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The Erd6s—Selfridge problem with square-free moduli

Paul Balister, Béla Bollobas, Robert Morris, Julian Sahasrabudhe and Marius Tiba

A covering system is a finite collection of arithmetic progressions whose union is the set of integers. The
study of covering systems with distinct moduli was initiated by Erdds in 1950, and over the following
decades numerous problems were posed regarding their properties. One particularly notorious question,
due to Erdds, asks whether there exist covering systems whose moduli are distinct and all odd. We show
that if in addition one assumes the moduli are square-free, then there must be an even modulus.

1. Introduction

Erd6s [1950] initiated the study of covering systems, i.e., finite collections of arithmetic progressions
(we exclude the trivial arithmetic progression Z) that cover the integers, with distinct moduli. Many
well-known questions and conjectures have been posed about such systems (some of which appeared
frequently in Erdds’s collections of open problems), and in recent years there has been significant progress
on several of these. A first crucial step was taken by Filaseta, Ford, Konyagin, Pomerance and Yu [2007],
who proved that the sum of the reciprocals of the moduli grows quickly with the minimum modulus, and
also confirmed a conjecture of Erdés and Graham [1980] on the density of the uncovered set. A further
important breakthrough was made by Hough [2015], who resolved the so-called “minimum modulus
problem” of Erdds [1950] by showing that the minimum modulus is bounded. More recently, the current
authors [BBMST 2018] developed a general method (based on that of [Hough 2015]) for attacking
problems of this type, and used it to study the density of the uncovered set, and to prove a conjecture
of Schinzel [1967] by showing that there must exist two moduli, one of which divides the other.

In this paper we will further develop the method of [BBMST 2018] in order to make progress on
another old and well-known question: does there exist a covering system whose moduli are distinct and
all odd? This question appears to have first been asked by Erdds [1965], who later conjectured that there
does exist such a system; see [Erdos 1973]. He then went further, conjecturing that there exist covering
systems with square-free moduli, all of whose prime factors are arbitrarily large; see [Erd6s 1977]. On
the other hand (as recounted, for example, by Filaseta, Ford and Konyagin [2000]), Selfridge believed
that there do not exist such systems, and (perhaps as a result) the question has become known as the
Erd6s—Selfridge problem. Apart from its intrinsic appeal, the problem is motivated by a theorem of
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Schinzel [1967], who discovered a connection between the nonexistence of such covering systems and the
irreducibility of certain polynomials. More precisely, he showed that if no covering system with distinct,
odd moduli exists, then for every polynomial f(x) € Z[X] with f £ 1, f(0) #0 and f(1) # —1, there
exists an infinite arithmetic progression of values of n € Z such that x" 4 f(x) is irreducible over the
rationals.

The first progress on the Erdds—Selfridge problem was made by Simpson and Zeilberger [1991], who
proved that the moduli of a covering system with distinct, odd, square-free numbers use at least 18 primes
(this was later improved to 22 primes by Guo and Sun [2005]). A major step forward was taken by Hough
and Nielsen [2019], who used a refined (and carefully optimized) version of the method of Hough [2015]
to prove that every covering system with distinct moduli contains a modulus that is divisible by either 2
or 3. The general method of [BBMST 2018] (which is also based on that of [Hough 2015]) provides a
short proof of the following slight strengthening of this result (see [BBMST 2018, Theorem 1.4]): every
covering system with distinct moduli contains either an even modulus, a modulus divisible by 32, or
(possibly equal) moduli d; and d, with 3 | d and 5 | d,. Here we will further develop the method of
[BBMST 2018], and use it to solve the Erd6s—Selfridge problem in the square-free case.

Theorem 1.1. In any finite collection of arithmetic progressions with distinct square-free moduli > 1 that
covers the integers, at least one of the moduli is even.

We shall prove Theorem 1.1 in a (slightly more general) geometric setting; a second aim of this paper
will be to investigate covering systems in this setting. Let Si, ..., S, be finite sets with at least two
elements, and set

O0=8x---x8,.

IfA=A; x---x A, C Q with each A; either equal to S; or a singleton element of Sy, then we say that

A is a hyperplane. We will write A =[xy, ..., x,], where x; € S; U {x} for each k € [n], and * indicates

that Ay = Si. Let us write F(A) = {k : x; € Si} for the set of fixed coordinates of A, and say that two

hyperplanes A and A’ are parallel if F(A) = F(A’). Let us also say that A is nontrivial if F(A) # @.
Theorem 1.1 is equivalent to the following theorem in this geometric setting.

Theorem 1.2. For each k € [n], let py be the k-th prime, and set Sy = [ px+11. Any collection of nontrivial
hyperplanes that covers Q := S| X - - - X S, contains two parallel hyperplanes.

To see the equivalence of Theorems 1.1 and 1.2, observe that, by the Chinese remainder theorem, there
is a natural equivalence! between finite collections A of arithmetic progressions with square-free, odd,
Pn+1-smooth moduli that cover the integers, and finite collections H of hyperplanes that cover the box
QO =[palx---x[pn+1]. Moreover, if the moduli of A are distinct then the hyperplanes in H are nonparallel.

1o be precise, the progression a+dZ withd =[];; p; corresponds to the hyperplane A =[x1, ..., xp ] where x; =a mod p;
if i € 1, and x; = * otherwise.
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In order to motivate our second main theorem, let us next state, in this geometric setting, a special case
(for square-free moduli) of the breakthrough result of Hough [2015] which resolved the Erdés minimum
modulus problem.

Theorem 1.3 [Hough 2015]. Let py, ..., p, be the first n primes. There exists a constant C such that
if Ais a collection of hyperplanes that cover Q :=[p1] X - -+ X [py], then either two of the hyperplanes
are parallel, or there exists a hyperplane A € A with F(A) C [C].

To deduce Theorem 1.3 from the main result of [Hough 2015], simply note that if every covering
system with distinct, square-free moduli contains an arithmetic progression with modulus at most M < pc,
then the progression with minimum modulus corresponds to a hyperplane A with F(A) C [C]. In the
other direction, it follows from Theorem 1.3 that a covering system with distinct, square-free moduli
contains a progression corresponding to a hyperplane A with F(A) C [C], and the modulus d of this
progression satisfies d < ]_[l-C:1 Di-

Using our method, we are able to prove the following strengthening of Theorem 1.3.

Theorem 1.4. For every sequence of integers (qi)k>1 such that q, > 2 for each k € N and

liminf 2 > 3,
k—o00

there exists a constant C such that the following holds. Let A be a collection of hyperplanes that cover
0 :=[q1] x --- x [gn] for some n € N. Then either two of the hyperplanes are parallel, or there exists a
hyperplane A € A with F(A) C[C].

Note that in Theorem 1.3 the sequence (p)i>1 grows asymptotically as k log k, whereas in Theorem 1.4
we allow the sequence (gx)x>1 to grow only linearly. We will show (see Section 4) that Theorem 1.4 is
close to best possible, since there exists an example with lim g /k = 1 for which the conclusion of the
theorem fails.

The rest of the paper is organized as follows. In Section 2 we outline the sieve that we will use in the
proofs, and in Section 3 we state and prove our main technical results, Theorems 3.1 and 3.2. In Section 4
we deduce Theorem 1.4. Finally, we dedicate Section 5 to the proof of our main result, Theorem 1.1.

2. Definition of the sieve

In this section we will outline the proofs of Theorems 1.2 and 1.4. In particular, we will generalize the
method developed in [BBMST 2018] to the geometric setting, and while doing so we will introduce
several new ideas that will prove to be crucial in the proofs. For the convenience of the reader and for
completeness, we will include full proofs of all intermediate results, even though several of them are
direct adaptations of the corresponding results in [BBMST 2018].

As in the Introduction, let Sy, ..., S, be finite sets with at least two elements, set

Q=8 x---x8,,
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and let A be a collection of nontrivial hyperplanes, no two of which are parallel. Set
F=F(A):={F(A):Ac A} S P(n)\ {2},

and (recalling that F(A) # F(A’) for distinct A, A" € A) let us index the hyperplanes in A by the
corresponding set of fixed coordinate indices, so A = {Af : F € F}. Our goal is to estimate the density
(under some probability measure) of the uncovered set
R:=0\ | Ar.
FeF

Rather than considering the entire collection of hyperplanes A all at once, we expose the hyperplanes
dimension by dimension and track how the density of the uncovered set evolves. To be more precise,
define, foreach 1 <k <n,

Fe={FeF:FClkl} and A :={Ap:F e F}

for the family of sets of fixed coordinate indices and the corresponding hyperplanes that are contained in
the initial segment [k]. Let
Re=0\ ] Ar=0\ | 4r
FeFi ApeAx
be the set of elements not contained in any of the hyperplanes of A, so in particular R, = R. We also
write Ny := Fi \ Fr—1 for the family of “new” sets of fixed coordinate indices at the k-th stage, i.e., those
sets that contain k and are contained in [k], and define

Bo= | Ar (1)

FeNy
to be the union of the hyperplanes exposed at step k, so that Ry = Rx_1 \ B.
It will often be convenient to consider Ry, By and Ar with F' € F; as subsets of

Or:=81 x---x8

by identifying X € Q with X x Sg41 X -+ x S, € Q. We call a set of this form Qg-measurable.

2.1. The probability measures Py. The construction of the probability measures is similar to that in
[BBMST 2018], and no significant new ideas are needed. The main difference is that instead of starting
with the uniform measure as our Py, we allow for possible optimization of the measure on the first few
coordinates. In general we will start with some measure PP, to be determined, which will be supported
onR, C Qu=351%-+x8,.2

Our aim is to construct, for each a < k < n, a measure P, on Q in such a way that Px (By) is small, but
without changing the measure of B; for any i < k. Fix a sequence of constants 8,41, ..., 8, € [0, 1/2], and
assume that we have already defined a probability measure [°;,_; on Qy_. Recall that Oy = Qx—1 X S,
and hence the elements of Q can be written as pairs (x, y), where x € Qr_; and y € S;. We may

ZWe emphasize that here we allow a = 0, in which case P is the trivial probability measure on the empty product.
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view Ry _; as a collection of fibres of the form F, = {(x, y) : y € S¢} € Qy, where P;_; is extended

uniformly to a measure on Qy (so is uniform on each fibre), and view Ry as being obtained from R;_; by

removing By, i.e., by removing the points that are contained in the new hyperplanes of Ay \ Ax_1.
Now, for each x € Qy_1, define

Pi—1(FxNBy) [{y € Sk (x,y) € B}
Pr_1(x) | S| ’

that is, the proportion of the fibre F, that is removed at stage k. The probability measure P, on Qy is

(2)

ar(x) =

defined as follows:

otk (x) — O . _
maX{O, m}'Pkl(x,y) 1f(x,y)€Bk,

Pr(x, y) = . . 3)
min{l—ak(x)’ l—ék}'[p)k_l(x’y) if (x,y) ¢ Bx.

To motivate the definition above, note that if o (x) < &k, then Py (x, y) = 0 for every element of Qy that
is covered in step k, and that the measure is increased proportionally elsewhere to compensate. On the
other hand, for those x € Q_; for which ay(x) > &, we “cap” the distortion by increasing the measure
at each point not covered in step k by a factor of 1/(1 — §;), and decreasing the measure on removed
points by a corresponding factor.

The measure Py satisfies the following simple properties, cf. [BBMST 2018, Lemmas 2.1 and 2.2].

Lemma 2.1. For any k > a and any Qy_i-measurable set S we have

Pr(S) = Pr-1(5). 4)
For any set S C Q, we have
Pr(S) < 1—;8;( Pr—1(5). )
Moreover, if S C By then
Pr(S) < Pr—1(5). (6)

In particular, it follows from Lemma 2.1 that if

> PuBY <1 (7

k=a+1

then A does not cover Q, since By is a Qi-measurable set, so by (4) we have P, (By) = P (By). For each
a < k <n, define

k
po=1-"Y_" Pi(By),

i=a+1

and observe that p; < Pr(Ry).
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3. Bounding the density of the covered set

In this section we will prove two technical results, Theorems 3.1 and 3.2, which together imply Theo-
rems 1.2 and 1.4. We remark that Theorem 3.1 essentially follows from [BBMST 2018, Theorem 3.1],
but Theorem 3.2 introduces a new bound that is motivated geometrically, and that will prove to be crucial
in the proof of Theorem 1.2.

Given a collection A of hyperplanes in Q = S§; x - - - X §,, a probability distribution P, supported on R,
and constants 8,1, ..., 8, €[0, 1/2], let the probability distributions P, and functions oy : Qx—1 — [0, 1]
be defined as in (2) and (3), and set

M,El) = [Ek_l[otk(x)] and M,Ez) = [Ek_l[ak(x)z],

where we write E;_; to denote expectation with respect to the measure Py_;.

In order to show that A does not cover Q, it is sufficient, by (7), to show that u,, > 0. To do so, we
will bound Py (By) in terms of the moments M ,E]) and M 152). As noted above, the following theorem was
(essentially) proved in [BBMST 2018].

Theorem 3.1. Let A be a collection of nontrivial hyperplanes in Q = S; X - - - X Sy, no two of which are
parallel. If

n

(2)
M
> minfur, s < ®
Pt k(1 —3k)

then A does not cover Q.

In order to show that (8) holds in our applications, we need to bound the moments of a (x). To state our
bounds on M ,El) and M ,EZ), we will need some additional notation. Define a function ¢ : P([a]) — [0, 1]

by setting
c(l)= max{Pa(H) : H is a hyperplane in Q, with F(H) = I} )
for each I C [a], and define a function v : P([a + 1, n]) — R. o, by setting
1
v =[]~ (10)
ies =918

for each J C [a + 1, n]. Note that ¢(@) =v(@) = 1. Foreach k > a and x € R, set

k
@)=Y Y eux"= 3" e T] (HW) (11)
— 38,18

IC[al JCla+1.k] ICa] j=a+1
The following technical theorem provides general bounds on M ,El) and M 152) .

Theorem 3.2. Let A be a collection of nontrivial hyperplanes in Q = S; X - - - X S, no two of which are
parallel. Then, for each a < k < n,

11
M}El)< ck—1(1)
| Skl

(12)
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Moreover, if none of the hyperplanes in N has co-dimension 1, then

2)
M7 <
K82

(ce-13) = 2ce-1(1) +1). (13)

Before embarking on the (straightforward) proofs of Theorems 3.1 and 3.2, let us briefly discuss
the bound (13), which will play an important role in the proof of Theorem 1.1. In order to apply it,
we first need to remove from A each of the codimension 1 hyperplanes, each of which is of the form
Sy XX Sy x {s} xSjy1 x---x 8§, for some i € [n] and s € §;. Note that in doing so we remove the
point s from the possible values of the i-th coordinate, effectively replacing S; by S/ := S; \ {s}. After
removing these hyperplanes, the remaining elements of .4 will all have at least two fixed coordinates,
and can be assumed to be hyperplanes in Q' = §} x --- x §;, where S/ = §; if {i} ¢ F7(A). Removing
the codimension 1 hyperplanes in this way makes a significant difference to our estimate on M @ at the
expense of (possibly) reducing each |S;| by 1. In practice, this turns out to often give better bounds on
the removed measure.

Proof of Theorem 3.1. Observe first that

Pu(Bi) = Pr(Bi) < Pro1(Br) = Er—1 [ (x)],

where the first two steps follow by Lemma 2.1 (since By is Qp-measurable), and the third follows by the
definition (2) of ax(x). Moreover, by (2) and (3) (the definitions of o and [P;), we have

o (x) — 8

H:Dk(Bk): Z maX{O, m

X€Qk—1

1
— max {0, o (x) — 8} - Pr—1(x)

} - Py_1 (Fe N By)

1= X€Qk—1
1 o (x)? Er—1 otk (x)?
< 2 : Y P (x) = # (14)
1—68 2 45 48, (1 — 8r)
k—1

where we used the elementary inequality max{a — d, 0} < a?/4d, which is easily seen to hold for all
a,d > 0 by rearranging the inequality (a — 2d)> > 0.
It follows that the uncovered set R satisfies

n n M(z)
Pa(R)>1— Y P,(By=1- Y min{M,ﬁ”,—k}>0,

k=a+1 k=a+1 40 (1= 8)
by (8), and hence A does not cover Q, as required. Il
In the proof of Theorem 3.2 we will use the following notation. Given a hyperplane A =[xy, ..., x,]
and X C [n], we define AX = [y, ..., y,] to be the hyperplane with y; = x; for all i € F(A)N X, and

yi = * otherwise. Note that (A%)" = AX™Y for every X, Y C [n].
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The first step in the proof of Theorem 3.2 is the following easy bound on the Px-measure of a
Qk-measurable hyperplane.

Lemma 3.3. Let a < k < n, and let A be a Qy-measurable hyperplane. If F(A) = 1U J, where I C [a]
and J C [a+ 1, k], then

Pr(A) < c(Dv(J). (15)

Proof. The proof is by induction on k. Note first that for k = a the conclusion follows immediately from
the definition (9) of the function ¢, since v(@) = 1. So let k € [a + 1, n], and assume that the claimed
bound holds for P;_;.

Note first that if k£ ¢ F'(A) then A is Qy_-measurable, and so the claimed bound follows immediately
by (4) and the induction hypothesis. So assume that k € F'(A), and observe that, by (5), we have

Pe_1(A) = _ Pr_1 (A1),

Pr(A) <
k 1— 6 (1 —8¢)| Skl

since the probability measure P;_; is extended uniformly on each fibre. Since A%~ is Q_;-measurable,
by the induction hypothesis we have

Pt (AM1) <e(vI \ (D),
and so, recalling the definition (10) of the function v, the claimed bound follows. O
We will next prove the following bound on the 7-th moments Ex_; [a(x)'].

Lemma 3.4. For eacha <k <n andt € N we have

e[ ()] < Y e((Fu---UF)N[al) - v((FU---UF)Nla+1,k—1]).

Proof. Observe first that, for each x € Qj_1, we have?
1 1
a(x) =— > 1[N eB]<— > Y 1(x,y) € AF],
| Skl | Skl
YESK yeS; FeNg

by the union bound, and the definitions (1) and (2) of By and «y. Note that, given x € Q1 and F € N,
there exists y € S with (x, y) € Ar if and only if x € A[Ii‘fl], and moreover such a y (if it exists) is
unique. It follows that

ap(x) < 1 Z 1[x € Ag‘_l]].
ISkl A

3Here we write 1[E] for the indicator function of an event E, which takes the value 1 if the event holds, and 0 otherwise.
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Note also that if A; and A, are hyperplanes, then A; N A, is either the empty set, or a hyperplane whose
set of fixed coordinate indices is F'(A1) U F'(A,). Therefore, by Lemma 3.3,

bl ] <o Y Pl neenal)

= t
|Sk| Fi,....,FieN
1
<|S|t Z c((FU---UF)N[al)-v((FLU---UF)N[a+1,k—1]),
K F o Fien:
as required. O

The claimed bounds on M,El) and M ,EZ) will now follow easily.

Proof of Theorem 3.2. By Lemma 3.4, we have

E—1[ai (x)'] <

\lSlt Z C((FIU"'UFl)m[a])'V((F1U"-UFt)ﬂ[a—|—l,k—1])
k F

Lsees Fr €N

S ID> > v

1Clal JCla+1,k=1] Xi,..., X, Slk—1]
X1U-UX,=1UJ

_ 1 Z Z (Zt_l)IIH-IJlC(I)v(J) —

t
ISl /o oy

ck—1(2'=1)
| Skl

’

which proves (12). To prove (13), suppose that F(N}) contains no singletons (i.e., {k} ¢ F(N%)), and
observe that, by Lemma 3.4, we have

e Eeoa[ew®)?] < >0 e((FUF)Nlal)-v((FUF)Nla+ 1, k—1])
F1,F,eN;

<> > Y. )

ICla] J<la+1,k—1] @#X,X>2C[k—1]
X1UX,=1UJ

=1+> > @ —2)cv)

ICla] J<lat+1,k—1]
= c,-103) —2c,—1(1) + 1,

as required. O

4. Proof of Theorem 1.4

In order to deduce Theorem 1.4 from Theorems 3.1 and 3.2, it will suffice to show that there is an
appropriate choice of C and §, &, ..., 8, such that u, > 0.

Proof of Theorem 1.4. Let (gx)x>1 be a sequence of integers with liminfy_, o gx/k > 3, and let N € N
and & > 0 be such that g, > 3+ ¢)k forall k > N. Let C = C(N, ¢) be sufficiently large, let n € N, and
for each k € [n], let S; be a set of size g;. We will show that if 4 = {AF : F € F} is a finite collection of
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hyperplanes in Q = S; x - - - X Sy, no two of which are parallel, and F(A) € [C] for every A € A, then A
does not cover Q.

Fix 6; =--- =4, = ¢/6, and assume (without loss of generality) that ¢ is sufficiently small. We will
start with the trivial probability measure Py on the empty product Q¢ (which we also think of as the
uniform probability measure on Q), and construct inductively the probability measures P as described
in Section 2. By Theorem 3.1 it suffices to show that

n M(2)

Z 45 (1—50

To prove this, note first that M’gz) =0forall 1 <k <C,since F(A) € [C] for every A € A. So let
C < k < n, and observe that, by Theorem 3.2, we have

2 0 LT ()
oS s T s l:[ (1—6,)1S;]

Now, since |S;| =q; > (3+¢)j for all j > N, and by our choice of §;, it follows that*

k—1

ot 3 3
1 — )< <k1—8/9‘
H( +(1—6,~>|S,,-|> exp(gu—e/@@mi)

j=N

Moreover,

NH( ) <

Thus, assuming that C > N (so | S| = 3k), we have

3N 3N72
@ < lel9 <
k |Sk|2 = kl+e/9
for every C < k < n, and hence
n MIEZ) 3N n 1
2 G s S & Lgren <!
k=1 "k k k=C
if C = C(N, ¢) is sufficiently large, as required. O

We will next show that the condition on the sequence (gi)>1 in Theorem 1.4 is close to best possible.
To be precise, we will prove the following proposition.

4To see the final inequality, note that Zk ! 1/j <logk and (1 —¢/6)(3+¢)(1 —&/9) > 3, since we assumed that ¢ is
sufficiently small.
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Proposition 4.1. There exists a sequence of integers (qx)i>1 with qx = 2 for all k e N and

such that the following holds. For each C > 0, there exists n € N and a collection A of nontrivial
hyperplanes that cover Q :=[q1] X - - - X [g], no two of which are parallel, and with F (A) N[C] = & for
every A € A.

The first step is the following simple lemma; all hyperplanes are assumed to be nontrivial.

Lemma 4.2. Letn > 3, and let q,, . .., q, = 2 be a sequence of integers such that

n

1
l_[(1+—) > nlogn.

k=1 qk
Then Q =[q1] X - - - X [qn] can be covered with hyperplanes, no two of which are parallel.

Proof. The proof is by induction on n, so first let n = 3, and note that if 2 < q; < g2 < g3 satisfy
]_[i:1 1+ qk_l) = 3log 3, then g1 = g» = 2. Now observe that [2] x [2] (and hence [2] x [2] X [g3]) can
be covered by three hyperplanes, no two of which are parallel.

For the induction step, observe first that, by the induction hypothesis, if

n—1
[Ta+4H > @m—1logmn—1)
k=1

then we can find hyperplanes (with fixed coordinates in [n — 1]) which cover Q. Thus we may assume that

1 1 1
nlogn 14t

1+ —> >
qn (n—1)log(n —1) n

and hence (without loss of generality) that 2 < ¢g; < ... < g, <n.

We now cover Q greedily: for each set & # F C [n] in turn we choose a hyperplane A with fixed
coordinates F' so as to cover as much of the remaining (uncovered) subset of Q as possible. Since Q can
be partitioned into exactly [ [, g« such hyperplanes, there must exist some choice of A that covers
at least a proportion [ [, r g, ! of the remaining set. Thus, after all the hyperplanes have been chosen,
the remaining set has size at most

1 1 = - 1

ol ] (1 -T1 —) < |Q|exp(— > 11 —) =exp<1 +> loggs —]_[(1 +—)>.
G£FCn] rer 9k o#Fcin) keF Tk k=1 k=1 Ik

Now simply observe that

ﬁ(l—i—i) <0,

n
14+ loggi — ”
k=1 k=1

since 14+ Y 7_, log g < 1 +nlog(n — 1) < nlogn, whereas [[;_,(1 +¢; ') > nlogn, by assumption.
It follows that the number of uncovered points is less than 1, as required. O



620 Paul Balister, Béla Bollobas, Robert Morris, Julian Sahasrabudhe and Marius Tiba
We can now easily deduce Proposition 4.1.

Proof of Proposition 4.1. Assume that C is sufficiently large, and set

= Kl } loZk)kJ

for each k > C. Observe that limy_, o, gx/k = 1, and that

1_[ (1+ )—exp( i 0(1))=exp( Z (li—i_—klz k>+0(1))
k=C+1 gk k=c+1 4 0 k=C+1 og

=exp(logn +2loglogn + Oc (1)) = Q(n(logn)?).

Thus, for all sufficiently large n, we have

I1 (1 + i) > (n—C)log(n—C),
k=C+1 9k

and hence, by Lemma 4.2, we can cover [gc+1] X - -+ X [¢,] with hyperplanes, no two of which are
parallel. But this implies that we can cover [g(] X - - - X [g,] with hyperplanes whose fixed coordinates do
not intersect [C], as required. O

5. The Erdos—Selfridge problem

In this section we will prove Theorem 1.2 (and hence also Theorem 1.1). To do so, we will again apply
the sieve introduced in Section 2, but this time we will need to choose the various parameters much more
carefully. In particular, we will deal with the primes in three groups: first the set {3, 5, 7, 11}, then the
primes between 13 and 73, and finally the primes larger than 73. We will discuss these in reverse order,
so as to motivate the bounds we prove.

Let B be a collection of nontrivial hyperplanes in P :=[3] X [5] X - - - X [p,], no two of which are
parallel. Our aim is to show that 3 does not cover P. To do so, we will in fact apply our sieve to a modified
collection, obtained by removing the co-dimension 1 hyperplanes, as described after the statement of
Theorem 3.2, for the primes p < pa; = 73.5 After doing so, we obtain a collection A of hyperplanes in
Q=58 x---x 8y, where |S;| = px — 1 for each 2 < k < 21, and |S;| = py for each 22 < k < n, such
that no two hyperplanes in A are parallel, and if F(A) = {i} for some A € A then i > 22. We remark that
we will use some results from [BBMST 2018] to deal with the large primes, and our indexing of the sets
Sy is chosen to avoid a conflict with the notation used there. It will also be convenient (see Section 5.3,
below) to assume (as we may) that A B for any A, B € A with A # B.

SFor simplicity, we will assume (without loss of generality) that 3 contains a co-dimension 1 hyperplane with fixed set {i} for
each i.
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5.1. The primes greater than 73. For large primes, it will suffice to apply the results of [BBMST 2018,
Section 6]. To state the results we will use, let us first recall some notation. Assume that we have chosen
36, - . ., 621 and some probability distribution P, = P5 supported on

RsC Q5:=8 x---%x85.

Now, noting that pp; = 73, set k := ¢1(3) and define

K 3p,’—1 >
Jie= S kmLLk( (1=8)(pi = 1)? 1o

for each k > 21, where the constants {3; : i > 21} will be chosen later, and recall that
k
e=1->_"P;(B;)
i=6

for each 5 < k < n. In order to apply the results stated below, we need to check that condition (20) of
[BBMST 2018], which states that

3pi—1 Mi—1 fr—1
M < X (1 n ) _ , 17)
£ (12 211;[<k (A =8)(pi=D?) (=1

is satisfied for every k > 21. To see this, note that

3 3pr—1
=11+ —— <131
() = e )< +(1—ak)pk> ot )( +(1—5k)<pk—1)2)

for every k > 21, and observe that therefore, by Theorem 3.2, we have

13 3 3p; —1
MIEZ) < Ck 1(2) < c21(2) l_[ (1 . Di 2)’
[ Skl Y3 (I=36:)(pi— 1D

as required, since |Sx| = px > px — 1. Indeed, the bound (17) is the bound given by the arguments of

[BBMST 2018] when the primes p; are allowed to occur to higher powers in the moduli when k > 21.
The following theorem, which gives an almost optimal termination criterion when k is large, was proved
in [BBMST 2018].

Theorem 5.1. Let k > 10. If pux > 0 and fi(A) < (logk + loglogk — 3)2k, then the collection of
hyperplanes A does not cover Q.

Using Theorem 5.1, one can now compute (see the discussion in [BBMST 2018, Section 6]) weaker
sufficient conditions on f; for the event that the uncovered set is nonempty. In particular, we will use the
following result; cf. [BBMST 2018, Corollary 6.3].6

Corollary 5.2. If f>1(A) < 138.877, then the collection of hyperplanes A does not cover Q.

6In order to prove Corollary 5.2, it suffices to set §; = (1 +a;)/(1 + \/1 +a;(14+a;)/b; fi—1) for each i > 21, where

ai = Q@p; —1)/(p; — 1)2 and b; = 1/4(p; — 1)2, and apply [BBMST 2018, Lemma 6.2] and Theorem 5.1 (which are both
relatively straightforward consequences of (14) and Theorem 3.2), see [BBMST 2018; 2021].
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In order to prove Theorem 1.2, it will therefore suffice to show that we can choose the probability
distribution Ps and constants Jg, . . ., 621 such that f,;(A) < 138.877.

5.2. The primes between 13 and 73. We will next deduce from Corollary 5.2 a sufficient condition’
on Ps for the event that the uncovered set is nonempty.

Lemma 5.3. If Ps satisfies c5(3)—3c5(1) /4 <9.019, then there exists a choice of the constants S, . . . , 821
such that f>1(A) < 138.874.

Proof. Set [is := us = 1 and define, for k =6, ..., 21,
. k-13) = 2,1 (1) + 1

fk = flg—1 — (18)
48, (1 — &) Sk |2
for each k € {6, ..., 21}. Recall that, by (14) and Theorem 3.2, we have
(2)
M 103) = 2¢ck1 (D) +1
PL(By) < X gck 1(3) — 2c—1( )2+ ’
45k (1 — 5p) 40k (1 — 8k ) | Sk |
S0 fix < k. for each k € {6, ..., 21}, and hence f>1(A) = ¢21(3)/p21 < c21(3)/ a1
Now, observe that
X
c(x) = Ck—l(x)<1 + ) (19)
(I =) (pr—1)

for each x € {1,3} and k € {6, ..., 21}, and therefore (for fixed &;) we may write ¢ (3) = g(C5(3)) and
fia1 = h(cs(1), e5(3)) as functions of ¢s(1) and ¢5(3). Moreover, the function g(x) is increasing, and it
follows from (18) and (19) that the function % (x, y) is increasing in x and decreasing in y. It follows that
¢21(3)/fl21 is increasing in ¢5(3) and decreasing in ¢5(1), provided fi; > 0. Thus, to bound f>;(A) from
above for all pairs (c5(1), ¢5(3)) with ¢5(3) — 3c¢s(1)/4 < 9.019, it is enough to bound ¢71(3) /i for a
finite set of pairs (c5(1), ¢5(3)) that “dominate” the region c¢5(3) — 3c¢5(1)/4 < 9.019, and satisfy fi57 > 0.

To do this, note that ¢5(1) > 1 and ¢5(3) — 1 = 3(c5(1) — 1), by (11). We may therefore assume that
¢s(1) <5, since otherwise ¢5(3) —3cs5(1)/4 > 9¢s5(1) /4 — 2 > 9.019. We therefore only need to cover the
part of the region ¢5(3) — 3c¢5(1)/4 < 9.019 with 1 < ¢5(1) < 5. We do so by looping through values of
cs(1) from 1 to 5 in steps of 1074 i.e., we check the point

- i 3 +1)
(u(l), U(l)) = (W’ 9019+ 4. 104 )

in the (c5(1), ¢5(3))-plane for each 10* <i <5- 10*. Note that (u (i), v(i )) dominates the set
I1(i):= {(C5(1), C5(3)) 1¢5(3) —3¢s5(1)/4 <9.019 and 1074 <es(1) < 10746 + 1)},

in the sense that if (x, y) € (i) then x > u(i) and y < v(i), so (by the monotonicity properties proved
above) any upper bound on ¢;;(3)//12; that holds at the point (u(i), v(i)) applies to all points of 7(i).

A rough diagram of the pairs (c5(1), c5(3)) that were sufficient to prove the required bound on f>1(A) was determined. Based
on this, the linear combination c¢5(3) — 3c5(1)/4 appears to give the best “figure of merit” among simple linear combinations.
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Hence, if an upper bound for ¢;;(3)/ /121 holds for each pair (u(i), v(i)) in the range above, then it holds
whenever Ps satisfies ¢5(3) — 3¢s(1)/4 <9.019.

Now for each 10* <i < 5-10* we choose the constants 8, . . ., 821 € (0, 1 /2] so as to minimize the
ratio ¢31(3) /i) after processing the prime 73. The optimization of the §; was made by first taking an
initial choice §; = 1/4. Then the §; were changed by performing coordinate-wise optimization: we
minimized c»1(3)/[i21 with respect to each §; in turn from k = 6 to 21, and then repeated this process a
second time, after which it was seen that ¢»1(3)/f12; had converged adequately. We also checked that
o1 > 0 in each case.

The maximum value of ¢»;(3)//12; obtained for any of these points was about 138.873682, and hence
f21 < 138.874 for any Ps5 such that ¢5(3) — 3¢5(1)/4 < 9.019, as required. Source code for these
calculations can be found at [BBMST 2021]. Il

5.3. Constructing the measure Ps. It remains to construct a measure on the uncovered set Rs C
Sy x -+ - x S5 obtained after removing all hyperplanes corresponding to arithmetic progressions whose
moduli involve only the primes 3, 5, 7 and 11. By Corollary 5.2 and Lemma 5.3, it will suffice to prove
the following lemma.

Lemma 5.4. For each A as above, there exists Ps such that ¢s(3) — 3c5(1) /4 < 9.019.

Proof. Let us write F for the collection of sets F' C {2, 3, 4, 5} with | F'| > 2. For each set F' € F, we need
to choose a hyperplane A g with fixed set F, and for each such family we need to construct a measure Ps
supported on the uncovered set. Not surprisingly, there are far too many configurations to deal with easily,
so we need to make a few reductions.

Recall first that (by assumption) no hyperplane in A is contained in another. Also, we may assume
there is a hyperplane for each F' with |F'| > 2 as including extra hyperplanes only makes covering easier.
Moreover, we only need to study configurations ‘up to isomorphism’, in the following sense. First, let
us write F/ < Fif Y, 2" <Y, .2 (ie., F’ precedes F in colexicographic order), and for each
F C{2,3,4,5} write Ar =lay,F,a3.F,aa r,as,p] with a; p € S; U {x} so that Ar C {x; = a; r} when
i € F and a; r = * otherwise. Next, for a given F, order the choices of hyperplane A r lexicographically,
sothat A, <" Apifa p <aj r wheni=min{j € F :d; p #a; r}. Now, suppose there exists a pair (F, i)
suchthati € F and a; > a; p + 2 for every F’ < F with i € F'. Then we can transpose ¢; r and a; p — 1
in S; to obtain an isomorphic configuration A" which is lexicographically smaller (with respect to the
orders < and <), since Ay, <" Ap, but A}, = Ap for all F' < F.

Applying these reductions reduces the number of configurations to 6,025,640,717 which, while it rep-
resents substantial progress, is still too large to conveniently construct optimized probability distributions
for each configuration. However, the main contribution to the large number of configurations comes
from the choice of the “last” few hyperplanes, namely Ay4s, Aa4s, A3as, and Anzas5.8 For example, we
might have as many as 2 x 4 x 6 x 10 =480 choices for Ay345, as we are selecting a single point in Qs
(although in practice the number of choices is reduced somewhat by the comments above). Ignoring the

8We have for brevity denoted, e.g., A(4 5 by A4s.
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choices for Ass, Anss, Azgs, and Apzas reduces the number of configurations to just 7637, which is far
more manageable.

Our strategy is therefore as follows. We first consider a choice of the hyperplanes, A3, A4, A2s, Asg,
Ass, Apzq and Ajszs, without including the last four hyperplanes Ass, Az4s, Azgs and Apzas. In order to opti-
mize the probability distribution on the uncovered region R := Q5\ (Ay3U- - -UA335), we construct a linear
programming problem with variables x, for each r € R representing the probability of the atom {r}. For
each nonempty set I C {2, 3, 4, 5}, and each hyperplane H in Q5 with F(H) = I, we include the constraint

§ xr < Cla
reRNH

where the c; are new variables giving upper bounds on the c(7); cf. (9). (Note that we include the
constraints corresponding to sets not in F, since we need to bound c¢(/) for all subsets I C {2, 3,4, 5}.)
We also add the constraints

x>0 and Y x =1

rer
to ensure that we have a probability measure supported on R, and then minimize
> (3"=3/4)c;. (20)
1C2,3,4,5)

where we define ci; = 1. We define P5 to be the probability distribution corresponding to this minimum,
i.e., we set P5(r) = x, for each r € R. Recalling (11), note that

3es(M) _ Z (311 =3/4)c(D),

1<{2,3,4,5}

c5(3) —

and observe that the minimum occurs when ¢; = ¢(/).
We are therefore done, except for the (important) fact that we have not restricted the measure to be
zero on the set

U = A45U A5 U Azgs U Agzys.

To do so, we simply remove the measure from the (unknown) set U, and uniformly rescale the measure to
again give a probability measure. We claim that this can increase the value of ¢5(3) —3c¢s(1)/4 to at most
¢s(3) —3es(1)/4—p/4

1-p ’

1)

where p is the probability assigned to U. To see this, observe that removing the measure on U does
not increase any c(/), and decreases c(&) by p. Since ¢5(3) — 3¢s(1)/4 is a positive linear combination
of the c(/), with ¢(@) occurring with coefficient 1/4, it follows that c5(3) — 3c5(1) /4 decreases by at
least p/4. Renormalizing the measure then increases each c¢(/) (and hence this linear combination of
the c¢(/)) by a factor of 1 — p.
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Configuration cs(3) —3cs(1)/4 p < Bound
11%% 2% 1% #22% 121%, 1%*], ¥3*2  13*3 8.772328 0.043227  9.157362
Table 1. One of the 90 partial configurations on Qs using just A3, ..., A3s with the

bound given by (21) greater than 9.018. The full list is given in [BBMST 2021].

Configuration ¢s(3) —3es(1)/4
1% 2% % *22% 121%, 1%%], ¥3%2 13%3, *%34 2%31, *232, 1233 9.018070
1% 2% *¥22% 121%, 1%%], ¥3%2 13%*3, *%34 2%33 %232, 1233 9.018070

Table 2. Full configurations on Qs with ¢5(3) —3c¢s(1)/4 > 9.018.

To complete the proof, we bound the probability p of the unspecified set U by
P < €45 + €245 + €345 + 2345,

where the c; are the bounds on c¢(/) given by the linear programming problem. We then check if the bound
in (21) is less than 9.018.° If so, then we proceed to the next configuration. There are 90 (out of 7637)
configurations of (A»s, ..., A3s) where this fails. For these, we loop through all choices of A4s and
perform the above calculation with just Aj4s, Azss, and Asszss unspecified. From these 90 configurations
we obtain 1083 configurations with A4s included, but for only 12 of these does our bound still exceed 9.018.
These 12 give rise to 312 configurations including Aj4s, of which 3 still exceed our bound. These 3 give
rise to 216 configurations where we are forced to include Asys, but only 2 which still exceed our bound.
Finally, these 2 give 142 configurations where we are forced to include all the A, but only two have
¢5(3)—3c5(1)/4 > 9.018, and these are listed in Table 2. We deduce that for all choices of the hyperplanes
{Ap: F € F} in Qs we can find a probability measure Ps on Rs such that ¢5(3) — 3¢s(1)/4 < 9.018071.

All calculations were performed in C using the Gurobi linear optimization package [Gurobi] to solve the
LP minimizations. With the strategy as described above, the calculations to determine the worst case con-
figurations took about 40 seconds on a laptop. Source code and results can be found at [BBMST 2021]. [

As noted above, Theorem 1.2 follows immediately from Corollary 5.2 and Lemmas 5.3 and 5.4. In
fact, since the results from [BBMST 2018] (which we used to deal with the large primes) did not require
the assumption that the moduli are square-free, we actually proved something slightly stronger: if the
moduli are distinct and each prime p < 73 in their prime factorization occurs to a power at most 1, then
at least one of the moduli must be even. In other words, the “square-free” condition is only needed on the
73-smooth part of the moduli. Of course, if we could reduce “p <73 to “p < 3” then the Erd6s—Selfridge
problem would be solved, so it would be interesting to see to what extent the bound 73 could be reduced.

9This bound was chosen, after some experimentation, to be just below the worst case value of ¢5(3) — 3c5(1)/4 given in
Table 2 for configurations using all the hyperplanes.
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