance, the initial aggregation rate in the 2 mM Ca^{2+} solution decreased from
318 1.18 nm/s in the absence of SRNOM to 1.08, 1.01, 0.62 and 0.27 nm/s by 5, 10, 20 and 50 mg/L
319 SRNOM, respectively. Similarly, the initial rate of D_h growth in the 50 mM Na^+ solution was 0.83
320 nm/s and dropped to 0.12 nm/s in the presence of 2 mg/L SRNOM; no aggregation was observable
321 at SRNOM concentrations of 5 mg/L or higher (Figure S5b). In the presence of 20 and 50 mg/L
322 SRNOM, the CCC of Ca^{2+} were elevated to 1.95 and 2.86 mM, respectively (Figure S7), which
323 were obviously larger than that in the absence of SRNOM (0.97 mM) and falling above the line
324 predicted by Schulze-Hardy rule (Figure 3c). In the presence of 0.1 mM Ca^{2+} , the apparent zeta
325 potentials of the nanosheets were increased from -19 mV to -30 mV by the addition of 20 mg/L
326 SRNOM, implying the association of NOM with MoS_2 nanosheets. We therefore ascribe SRNOM
327 stabilization of the SL- MoS_2 nanosheet suspension primarily to steric and electrostatic stabilization
328 by the coated NOM molecules, similar to prior reports on the influence of NOM on the aggregation
329 of negatively charged gold nanoparticles,⁵⁸ black phosphorus²³ and GO²¹. In addition, the

330 carboxylate groups of SRNOM electrostatically bind Ca^{2+} ,⁵⁹ thereby decreasing the charge
331 screening and enhancing the colloidal stability of SL-MoS₂.


332 **Influence of Visible Light Illumination.** To investigate the effect of visible light on MoS₂
333 nanosheet aggregation and sedimentation, experiments were conducted in 0.2 and 2.0 mM Ca^{2+}
334 solutions (i.e., below and above the CCC value for Ca^{2+} , respectively) in the dark and under visible
335 light illumination. As shown in [Figure 4a](#), the presence of 2.0 mM Ca^{2+} induced minor aggregation
336 of MoS₂ nanosheets in the dark within 20 min. In contrast, the MoS₂ nanosheets strongly
337 aggregated under illumination and started to sediment, which suggested that visible light
338 illumination dramatically accelerated the aggregation process. Due to the limitation of DLS (not
339 applicable for aggregates $> 2 \mu\text{m}$), the fraction of MoS₂ remaining in the suspension was quantified
340 using absorbance at 450 nm. The evolution of normalized suspension concentrations depended on
341 electrolyte concentration. Fast aggregation and sedimentation were observed when the Ca^{2+}
342 concentration exceeded its CCC ([Figure S8](#)), which was in accord with results obtained via TRDLS
343 and justified the reliability of absorbance on the sedimentation of SL-MoS₂.

344 The normalized concentration of SL-MoS₂ remaining in suspension under different
345 conditions is shown in [Figure 4b](#), and can be well fit ($R^2 > 0.98$) by the first-order decay equation:
346 $dc/dt = -kc$, where c is the normalized concentration of the SL-MoS₂ dispersion at time t (h), and
347 k (h^{-1}) is the first-order rate constant. In the presence of 2.0 mM Ca^{2+} , k was $1.52 \pm 0.07 \text{ h}^{-1}$ under
348 illumination, compared to a value of $0.09 \pm 0.02 \text{ h}^{-1}$ in the dark, indicating that illumination
349 significantly accelerated aggregation, increasing the rate constant by a factor of 17. The
350 acceleration also occurred in the dispersion containing 0.2 mM Ca^{2+} , with the rate constants of
351 $0.06 \pm 0.02 \text{ h}^{-1}$ and $0.15 \pm 0.005 \text{ h}^{-1}$ in the dark and under illumination, respectively. Even at much
352 lower Ca^{2+} concentrations (0.02 and 0.05 mM, [Figure S9a](#)), the hydrodynamic diameters of MoS₂

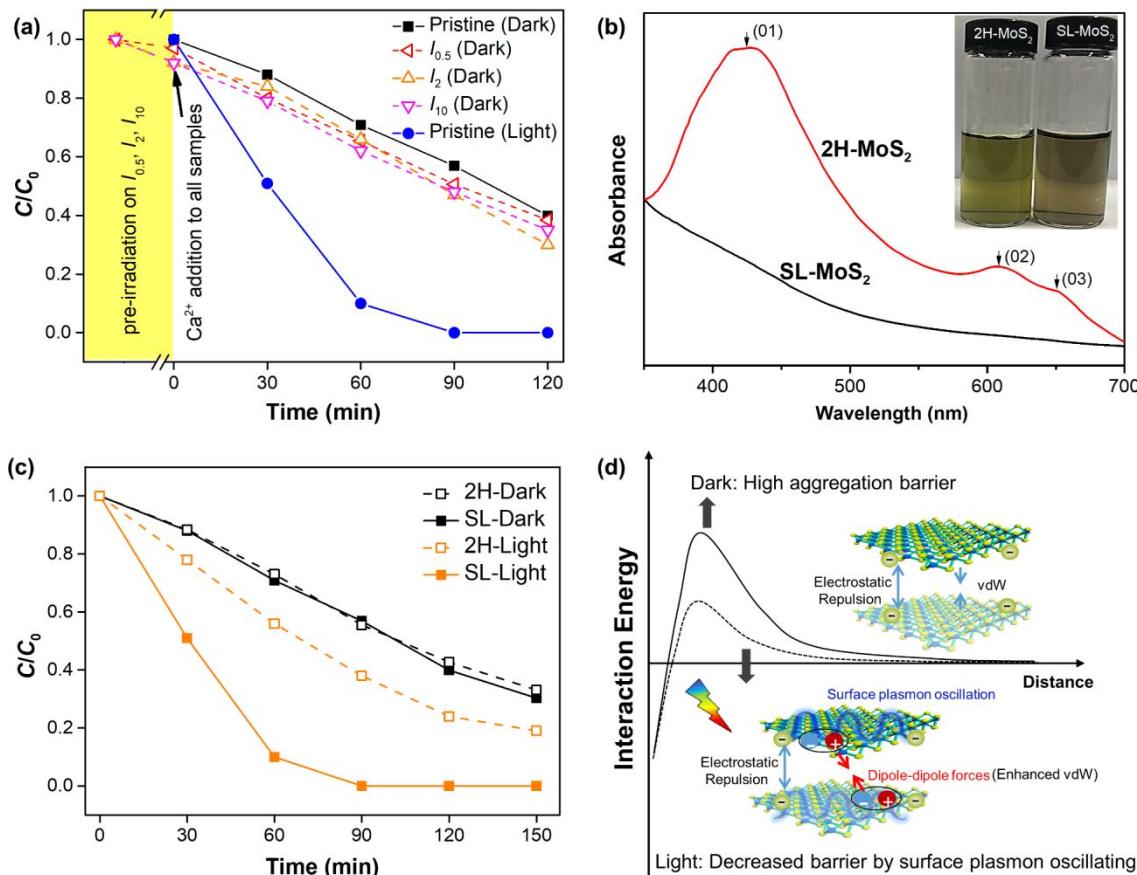
353 nanosheets increased from 230 to ~1000 nm under light exposure, whereas they remained almost
354 constant in the absence of illumination. Without cation addition, no aggregation was observed
355 under either dark or light conditions. The results suggested that cation and visible light acted
356 synergistically to induce aggregation of SL-MoS₂. Similar light-accelerated aggregation was
357 observed in the presence of other cations (Na⁺, Mg²⁺, Cr³⁺ in [Figure S9b](#)), indicating the light-
358 enhanced aggregation is not specific to Ca²⁺ and occurs in the presence of all cations tested.
359 Furthermore, illumination-promoted aggregation correlates positively with the intensity of visible
360 light: more severe aggregation occurs as light intensity increases from 0 to 100 mW/cm² ([Figure](#)
361 [S9c](#)). Light-enhanced aggregation could also be seen from significantly reduced $C_{1/2}$, the
362 concentration of Ca²⁺ at which the normalized MoS₂ concentration is reduced to half after 6 hours.
363 The $C_{1/2}$ value of Ca²⁺ for MoS₂ nanosheets is 0.11 mM under light, almost 300-fold lower than
364 that in the dark condition (29 mM, [Figure S9d](#)). The lower $C_{1/2}$ indicated much higher ability for
365 the cation to induce destabilization under visible light illumination,^{50,60} and thus the results suggest
366 that stability of MoS₂ dispersion would be much more easily disturbed at or near the surface of
367 sunlit waters.

368 Because dissolved NOM is ubiquitous in natural aquatic ecosystems, we also investigated
369 light-assisted aggregation of SL-MoS₂ nanosheets in the presence of SRNOM. As shown in [Figure](#)
370 [4c](#), SRNOM stabilized suspensions of SL-MoS₂ nanosheets both in the dark and under visible light
371 illumination. The nanosheet sedimentation rate constant k decreased with increasing SRNOM
372 concentration ([Figure 4d](#)). Comparison of the sedimentation rate constants in the presence of
373 SRNOM in the dark and under illumination demonstrates that visible light illumination accelerates
374 aggregation, even in the presence of SRNOM. The extent to which sedimentation was accelerated
375 as expressed by the ratio of k obtained under illumination to that in the dark ($k_{\text{light}}/k_{\text{dark}}$) remains

376 almost constant over the SRNOM concentration range of 2 to 50 mg/L (Figure 4d). Overall, these
 377 results suggest that light-accelerated sedimentation occurs regardless of whether SRNOM is
 378 present.

379
 380 **Figure 4.** Accelerated aggregation and sedimentation of SL-MoS₂ dispersion under light irradiation: (a) digital
 381 photograph of SL-MoS₂ dispersion (~20 mg/L) with addition of 2.0 mM Ca^{2+} after 20 min under illumination
 382 (left) and in the dark (right); (b) normalized suspension concentration as a function of time in the dark (solid
 383 lines) or under illumination (dashed lines) in the presence of 0.2 mM or 2.0 mM Ca^{2+} ; (c) evolution of normalized
 384 suspension concentration in 2.0 mM Ca^{2+} with addition of SRNOM in the dark (grey lines) or under illumination
 385 (colored lines); (d) sedimentation rate constants in the light (red) and dark (black). The ratios of k in the light to
 386 that in the dark ($k_{\text{light}}/k_{\text{dark}}$) as a function of SRNOM concentration were represented by the blue stars.

387
 388 **Light-accelerated Aggregation Mechanisms.** In the context of DLVO theory, light-
 389 enhanced aggregation of MoS₂ may be explained either by enhanced attractive vdW forces or by
 390 reducing electrostatic repulsion between neighboring nanosheets.^{49,61} Diminished repulsive forces


391 induced by photochemical reactions have been observed due to the reduction of surface charge in
392 the cases of GO nanosheets under visible light illumination³⁸ and TiO₂ under UV irradiation,³⁹ or
393 to the loss of surface coatings under irradiation in the cases of citrate-coated Ag nanoparticles⁶²
394 and functionalized/dispersant-coated SWCNT.^{36,37,63} In the present case, we used bare MoS₂
395 without any surface functionalization. To test if illumination reduced electrostatic repulsion
396 between SL-MoS₂ nanosheets, the dispersion was subjected to visible light illumination for 0.5, 2
397 or 10 h in the absence of Ca²⁺ (referred to as irradiated MoS₂ and denoted $I_{0.5}$, I_2 , or I_{10}). Electrolyte
398 was then added, and aggregation kinetics was compared to that of pristine SL-MoS₂ in the dark
399 and in the light. [Figure 5a](#) shows that aggregation kinetics differed to only a small extent between
400 the pristine and light-exposed MoS₂ suspensions after addition of 2 mM Ca²⁺ in the dark; in all
401 cases aggregation was significantly slower than that when both Ca²⁺ and light exposure were
402 present simultaneously. This highlights the synergistic and indispensable roles of light and cations
403 in accelerating the aggregation of SL-MoS₂ nanosheets.

404 In the absence of added metal cations, the apparent zeta potential of light-transformed MoS₂
405 remained largely unchanged ($p > 0.05$) after 10-hour irradiation ([Figure S10](#)). The XPS spectra
406 revealed that the oxidation states of Mo and S reflected by their respect binding energies in the
407 aggregates formed in light and dark were identical to those in pristine SL-MoS₂ ([Figure S11](#)). A
408 prior study reported that long-term illumination (56 days) reduces the surface charge of SL-MoS₂
409 and thus destabilizes the dispersion.¹⁸ In contrast, our results indicate that short-term visible light
410 irradiation does not induce appreciable photochemical transformations of SL-MoS₂ that
411 permanently alter the physiochemical properties of nanosheets to promote cation-triggered
412 aggregation. Instead, a transient change of SL-MoS₂ nanosheets occurs under light irradiation,
413 wherein the concurrent presence of electrolytes is required to induce the aggregation. Additionally,

414 the temperature of irradiation solution was monitored during the test, and the variation was less
415 than 2 °C. Accelerated aggregation due to solution heating by light irradiation was excluded by a
416 control experiment, in which no obvious aggregation was observed in the presence of Ca^{2+} when
417 the temperature of the solution was elevated by 5 °C using a heating plate ($p > 0.05$; [Figure S12](#)).

418 A surface plasmon is a coherent oscillation of conduction band electrons at a metal/dielectric
419 interface, a well-known mechanism of light-induced aggregation of Ag and Au nanoparticles as
420 well as metallic carbon nanotubes.^{40,41,64} In the case of SL-MoS₂, intercalation of Li/K partially
421 transforms semiconducting 2H-MoS₂ to metallic 1T-MoS₂, creating more free charge carriers.⁶⁵
422 The adsorption for light was ascribed to interband transition and a surface plasmon for the
423 semiconducting and metallic phase of MoS₂, respectively. Sufficient Li or K doping can achieve
424 surface plasmon resonance under visible and near UV range.^{33,34} To probe the relevance of the
425 metallic phase in light-accelerated aggregation, the 1T-dominant SL-MoS₂ was converted to
426 semiconducting 2H-MoS₂ nanosheets by a hydrothermal reaction without altering its monolayer
427 morphology ([Figure S13a](#)). The 2H-MoS₂ nanosheets were comparable in size to the SL-MoS₂
428 nanosheets, with a hydrodynamic diameter of 277 ± 5 nm ([Figure S13b](#)). Apparent zeta potentials
429 of 2H-MoS₂ dispersions were similar to those of SL-MoS₂ ([Figure S13c](#)), and thus the 2H-MoS₂
430 dispersion could remain colloidally stable for at least 3 days. The XPS spectrum demonstrated that
431 the hydrothermally treated MoS₂ was pure 2H phase with typical 2H-Mo(IV) peaks at 229.3 and
432 232.4 eV ([Figure S13d](#)), and UV-vis absorption spectrum revealed the characteristic absorption
433 bands of 2H-MoS₂ at 440, 610 and 670 nm,^{43,47} distinct from the featureless absorption of pristine
434 SL-MoS₂ ([Figure 5b](#)). The characterization above confirms the successful phase conversion and
435 preservation of nanosheet morphology during hydrothermal treatment.

436 Regarding aggregation behaviors, [Figure 5c](#) shows similar and slow aggregation kinetics of
437 the pristine SL-MoS₂ and the 2H-MoS₂ in the dark, confirming little variation of morphology or
438 surface chemistry during phase conversion. Under visible light irradiation, however, the
439 aggregation of 2H-MoS₂ is much less responsive to illumination, and the sedimentation accelerates
440 to a smaller extent than that of SL-MoS₂ ([Figure 5c](#)). The results could be ascribed to that a larger
441 amount of plasmonic electrons exists in the SL- than in the 2H-MoS₂ sample ([Figure S14](#)). We
442 therefore confirmed the role of plasmonic electrons in aggregation in experiments using Ag⁺ as
443 electron scavengers.^{66,67} In dark conditions, the sedimentation profile induced by 2 mM Ca²⁺ was
444 not influenced by inclusion of 20 μ M Ag⁺. This Ag⁺ concentration is much lower than the CCC
445 value for Ag⁺ (200 μ M). Under visible light irradiation, however, acceleration of aggregation was
446 much less pronounced in the presence of Ag⁺ ([Figure S15a](#)). This partial amelioration of
447 aggregation was due to electrons scavenging by Ag⁺ and resulted in the formation of Ag⁰ ([Figure](#)
448 [S15b](#)), supporting the role of plasmonic electrons in light-induced aggregation of MoS₂ nanosheets.
449 The participation of electrons in light-enhanced aggregation was further demonstrated in
450 aggregation experiments conducted in the absence or presence of molecular oxygen under
451 illumination. Since oxygen can also serve as an electron scavenger, a further promoted aggregation
452 was obtained as expected under oxygen-deficient conditions ([Figure S15c](#)).

453

454 **Figure 5.** (a) Evolution of normalized SL-MoS₂ suspension concentrations and light-exposed MoS₂ (irradiated
 455 for 0.5 h, 2 h and 10 h in the absence of cations, referred to as $I_{0.5}$, I_2 and I_{10} , respectively) with addition of 2 mM
 456 Ca²⁺ under dark or light irradiation; (b) UV-vis absorbance of pristine SL-MoS₂ (dark trace) and 2H-MoS₂ (red trace)
 457 with the characteristic peaks of the 2H phase marked by numbers. Inset: digital photographs of as-prepared
 458 2H-MoS₂ (left) and pristine SL-MoS₂ (right) dispersions showing good colloidal stability; (c) Sedimentation of
 459 pristine SL-MoS₂ (solid lines) compared to 2H-MoS₂ (dashed lines) under dark (black) and light (orange)
 460 conditions; (d) Proposed mechanisms of aggregation under light and dark conditions.

461

462 Overall, the mechanisms of cation and visible light effects on the aggregation of SL-MoS₂
 463 are proposed as shown in Figure 5d. In the dark, aggregation of SL-MoS₂ occurs upon addition of
 464 electrolytes through charge screening. Under illumination, surface conduction electrons in the
 465 metallic 1T-MoS₂ are excited and plasmon oscillation occurs on the nanosheet surface. When
 466 nanosheets approach closely enough for electromagnetic coupling, the optical spectra deviate from
 467 the Mie spectra, leading to the dipole induction in an electromagnetic field.⁴² The plasmon dipole-

468 dipole interaction force correlates linearly with light intensity E^2 and dissipates as h^{-4} , in which h
469 denotes the separation distance, compared to the normal vdW force that dissipates as h^{-7} .⁶⁸ Hence,
470 plasmon oscillation induces the generation of attractive forces between the nanosheets at longer
471 distance than that occurs in the dark. Meanwhile, the classical DLVO theory describes the total
472 interaction potential (V_T) of two colloidal particles by the sum of the vdW attractions (V_{vdw}) and
473 the electric double layer repulsions (V_{EDL}):

$$474 \quad V_T = V_{vdw} + V_{EDL}$$

475 Specifically, the V_{vdw} between two flat surfaces expresses as:⁶⁹

$$476 \quad V_{vdw} = -\frac{AH}{12\pi d^2}$$

477 where d is the sheet separation distance, A is the surface area of the sheets, and H is the Hamaker
478 constant, resulting from zero-point fluctuations of electronic polarisations.⁴² The value of H is
479 directly related to the dielectric permittivity, which would increase if the plasmonic materials
480 including 1T-MoS₂ are excited by the incident light.⁷⁰ Excitation of these plasmons by absorbed
481 light could therefore result in additional attractive forces via induced electromagnetic multipolar
482 interactions,⁴² decreasing the aggregation barrier between MoS₂ nanosheets at close approach.
483 Clearly, the theoretical studies are required to better understand the mechanisms.

484 ENVIRONMENTAL IMPLICATIONS

485 The potentially widespread application of TMDCs, especially MoS₂, has rendered the high
486 necessity of research on the behaviors and stability in environment. In our study, pristine
487 monolayer MoS₂ without surface coatings was chosen to reveal the intrinsic aggregation behaviors
488 under environmentally relevant conditions. MoS₂ nanosheets behave similarly to most
489 nanomaterials, tend to form aggregates and sediment in the presence of electrolytes *via* charge
490 screening mechanism. However, the unique physiochemical properties and bare nanosheet surface

491 lead to lower CCC values for MoS₂ nanosheets with common cations (e.g. Na⁺, Ca²⁺) and more
492 easily destabilized suspensions in aquatic environments. The exposed sulfur atoms on MoS₂
493 nanosheets have high affinity to a variety of cations (e.g., Lewis soft acids Pb²⁺) and mineral
494 surfaces, the interactions of which may lead to their enhanced homoaggregation and
495 heteroaggregation with other natural colloids in scenarios containing these species. At or near
496 water surface, exposure to light irradiation can strongly enhance the aggregation kinetics though
497 no appreciable photo-induced compositional changes occurred to the MoS₂ nanosheets. The
498 presence of dissolved NOM sterically stabilized the MoS₂ nanosheets; nevertheless light-induced
499 acceleration of aggregation was also operative in the presence of NOM. Our study implied the
500 metallic 1T phase containing surface conducting electrons contributes to the transient surface
501 plasmon oscillation, which leads to the accelerated aggregation in the presence of cations. Such a
502 phase-dependent light-assisted aggregation mechanism is new and might happen in other 1T-
503 dominant TMDCs, the phenomenon of which is particularly important as the metallic phase is
504 favored in the applications of catalysis, energy storage, and contaminant remediation.^{30,31} Given
505 the enhanced aggregation in the interlayer of cation and light exposure, the actual aggregation and
506 sedimentation at the natural water with sunlit could be substantial and thus the released MoS₂ are
507 more likely existing as aggregates instead of 2D nanosheets. Effects of nanosheet aggregation and
508 possible re-mobilization on the transport, exposure and toxicity to aquatic microorganisms should
509 be considered in the future studies, in order to comprehensively understand the environmental fate
510 and risks associated with MoS₂ and other TMDCs nanomaterials.

511 **ASSOCIATED CONTENT**

512 **Supporting Information**

513 Additional information on preparation of SL-MoS₂ nanosheets, supplementary aggregation results
514 and characterization of 2H-MoS₂ is available in the Supporting Information. This material is
515 available free of charge *via* the Internet at <http://pubs.acs.org>.

516 **ACKNOWLEDGEMENTS**

517 This work was financially supported by the National Nature Science Foundation of China (Nos.
518 22076075 and 41907296). This work was also supported by SUSTech-MIT Joint Center for
519 Mechanical Engineering Education and Research, and State Environmental Protection Key
520 Laboratory of Integrated Surface Water-Groundwater Pollution Control. The authors acknowledge
521 the assistance of SUSTech Core Research Facilities, and Dr. Dongsheng He for electron energy-
522 loss spectroscopy characterization. The contributions of JAP were supported by the National
523 Science Foundation under the Center for Sustainable Nanotechnology, CHE-2001611.

524 **Note:** the present address of JAP is Department of Environmental Health and Engineering, Johns
525 Hopkins University, Baltimore, MD, 21218, United States.

526 **REFERENCES**

- 527 (1) Wang, Z.; Zhu, W.; Qiu, Y.; Yi, X.; Von Dem Bussche, A.; Kane, A.; Gao, H.; Koski, K.; Hurt, R. Biological and Environmental Interactions of Emerging Two-Dimensional Nanomaterials. *Chem. Soc. Rev.* **2016**, *45* (6), 1750–1780.
- 529 (2) Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R.; Liang, L.; Louie, S. G.; Ringe, E.; Zhou, W.; Kim, S. S.; Naik, R. R.; Sumpter, B. G.; Terrones, H.; Xia, F.; Wang, Y.; Zhu, J.; Akinwande, D.; Alem, N.; Schuller, J. A.; Schaak, R. E.; Terrones, M.; Robinson, J. A. Recent Advances in Two-Dimensional Materials beyond Graphene. *ACS Nano* **2015**, *9* (12), 11509–11539.
- 535 (3) Lembke, D.; Bertolazzi, S.; Kis, A. Single-Layer MoS₂ Electronics. *Acc. Chem. Res.* **2015**, *48* (1), 100–110.
- 537 (4) Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug
538 Delivery with PEGylated MoS₂ Nano-Sheets for Combined Photothermal and Chemotherapy of Cancer.
539 *Adv. Mater.* **2014**, *26* (21), 3433–3440.

540 (5) Midya, A.; Ghorai, A.; Mukherjee, S.; Maiti, R.; Ray, S. K. Hydrothermal Growth of Few Layer
541 2H-MoS₂ for Heterojunction Photodetector and Visible Light Induced Photocatalytic Applications. *J. Mater.*
542 *Chem. A* **2016**, *4* (12), 4534–4543.

543 (6) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen
544 Evolution Catalysis from Chemically Exfoliated Metallic MoS₂ Nanosheets. *J. Am. Chem. Soc.* **2013**, *135*
545 (28), 10274–10277.

546 (7) Shi, Z. T.; Kang, W.; Xu, J.; Sun, Y. W.; Jiang, M.; Ng, T. W.; Xue, H. T.; Yu, D. Y. W.;
547 Zhang, W.; Lee, C. S. Hierarchical Nanotubes Assembled from MoS₂-Carbon Monolayer Sandwiched
548 Superstructure Nanosheets for High-Performance Sodium Ion Batteries. *Nano Energy* **2016**, *22*, 27–37.

549 (8) Wang, Z.; Tu, Q.; Zheng, S.; Urban, J. J.; Li, S.; Mi, B. Understanding the Aqueous Stability
550 and Filtration Capability of MoS₂ Membranes. *Nano Lett.* **2017**, *17* (12), 7289–7298.

551 (9) Thurston, T. R.; Wilcoxon, J. P. Photooxidation of Organic Chemicals Catalyzed by Nanoscale
552 MoS₂. *J. Phys. Chem. B* **1999**, *103* (1), 11–17.

553 (10) Liu, C.; Kong, D.; Hsu, P. C.; Yuan, H.; Lee, H. W.; Liu, Y.; Wang, H.; Wang, S.; Yan, K.; Lin,
554 D.; Maraccini, P. A.; Parker, K. M.; Boehm, A. B.; Cui, Y. Rapid Water Disinfection Using Vertically
555 Aligned MoS₂ Nanofilms and Visible Light. *Nat. Nanotechnol.* **2016**, *11* (12), 1098–1104.

556 (11) Fausey, C. L.; Zucker, I.; Lee, D. E.; Shaulsky, E.; Zimmerman, J. B.; Elimelech, M. Tunable
557 Molybdenum Disulfide-Enabled Fiber Mats for High-Efficiency Removal of Mercury from Water. *ACS*
558 *Appl. Mater. Interfaces* **2020**, *12* (16), 18446–18456.

559 (12) Wang, Z.; Tu, Q.; Sim, A.; Yu, J.; Duan, Y.; Poon, S.; Liu, B.; Han, Q.; Urban, J. J.; Sedlak, D.;
560 Mi, B. Superselective Removal of Lead from Water by Two-Dimensional MoS₂ Nanosheets and Layer-
561 Stacked Membranes. *Environ. Sci. Technol.* **2020**, *54* (19), 12602–12611.

562 (13) Wang, Z.; Sim, A.; Urban, J. J.; Mi, B. Removal and Recovery of Heavy Metal Ions by Two-
563 Dimensional MoS₂ Nanosheets: Performance and Mechanisms. *Environ. Sci. Technol.* **2018**, *52* (17), 9741–
564 9748.

565 (14) Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of Nanomaterials in the
566 Environment. *Environ. Sci. Technol.* **2012**, *46*, 6893–6899.

567 (15) Hotze, E. M.; Phenrat, T.; Lowry, G. V. Nanoparticle Aggregation: Challenges to Understanding
568 Transport and Reactivity in the Environment. *J. Environ. Qual.* **2010**, *39* (6), 1909.

569 (16) Mensch, A. C.; Hernandez, R. T.; Kuether, J. E.; Torelli, M. D.; Feng, Z. V.; Hamers, R. J.;
570 Pedersen, J. A. Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond
571 Nanoparticles with Model and Actual Bacterial Membranes. *Environ. Sci. Technol.* **2017**, *51* (19), 11075–
572 11084.

573 (17) Perreault, F.; De Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene
574 Oxide Nanosheets: Why Size Matters. *ACS Nano* **2015**, *9* (7), 7226–7236.

575 (18) Zou, W.; Zhou, Q.; Zhang, X.; Hu, X. Dissolved Oxygen and Visible Light Irradiation Drive the
576 Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide. *Environ. Sci.*

577 *Technol.* **2019**, *53*, 7759–7769.

578 (19) Chng, E. L. K.; Sofer, Z.; Pumera, M. MoS₂ Exhibits Stronger Toxicity with Increased
579 Exfoliation. *Nanoscale* **2014**, *6* (23), 14412–14418.

580 (20) Jeong, G. H.; Sasikala, S. P.; Yun, T.; Lee, G. Y.; Lee, W. J.; Kim, S. O. Nanoscale Assembly of
581 2D Materials for Energy and Environmental Applications. *Adv. Mater.* **2020**, *32* (35), 1–23.

582 (21) Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Colloidal
583 Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. *Environ. Sci.*
584 *Technol.* **2013**, *47* (12), 6288–6296.

585 (22) Yang, K.; Chen, B.; Zhu, X.; Xing, B. Aggregation, Adsorption, and Morphological
586 Transformation of Graphene Oxide in Aqueous Solutions Containing Different Metal Cations. *Environ. Sci.*
587 *Technol.* **2016**, *50* (20), 11066–11075.

588 (23) Tan, Z.; Yin, Y.; Guo, X.; Wang, B.; Shang, H.; Xu, J.; Zhao, Q.; Liu, J.; Xing, B. Natural
589 Organic Matter Inhibits Aggregation of Few-Layered Black Phosphorus in Mono- and Divalent Electrolyte
590 Solutions. *Environ. Sci. Nano* **2019**, *6* (2), 599–609.

591 (24) Xie, Y.; Gao, Y.; Ren, X.; Song, G.; Alsaedi, A.; Hayat, T.; Chen, C. Colloidal Behaviors of
592 Two-Dimensional Titanium Carbide in Natural Surface Waters: The Role of Solution Chemistry. *Environ.*
593 *Sci. Technol.* **2020**, *54* (6), 3353–3362.

594 (25) Mohona, T. M.; Gupta, A.; Masud, A.; Chien, S. C.; Lin, L. C.; Nalam, P. C.; Aich, N.
595 Aggregation Behavior of Inorganic 2D Nanomaterials beyond Graphene: Insights from Molecular Modeling
596 and Modified DLVO Theory. *Environ. Sci. Technol.* **2019**, *53* (8), 4161–4172.

597 (26) Li, B. L.; Zou, H. L.; Lu, L.; Yang, Y.; Lei, J. L.; Luo, H. Q.; Li, N. B. Size-Dependent Optical
598 Absorption of Layered MoS₂ and DNA Oligonucleotides Induced Dispersion Behavior for Label-Free
599 Detection of Single-Nucleotide Polymorphism. *Adv. Funct. Mater.* **2015**, *25* (23), 3541–3550.

600 (27) Lanphere, J. D.; Luth, C. J.; Guiney, L. M.; Mansukhani, N. D.; Hersam, M. C.; Walker, S. L.
601 Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. *Environ. Eng. Sci.* **2015**, *32*
602 (2), 163–173.

603 (28) Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (MoS₂)
604 Nanosheets. *Environ. Sci. Technol.* **2017**, *51* (15), 8229–8244.

605 (29) Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One
606 Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. *Nano Lett.* **2013**, *13* (8),
607 3664–3670.

608 (30) Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T Phase MoS₂ Nanosheets as Supercapacitor
609 Electrode Materials. *Nat. Nanotechnol.* **2015**, *10* (4), 313–318.

610 (31) Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.; Cui,
611 J.; Chen, T. P. Pure and Stable Metallic Phase Molybdenum Disulfide Nanosheets for Hydrogen Evolution
612 Reaction. *Nat. Commun.* **2016**, *7*, 1–7.

613 (32) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS₂: A New Direct-Gap

614 Semiconductor. *Phys. Rev. Lett.* **2010**, *105* (13).

615 (33) Wang, Y.; Ou, J. Z.; Chrimes, A. F.; Carey, B. J.; Daeneke, T.; Alsaif, M. M. Y. A.; Mortazavi,
616 M.; Zhuiykov, S.; Medhekar, N.; Bhaskaran, M.; Friend, J. R.; Strano, M. S.; Kalantar-Zadeh, K. Plasmon
617 Resonances of Highly Doped Two-Dimensional MoS₂. *Nano Lett.* **2015**, *15* (2), 883–890.

618 (34) Habenicht, C.; Lubk, A.; Schuster, R.; Knupfer, M.; Büchner, B. Investigation of Potassium-
619 Intercalated Bulk MoS₂ Using Transmission Electron Energy-Loss Spectroscopy. *Phys. Rev. B* **2020**, *101*
620 (15), 155429.

621 (35) Kong, L.; Peng, X.; Hu, X.; Chen, J.; Xia, Z. UV-Light-Induced Aggregation of Arsenic and
622 Metal Sulfide Particles in Acidic Wastewater: The Role of Free Radicals. *Environ. Sci. Technol.* **2018**, *52*
623 (18), 10719–10727.

624 (36) Matsuzawa, Y.; Kato, H.; Ohyama, H.; Nishide, D.; Kataura, H.; Yoshida, M. Photoinduced
625 Dispersibility Tuning of Carbon Nanotubes by a Water-Soluble Stilbene as a Dispersant. *Adv. Mater.* **2011**,
626 *23* (34), 3922–3925.

627 (37) Chen, S.; Jiang, Y.; Wang, Z.; Zhang, X.; Dai, L.; Smet, M. Light-Controlled Single-Walled
628 Carbon Nanotube Dispersions in Aqueous Solution. *Langmuir* **2008**, *24* (17), 9233–9236.

629 (38) Chowdhury, I.; Hou, W. C.; Goodwin, D.; Henderson, M.; Zepp, R. G.; Bouchard, D. Sunlight
630 Affects Aggregation and Deposition of Graphene Oxide in the Aquatic Environment. *Water Res.* **2015**, *78*,
631 37–46.

632 (39) Sun, J.; Guo, L. H.; Zhang, H.; Zhao, L. UV Irradiation Induced Transformation of TiO₂
633 Nanoparticles in Water: Aggregation and Photoreactivity. *Environ. Sci. Technol.* **2014**, *48* (20), 11962–
634 11968.

635 (40) Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J. Toxicity Reduction of Polymer-
636 Stabilized Silver Nanoparticles by Sunlight. *J. Phys. Chem. C* **2011**, *115* (11), 4425–4432.

637 (41) Satoh, N.; Hasegawa, H.; Tsujii, K.; Kimura, K. Photoinduced Coagulation of Au Nanocolloids.
638 *J. Phys. Chem.* **1994**, *98* (8), 2143–2147.

639 (42) Eckstein, H.; Kreibig, U. Light Induced Aggregation of Metal Clusters. *Zeitschrift für Phys. D
640 Atoms, Mol. Clust.* **1993**, *26* (1), 239–241.

641 (43) Wang, Z.; Von Dem Bussche, A.; Qiu, Y.; Valentin, T. M.; Gion, K.; Kane, A. B.; Hurt, R. H.
642 Chemical Dissolution Pathways of MoS₂ Nanosheets in Biological and Environmental Media. *Environ. Sci.
643 Technol.* **2016**, *50* (13), 7208–7217.

644 (44) Wang, Z.; Zhang, Y. J.; Liu, M.; Peterson, A.; Hurt, R. H. Oxidation Suppression during
645 Hydrothermal Phase Reversion Allows Synthesis of Monolayer Semiconducting MoS₂ in Stable Aqueous
646 Suspension. *Nanoscale* **2017**, *9* (17), 5398–5403.

647 (45) Gueymard, C. A.; Myers, D.; Emery, K. Proposed Reference Irradiance Spectra for Solar
648 Energy Systems Testing. *Sol. Energy* **2002**, *73* (6), 443–467.

649 (46) Lee, T. W.; Chen, C. C.; Chen, C. Chemical Stability and Transformation of Molybdenum
650 Disulfide Nanosheets in Environmental Media. *Environ. Sci. Technol.* **2019**, *53* (11), 6282–6291.

651 (47) Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso,
652 A.; Tascón, J. M. D. Chemically Exfoliated MoS₂ Nanosheets as an Efficient Catalyst for Reduction
653 Reactions in the Aqueous Phase. *ACS Appl. Mater. Interfaces* **2014**, *6* (23), 21702–21710.

654 (48) Heising, J.; Kanatzidis, M. G. Exfoliated and Restacked MoS₂ and WS₂: Ionic or Neutral
655 Species? Encapsulation and Ordering of Hard Electropositive Cations. *J. Am. Chem. Soc.* **1999**, *121* (50),
656 11720–11732.

657 (49) Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H.
658 Aggregation Kinetics of Graphene Oxides in Aqueous Solutions: Experiments, Mechanisms, and Modeling.
659 *Langmuir* **2013**, *29* (49), 15174–15181.

660 (50) Gudarzi, M. M. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.
661 *Langmuir* **2016**, *32* (20), 5058–5068.

662 (51) Gao, Y.; Chen, K.; Ren, X.; Alsaedi, A.; Hayat, T.; Chen, C. Exploring the Aggregation
663 Mechanism of Graphene Oxide in the Presence of Radioactive Elements: Experimental and Theoretical
664 Studies. *Environ. Sci. Technol.* **2018**, *52* (21), 12208–12215.

665 (52) Sano, M.; Kamino, A.; Shinkai, S. Critical Coagulation of Langmuir Monolayers : 2D Schulze -
666 Hardy Rule. *J. Phys. Chem. B* **2000**, 10339–10347.

667 (53) Lu, X.; Gabinet, U. R.; Ritt, C. L.; Feng, X.; Deshmukh, A.; Kawabata, K.; Kaneda, M.;
668 Hashmi, S. M.; Osuji, C. O.; Elimelech, M. Relating Selectivity and Separation Performance of Lamellar
669 Two-Dimensional Molybdenum Disulfide (MoS₂) Membranes to Nanosheet Stacking Behavior. *Environ.*
670 *Sci. Technol.* **2020**, *54* (15), 9640–9651.

671 (54) Lide, D. R. *CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical*
672 *and Physical Data*; CRC press, 1995.

673 (55) Nieboer, E.; Richardson, D. H. S. The Replacement of the Nondescript Term ‘heavy Metals’ by
674 a Biologically and Chemically Significant Classification of Metal Ions. *Environ. Pollution. Ser. B, Chem.*
675 *Phys.* **1980**, *1* (1), 3–26.

676 (56) Luo, J.; Fu, K.; Sun, M.; Yin, K.; Wang, D.; Liu, X.; Crittenden, J. C. Phase-Mediated Heavy
677 Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS₂. *ACS Appl. Mater.*
678 *Interfaces* **2019**, *11* (42), 38789–38797.

679 (57) Wetzel, R. G. Limnology: Lake and River Ecosystems. In *San Diego: Elsevier Science &*
680 *Technology*; San Diego: Elsevier Science & Technology: San Diego, 2001; pp 744–746.

681 (58) Louie, S. M.; Tilton, R. D.; Lowry, G. V. Effects of Molecular Weight Distribution and
682 Chemical Properties of Natural Organic Matter on Gold Nanoparticle Aggregation. *Environ. Sci. Technol.*
683 **2013**, *47* (9), 4245–4254.

684 (59) Christl, I. Ionic Strength- and PH-Dependence of Calcium Binding by Terrestrial Humic Acids.
685 *Environ. Chem.* **2012**, *9* (1), 89.

686 (60) Guo, Y.; Deng, L.; Li, J.; Guo, S.; Wang, E.; Dong, S. Hemin-Graphene Hybrid Nanosheets
687 with Intrinsic Peroxidase-like Activity for Label-Free Colorimetric Detection of Single-Nucleotide

688 Polymorphism. *ACS Nano* **2011**, *5* (2), 1282–1290.

689 (61) Baalousha, M. Effect of Nanomaterial and Media Physicochemical Properties on Nanomaterial
690 Aggregation Kinetics. *NanoImpact* **2017**, *6*, 55–68.

691 (62) Mittelman, A. M.; Fortner, J. D.; Pennell, K. D. Effects of Ultraviolet Light on Silver
692 Nanoparticle Mobility and Dissolution. *Environ. Sci. Nano* **2015**, *2* (6), 683–691.

693 (63) Hou, W. C.; He, C. J.; Wang, Y. S.; Wang, D. K.; Zepp, R. G. Phototransformation-Induced
694 Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon.
695 *Environ. Sci. Technol.* **2016**, *50* (7), 3494–3502.

696 (64) Gopannagari, M.; Chaturvedi, H. Light Induced Aggregation of Specific Single Walled Carbon
697 Nanotubes. *Nanoscale* **2015**, *7* (40), 16590–16596.

698 (65) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence
699 from Chemically Exfoliated MoS₂. *Nano Lett.* **2011**, *11* (12), 5111–5116.

700 (66) Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo,
701 W.; Li, Z.; Liu, Y.; Withers, R. L. An Orthophosphate Semiconductor with Photooxidation Properties under
702 Visible-Light Irradiation. *Nat. Mater.* **2010**, *9* (7), 559–564.

703 (67) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-Based Photocatalytic Hydrogen
704 Generation. *Chem. Rev.* **2010**, *110* (11), 6503–6570.

705 (68) Hallock, A. J.; Redmond, P. L.; Brus, L. E. Optical Forces between Metallic Particles. *Proc.*
706 *Natl. Acad. Sci. U. S. A.* **2005**, *102* (5), 1280–1284.

707 (69) Israelachvili, J. N. *Van Der Waals Forces between Particles and Surfaces*; Academic press:
708 Waltham, MA, 2011.

709 (70) Prieve, D. C.; Russel, W. B. Simplified Predictions of Hamaker Constants from Lifshitz Theory.
710 *J. Colloid Interface Sci.* **1988**, *125* (1), 1–13.

711

712