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 3 

The biological transformation of dissolved inorganic carbon to organic carbon during 4 
photosynthesis in the ocean, marine primary production, is a fundamental driver of 5 
biogeochemical cycling, ocean health and the earth’s climate system.  The organic matter 6 
created supports oceanic food webs including fisheries and is an essential control on 7 
atmospheric carbon dioxide levels. Marine primary productivity is sensitive to changes due to 8 
climate forcing but observing the response at the global scale remains a significant challenge. 9 
Sparsely distributed productivity measurements are made using samples collected and 10 
analyzed on research vessels. However, there are never enough ships and scientists to enable 11 
direct observations at the global scale with seasonal to annual resolution. Today, global 12 
ocean productivity is estimated using remote sensing ocean colour observations or general 13 
circulation models with coupled biological models that are calibrated with the sparse 14 
shipboard measurements.  Here we demonstrate the measurement of gross oxygen 15 
production by photosynthesis using the diel cycle of oxygen concentration detected with the 16 
array of Biogeochemical-Argo (BGC-Argo) profiling floats. The global ocean net primary 17 
productivity computed from this data is 53 Pg C y-1, which will be a significant constraint on 18 
satellite and general circulation model (GCM)-based estimates of the ocean productivity.   19 
 20 
Global ocean productivity is estimated to be near half of the Earth’s total productivity1 and it 21 
represents the production of autotrophic biomass that is readily available for the remaining 22 
food web2, 3, 4.  Uptake of inorganic carbon and sinking of the particulate organics sequesters 23 
atmospheric carbon into the ocean interior, a process known as the biological carbon pump5.  24 
This process reduces the present atmospheric CO2 by 200 ppm relative to a world with a 25 
modeled, abiotic ocean6. Measuring metabolic rates via daily photosynthetic generation of 26 
oxygen (gross oxygen production, GOP), total carbon dioxide reduction (gross primary 27 
production, GPP) and net primary production (NPP which equals GPP minus autotroph 28 
respiration to sustain self-metabolism) have been valuable tools to assess the marine 29 
ecosystem status and productivity4.  In a changing ocean, primary productivity is observed to be 30 
variable spatially and seasonally7, 8, 9.   31 
 32 
The earliest measurements of primary productivity in the ocean were based on the Light 33 
Bottle/Dark Bottle (LBDB) methodology, resulting in GOP rates10. Poor sensitivity and bottle 34 
artifacts led to replacement of the LBDB method by 14C-bicarbonate labeled incubations11 as 35 
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the most generally utilized method. It is interpreted to yield net primary productivity 36 
estimates2, 12, 13, although method artifacts may still occur13, 14. Early assessments of global 37 
primary productivity were based on extrapolation of 14C-labeled NPP measurements to the 38 
entire ocean10, 15. More recently, methods based on the fractionation of the three isotopes of 39 
oxygen have been used to determine GOP rates directly from samples without the need for 40 
incubation16, 17.  However, there are never enough of any of these measurements to enable the 41 
extrapolation to a global extent with seasonal to annual resolution.  42 
 43 
With the advent of satellite based observations of chlorophyll near the sea surface, a variety of 44 
methods to estimate the ocean’s biological productivity were developed18, 19. These estimates 45 
were based on empirical models of primary production20, 21 that have been tuned to a limited 46 
set of 14C-uptake NPP observations (Figure 1a) and driven by the satellite fields of chlorophyll 47 
and carbon. More recently, global estimates of ocean primary productivity have been 48 
generated using general circulation models (GCM) with embedded biogeochemical models that 49 
assimilate ocean color data22, 23. These satellite and GCM methods generate net primary 50 
productivity in the range of 30 to 60 Pg C y-1 for the global ocean18, 22, 24.  None of these values 51 
are direct observations of ocean productivity, however. They are estimates derived from 52 
models with documented limitations18, 19, 23.  For instance, these models have difficulty 53 
reproducing observations at ocean time series stations25 and they may be affected by changing 54 
phytoplankton physiology26. 55 
 56 
In an approach derived from the original LBDB method, autonomous platforms equipped with 57 
oxygen sensors are now capable of measuring the diel cycle of oxygen production and 58 
respiration directly in the open ocean without enclosing samples27, 28. This has enabled direct 59 
observations of GOP and community respiration (CR, respiration at all trophic levels) in 60 
oligotrophic waters29, 30, 31. These approaches require multiple observations over the course of 61 
each day from a single autonomous platform and they are difficult to replicate to the global 62 
scale. 63 
 64 
Observing diel oxygen cycles 65 
 66 
Here we use the profiling floats of the Biogeochemical-Argo (BGC-Argo) array32 to detect the 67 
diel cycle of oxygen (GOP) and compute net primary productivity at the global scale (Figure 1b). 68 
BGC-Argo floats are free drifting platforms equipped with biological and chemical sensors, 69 
including oxygen, that profile from ~2000 m depth to surface.  Observations made on the 70 
ascent are transmitted via satellite to Argo Data Assembly Centers, where results are made 71 
available without restriction within 24 hours.  Each float has sufficient energy to make about 72 
200 vertical profiles, typically at ~5 to ~10 day intervals over float lifetimes that reach 4 to 6 73 
years. The low profiling frequency would seem to be incompatible with the need for multiple 74 
measurements during one day to detect a diel oxygen cycle. However, the diel cycle of oxygen 75 
is a signal that is phase locked to the solar cycle. This signal is present in euphotic zone oxygen 76 
concentrations throughout the ocean and it can be resolved using the methods shown here. 77 
Exact calibration of the oxygen sensors in the array is not required.  78 
 79 



3 
 

Detecting diel cycles from the Argo array has been demonstrated previously. Gille33 found that 80 
the diel cycle of temperature in the upper ocean is observable when the array is used as a 81 
collective set of sensors. Gille introduced one additional protocol to improve the statistical 82 
performance of such calculations. The analysis used the anomaly of the profiling float 83 
temperatures relative to a reference value rather than analyzing the float temperature directly. 84 
The reference for temperature observations was the temperature measured at local noon (or 85 
midnight) near each float profile by orbiting satellites. The use of temperature anomalies 86 
reduces the variability in the data. In the case of profiling float oxygen, we use the anomaly of 87 
oxygen concentration relative to atmospheric saturation (saturation anomaly) in each sample 88 
for our GOP calculations.  The oxygen concentrations in the upper 10 m and the saturation 89 
anomaly for all Argo data in the upper 10 m are shown in Extended Data Figure S1. 90 
 91 
To illustrate the phase locked oxygen signal, the oxygen concentration anomaly (oxygen – 92 
atmospheric saturation concentration in the same water) data in the upper 20 m from 60°N to 93 
10°N are shown versus the local hour of day when the samples were obtained (Figure 2a). 94 
Although the individual profile data are scattered, a diel signal is clear when the mean oxygen 95 
anomaly value in each hour of the pseudo-daily cycle is computed (Figure 2b). This plot was 96 
made with adjusted oxygen data from floats in the Argo Global Data Assembly Center that have 97 
sampled all hours of the day evenly (see Methods) from 2010 through 2020. 14,294 profiles of 98 
50,736 oxygen profiles from this region have the required float timing with all hours of the day 99 
sampled at nearly even occurrences. The remaining profiles could not be used to assess the diel 100 
cycle because those floats sampled at one or a few fixed hours of the day. Any calibration 101 
offsets in floats that sample at fixed times will corrupt the diel signal by biasing only the few 102 
sampled hours of the day.   103 
 104 
A GOP annual rate of 2.2±0.3 (1 Std. Error, N=14,294) mmol O2 m-3 d-1 was obtained from the 105 
data (Figure 2b).  The procedure used to fit the GOP rate (Methods) is based on the approach 106 
outlined by Barone et al.29.  Standard error limits were calculated using bootstrapping29. The 107 
typical least squares fit error gave similar results. A seasonal cycle in GOP is resolved with a 108 
spring maximum (Figure 2c). The annually averaged and vertically integrated GOP rate to 50 m 109 
depth (Figure 2d) is 70±12mmol O2 m-2 d-1.  This analysis was limited to the northern 110 
hemisphere to preserve the seasonal signal.  The entire global data set can be used (Extended 111 
Data Figure S2) to obtain a rate of 2.1±0.4 mmol O2 m-3 d-1 in the upper 20 m. This rate is a 112 
somewhat spatially biased (Figure 1b) estimate of the global mean GOP rate. The calculations 113 
we applied assume negligible effects on computed GOP from the diel temperature cycle, from 114 
gas exchange, and a presumption that GOP equals CR. The effects of these assumptions are 115 
explored in the Methods. The only limitation on resolving the diel signal and obtaining a GOP 116 
rate by this approach is having sufficient profiles in the geographic and temporal region that 117 
sample all hours of the day. These limits are considered below.   118 
 119 
Productivity near Hawaii and Bermuda 120 
 121 
Floats are not anchored and the configuration of the array for each hour will be different.  122 
There must be sufficient observations in each particular region to provide an adequate 123 
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representation of the oxygen anomaly value at every hour of the day.  The adequacy of this 124 
assumption was tested by computing GOP with profiles near the Hawaii Ocean Time-series 125 
(HOT) station and the Bermuda Atlantic Time-series Station (BATS).  GOP determined from float 126 
profiles near the two stations (Figure 1b) were compared with productivity determined from 127 
ship-based sampling. The pseudo-daily cycle near HOT (Figure 3a) was determined from 1791 128 
vertical profiles collected from 2010 through 2020 within a geographic box (21 to 25°N, 165 to 129 
150°W; Figure 1b) that encompasses HOT. The hourly binned data (Figure 3b) show the daily 130 
oxygen cycle with a 0.8 µmol kg-1 daily amplitude in the upper 20 m. A statistically significant 131 
(p<0.0005) GOP of 1.5±0.3 (1 Std. Error) mmol O2 m-3 d-1 in the upper 20 m was obtained29 from 132 
the fit to the data in Figure 3a. This represents the annual mean GOP over the past 11 years.  In 133 
comparison, Barone et al.29 have tabulated 11 reports of GOP in the mixed layer at HOT with a 134 
mean of 1.3±0.5 (1 SD) mmol O2 m-3 d-1.  The GOP integrated to 100 m, near the 1% light level, 135 
was 103±18 mmol O2 m-2 d-1 (Figure 2c). The mean integral observed by Juranek and Quay34 on 136 
four cruises near HOT in 2002 and 2003 was 111±51 (1 SD) mmol O2 m-2 d-1 while Quay et al.35 137 
found 103±43 mmol O2 m-2 d-1 on multiple cruises from 2006 to 2008 using the triple oxygen 138 
isotope method. 139 
 140 
The annual cycle of GOP in the upper 20 m near HOT was computed from the float data with 141 
two month resolution (Figure 3c). This is the highest temporal frequency that can be resolved in 142 
the float data with ~2000 total profiles (see below).  The monthly mean NPP rates in the upper 143 
20 m that were measured by 14C-labeled incubations in the HOT program are shown for 144 
comparison.  The ratio of GOP/NPP was found to be consistently near 2.7 during the JGOFS 145 
program12 and between 2 to 3 near the surface at HOT35.  The NPP rates measured at HOT 146 
(Figure 3c, d) are plotted on a scale that is a factor of 2.5 smaller than the GOP scale. Both sets 147 
of data show a relatively flat seasonal cycle with GOP about 2.5 times greater than the NPP 148 
near the surface. The weak seasonal signal is consistent with GOP observations at HOT36. The 149 
vertical profile of GOP at 10 m intervals is shown in Figure 3d. GOP decreased with depth in 150 
parallel with the observed decrease in NPP and was approximately 2.5 times greater than the 151 
NPP values throughout the profile.  The larger error limits on GOP at depth preclude detection 152 
of the change in GOP/NPP  observed by Quay et al.35 at HOT.   153 
 154 
Figures 3e-f show similar results for float profiles in the geographic box (28 to 38°N, 75 to 55°W; 155 
Figure 1b) that encompasses BATS. There are 741 profiles that are suitable for analysis. The 156 
error bars at each hour (Figure 3f) are larger than near HOT due to fewer profiles and a larger 157 
temperature range that creates greater spread in the oxygen anomaly data.  A statistically 158 
significant (p<0.014) diel signal with a GOP rate of 2.3±0.9 mmol O2 m-3 d-1 in the upper 20 m 159 
was obtained for all data in the 2010 through 2020 period. The GOP rate vertically integrated to 160 
80 m at BATS (Figure 3h) is 148±44 mmol O2 m-2 d-1.  In comparison, Luz and Barakan37 found a 161 
mean GOP value of 70±24 mmol O2 m-2 d-1.  The annual cycle derived from float data (Fig. 3g) 162 
was computed at quarterly intervals because of the smaller number of profiles near BATS. In 163 
contrast to HOT, the GOP values decreased appreciably over the course of the year. This 164 
decrease was mirrored in the measured NPP data. The high productivity in late winter results 165 
from entrainment of nitrate into the mixed layer38. The GOP/NPP ratios at BATS during winter 166 
and late fall are consistent with the canonical value of 2.7 reported for JGOFS samples12. During 167 
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summer, the ratios of GOP/NPP in Figure 3g were higher than 2.7, with values up to 5. Higher 168 
ratios of GOP/NPP at BATS during spring and summer, in the range of 3 to 7, have been noted 169 
previously16, 17. High GOP/NPP may result from the production of Gel-Like Organic Matter 170 
(GLOM) during NPP incubations that is not trapped on filters39. GLOM would lead to an 171 
underestimate of primary productivity and elevated GOP/NPP ratios. 172 
 173 
Global ocean productivity 174 
 175 
The diel cycles of oxygen can be used to compute global ocean GOP and NPP rates between 176 
60°N to 60°S in the deep waters (>2000 m) where floats operate. To minimize biases due to 177 
clusters of profiles in various regions (Figure 1b), we have computed zonal mean GOP by 10° 178 
bands of latitude from 60°N to 60°S (Table 1). This is a balance between spatial resolution and 179 
having sufficient float profiles to minimize errors in GOP. We have also combined observations 180 
from all years to minimize spatial biases. Interannual changes have not been computed as they 181 
reflect significant geographic change in the float array over time.  We assume a value of 2.7 for 182 
the GOP/NPP ratio12, 17 to enable NPP calculations that illustrate the consistency of the GOP 183 
determinations on a broad scale. However, the GOP/NPP ratio can vary at times from a value of 184 
2.7, as noted above, in a manner that is not yet well understood.    185 
 186 
A GOP rate of 10.4±1.6 Pmol O2 y-1, and a net primary productivity of 46±7 Pg C y-1 were 187 
obtained by summing the values in each latitude band (Table 1).  The areas in Table 1 include 188 
water shallower than 2000 m, effectively extrapolating low open ocean rates to the entire zone.  189 
NPP errors reflect only the uncertainty in the GOP rates and not the GOP/NPP ratio. The total 190 
float GOP was adjusted to a global extent as described in the Methods. This yields 11.9±1.9 191 
Pmol O2 y-1, which is consistent with global GOP (9.5 to 12.6 Pmol O2 y-1) determined from a 192 
neural network fitted to a global set of LBDB and triple oxygen isotope measurements40. The 193 
NPP values derived from the diel oxygen cycles are compared to values derived from satellite 194 
ocean colour data using the VGPM21, CBPM24, and CAFE41 productivity models in Table 1 and 195 
Extended Data Figure S3. The satellite observations were limited to latitudes from 50°N to 50°S 196 
because monthly climatologies poleward have missing data during many months.  The VGPM 197 
total is lower than the observed float value while the CBPM and CAFE models are similar (Table 198 
1). There are apparent differences in the distribution of primary productivity with latitude 199 
(Table 1; Extended Data Figure S3).  The float data imply a much greater contrast between NPP 200 
in equatorial regions versus the sub-tropics (Extended Data Figure S3a). The ocean colour NPP 201 
models are in reasonable agreement with the float data at latitudes poleward of 30°. If the 202 
profiling float NPP result in Table 1 is adjusted to a global extent, as for GOP (Methods), then a 203 
global NPP of 53±7 Pg C y-1 is obtained.  This is consistent with the CBPM and CAFE global totals 204 
(52 Pg C y-1) and the mean, global NPP (51 Pg C y-1) found in a comparison of 24 NPP 205 
algorithms18. While significant areas (e.g., 0 to 20° S) of the ocean now have insufficient data for 206 
analysis of diel oxygen cycles, the coverage is greater than that of the primary productivity 207 
stations used to constrain productivity models (Figure 1). 208 
 209 
The spatial resolution of the GOP measurements is limited by the number of operating floats 210 
and the number of profiles needed to resolve the diel cycle. Twenty to fifty profiles in each hour 211 
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of the pseudo-day are required to clearly resolve diel changes with variability similar to that in 212 
Figure 2a and 3a. The smaller number of profiles pertain to tropics with low oxygen variability 213 
and larger numbers to high latitudes. With 36 profiles per year from a float at the standard 10 214 
day cycle time, accurate GOP determination of annual cycles will require 12 (tropics) to 30 (high 215 
latitude) float years of data. The Biogeochemical-Argo Implementation Plan42 calls for a global 216 
array of 1000 floats, versus 377 floats now operating, although fewer than one half are 217 
operating with the required cycle timing. The low number of floats available in any one year 218 
was overcome in this work by binning 11 calendar years of data. In the future, the size of the 219 
BGC-Argo fleet will increase as the Global Ocean Biogeochemistry Array (GO-BGC) project will 220 
produce an array of 500 floats that are evenly distributed and which will operate with the 221 
required timing properties needed to detect diel oxygen cycles. The GO-BGC array will produce 222 
a much more evenly distributed array and diminish spatial biases due to gaps in the profiling 223 
float array (Figure 1b). However, even at a maximum array size of 1000 floats and with all floats 224 
operating with appropriate cycle timing, the GOP or NPP rates would resolve annual cycles in 225 
only about 50 regions in the ocean. Thus, this method cannot approach the resolution obtained 226 
by satellites. Assimilating the observed diel cycles at low resolution into high resolution GCMs 227 
along with satellite chlorophyll fields will mitigate this issue and contribute to a more accurate 228 
representation of the ocean productivity43. 229 
 230 

Data availability 231 

The profiling float data used in this study was obtained in December 2020 by downloading all 232 
Argo Sprof files directly from the Argo Global Data Assembly Center 233 
(ftp://usgodae.org/pub/outgoing/argo or ftp://ftp.ifremer.fr/ifremer/argo).  The corresponding 234 
monthly snapshot (December 2020) of the Argo database, which contains these Sprof files in 235 
addition to floats that do not have biogeochemical sensors, is 236 
https://doi.org/10.17882/42182#79118.  The Sprof files for floats with adjusted oxygen 237 
concentrations were then merged into netCDF files for the Northern and Southern 238 
Hemispheres and used for the analyses reported here.  These files are available at 239 
https://doi.org/10.5281/zenodo.4989023.  Monthly satellite data were down loaded from 240 
http://www.science.oregonstate.edu/ocean.productivity/. 241 

 242 

Code Availability 243 

Analyses were performed in Matlab. Code used in this analysis is available at 244 
https://doi.org/10.5281/zenodo.4989023.  245 
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 247 

 248 
*GOP values were estimated from corresponding rates in Northern Hemisphere due to a low 249 
number of float profiles. 250 
†45 Pg C y-1 without 55°N and 55°S bands.  251 

Table 1.  Gross Oxygen Production rates from 60°N to 60°S in water deeper than 2000 m.   
Annual GOP rates were calculated using all data in each latitude band. Volumetric GOP 
rates in column 4 are for the upper 20 m. GOP integrals in column 5 are to the 1% light 
level.  VGPM, CBPM, and CAFE NPP values were calculated for years 2010 to 2019 using 
monthly values downloaded from the Oregon State University Ocean Productivity site 
(see Methods).  Satellite rates were masked for depth using the ETOPO5 topography.  
Errors are 1 Standard Error. 
Latitu

de 
±5° 

Area 
1013 
m2 

Dept
h 1% 
light 

GOP 
mmol 
O2 m-3 

d-1 

GOP 
mmol 
O2 m-2 

d-1 

GOP 
Pmol O2 

y-1 

Float 
NPP 
Pg C 
y-1 

VGPM 
NPP  
Pg C 
y-1 

CBPM 
NPP 
Pg C 
y-1 

CAFE 
NPP 
Pg C 
y-1 

55 1.09 39 3.5±1.3 77±26 0.31 1.4    
45 1.50 41 2.1±1.3 58±31 0.32 1.4 2.8 2.0 2.3 
35 2.08 54 2.1±0.5 92±16 0.70 3.1 2.9 2.5 2.8 
25 2.51 89 1.2±0.3 53±11 0.49 2.2 2.2 3.6 3.5 
15 3.16 58 2.0±0.7 33±18 0.38 1.7 3.1 5.7 5.4 
5 3.42 59 3.8±1.1 205±82 2.56 11.4 3.5 7.3 6.9 
-5 3.38 64  205* 2.53* 11.2 4.0 7.7 7.2 

-15 3.35 85  33* 0.40* 1.8 3.2 6.1 6.1 
-25 3.10 91 0.8±0.3 30±10 0.34 1.5 2.7 4.4 4.3 
-35 3.23 60 1.7±0.5 87±14 1.02 4.6 4.4 3.9 4.6 
-45 3.04 62 2.9±0.4 121±10 1.34 6.0 4.2 3.0 4.5 
-55 2.53 71 0.4±0.5 4±10 0.04 0.3    

Sum     10.4±1.6 46±7†  33 46 48 
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Figure 1   Profile locations where primary production has been determined.  a) Red dots are 14C 252 
profiles from the Oregon State University Ocean Productivity database, which includes profiles 253 
used to optimize the primary productivity model embedded in many satellite products21, 24.  254 
Blue dots are the 14C profiles used, in addition to the OSU database, to optimize a GCM model 255 
of ocean productivity22.  b) Float profile locations for floats with adjusted oxygen data and 256 
appropriate cycle timing. Green squares are the boundaries for float profiles used to determine 257 
GOP near HOT and BATS. Stations dots in both plots are the same size. 258 

  259 
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Figure 2  Northern hemisphere (60°N to 10°N) oxygen and GOP values.  a) Mean oxygen 260 
anomaly in the upper 20 m from each profile with acceptable cycle timing (N=14,294) versus 261 
local hour of the day.  Data from all days of year from 2010 through 2020 are included.  b) 262 
Mean oxygen anomaly in each hourly interval and the least squares fit of Equation 2 to the data 263 
shown in a) with GOP = 2.2±0.3 (1 Std Error) mmol O2 m-3 d-1.  c) GOP determined each 2 264 
months in the upper 20 m versus Day of Year.  d) Depth profile of GOP rates for all days of the 265 
year.  Error bars are one standard error.  266 

 267 

 268 

 270 

  271 
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Figure 3.  Oxygen anomalies and GOP from floats near the HOT and BATS time series stations.  272 
a) Oxygen anomaly from 2010 through 2020 in the upper 20 m near HOT versus hour of the day 273 
(Local Time).  Data were collected and include all days of the year.  b) Hourly mean oxygen 274 
anomaly values for samples near HOT and the least squares fit of Equation 2 to the data shown 275 
in a).  c) GOP rates in the upper 20 m calculated at 2 month intervals using data shown in a) and 276 
the monthly mean NPP values observed at the HOT station ALOHA from 2010 to 2019.  d) 277 
Vertical profile of GOP and the annual mean NPP rates at standard depths observed at the HOT 278 
station ALOHA.  Panels e-f are the same for a region surrounding BATS.  14C primary productivity 279 
data are from the BATS station for 2010 to 2016.  Error bars are 1 standard error. 280 

281 
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Methods and Data 282 

 283 
The Sprof profile files44 from all Argo floats with oxygen sensors (N=1276) were downloaded 284 
from the Argo Global Data Assembly Center in December 2020.  Only oxygen profiles with data 285 
that had been adjusted to correct for initial sensor calibration errors45, 46, 47 and with a quality 286 
flag equivalent to good were used.  The data were further quality controlled to eliminate any 287 
floats with apparent errors in the adjusted data by plotting the adjusted oxygen percent 288 
saturation in the upper 10 m vs time.  The adjusted data from 9 floats (Extended Data Table S1) 289 
had percent saturation values that appeared to be oceanographically inconsistent so they were 290 
removed from the data set.  The BGC-Argo adjusted oxygen data have been corrected at the 291 
Argo Data Assembly Centers using two method.  Floats that made air oxygen observations46, 48, 292 
47 were corrected with an accuracy better than 1% of surface oxygen saturation concentration.  293 
Other floats, which did not make air oxygen measurements, were corrected using methods 294 
outlined in Takeshita et al.45 with an accuracy near 3% of surface oxygen saturation 295 
concentration. All data was treated equivalently, without regard to the recalibration method, 296 
and no additional corrections to the adjusted oxygen concentrations were made.  Extended 297 
Data Figure S1 shows all data in the upper 10 m that passed the additional quality control. 298 
 299 
The analysis used here requires that each float has sampled all hours of the day at a relatively 300 
constant proportion so that any biases in sensor calibration are distributed equally into all 301 
hours of the day.  Many floats make their profiles at non-integer intervals (approximately 5.2 or 302 
approximately 10.2 days) so that each subsequent profile occurs at a different hour of the day 303 
and nearly all hours are sampled over the lifetime of the float due to variability in timing.  Any 304 
biases in the oxygen calibration of these floats would be present in all of the hourly samples. 305 
These biases would then appear as a constant offset in the diel cycle, but they would not alter 306 
the shape or the amplitude of the diel cycle. Other floats sample at one or a few fixed times of 307 
the day, often at local noon. Inclusion of the data from such floats in the analysis would 308 
introduce significant biases in both the shape and amplitude of the diel cycle because any 309 
oxygen calibration biases would appear in only a few of the hourly samples. Floats that sampled 310 
at only a few hours of the day were, therefore, removed from the analysis.  Unfortunately, this 311 
latter class of floats constitutes the majority of the BGC-Argo array and their elimination 312 
reduced the number of available profiles by about two thirds.   313 
 314 
Floats that did not sample all hours evenly were identified by computing the expected number 315 
of samples in each hour (local time) as the total number of profiles divided by 24.  If the 316 
maximum number of profiles in any of the hourly bins exceeded the expected number by more 317 
than a factor of 3, that float was removed from the analysis.  Individual data point that 318 
exceeded six times the standard deviation of all oxygen anomaly values used in a particular 319 
analysis were also removed to avoid influence from large outliers. 320 
 321 
The local time of day for each profile from floats with the required profiling timing was then 322 
computed.  All of the oxygen anomaly data on individual profiles in each depth interval that was 323 
analyzed were averaged to a single value.  This was done to avoid different weightings for the 324 
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profiles from floats that sample at different vertical resolutions.  A pseudo-daily cycle was then 325 
created from the mean oxygen anomaly data from each profile at the local hour of day for a 326 
given region, desired depth range, and for the desired portion of the year.  We have not 327 
corrected the data for the effects of gas exchange as the merged data set does not represent a 328 
continuous time series.  In any case, the gas exchange corrections over a single pseudo-day 329 
represented by the data would be small, typically less than 10% given an oxygen residence time 330 
in the mixed layer near 2 weeks16.   331 
 332 
The code developed by Barone et al.29 was used to analyze the pseudo-daily cycles. This code 333 
was intended to allow the determination of both GOP and CR from a time series of oxygen data. 334 
However, the difference between GOP and CR, equivalent to Net Community Production, is 335 
small and typically about 10 to 20% of the GOP and CR values2, 28. A single, pseudo-daily cycle of 336 
oxygen anomaly is not capable of resolving the difference in GOP and CR over one day, which 337 
will be at most a few tenths of 1 µmol kg-1.  Further, as noted by Barone et al.29, the GOP and CR 338 
values are highly correlated.  With only a single daily estimate of the oxygen diel cycle, the best 339 
fits to the data may be reached with large, compensating errors in the GOP and CR.  To control 340 
for this, we have assumed that GOP and CR are equal over a daily cycle.  In the original method 341 
developed by Barone et al.29, GOP and CR are determined by fitting basis functions to the 342 
oxygen data: 343 
 344 
O2_Anom(t) = const. + GOP x f(t, E)  -  CR x t      (1) 345 
 346 
where f(t, E) is a basis function that describes the variability of GOP with local time (t) and light 347 
intensity (E) over a daily cycle.  CR is presumed to be a constant rate and its basis function is 348 
time. Assuming GOP and CR are equal, we have simplified Equation 1 to: 349 
 350 
O2_Anom(t) = const. + GOP x (f(t, E)  –  t)      (2) 351 
 352 
GOP was determined by fitting Equation 2 to all of the data in a pseudo-daily cycle.  f(t, E) was 353 
determined using the Sinusoidal option described in Barone et al.29, which assumes that GOP is 354 
directly proportional to the amount of available sunlight. The daily irradiance cycle was 355 
calculated at the mid-point of the time interval for sub-annual time periods.  For annual cycles, 356 
the irradiance cycle was calculated at the median latitude of the data and for day 90 of the 357 
year.  Experimentation with subsetting the datasets in time versus calculation with a single 358 
annual cycle shows that the single annual cycle introduces small (order of 10%) errors.  We 359 
have used this protocol because some latitude bands in the final global analysis do not have 360 
enough data for subsetting.  361 
 362 
In the Figures 2 and 3, we highlight the quality of the GOP determinations by showing hourly 363 
averages of oxygen anomaly with the fit to Equation 2.  We stress, however, that all of the data 364 
from each profile in a region at the selected depth interval and time period were used to create 365 
the fit, not the hourly averages.   366 
 367 
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Several possible, systematic errors are present in the GOP values determined in each region.  368 
Diel heating can bias GOP values high.  Warmer daytime temperatures reduce the computed 369 
oxygen solubility, which increases the oxygen anomaly and apparent GOP.  The largest diel 370 
temperature amplitudes occur during summer at the equator and are around 0.1°C33.  371 
Computation of the daily temperature cycle with the floats studied here requires 372 
contemporaneous analysis of satellite data and large numbers of floats, which is beyond the 373 
scope of this study.  To assess the magnitude of this error, we have imposed a 0.1°C diel 374 
temperature cycle on the hourly mean data from the 5°N band in Table 1.  This shifts the GOP 375 
rates computed with the hourly mean anomalies, rather than all of the individual profile 376 
anomaly values as is done in Table 1, from 4.0±1.1 mmol O2 m-3 d-1 to 3.6±1.3 mmol O2 m-3 d-1.  377 
This is the likely maximum error that results from neglecting diel heating since the temperature  378 
amplitude is largest at the equator.  Neglecting diel heating has increased GOP by order of 379 
+10%.  380 
 381 
The bias high due to neglect of diel heating is countered by two processes that tend to lower 382 
GOP.  First, outgassing of O2 over the course of a pseudo-day will reduce the amplitude of the 383 
diel cycle and lower GOP.  Given typical piston velocities for gas exchange, this may reduce GOP 384 
by 10%.  Correcting for gas exchange in the 5°N band with a large piston velocity of 10 m d-1, 385 
typical for a wind velocity of 10 m s-1 while global mean wind speed over the ocean is 7 m s-1 386 
(Ref. 49), and a shallow mixed layer of 30 m would increase GOP to 4.3±1.3 mmol O2 m-3 d-1.  387 
The small  effect of gas exchange on determination of GOP from diel cycles in the open ocean is 388 
consistent with the prior work29. Gas exchange about counters the neglect of heating. Second, t 389 
the assumption that GOP equals CR will also bias the computed GOP value low in an 390 
autotrophic ocean50.  Global net community production, equal to GOP – CR, is typically less 391 
than 5 mol C m-2 y-1 in the open ocean51, which is equivalent to a bias of 0.3 mmol C m-2 d-1.  392 
This is likely the maximum bias due to this assumption in the open ocean. 393 
 394 
The sum of all three biases will approach zero.  As a result, these three processes have been 395 
assumed to have negligible effect on the GOP.  The reasonable agreement of the observed GOP 396 
values near HOT and BATS, and the agreement with the global GOP estimate of Huang et al.40 397 
support this assumption. 398 
 399 
Primary production rates are generally integrated vertically, typically to the 1% light level.  To 400 
assess the depth of the 1% light level, we used chlorophyll fluorescence profiles observed with 401 
fluorometers on BGC-Argo floats in each of the domains analyzed. Adjusted chlorophyll values 402 
were processed following Argo protocols52.  Daytime profiles were corrected for non-403 
photochemical quenching and all chlorophyll values computed from the manufacturer’s 404 
calibration were divided by a factor of 2 to correct for a global bias in the sensor calibration53.  405 
Total chlorophyll was then corrected for sensor background signals with a modified version of 406 
the algorithm described in Briggs et al.54  Each float and sampled year was corrected separately. 407 
The method was also tuned to accommodate the vertical resolution of chlorophyll 408 
measurements on many floats that is lower than the high-resolution profiles used by Briggs et 409 
al.54. The approximate 0.5% light level for each latitude bin (the primary production zone, PPZ) 410 
was then determined as the depth where chlorophyll signals dropped to 10% of the maximum 411 



17 
 

above that depth55. The 1% level was then calculated assuming an exponential decrease in 412 
chlorophyll levels down to the PPZ. To confirm the calculations of light level, the euphotic zone 413 
depth (1% light level) was also calculated using the equation reported in Morel56 and the 414 
climatological surface chlorophyll concentration observed by the MODIS ocean colour satellite. 415 
The float based 1% light level is highly correlated with the values derived from MODIS 416 
chlorophyll for the 10° latitude bins, but the float based value is about 20% shallower. Float 417 
values were also comparable to those reported in Buesseler et al.55. We preferred the 1% light 418 
levels calculated from the chlorophyll fluorescence profiles as GOP values often became 419 
negative and not statistically significant at greater depths.  The uncertainty in the integrated 420 
GOP profile was obtained as the square root of the sum of the squared standard errors of 421 
integrated rates in 10 m vertical bins down to the 1% light level.  Note  that  we have included 422 
negative values of GOP in the integrals that were found above the 1% light level in most cases.  423 
Small negative values result from random noise when GOP is near zero at depth and are 424 
retained to avoid biasing the results. However, large negative values of GOP, at the base of the 425 
euphotic zone in the 25°N and 15°N bands, were excluded as they resulted from large variability 426 
in the oxygen anomaly caused by shallow  oxygen minimum zones.  427 
 428 
Annual mean values of NPP were computed for the years 2010 to 2019 with the VGPM21, 429 
CBPM24, and CAFE41 NPP models.  Monthly mean NPP data for each model were downloaded 430 
from the Oregon State University Ocean Productivity site 431 
(https://sites.science.oregonstate.edu/ocean.productivity/).  The monthly means were 432 
summed for each year and then an annual mean for 2010 to 2019 was determined.  To be 433 
directly comparable to float observations, regions shallower than 2000 m were masked out of 434 
the means using the ETOP05 data set57. The data for many months poleward of 50° are missing 435 
due to persistent cloud coverage.  Using data in this region requires extensive gap-filling and we 436 
have not computed means poleward of 50°.  The gap-filled, global means reported for the 437 
VGPM, CBPM, and CAFE models (44, 52, and 52 Pg C y-1, respectively)21, 24, 41 were used instead.  438 
The summed GOP and NPP values in Table 1 for the latitude range 50° N to 50°S were then 439 
extrapolated to a global extent by multiplying by 1.18.  The value of 1.18 is the mean ratio of 440 
the reported global total NPP for each satellite algorithm to the summed NPP values for the 441 
algorithms from 50° N to 50°S (Table 1).  This factor corrects for areas at high latitudes that 442 
were not analyzed and for high productivity in coastal zones that was not sampled by profiling 443 
floats.  These high productivity coastal zones were omitted from the satellite calculations by 444 
masking out regions shallower than 2000 m.    445 

https://sites.science.oregonstate.edu/ocean.productivity/
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 473 

Extended Data Table S1.  WMO numbers of floats with inconsistent oxygen concentrations and 474 
not used in this analysis. 475 
 476 

Floats 
removed 
2902087 

2902123 

4901137 

4901140 

4901141 

4901784 

5900420 

5901178 

7900559 

 477 
  478 
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Extended Data Figure S1.  Profiling float oxygen data.  a) Dissolved oxygen and b) Oxygen 479 
Anomaly = Oxygen – Oxygen Saturation in the upper 10 m for all adjusted oxygen data with 480 
quality flag = 1 (good data) in the Argo Global Data Assembly Center, except for 9 floats listed in 481 
Extended Data Table S1. 482 

 483 
 484 
 485 
  486 
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Extended Data Figure S2. Global (60°N to 60°S) oxygen and GOP values for the years 2016 487 
through 2020.  a) Mean oxygen anomaly in the upper 20 m from each profile with acceptable 488 
cycle timing versus local hour of the day.  b) Mean oxygen anomaly in each hourly interval and 489 
the least squares fit of Equation 2 to the data shown in a) with GOP = 2.1±0.4 (1 Std Error) 490 
mmol O2 m-3 d-1. 491 

 492 

  493 
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Extended Data Figure S3.  Annual mean NPP rates from 2010 through 2020 in each 10° latitude 494 
band from 50°N to 50°S.  a) Float and satellite NPP rates versus latitude.  b) Satellite NPP rates 495 
in each 10° latitude band  for each model versus float NPP rates.  Satellite NPP models include 496 
VGPM21, CBPM24, and CAFE41.  All values from Table 1. 497 

 498 

 499 


