
Efficient Feasibility Checking on Continuous Coverage Motion for
Constrained Manipulation

Sean McGovern1 and Jing Xiao1

Abstract— Many industrial robotic applications require a
manipulator to move the end-effector in a constrained motion
to cover a surface region, including painting, spray coating,
abrasive blasting, polishing, shotcreting. etc. The manipulator
has to satisfy both task constraints imposed on the end-effector
(such as maintaining certain distance and angle with respect
to the target surface while traversing it) and manipulator joint
constraints. Given a robot manipulator and a target surface
patch, an important question is whether there exists a feasible
path for the manipulator to move continuously along the surface
patch to cover it entirely while satisfying both manipulator and
task constraints. This question is largely open as it has not
been addressed systematically, even though there is substantial
literature on path planning of constrained manipulation motion.
In this paper, we introduce a general and efficient method to
provide answers to this question.

I. INTRODUCTION
There are many robotic tasks that require a robot manipu-

lator to traverse its end-effector along a constraining surface
smoothly and satisfy some task constraints. Autonomous
spray coating is such a task. It requires the robot end-effector
to cover an entire surface while satisfying task criteria in
terms of spray thickness, cycle time, and material waste [1],
which translate to constraints on the configuration of the end-
effector during traversal.

Surface coverage is often treated as a coverage path
planning problem [2] on 3D surfaces with constraints. Many
papers focus on CPP for mobile robots [3]–[6], while a few
also consider CPP for manipulators [7], [8].

There is also substantial work on constrained manipulator
motion planning [9]–[13], where the focus is mostly on
finding a feasible, collision-free path connecting two con-
figurations while keeping the end-effector constrained along
the way. There is often an underlying assumption that such
a path exists.

In the context of applications, there are many papers
focusing on specific manipulator coverage tasks, such as on
spray painting trajectories [14]–[18] and path planning [8]
[19], shotcrete, [20], and laser ablation [21].

However, there is little research focused on the fundamen-
tal question of whether there exists a feasible manipulator
path that enables the end-effector to cover an entire target
surface continuously, satisfying given task constraints and
manipulator constraints. The answer to this question will
provide insights to whether the manipulator is suitable for the
given task of covering the specific surface and under what

1The authors are affiliated with the Robotics Engineering Depart-
ment, Worcester Polytechnic Institute. smmcgovern@wpi.edu,
jxiao2@wpi.edu. This work is funded by US Army Research Lab
Contract W911NF1920108.

conditions (such as relative spatial arrangements between
the manipulator and the surface), whether there is a need
to divide the surface patch into sub-patches and how to
perform the division, or whether there is a need to change
the manipulator.

In this paper, we introduce a general and efficient method
to answer the open question. Our approach converts the task
constraints on robot end-effector position and orientation into
constraints that directly relate manipulator joint parameters
and variables to task parameters (such as surface location,
shape, and size) and task-specific requirements, e.g., spray
nozzle offset and spray angle for a spraying job. Next our
method explores the joint space that satisfy those constraints
as well as joint constraints continuously and informs the
feasibility of traversal in the Cartesian space by forward
kinematics. The connectivity of the Cartersian-space man-
ifold informs whether there is a feasible solution.

The rest of the paper is as follows. In Section II, we
introduce notations, assumptions, and formulate the problem.
We describe the method in Section III. We present implemen-
tation and testing results and discussions in Section V and
conclusions in Section VI.

II. ASSUMPTIONS, NOTATIONS, AND CONSTRAINT
FORMULATIONS

We attach a coordinate frame to a target spatial surface
S with reference position [xc, yc, zc]

T and orientation Rc,
where Rc is the rotation matrix of the surface frame with
respect to the world frame. S can be either (a) a discretized
freeform surface with indices u and v or (b) a piece-wise
parametric surface with parameters u and v with respect
to the surface frame. For (b), it means that S can have
a single parametric representation or different parametric
representations for its different pieces connected together.
Without losing generality, we simply denote every point
(xs, ys, zs) on S as a function of (bounded) u and v:
[xs, ys, zs]

T = g(u, v).
The robot end-effector has to satisfy a position task

constraint, such that every end-effector position [xe, ye, ze]
T

corresponds to a surface point on S to maintain a fixed
distance d from the surface; thus the end-effector position
is also a function of u and v:

[xe, ye, ze]
T = cp(u, v) (1)

The end-effector also needs to satisfy an orientation task
constraint:

Re = co(u, v) (2)

2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
August 23-27, 2021. Lyon, France

978-0-7381-2503-9/21/$31.00 ©2021 IEEE 189

20
21

 IE
EE

 1
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

io
n

Sc
ie

nc
e

an
d

En
gi

ne
er

in
g

(C
AS

E)
 |

 9
78

-1
-6

65
4-

18
73

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CA

SE
49

43
9.

20
21

.9
55

16
85

where Re is the rotation matrix of the end-effector. A
common orientation constraint is that the end-effector (or
the tool mounted to the end-effector) approaches the surface
S in a certain direction (e.g., the normal direction).

Denote the end-effector approach vector as the unit ap-
proach vector a (often along the z axis of the end-effector)
and the desired approach direction to the surface as b(u, v).
Then the equation (2) can be expressed more specifically as:

a · b(u, v) = 0 (3)

The orientation constraint can be further relaxed a bit to
allow a to deviate from b within a small angle α at each
position. Thus, we have the following inequality constraint:

a · b(u, v) ≤ cosα (4)

We denote E as the constrained position manifold for the
end-effector to cover the surface S while satisfying position
and orientation task constraints.
S can be discretized into a discrete (surface) grid with

u and v being indices for the cells on the grid. Each cell’s
center is positioned at g(u, v) = [xs, ys, zs]

T with respect to
the surface frame.

We further discretize the end-effector manifold E to form
a grid with indices u and v, corresponding to the discretized
S. The resolution of the grid can be depending on the task
constraints. After discretization, we call each cell on the
manifold E an E-cell.

Given an n-dimensional robotic manipulator, we denote
its link parameters as l = [l1, l2, ..., ln]

T , a joint space
configuration as q = [q1, q2, ..qn]

T , and joint limits as
qmin,i ≤ qi ≤ qmax,i, 1 ≤ i ≤ n. A sequence of joint-space
configurations can be noted as Q = {q1,q2..,qm}.

With forward kinematics, the end-effector position and
orientation can be computed as functions of link parameters
and joint variables, expressed in the manipulator homoge-
neous transformation matrix from the end-effector to the
base 0

nT . Now, by substituting end-effector positions and
orientations with their expressions fp(l,q) and fo(l,q) re-
spectively in terms of link parameters and joint variables into
equations (1), (2), and inequality (4), we can obtain joint-
space task constraints that directly relate joint variables to
task parameters:

fp(l,q) = cp(u, v), (5)

and
fo(l,q) = co(u, v), (6)

or a more relaxed orientation constraint:

fa(l,q) ≤ cosα. (7)

III. METHODOLOGY

Now we describe our approach to address the fundamental
question: given a surface patch and a robot manipulator,
does there exist a feasible path for constrained coverage
or not? Note that feasibility refers to the manipulator path
satisfying continuously both task constraints, as introduced
in Section II, and manipulator constraints, which depends on

Fig. 1: Searching in joint space grid for feasible neighboring
motion between E-cells.

the structure and dimensions of the manipulator links, the
types of joints, and the joint limits. Violation of manipulator
constraints causes either no solution for inverse kinematics
or singularity configurations that prevent the end-effector to
move smoothly along the constraining manifold E. Hence,
our approach checks for existence of a feasible path in the
manipulator’s joint space.

A. Joint-space discretization and feasible J-cells

We first discretize the manipulator joint space into an n-
dimensional grid and call each grid cell a J-cell. The joint-
space distance between a J-cell and a neighboring J-cell is
δq such that only one joint variable’s value is increased or
decreased by δq. As each joint variable’s value can either
remain unchanged, increase, or decrease δq, there are 3n

neighboring J-cells for each J-cell. A J-cell configuration
is feasible if it satisfies both the joint-space task constraints,
Equations (5) and (6) or Inequality (7), and the joint limits.

B. From feasible J-cell transitions to E-cell neighboring
continuity

Next our method explores the feasible joint space manifold
starting from a feasible J-cell jc1 that corresponds to a
feasible E-cell ec1 on the constrained manifold E of the
end-effector1 by searching for feasible δq moves of the
manipulator to the adjacent J-cells, and so on (Fig. 1). If
such a move exists between jc1 and a neighboring J-cell
jc2, then jc2 is feasible and the transition between jc1 and
jc2 is feasible. If, after some feasible neighboring J-cell
transitions which forms a path Q, a J-cell jcm is reached
that corresponds to a neighboring E-cell ec2 (by forward
kinematics) of ec1, then ec2 is feasible, and there exists a
feasible path Q to enable the manipulator to move from ec1
and ec2 smoothly (i.e., without singularity). We say that there
is a neighboring feasibility continuity between ec1 and ec2.

Our method searches the discretized joint space for fea-
sible J-cell transitions via a tree search. For each feasible

1If there are multiple candidates for the starting J-cell jc1, the selection
of jc1 may affect the results of search. Thus, one can run our method with
every possible candidate.

190

Algorithm 1: Continuity Check in Joint Space J for
Neighboring E-Cells
Input J-cell jc with configuration q, satisfying
joint-space task constraints and joint limits; its
corresponding E-cell is ec
input target neighboring E-cell ecT with
end-effector position pT ;
call CONT(jc, ecT) to obtain Continuity and jcT ;
return jcT and Continuity between ec and
neighboring ecT , which is either true or false.

procedure CONT(jc, ecT)
Continuity=false;
repeat:
from jc, find an unchecked neighboring J-cell jcN
by adjusting a qi of q by ±δq to obtain qN;
if qN satisfies joint-space task constraints and joint
limits then

obtain corresponding E-cell ecN via forward
kinematics with end-effector position pN ;
if ecN == ecT then

Continuity=true;
return continuity and jcN

end
if pN is closer to pT than p then

call CONT(jcN , ecT)
end

end
until there is no unchecked neighboring J-cell of jc.

transition to a neighboring J-cell, we find the correspond-
ing end-effector configuration achieved via instantaneous
forward kinematics. That is, through searching feasibility
in the joint-space, the search of feasibility in neighboring
E-cell transitions in the end-effector space is achieved, as
illustrated in Fig. 1. This method avoids solving inverse
kinematics, which often requires numerical solutions for
redundant manipulators, and greatly increases the efficiency.

C. Feasibility continuity on task-constrained manifold E

Starting from an E-cell ec1, our method can establish
whether there is a path of feasibility continuity, i.e., a con-
tinuously feasible path, between ec1 and a non-neighboring
E-cell by finding feasibility continuity to a neighboring
E-cell ec2 and repeating the process to find feasibility
continuity from ec2 to its neighboring cell ec3, and so on.
By conducting a tree search from ec1 to cover the entire E,
our method can establish a continuity graph on E to show
all feasibility continuity among all E-cells.

Specifically, our method considers each neighboring E-
cell of ec1 in a systematic way, such as following the
clockwise order from the upper-left neighboring cell of
ec1 on the manifold E. To check for feasibility continuity
between two neighboring E-cells, Algorithm 1 is used. To
find all feasibility continuity on manifold E, our method
conducts a tree search as shown in Algorithm 2.

Algorithm 2: Continuity Check on Manifold E
Input ec1 and corresponding jc1;
initialize Tree T at ec1;
initialize graph G containing E-cells with no edges;
T = TREESEARCH(T , jc1);
if G is a connected component then

return “∃ feasible path”
else

return “no feasible path”
end

procedure TREESEARCH(T , jc)
ec is obtained from jc by forward kinematics;
Neighbors = set of neighboring E-Cells of ec;
for all ecN ∈ Neighbors do:
if no edge exists between ec and ecN in G then

call Algorithm 1 with jc and ecN to obtain
Continuity and jcN ;
if Continuity then

Add edge between ec and ecN if not in G.;
if ecN is not in T then

Add ecN as child to ec in T ;
T = TREESEARCH(T , jcN)

end
end

end
return T

As the tree search traverses E, we add E-cells to the
tree and also record the connectivity of E (which indicates
continuity in constrained motion) in a graph, G. If the
resulting G is a single connected component, we determine
that there is at least one path that can cover the full surface
of S while maintaining constraints. We can also analyze G
to determine other feasible paths on E.

IV. IMPLEMENTATION AND TESTING RESULTS

To test our method, we use a PUMA 560 robotic manip-
ulator to determine feasibility for autonomous constrained
manipulation coverage. We considered spray coating as an
example constrained coverage problem. For this problem,
the end-effector position task constraint is to keep the end-
effector a constant distance d from the target surface as it
traverses the surface, and the end-effector orientation task
constraint is to maintain its approach vector within a small
angle α from the normal of the surface.

The PUMA robot contains six revolute joints, with the
joint vector q = [θ1, θ2, ..., θ6]

T and link parameters l =
[a2, a3, d3, d4] = [0.7, 0.1, 0.1, 0.7](m). The manipulator
transformation matrix 0

6T , see [22], and joint limits are used
to obtain fp(l,q), fo(l,q), and fa(l,q) in the joint-space
task constraint equations (5)-(7). We considered several sets
of joint limits for the PUMA, see Table I, and different task
constraint parameter values for each surface, see Table II.

191

TABLE I: Joint Limits Sets for PUMA

Set 1 θ1 θ2 θ3 θ4 θ5 θ6
θmin −180◦ −180◦ −180◦ −180◦ −180◦ −180◦

θmax 180◦ 180◦ 180◦ 180◦ 180◦ 180◦

Set 2 θ1 θ2 θ3 θ4 θ5 θ6
θmin −170◦ −170◦ −180◦ −135◦ −100◦ −90◦

θmax 170◦ 75◦ 175◦ 190◦ 90◦ 90◦

Set 3 θ1 θ2 θ3 θ4 θ5 θ6
θmin −90◦ −170◦ −180◦ −135◦ −100◦ −90◦

θmax 10◦ 75◦ 90◦ 170◦ 90◦ 90◦

Set 4 θ1 θ2 θ3 θ4 θ5 θ6
θmin −110◦ −110◦ −110◦ −150◦ −45◦ −180◦

θmax 145◦ 75◦ 40◦ 120◦ 140◦ 180◦

TABLE II: Task Parameters and Values

Set 1 xc (m) yc (m) zc (m) α d (mm)
All Surfaces 0 0 0 45◦ 5
Set 2 xc (m) yc (m) zc (m) α d (mm)
Sphere 0 0 0 5◦ 5
Cylinder 0 0.055 0 5◦ 5
Hyperboloid 1.095 0 0 10◦ 5
Set 3 xc (m) yc (m) zc (m) α d (mm)
Sphere 0.005 0 0 10◦ 5
Cylinder 0 0.055 0 10◦ 5
Hyperboloid 1.15 0 0 20◦ 5

TABLE III

Surface Parametric Equations
S u v x y z
Sphere θ ψ r*sinθ*cosψ r*sinθ*sinψ r*cosθ
Cylinder θ z r*cosθ r*sinθ z
Hyperboloid θ z r(z)*cosθ r(z)*sinθ z

Surface Parameter Ranges
S u min u max v min v max r
spherical 10◦ 90◦ 10◦ 180◦ 1m
cylindrical -60◦ 60◦ 0 0.9m 0.5m
Hyperboloid 130◦ 220◦ 0 0.5m r(v)
where r(vmin) ≤ r(v) ≤ r(vmax)

A. Parametric surfaces

We tested our method with various surface patches, in-
cluding a spherical, a cylindrical, and a hyperbolic surface
patch. The parametric representation of each surface, as
shown in Table III, is expressed with respect to its origin
[xc, yc, zc]

T . For each surface frame, its origin is at the center
(of symmetry) of the surface, and its orientation is aligned
with the robot base frame.

The spherical surface is a quadrant of a hemisphere, and
parameters u and v denotes the polar angle and azimuthal
angle θ and ψ of the spherical coordinate system respectively.
The cylinder and hyperboloid surfaces are constrained by u
and v which denote angle θ (about z-axis of surface frame)
and height z (with respect to origin) respectively.

B. Deriving joint-space task constraints

We derive the joint-space task constraints for each surface
by first defining the task constraints for the end-effector in
Cartesian space. To obtain equations (5)-(7), we substitute
end-effector position [xe, ye, ze]

T , as defined in equation (1),
by their functions of joint parameters and variables from the

PUMA manipulator transformation matrix:

xe = c1(a2c2 + a3c23 − d4s23)− d3s1
ye = s1(a2c2 + a3c23 − d4s23) + d3c1

ze = −a3s23 − a2s2 − d4c23
(8)

where s123 = sin(θ1 + θ2 + θ3), c123 = cos(θ1 + θ2 + θ3).
The detailed derivation for each surface used for testing

can be found in Appendix.

C. Testing results with different sets of joint limits

We first tested the effects of different joint limits, while
keeping the task parameter values as in the parameter set
1 in Table II. Fig. 2 shows an example of how Algorithm
1 searches the joint-space grid for a continuous constrained
end-effector motion between two E-cells for the spherical
surface, using the set 1 joint limits. Note that θ1 and θ2
are the horizontal and vertical axes here since PUMA’s first
three joint variables θ1, θ2, and θ3, exclusively define the
end-effector position and θ1 and θ2 are most significant (θ3
does not change in this example). δq, which is δθ for this
case, is 0.01◦. The figure shows that it took 36 δθ steps in
the joint space to complete the neighboring transition in the
Cartesian space. The first 35 J-cells correspond to one E-cell
and the last J-cell corresponds to the neighboring E-cell.

Fig. 3(a) shows the graph G results from Algorithm 2
using joint limits set 1 for the spherical surface. In this
case, G is a single connected component and with all nodes
connected to their neighbors that covers all E-cells on
manifold E. This means not only that there exists a feasible
path for the robot to continuously move the end-effector to
cover all the E-cells, but also that there are many feasible
paths to do so. Fig. 3(b) shows the graph G using joint limits
set 2 this time, resulting in one connected component (in
blue) that does not include all E-cells in manifold E and
single-cell components from the remaining E-cells (in red).
The red dots show E-cells that cannot be visited by the
robot end-effector in continuous constrained motion. This
means that there is no feasible continuous motion path to
cover all E-cells. Note how some E-cells in the (blue)
connected component in Fig. 3(b) cannot reach some of
their neighboring E-cells. This shows that there are limited
directions of feasible motion to reach those E-cells, which
is informative to constrained path planning.

We can also display the graph G directly on the manifold
E, for a given surface. Fig. 4 illustrates the graph G on
the manifold E for the spherical, cylindrical, and hyperbolic
surfaces using two different joint limit sets in Table I. For
each surface, when joint limit set 1 is applied, the graph
G is a connected component, as shown in the left figure.
However, when joint limit set 2 is applied, the graph G does
not have a connected component that covers all E-cells, as
shown in the right figure, i.e., there is no feasible motion
path to traverse the entire E in those cases.

D. Testing results with different task parameter values

Different task parameter values can also affect the fea-
sibility of a coverage path. Fig. 5 illustrates graphs G on

192

the manifold E for the spherical, cylindrical, and hyperbolic
surfaces using joint limit set 1 and task parameter value
set 2 then set 3 respectively. Using joint limit set 1 with
the spherical surface, which previously resulted in a single
connected component in G (see Fig. 4(a)), Fig. 5 (a) and
(b) show that decreasing α can greatly reduce the size of
the multi-cell connected component in G. These figures also
show that when the sphere center is moved a very small
distance along the x-axis of the robot base frame, the multi-
cell connected component in G shrinks much more even
though α is increased. In this case, the spatial arrangement
of the surface relative to the robot seems to have a more
significant effect on feasibility than the α value.

Similarly, using joint limit set 1 with the cylindrical
surface, previously resulted in a G of a single connected
component (see Fig. 4(c)), but in Fig. 5 (c), moving the
surface along the y-axis of the robot base frame for a large
distance reduced half of the E-cells from the (multi-cell)
connected component of G. After changing α from 5◦ to
10◦, a relatively small amount, we again see a graph G with
a single connected component (Fig. 5 (d)). In this case, the
spatial arrangement of the cylinder with respect to the robot
does not seem to have as much of an effect on feasibility
than the value of α.

There are also scenarios where a change in parameter
values can result in a loss of E-cells and edges in one section
of the connected component in G while gaining E-cells and
edges in another part of the connected component. This is
visibly noticeable from changes in Fig. 5 (e) and (f). The
multi-cell connected component of G looses edges near the
center of the hyperboloid (where the curvature is greatest)
as the surface moves further away from the robot base along
the x-axis,and at the same time, E-cells near the corner of
the hyperboloid are added to the connected component of G.

The testing results show that the effects of different
parameter values on feasibility of continuous coverage can
vary from case to case and may be inter-related, which
confirms the need for a systematic approach and the utility
of our method to determine whether there is a feasible path
to cover a surface continuously given different manipulator
and task constraints.

E. Performance data

Each test case had a runtime of building graph G well
below 1 second. For example, the runtime of building the
graph G for the spherical surface with joint limit set 1 and
task parameter set 1 was 540 ms. The example case contained
90 E-cells and called Algorithm 1 for 305 times. Hence, the
average joint-space search time between two neighboring E-
cells is less than 2 ms. This example represents the worst-
case scenario where there is a single connected component
in G with the maximum number of edges. For cases where
G contains multiple components (such as in Fig. 3(b)), i.e.,
there is no feasible solution to cover the entire manifold E,
the runtime is much lower still. The runtime of Algorithm
2 will increase as the resolution of the grid for manifold E
increases, but the average joint-space search time between

Fig. 2: Joint-space motion continuity search between two
neighboring E-cells for the spherical surface (in degrees).

(a) based on joint limit set 1 (b) based on joint limit set 2

Fig. 3: Graph G for the spherical surface using task param-
eter value set 1 and different joint limits, where red dots
indicates unreachable nodes.

two neighboring E-cells will decrease at the same time.

V. CONCLUSIONS

Although there are many applications that require con-
tinuously moving a robot manipulator’s end-effector across
a surface patch under some task constraints, the question
whether this is always possible, given a specific manipulator,
target surface, and task constraints, has not been answered
systematically. This paper has introduced an efficient and
general approach to address this question systematically,
based on converting task constraints from the Cartesian space
to the joint space and searching for feasible joint-space paths
directly without inverse kinematics, which can be computa-
tionally expensive, especially for redundant manipulators.

The introduced algorithms have been implemented and
tested on example tasks involving a PUMA robot and para-
metric surface patches. The results have shown that manip-
ulator joint limits and values of task constraint parameters
both can greatly affect whether or not there is a feasible
solution, i.e., a continuous path for the robot manipulator to
cover the target surface patch under task constraints. If the
answer is yes, the graph generated by applying the introduced

193

(a) spherical, joint limit set 1 (b) spherical, joint limit set 2

(c) cylindrical, joint limit set 1 (d) cylindrical, joint limit set 3

(e) hyperbolic, joint limit set 1 (f) hyperbolic, joint limit set 4

Fig. 4: Graph G on manifold E of different surface patches
using task parameters value set 1 and different PUMA joint
limit sets.

method can further convert the problem of planning feasible
manipulator paths for coverage into a much simpler graph
search problem. If the answer is no, the method can help re-
vealing the cause(s) of infeasibility, which could range from
mismatched manipulator and task to mis-positioned target
surface with respect to the manipulator. If the latter is the
cause, the method can be used to adjust the relative position
and pose of the surface with respect to the manipulator to find
the relative arrangement that results in a feasible coverage
solution. Alternatively, the method can be used to determine
an acceptable manipulator for a given task.

We plan to further test the approach on different ma-
nipulators and for different tasks and constraints and to
develop autonomous robotic solutions for manipulation tasks
involving surface coverage for many applications.

APPENDIX

In the following, we show the derivation of joint-space
task constraints for three surfaces: spherical, cylindrical, and

(a) spherical, α=5◦ (b) spherical, α=10◦, xc=5mm

(c) cylindrical, α=5◦, yc=55mm (d) cylindrical, α=10◦, yc=55mm

(e) hyperbolic, α=10◦, xc=1.095m (f) hyperbolic, α=20◦, xc=1.15m

Fig. 5: Graph G on manifold E for different surface patches
using joint limit set 1 and varied values of task constraint
parameters.

hyperbolic, as shown in Table III, assuming that the robot
base is on the same side of the surface as the surface center
(of symmetry).

A. Spherical surface

For the spherical surface, the position task constraint, as
presented in equation (1), can be found by subtracting the
radius r by distance d, which is the end-effector distance
from the surface:

(xe − xc)2 + (ye − yc)2 + (ze − zc)2 = (r − d)2 (9)

The corresponding joint-space task constraint (5) can be
expressed by replacing xe, ye, ze with their joint functions
in equation (8).

The orientation task constraint of inequality (7) can be
expressed in terms of the dot product of the unit vector along
the end-effector z axis a and the normal vector b at each

194

position on the constrained manifold E, such that:

a = [r13, r23, r33]
T (10)

where r∗∗ is from the rotation matrix of the manipulator
transformation matrix, and:

xe − xcye − yc
ze − zc

 = ~bs, b =
~bs

‖~bs‖
, a · b ≤ cosα (11)

B. Cylindrical surface

For the cylindrical surface, the position task constraint is
as follows:

(xe − xc)2 + (ye − yc)2 = (r − d)2 (12)

The corresponding joint-space task constraint (5) can be
expressed by replacing xe, ye, ze with their joint functions
in equation (8).

The orientation task constraint of inequality (7) can be
expressed in terms of the dot product of the unit vector along
the end-effector a axis a and the normal vector b at each
end-effector position on the constrained position manifold E
such that a is as defined in equation (10) and:

xe − xcye − xc
0

 = ~bs, b =
~bs

‖~bs‖
, a · b ≤ cosα (13)

C. Hyperbolic surface

For the hyperbolic surface, the end-effector position task
constraint is shown in equation (14). This is similar to the
position task constraint for the cylinder, except that the
radius, r, is a function of coordinate z of the surface frame:

(xe − xc)2 + (ye − yc)2 = [r(z)− d]2. (14)

The orientation task constraint of inequality (7) can be
expressed in terms of the dot product of the unit vector along
the end-effector z axis z and the unit normal vector b at each
end-effector position on the constrained position manifold E
such that a is as defined in equation (10) and:

x = xe − xc, y = ye − yc, z = ze − zc

so that [x, y, z]T indicates the end-effector position expressed
in the surface frame. The unit normal vector b can be
expressed in the following:

b =
c1 × c2√

‖c1‖2‖c2‖2 − ‖c1 · c2‖2
, a · b ≤ cosα (15)

where

c1 =

−yx
0

 , c2 =


∂r(z)
∂z

x
r(z)

∂r(z)
∂z

y
r(z)

1

 (16)

REFERENCES

[1] H.Chen, T. Fuhlbrigge, X. Li, “A review of CAD-based robot path
planning for spray painting,” Industrial Robot: An International Jour-
nal, vol. 36, no. 1, pp. 45-50, 2009.

[2] E. Galceran, M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258-
1276, 2013.

[3] Chen, C.H.; Song, K.T, “Complete coverage motion control of a
cleaning robot using infrared sensors,” in Proc. IEEE International
Conference on Mechatronics (ICM), Taipei, Taiwan, 10–12 July 2005,
pp. 543–548.

[4] L. Santos, F. Santos,S. Pires, E.J. Pires, A. Valente, P. Costa, “Planning
for ground robots in agriculture: A short review,” in Proc. of the 2020
IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), Ponta Delgada, Portugal, 15–17 April 2020;
pp. 61–66.

[5] T. Lee, S. Baek, Y. Choi, S. Oh, “Smooth coverage path planning
and control of mobile robots based on high-resolution grid map
representation,” Robotics and Autonomous Systems, vol. 59, no. 10,
pp. 801-812, 2011.

[6] M. Hassan and D. Liu, “PPCPP: A Predator–Prey-Based Approach to
Adaptive Coverage Path Planning,” IEEE Transactions on Robotics,
vol. 36, no. 1, pp. 284-301, 2020.

[7] P. Atkar, H. Choset, A. Rizzi, E. Acar, “Exact Cellular Decompo-
sition of Closed Orientable Surfaces Embedded in R,” International
Conference on Robotics and Automation, vol. 1, pp. 699 - 704, 2001.

[8] P. Atkar, H. Choset, A. Rizzi, “Towards Optimal Coverage of 2-
Dimensional Surfaces Embedded in R: Choice of start Curve,” in Proc.
International Conference on Intelligent Robotics and Systems, October
2003, vol. 4, pp. 3581-3587.

[9] Z. Kingston, M. Moll, and L. E. Kavraki, “Decoupling constraints
from sampling-based planners,” in Proc. Int. Symp. of Robot. Res.,
2017, vol. 38, no. 10-11, pp. 1151-1178.

[10] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2007, pp. 3074–3081.

[11] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” Proc. IEEE International
Conference on Robotics and Automation, IEEE, 2009, pp. 625–632.

[12] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” IEEE Transactions on Robotics, vol.
29, no. 1, pp. 105–117, 2013.

[13] T. McMahon, S. Thomas, and N. M. Amato, “Sampling-based motion
planning with reachable volumes: Theoretical foundations,” in Proc.
IEEE International Conference on Robotics and Automation, 2014,
pp. 6514–6521.

[14] C. Chen, S. Gojon, Y. Xie, S. Yin, C. Verdy, Z. Ren, H. Liao, S. Deng,
“A novel spiral trajectory for damage component recovery with cold
spray,” Surface and Coatings Technology 309, vol. 309, pp. 719-728,
2017.

[15] W. Chen, J. Liu, Y. Tang, H. Ge, “Automatic Spray Trajectory
Optimization on Bezier Surface,” Electronics, vol.8, no. 2, pp. 168-
184, 2019.

[16] M. Andulkar, S. Chiddarwar,“Incremental approach for trajectory
generation of spray painting robot,” Industrial Robot: An International
Journal, vol. 42, no. 3, pp.228-241, 2015.

[17] H.Chen, N.Xi, W. Sheng, M. Song, Y. Chen, “CAD-based automated
robot trajectory planning for spray painting of free-form surfaces,”
Industrial Robot: An International Journal, vol. 29, no.5, pp. 426-
433, 2002.

[18] G. Teodora, G. Florin, M. Gheorghe, “Virtual Planning of Robot
Trajectories for Spray Painting Applications,” Applied Mechanics and
Materials, vol. 658, pp. 632-637, 2014.

[19] G.Trigatti, P.Boscariol, L. Scalera, D. Pillan, A. Gasparetto, “A
new path-constrained trajectory planning strategy for spray painting
robots,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 98, pp. 2287-2296, 2018.

[20] G. Liu, X. Sun, Y. Liu, C. Li, X. Zhang, “Automatic spraying motion
planning of a shotcrete manipulator,” Intelligent Service Robotics
(2021), https://doi.org/10.1007/s11370-021-00348-9.

[21] X. Ye, L. Lui, L. Hou, Y. Duan, Y. Wu, “Laser Ablation Manipulator
Coverage Path Planning Method Based on an Improved Ant Colony
Algorithm,” Applied Sciences, vol.10, no. 23, pp.8641, 2020.

[22] John J. Craig, Introduction to Robotics: Mechanics and Control 3rd
ed.., Pearson Education, Inc. 2005.

195

