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In this work, we present several heuristic-based and data-driven active vision strategies for
viewpoint optimization of an arm-mounted depth camera to aid robotic grasping. These
strategies aim to efficiently collect data to boost the performance of an underlying grasp
synthesis algorithm. We created an open-source benchmarking platform in simulation
(https://github.com/galenbr/2021ActiveVision), and provide an extensive study for
assessing the performance of the proposed methods as well as comparing them
against various baseline strategies. We also provide an experimental study with a real-
world two finger parallel jaw gripper setup by utilizing an existing grasp planning
benchmark in the literature. With these analyses, we were able to quantitatively
demonstrate the versatility of heuristic methods that prioritize certain types of
exploration, and qualitatively show their robustness to both novel objects and the
transition from simulation to the real world. We identified scenarios in which our
methods did not perform well and objectively difficult scenarios, and present a
discussion on which avenues for future research show promise.
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1 INTRODUCTION

Robotic grasping is a vital capability for many tasks, particularly in service robotics. Most grasping
algorithms use data from a single viewpoint to synthesize a grasp (Caldera et al., 2018). This
approach attempts to create a single, master algorithm that is useful for all objects in all situations.
Nevertheless, these algorithms tend to suffer when the viewpoint of the vision sensor is different than
the images used in training (Viereck et al., 2017). Additionally, many graspable objects have
observation angles that are “singular” from which no grasp can be synthesized: For example, if an
object has only one graspable surface, which is self-occluded from the current viewpoint of the
camera, the grasp synthesis algorithm would either fail to find any grasps or would need to rely on
assumptions that might not always hold, and therefore lead to an unsuccessful grasp attempt.

The issues of the single viewpoint approaches can be addressed via active vision frameworks, i.e., by
actively moving the camera and collecting more data about the task. At one end of this spectrum is
collecting data to obtain a complete 3Dmodel of the object. This approach is slow, difficult to carry out
in the real world, and vulnerable to misalignment if conditions change during or after data collection
(Lakshminarayanan et al., 2017). Our aim is to develop active vision strategies that can efficiently collect
data with brief motions and allow the grasp synthesis algorithms to find sufficiently good grasps as
quickly as possible. It is shown in the grasping literature that even algorithms tailored for single
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viewpoints can have a substantial performance boost even with
very simple data collection procedures (Viereck et al., 2017).
Utilizing active vision for robotic grasping has several avenues
for optimization: the exploration algorithm, the data analysis, and
the grasping algorithm are all open questions.

In this work, we present a wide variety of exploration
algorithms along with an extensive simulation and real-world
experiment analysis. Figure 1 shows how an active vision policy
explores different objects. In the simulation, we created
benchmarks to assess not only whether our policies do better
than random but to measure how close each approach comes to
optimal behavior for each object. In the real-world experiments,
we have adopted an existing grasp planning benchmark
(Bekiroglu et al., 2020), and assess how well the simulation
performances translate to real systems.

Our exploration algorithms can be split into heuristic and
machine learning approaches. In our heuristics, we attempt to
identify simple properties of the visual data that are reliable
indicators of effective exploration directions. These approaches
use estimates of how many potentially occluded grasps lie in each
direction. For machine learning, we used self-supervised and
Q-learning based approaches. We compare the performance of
these methods against three baseline algorithms. The baselines
are random motion (as the worst-case algorithm), naive
straightforward motion (as a simple algorithm more complex
efforts should outperform), and breadth-first-search (as the
absolute ceiling on possible performance). The last is
particularly important: because in the simulation we could
exhaustively test each possible exploration path, we can say
with certainty what the shortest possible exploration path that
leads to a working grasp is.We also present a comparison study to
another active vision-based algorithm, i.e., (Arruda et al., 2016),
which provides, to the best of our knowledge, the closest strategy
to ours in the literature.

To summarize, the contribution of our work is as follows:

1) We present two novel heuristic-based viewpoint optimization
methods.

2) We provide a novel Q-learning based approach for achieving
an exploration policy for grasping.

3) We provide an open-source simulation platform (https://
github.com/galenbr/2021ActiveVision) to develop new
active vision algorithms and benchmark them.

4) We present an extensive simulation and experimental
analysis, assessing and comparing the performance of five
active vision methods against three baseline strategies,
including the optimal BFS strategy.

Taken together, these allow us to draw new conclusions not
only about how well our algorithms work but how much it would
be possible to improve them.

2 RELATED WORKS

Adapting robotic manipulation algorithms to work in an
imperfect and uncertain world is a central concern of the
robotics field, and an overview of modern approaches is given
by Wang et al. (2020). At the same time, much of the research on
robotic grasping does not attempt to move the vision sensor and
focuses on single image grasp synthesis. Saxena et al. (2010)’s
work on grasping objects in cluttered environments
acknowledges the problem of accurately sensing a complex 3D
environment, but attempts to avoid it by storing prebuilt 3D
models and using them to better analyze a single stereovision
image rather than by collecting more information. In a similar
vein, Zheng et al. (2018) approaches industrial grasping by trying
to more accurately map known features to objects instead of by
trying to collect more data to resolve ambiguities in the images. A
typical approach in literature is to train a neural network to
produce grasps by annotating individual images with grasp
candidates. This is the method used by Pinto and Gupta
(2016), Chu et al. (2018), among many others. Even in tasks
peripheral to grasping, like shape and pose estimation,
considerable work has gone into more refined algorithms and
machine learning strategies for extracting information from

FIGURE 1 | The 3D Heuristic policy guiding the camera and finding the grasp for a object.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6965872

Natarajan et al. Grasp Synthesis Using Active Vision



single 2D images without attempting to capture more images or
optimize the viewpoint (Kurenkov et al., 2018; Zhang and Cao,
2019). Most work assumes that the viewpoint is fixed or random,
and so focuses on either processing the data (pose estimation,
object localization and segmentation, etc . . . ) or synthesizing a
grasp from available data (Salganicoff et al., 1996; Du et al., 2021).

Our research focuses on this problem of collecting new data
to improve processing outcomes. Active vision has been
applied to many aspects of machine vision, but often with
the explicit goal of completely viewing a 3D object (Khalfaoui
et al., 2012; Daudelin and Campbell, 2017), rather than our
objective of viewing just enough of the object to perform a
grasp. Even in the narrower domain of active vision for grasp
synthesis, not all work relates to our concerns. For instance Fu
et al. (2019)’s study on industrial grasping uses active vision to
assist feature identification of known objects, but with the
explicit goal of maximizing grasp precision rather than
minimizing information collected. For the use of active
vision to address grasping using incomplete information,
there has been research into both algorithmic (Calli et al.,
2011; Arruda et al., 2016) and data-driven methods (Paletta
and Pinz, 2000; Viereck et al., 2017; Calli et al., 2018b;
Rasolzadeh et al., 2010), with more recent works tending to
favor data-driven approaches (Caldera et al., 2018). In
particular, the work in (Viereck et al., 2017) demonstrated
that active vision algorithms have the potential to outperform
state of the art single-shot grasping algorithms.

Calli et al. (2011) proposed an algorithmic active vision
strategy for robotic grasping, extending 2D grasp stability
metrics to 3D space. As an extension of that work (Calli et al.,
2018b), the authors utilized local optimizers for systematic
viewpoint optimization using 2D images. Arruda et al. (2016)
employs a probabilistic algorithm whose core approach is the
most similar to our heuristics presented in Section 4.2. Our
approaches differ in focus, since Arruda et al. (2016) selects
viewpoints based on estimated information gain as a proxy for
finding successful grasps, while we prioritize grasp success
likelihood and minimizing distance traveled. In our simulation
study, we implemented a version of their algorithm and included
it in our comparative analysis.

The data-driven approach presented in Viereck et al. (2017)
avoided the problem of labeled data by automating data labeling
using state of the art single shot grasp synthesis algorithms.
They then used machine learning to estimate the direction of the
nearest grasp along a view-sphere and performed gradient
descent along the vector field of grasp directions. This has
the advantage of being continuous and fast, but did not fit in
our discrete testing framework (Viereck et al., 2017). All data-
driven methods analyzed in this paper utilize a similar self-
supervised learning framework due to its significant easiness in
training.

One of our data-driven active vision algorithms utilizes the
reinforcement learning framework. A similar strategy for active
vision is used by Paletta and Pinz (2000) to estimate an
information gain maximizing strategy for object recognition.
We not only extend Q-learning to grasping, but do away with
the intermediary information gain heuristic in reinforcement

learning. Instead, we penalize our reinforcement approach for
each step it takes that does not find a grasp, incentivizing short,
efficient paths.

Two of the data-driven methods in this paper are based on the
general strategy in our prior work in Calli et al. (2018a). In that
work, we presented a preliminary study in simulation. In this
paper, we present one additional variant of this strategy and
present a more extended simulation analysis.

Gallos and Ferrie (2019), while focused on classification
rather than grasping, heavily influenced our theoretical
concerns and experimental design. Their paper argues that
contemporary machine learning based active vision
techniques outperform random searches but that this is too
low a bar to call them useful and demonstrates that none of the
methods they implemented could outperform the simple
heuristic of choosing a direction and moving along it in large
steps. Virtually all active vision literature [e.g., de Croon et al.
(2009); Ammirato et al. (2017)] compares active vision
approaches to random approaches or single-shot state of the
art algorithms. While there has been research on optimality
comparison in machine vision (Karasev et al., 2013), to the best
of our knowledge, it has never been extended to 3D active vision,
much less active vision for grasp synthesis. Our simulation
benchmarks are an attempt to not only extend their
approach to grasping, but to quantify how much
improvement over the best performing algorithms remains
possible.

3 OVERVIEW

The proposed active vision based grasp synthesis pipeline is
represented in Figure 2. It starts with collecting environment
information from a viewpoint and fusing it with the previously
known information about the environment (except for the first
viewpoint captured). The object and table data are extracted, and
the regions which have not been explored (unexplored regions)
by the camera yet are updated. This processed data is used in the
grasp synthesis and active vision policies as explained below. An
attempt is made to synthesize a grasp with the available data, and
if it fails, the active vision policy is called to guide the camera to a
new viewpoint after which the process repeats until a grasp
is found.

3.1 Workspace Description
We assume an eye-in-hand system that allows us to move the
camera to any viewpoint within the manipulator workspace. To
reduce the dimension of the active vision algorithm’s action
space, the camera movement is constrained to move along a
viewsphere, always pointing towards and centered around the
target object [a common strategy also adopted in Paletta and Pinz
(2000), Arruda et al. (2016), and Calli et al. (2018a)]. The radius
of the viewsphere (vr) is set based on the manipulator workspace
and sensor properties. In the viewsphere, movements are
discretized into individual steps with two parameters, step-size
(vs) and number of directions (vd). Figure 3A shows the
workspace we use with vr ! 0.4 m, vs ! 20°, and vd ! 8
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(N,NE,E,SE,S,SW,W,NW). In our implementation, we use an
Intel Realsense D435i as the camera on the Franka Emika Panda
arm for our eye-in-hand system.

3.2 Point Cloud Processing and
Environment Modeling
The point cloud data received from the camera is downsampled
before further processing to reduce sensor noise and to speed up
the execution time. Figure 3B shows the environment as seen by
the camera after downsampling.

Sample Consensus based plane segmentation techniques in
Point Cloud Library (Rusu and Cousins, 2011) are used to extract
the table information from the scene after which the points above
the table are extracted andmarked as object points. As mentioned
previously, identifying the unexplored regions is required for
grasp synthesis as well as the active vision policies. For this
purpose, the region surrounding the object is populated with
an evenly spaced point cloud and then sequentially checked to
determine which points are occluded. While a common visibility
check approach is ray-tracing, it is a computationally intensive
and time consuming process. Instead, we take advantage of the

FIGURE 2 | The active vision based grasp synthesis pipeline.

FIGURE 3 | (A) Viewsphere and its next steps with parameters vr ! 0.4 m, vs ! 20°, and vd ! 8. The blue sphere is the expected position of the object, the green
sphere the current camera position and red one the next steps it can take (B) Example with power drill as object showing the processed pointclouds. Left: Environment
as seen by the camera, top-right: Extracted object and table, bottom-right: The unexplored regions of the environment.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6965874

Natarajan et al. Grasp Synthesis Using Active Vision



organized nature of the point cloud data. The 3D points are
projected to the image plane using:

Xp ! KX/z0 (1)

where, Xp is the projected pixel co-ordinates, X is the 3D point( x0 y0 z0 )T , and K is the camera intrinsic matrix described by:

K !  fx 0 ppx
0 fy ppy
0 0 1

 (2)

The “depth value at Xp” and “z0” are compared and if z0 is greater
than depth at Xp, the point X is marked as occluded. This
approach reduces the computation time greatly. The two
images on the bottom right of Figure 3B show the unexplored
region generated for the drill object.

With every new viewpoint the camera is moved to, the newly
acquired point cloud is fused with the existing environment data
and the process is repeated to extract the object data and update
the unexplored regions.

3.3 Grasp Synthesis
The goal of our pipeline is to provide enough data to an underlying
grasp synthesis algorithm to find a successful grasp. As such, our
methods are largely agnostic to the specific grasp synthesis
algorithm used. Essentially, any gripper type i.e., parallel-jaw/
multi-fingered/vacuum along with its corresponding grasp
synthesis algorithm can be used in this methodology, provided
the grasp synthesis algorithm can process an incomplete point
cloud as input. However, these grasping algorithms are naturally
preferred to be fast (since they will be run multiple times per grasp
within our viewpoint optimization process), and be able to work
with stitched point clouds. Most data-driven approaches in the
literature are trained with single-view point clouds, and might not
perform well with stitched object data.

In our study, we use the Franka Emika parallel jaw gripper
(https://www.franka.de/) which has a maximum gripper width of
8 cm and a contact surface area of 4 cm2 as shown in Figure 3B.
We use the term “contact point” to refer to a point in the point
cloud being considered for a grasp. The point cloud library (PCL)
(Rusu and Cousins, 2011) has modules for calculating the normal
vector and curvature which are used in the following process. As
our gripper is a parallel jaw gripper, we use a force-closure-based
approach similar to Calli et al. (2018a), with the following
constraints:

1) Grasp quality: This quality is a value ranging from 0 to 180
and depends on the normal vectors of the two contact points
being considered for the grasp and their relative position. This
is calculated as:

GQ ! 180 − (min(∠(C1C2
++++→

,C1N
++→),∠(C2C1

++++→
,C1N
++→))

+min(∠(C1C2
++++→

,C2N
++→),∠(C2C1

++++→
,C2N
++→))) (3)

where, GQ is the grasp quality, C1 and C2 are the contact points 1
and 2 respectively, C1N and C2N are the surface normal vectors at

the contact points 1 and 2 respectively. In this study a grasp
quality between 150 and 180 was required.

2) Contact patch area and curvature constraint: To grasp the
object, there must be a relatively flat surface surrounding each
contact point at least as large as the gripper’s contact area.
Based on the known gripper contact area and the points
surrounding the contact point under consideration, the
object contact patch area is calculated by projecting the
points within a 3 cm radius of the contact point onto a
plane whose normal vector is the same as the contact
point’s. This projected area should be higher than a
threshold for the contact point, and the curvature as
calculated by PCL should be below a threshold.

The process of selecting a grasp i.e., a pair of contact points
from the point cloud is described in Algorithm 1. Each grasp has
infinitely many possible gripper orientations that would align
with the contact points i.e., the gripper can revolve along the axis
connecting the two points. The possible orientations have been
discretized into eight evenly spaced orientations in this study. The
collision and reachability checks (described in Algorithm 1) used
to select a grasp from the possible grasps are computationally
intensive and hence it is preferable to do as few checks as possible
to select the grasp.Algorithm 2 explains the process of sorting the
potential grasps using the grasp related parameters i.e., centroid,
euclidean distance, line distance and grasp quality. The
thresholds used were experimentally determined. This sorting
process helps to prioritize the grasps that have higher probability
of passing the checks and which are closer to the centroid of the
object. This reduces the number of checks required to arrive at the
final grasp.

Algorithm 1: Grasp selection process.

Require: obj← Object point cloud
Require: tbl← Table point cloud
Require: unexp← Unexplored point cloud

contact pair← Pair of contact points
potential grasps← Array of contact pair which can be a

potential grasp
for all contact pair ∈ obj do

if All constraints satisfied then
contact pair.euclidean distance ! euclidean distance

between the contact pair’s centroid and the obj’s centroid
contact pair.line distance ! euclidean distance

between the contact pair’s centroid and the obj’s line of
gravity.

Add contact pair to potential grasps
end if

end for
Sort potential grasps by Algorithm 2.
for all contact pair ∈ potential grasps do

for each of the eight gripper orientations do
ifNo collision of gripper model with unexp and tbl and

within manipulator workspace then
Select this contact pair at this gripper orientation
Exit both the for loops
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end if
end for

end for.

Algorithm 2: Grasp sorting metric.

Require: potential grasp A← First contact pair
Require: potential grasp B← Second contact pair

if abs(potential grasp A.line distance -
potential grasp B.line distance) ≤ .01 m then

if abs(potential grasp A.centroid.z -
potential grasp B.centroid.z) ≤ .06 m then

if abs(potential grasp A.euclidean distance -
potential grasp B.euclidean distance) ≤ .01 m then

potential grasp with the highest grasp quality is
preferred

else
potential grasp with the lowest euclidean distance is

preferred
end if

else
potential grasp with the highest centroid.z is preferred

end if
else
potential grasp with the lowest line distance is preferred

end if.
Next, we explain the active vision policies designed and
utilized in this paper.

4 ACTIVE VISION POLICIES

The focus of this paper is the active vision policies, which guide
the eye-in-hand system to its next viewpoints. The nature of the
pipeline allows us to plug in any policy which takes point clouds
as its input and returns the direction to move for the next
viewpoint. The policies developed and tested in this paper
have been classified into three categories as follows:

1) Baseline policies.
2) Heuristic policies.
3) Machine learning policies.

Each of these sets of policies are explained below.

4.1 Baseline Policies
As the name suggests these are a set of policies defined to serve as
a baseline to compare the heuristic and machine learning policies
with. The three baselines used are shown below.

4.1.1 Random Policy
Ignoring camera data, a random direction was selected for each
step. No constraints were placed on the direction chosen, leaving
the algorithm free to (for instance) oscillate infinitely between the
start pose and positions one step away. This represents the worst
case for an algorithm not deliberately designed to perform poorly,

and all methods should be expected to perform better than it in
the aggregate. This is the standard baseline in the active vision
literature.

4.1.2 Brick Policy
Named after throwing a brick on the gas pedal of a car, a
consistent direction (North East) was selected at each
timestep. This direction was selected because early testing
strongly favored it, but we make no claims that it is ideal.
This policy represents the baseline algorithm that is naively
designed and which any serious algorithm should be expected
to outperform, but which is nonetheless effective. Any algorithm
that performed more poorly than it would need well-justified
situational advantages to be usable.

4.1.3 Breadth-First-Search Policy
From the starting position, an exhaustive Breadth-First-Search
was performed, and an optimal path selected. This policy
represents optimal performance, as it is mathematically
impossible for a discrete algorithm to produce a shorter path
from the same start point. No discrete method can exceed its
performance, but measuring how close each method comes to it
gives us an objective measure of each method’s quality in each
situation.

With baselines defined, we will now discuss the other
categories starting with heuristics.

4.2 Heuristic Policies
The idea behind the heuristic policy is to choose the best possible
direction after considering the next available viewpoints. The
metric used to define the quality of each of the next viewpoints is a
value proportional to the unexplored region visible from a given
viewpoint.

4.2.1 2D Heuristic Policy
The viewpoint quality is calculated by transforming the point
clouds to the next possible viewpoints, and projecting the object
and unexplored point clouds from those viewpoints onto an
image plane using the camera’s projection matrix. This process
has the effect of making the most optimistic estimation for
exploring unexplored regions; it assumes no new object points
will be discovered from the new viewpoint. Since the point clouds
were downsampled, their projected images were dilated to
generate closed surfaces. The 2D projections are then
overlapped to calculate the size of the area not occluded by
the object. The direction for which the most area of the
unexplored region is revealed is then selected. Figure 4 shows
an illustration with the dilated projected surfaces and the
calculated non-occluded region. The 2D Heuristic policy is
outlined in Algorithm 3.

Algorithm 3: 2D Heuristic policy.

Require: obj← Object point cloud
Require: unexp← Unexplored point cloud

for all viewpoint ∈ next possible viewpoints do
if viewpoint within manipulator workspace then

obj trf← Transform obj to viewpoint
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obj proj← Project obj trf onto image plane (B/W
image) and dilate

unexp trf← Transform unexp to viewpoint
unexp proj← Project unexp trf onto image plane (B/

W image) and dilate
non occ unexp proj←unexp proj − obj proj

end if
Record the number of white pixels in non occ unexp proj

end for
Choose the direction with maximum white pixels.

While this heuristic is computationally efficient, it considers
the 2D projected area, leading it to, at times, prefer wafer-thin
slivers with high projected area over deep blocks with low
projected area. Additionally, it is agnostic to the grasping goal
and only focuses on maximizing the exploration of unseen
regions.

4.2.2 3D Heuristic Policy
In the 3D heuristic, we focused only on the unexplored region
which could lead to a potential grasp. This was done using the
normal vectors of the currently visible object. Since our grasp
algorithm relies on antipodal grasps, only points along the
surface normals can produce grasps. These points were
extracted by using a 3D bounding box with a length of twice
the maximum gripper width [2*8 cm], and a width and height of
1 cm. The longer axis of this box was aligned with the normal
vector and the center of the box was aligned with the point in
consideration. This was done for all object points to create a 3D
mask of all unexplored space that could contain a grasp. The
unexplored points which were outside this mask were discarded
for the next steps.

Next, like in the 2D heuristic, we transformed the points to
the next possible viewpoints. This time, instead of projecting,
we used local surface reconstruction and ray-tracing to
determine all the unexplored points which will not be
occluded from a given viewpoint. The direction which leads
to the highest number of non-occluded unexplored points is

selected. This prioritizes exploring the greatest possible region
of unexplored space that, based on known information, could
potentially contain a grasp. If all the viewpoints after one step
have very few non-occluded points the policy looks one step
ahead in the same direction for each before making the
decision. Figure 4 shows an illustration with the non-
occluded useful unexplored region. The green points are the
region of the unexplored region which is considered useful
based on gripper configuration. The 3D Heuristic policy is
outlined in Algorithm 3.

Algorithm 4: 3D Heuristic policy.

Require: obj← Object point cloud
Require: unexp← Unexplored point cloud
Require: points threshold← Minimum number of non-
occluded unexplored points needed for a new viewpoint to
be considered useful
useful unexp Unexplored points with potential for a

successful grasp
for all viewpoint ∈ next possible viewpoints do

if viewpoint within manipulator workspace then
obj trf← Transform obj to viewpoint
useful unexp trf← Transform useful unexp to

viewpoint
non occ useful unexp← Check occlusion for each

useful unexp trf using local surface reconstruction and ray-
tracing.

end if
Record the number of points in non occ useful unexp

end for
max points← Maximum points seen across the possible

viewpoints
if max points≤ points threshold then
Run the previous for loop with twice the step-size

end if
max points← Maximum points seen across the possible

viewpoints
Choose the direction which has max points

FIGURE 4 | Set of images illustrating how the 2D and 3D Heuristics evaluate a proposed next step North with the drill object. The 3D Heuristic images have been
shown from a different viewpoint for representation purposes.
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4.2.3 Information Gain Heuristic Policy
The closest approach to the heuristics presented in this paper is
provided by Arruda et al. (2016). For comparison purposes, we
implemented an approximate version of their exploration policy
to test our assumptions and compare it with our 3D Heuristic
approach. First, we defined a set of 34 viewpoints across the
viewsphere to replicate Arruda et al. (2016)’s search space. The
same viewsphere setup as seen in Figure 3A was used. Each
viewpoint is defined by a pair of polar and azimuthal angles.
Three polar angle values of 22.5°, 45°, and 67.5° were used with 10,
12, and 12 evenly distributed azimuthal angle values from 0° to
360° respectively. To calculate the information gain for each
viewpoint, we modified the 3D Heuristic to consider all
unexplored regions as opposed to focusing on the regions with
a potential grasp. Similarly, the modified 3D Heuristic policy,
instead of comparing the next vd viewpoints, compared all 34
viewpoints and used the one with the highest information gain. A
simulation study was performed to compare the camera travel
distance and computation times of this algorithm to our other
heuristics.

4.3 Machine Learning Policies
Our data-driven policies utilize a fixed-size state vector as input.
This state vector is obtained by modeling the object point cloud
and unexplored regions point cloud with Height Accumulated
Features (HAF), developed by Fischinger and Vincze (2012) and
used in Calli et al. (2018a) along with the camera position. We
experimented with grid sizes of 5 and 7 height maps, both of
which provide similar performance in our implementation, so we
chose to use 5 for performance reasons. The state vector of a given
view is composed of the flattened height maps of the extracted
object and the unexplored point cloud and the polar and
azimuthal angle of the camera in the viewsphere. The size of
the state vector is 2n2 + 2, where n is the grid size. Figure 5 shows
an illustration of the HAF state vector generation process.

4.3.1 Self-Supervised Learning Policy
Following the synthetic data generation procedure used by Calli
et al. (2018a), we generated training data in simulation. For a

given start pose, each compass direction (North, North-East, East,
etc . . . ) was explored for a grasp. If none were found, a further
exploration of four random steps from each compass direction
was performed three times. The shortest working path was saved,
along with the state vector of each camera view in the path. This
was repeated for 1,000 random initial poses each for the 10 × 8 × 4
and 20 × 6 × 5 prisms in Figure 6. Further training objects were
considered, but initial results generalized so well that it was not
pursued. This data was used to train two self-supervised learning
methods, logistic regression and LDA classification, to predict the
next best viewpoint to select given the state vector of the current
viewpoint. In both of the methods, we first applied PCA to each
state vector to further compress it to 26 components, as shown in
Figure 7A. All the components used in this policy were
implemented using the scikit-learn library (Pedregosa et al.,
2011).

4.3.2 Deep Q-Learning Policy
In an attempt to improve on the self-supervised methods, a deep
Q-Learning policy was also trained to predict, for a given state
vector, the next best viewpoint using Keras library tools (Chollet,
2015). Four fully connected 128 dense layers and one 8 dense
layer, connected by Relu transitions, formed the deep network
that made the predictions as shown in Figure 7B. In training, an
epsilon-random gate replaced the network’s prediction with a
random direction if a random value exceeded an epsilon value
that decreased with training. The movement this function
requested was then performed in simulation, and the resulting
state vector and a binary grasp found metric were recorded. Once
enough states had been captured, experience replay randomly
selected from the record to train the Q-Network on a full batch of
states each iteration. The Q-Learning was trained in simulation to
convergence on all of the objects in Figure 6, taking roughly 1,300
simulated episodes to reach convergence. We hoped that, given
the relatively constrained state space and strong similarities
between states, meaningful generalizations could be drawn
from the training set to completely novel objects.

For all machine learning approaches, the objects used for
training were never used in testing.

FIGURE 5 |HAF based state vector for a 6 × 6 × 6 cm cube on the table. The blue square shows the square zone considered for object data and the yellow square
shows the zone considered for unexplored data. The length of the unexplored data square zone is 1.5 times that of the object square zone. The values represent the
maximum height among the points within each grid. These data are flattened and merged along with camera information for generate the state vector.
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FIGURE 6 | The set of objects used for simulation training. Filenames left to right: prism 6 × 6 × 6, prism 10 × 8 × 4, prism 20 × 6 × 5, handle, gasket, cinder block. All
dimensions are in centimeters.

FIGURE 7 | (A) The Self-supervised learning policy pipelines. Note that both methods are identical except for the specific self-supervised learning method used to
process the compressed state vector (B) The Deep Q-Learning policy pipeline.

FIGURE 8 | The setup as seen in simulation environment (A) and lab environment (B) with the power drill object in place.
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FIGURE 9 | The set of objects used for simulation testing. Each object is labeled with its YCB ID.

FIGURE 10 | Simulation results for applying each approach to each object in 100 pre-set poses. Success is defined as reaching a view containing a grasp above a
user defined threshold. The number in parenthesis by the policy names in the legend is the average number of steps that policy took to find a grasp. For cases where no
grasp was found, the step count was considered to be 6.
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5 SIMULATION AND EXPERIMENTAL
RESULTS

The methodology discussed in the above section was
implemented and tested in both simulation and in the real
world. The setups used for the testing are shown in Figure 8.
The maximum number of steps allowed before an experiment is
restarted was set to six on the basis of preliminary experiments
with the BFS policy.

5.1 Simulation Study
The extensive testing in the simulation was done on a set of 12
objects from the YCB dataset (Calli et al., 2015) which are shown
in Figure 9. To ensure consistency, we applied each algorithm to
the exact same 100 poses for each object. This allowed us to
produce a representative sample of a large number of points
without biasing the dataset by using regular increments, while still
giving each algorithm exactly identical conditions to work in.
This was done by generating a set of 100 random values between 0
and 359 before testing began. To test a given policy with a given
object, the object was spawned in Gazebo in a stable pose, with 0°
of rotation about the z-axis. The object was then rotated by the
first of the random value about the z-axis, and the policy was used
to search for a viable grasp. After the policy terminated, the object
was reset, and rotated to the second random value, and so on.

The number of steps required to synthesize a grasp was
recorded for each of the objects in each of its 100 tested poses.
The success rate after each step for each object and the policies
tested is shown in Figure 10. Each sub-image displays the fraction
of poses a successful grasp has been reached for each policy on the
same 100 pre-set poses for the given object. In object 025, for
instance, the BFS found a working grasp on the first step for every
starting pose, while all the other methods only found a grasp in the
first step for a large majority of poses. By the second step, every
policy has found a working grasp for every tested pose of
object 025.

The use of baseline policies i.e., random for the lower limit
and BFS for the upper limit allowed us to classify the objects as
easy, medium, and hard in terms of how difficult is it to find a
path that leads to a successful grasp. Objects are “Easy” when
taking a step in almost any direction will lead to a successful
grasp, and “Hard” when a low ratio of random to BFS searches

succeed, suggesting very specific paths are needed to find a
grasp. Two objects with similar optimal and random
performance will have similar numbers of paths leading to
successful grasps, and so differences in performance between
the two would be due to algorithmic differences, not inherent
difficulty. The random to BFS ratio is used for the classification.
For example, if the BFS result shows that out of 100 poses 40
poses have a successful grasp found in the first step and a policy
is only able to find a grasp at the first step for 10 poses, the policy
is considered to have performed at 25% of the optimal
performance or in other words the ratio would be 0.25.
Objects with random to BFS ratio at Step 2 ≤ 0.40 are
considered hard, objects between 0.41 and 0.80 as medium,
and objects with a ratio > 0.80 as easy. With this criteria the test
objects were classified as follows:

1) Easy: Tomato soup can (005), Bowl (024), Mug (025).
2) Medium: Apple (013), Bleach cleanser (021), Power drill

(035), Baseball (055).
3) Hard: Cracker box (003), Mustard Bottle (006), Pudding box

(008), Potted meat can (010), Toy airplane (072-a).

With these object classifications, Figure 11 shows the
performance of the policies for Step 1 and Step 3 using the
policy to BFS ratio.

Figures 10, 11 show that overall in simulation, the 3D
Heuristic performed the best, followed by the self-supervised
learning approaches, Q-Learning and the 2D Heuristic. For half
of the objects we tested, the 3D Heuristic performed best, while
for objects 003, 010, 013, 021, 025, and 055 another algorithm
performed better.

One reason the 3DHeuristic may be failing in some cases is that
the heuristics are constrained to only considering the immediate
next step. Our machine learning approaches can learn to make
assumptions about several steps in the future, and so may be at an
advantage on certain objects with complex paths. In addition, the
optimistic estimations explained in Section 4.2.2 will not hold for
all objects and cases, causing the Heuristic to waste time exploring
promising looking dead-ends. One reason the machine learning
techniques underperform for some cases may be due to the HAF
representation used to compress the point cloud data, which
creates a very coarse-grained representation of the objects,

FIGURE 11 | A comparison of performance of various policies for objects categorized into easy, medium and hard, for Step 1 and Step 3 with respect to the BFS
performance at those steps.
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obliterating fine details. Additionally, HAF representations cannot
represent certain types of concavities, hampering their utility for
complex objects. A much finer grid size, or an alternative
representation of the state vector, could help in improving the
performance of the machine learning techniques.

We found that all methods consistently outperformed
random, even on objects classified as hard. It is important to
note that even brick policy was able to find successful grasps for
all objects except for the toy airplane object (072-a), suggesting
that incorporating active vision strategies even at a very basic level
can improve the grasp synthesis for an object.

The toy airplane object (072-a) deserves special attention as
it was by far the hardest object in our test set. It was the only
object tested for which most algorithms did not achieve at least
80% optimal performance by step 5, as well as having the
lowest random to BFS ratio at step 5. We also saw (both here
and in the real world experiments) that heuristic approaches
performed the best on this complex and unusual object, while
the machine learning based approaches all struggled to
generalize to fit it.

Easy and Medium category objects come very close to optimal
performance around step 3, as seen in Figure 11. Given how small

TABLE 1 | Comparison between the exploration pattern employed by the Information Gain Heuristic and the 3D Heuristic’s grasp weighted exploration.

Object name Steps comparison Timing comparison (s)

Information Gain
Heuristic

3D Heuristic Reduction % Information Gain
Heuristic

3D Heuristic Reduction %

nVPs nEffSteps nSteps

Tomato soup can (005) 1 2.3 1 57 22 3 86
Mustard bottle (006) 0.92 2.1 1.4 33 35 10 71
Pudding box (008) 1 2.8 1.6 43 26 5 81
Potted meat can (010) 1.2 3.3 2 39 22 5.5 75
Apple (013) 1 2.3 2 13 9 4 56
Bowl (024) 1 2.9 1 66 14 3 79
Mug (025) 1 2.3 1 57 17 3 82
Power drill (035) 1.2 2.9 2.2 24 54 19 65
Toy airplane (072-a) 1.6 4.7 3 36 75 28 63

Average 41 Average 73

nVPs, Number of viewpoint visited apart from the starting viewpoint to find a grasp; nEffSteps, Distance traveled between viewpoints converted to number of “3D Heuristic” steps; nSteps,
Number of steps taken by 3D Heuristic policy to find a grasp.

TABLE 2 | A list of objects tested for 3D Heuristic and QLearning policies along with the benchmarking results.

Object name Stable pose Policy Policy success
percentage

Avg steps
taken

Avg grasp
quality

Benchmarking results

C1 C2 C3 C4 C5

Chocolate Pudding box (008) 1 Q Learning 67 5.50 167 434 8 100 100 100
3D Heuristic 100 3.00 167 205 4 100 100 100

2 Q Learning 100 3.00 172 680 9 100 100 100
3D Heuristic 100 3.00 171 675 12 100 100 100

Mustard bottle (006) 1 Q Learning 100 3.00 158 430 15 33 (F2) 0 (F3) –

3D Heuristic 100 2.33 161 370 6 33 (F2) 0 (F3) –

Metal Mug (025) 1 Q Learning 100 2.00 180 125 40 100 100 100
3D Heuristic 100 2.00 180 80 20 100 100 100

Tomato soup can (005) 1 Q Learning 0 – – – – – – –

3D Heuristic 100 3.00 166 331 2 100 100 100

Racquet ball (057) 1 Q Learning 100 4.00 150 40 2 100 100 100
3D Heuristic 100 5.00 154 32 2 100 100 100

Power drill (035) 1 Q Learning 100 3.00 164 351 1 100 100 100
3D Heuristic 100 2.00 165 450 3 100 100 100

Custom lego object 1 1 Q Learning 0 – – – – – – –

3D Heuristic 100 3.00 162 230 4 100 100 100

Custom lego object 2 1 Q Learning 0 – – – – – – –

3D Heuristic 100 4.50 168 180 1 100 100 100

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 69658712

Natarajan et al. Grasp Synthesis Using Active Vision



the possible gains on these simple objects can be, difficult objects
should be the focus of future research.

Of the methods we examined, Heuristics (2D, 3D, and
information gain) had the advantage of fast set up time, since
they did not need training, but longer run time, since they
performed more complicated calculations. The deep
Q-learning had the disadvantage of needing extensive training
time, but ran quickly, and the self-supervised learning approaches
(LDA and logistic regression) could be trained quickly and ran
quickly, but needed a long initial data collection period.

5.2 Comparison With the Information Gain
Heuristic
Using the same simulation setup the Information Gain Heuristic
policy [our implementation of Arruda et al. (2016)] was
compared to the 3D heuristic policy. The comparison results

are shown in Table 1, where the number of viewpoints required
was converted to the effective number of steps for the 3D
Heuristic for comparison. One step is the distance traveled to
move to an adjacent viewpoint along the viewsphere in the
discretized space with vr ! 0.4 m, vs ! 20.

We see an average of 41% reduction in camera movement and
with the 3D Heuristic policy, confirming our theory that only
certain types of information warrant exploration and that by
focusing on grasp containing regions we can achieve good grasps
with much less exploration. As a side benefit, we also see a 73%
reduction in processing time with the 3D Heuristic policy, as it
considers far fewer views in each step.

5.3 Real World Study
The real world testing was done on a subset of objects in simulation
along with two custom objects built using lego pieces. The grasp
benchmarking protocol in (Bekiroglu et al., 2020) was implemented

FIGURE 12 | The left image shows the set of objects used for real world testing along with their YCB IDs. On the right are the stable poses used for testing (The
manipulator base is towards the right). (A) [YCB ID : 008] Stable Pose \#1, (B) [YCB ID : 008] Stable Pose \#2, (C) [YCB ID : 006] Stable Pose \#1, (D) [YCB ID : 035]
Stable Pose \#1, (E) [Custom Lego 1] Stable Pose \#1, (F) [Custom Lego 2] Stable Pose \#1. Objects with YCB IDs 005 and 057 are considered symmetrical and are
used in the same orientation as shown in left image. Likewise, object 025 was tested in only one stable pose, with the handle facing away from the robot.

FIGURE 13 | Difference between information captured by depth sensor in simulation (A) and real world (B) for the tomato soup can (005) object. Notice the lesser
surface information captured by the real world sensor.
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to assess the grasp quality based on the five scoring parameters
specified. Another grasp benchmarking protocol focused on vision-
based approaches is Kootstra et al. (2012), but it is simulation based
and needs the input to be in the form of stereo images which does
not fit well with our pipeline’s need for a point cloud input. Also, it
lacks the shaking and rotational test metrics available in Bekiroglu
et al. (2020). The 3D Heuristic and the Q-Learning policies were
selected and tested with the objects. The results for the tests
performed are shown in Table 2. A total of 18 object-pose-policy
combinations were tested with three trials for each and the average
across the trails has been reported. The objects used along with their
stable poses used for testing are shown in Figure 12.

In real world trials, we found that the 3D heuristic works
consistently, but the Q-Learning is at times unreliably. When run
in simulation, the paths Q-Learning picks for the real-world
objects produce successful grasps - the difference between our
depth sensor in simulation and the depth sensor in the real world
seems to be causing the disconnect. Figure 13 shows the
difference between the depth sensors in the two environments
for the tomato soup can (005) object. Apart from the noise which
is present in real world sensor, the real sensor sees less surface
information than its simulation counterpart. Notably, the
surfaces that are more or less perpendicular to the sensor
image plane are not seen in the real world sensor, but can be
seen by the sensor in simulation. This explains why more steps
were required in the real world than in simulation. Nonetheless,
the reliability of the 3D Heuristic demonstrates that simulated
results can be representative of reality, although there are some
differences.

6 CONCLUSION

In this paper, we presented heuristic and data-driven policies to
achieve viewpoint optimization to aid robotic grasping. In our
simulation and real world testing, we implemented a wide variety
of active vision approaches and demonstrated that, in overall
performance, the 3D Heuristic outperformed both data-driven
approaches and naive algorithms. We concluded that prioritizing
exploration of grasp-related locations can produce both faster and
more accurate heuristic policies. Also, we noticed that the data-
driven policies had an edge over heuristic polices for some objects
due to its inherent nature of considering multiple steps ahead as
opposed to the heuristic policies which can see only one step
ahead. From our optimal search, we demonstrated that for most
objects tested, both types of approaches perform close to optimal.
We were able to identify that the complex objects in our test set
like the toy airplane and custom Lego objects are not only
dissimilar to our training objects, but they are also objectively
more difficult for viewpoint optimization. In the real world
testing, we demonstrated that while sensor differences
impacted all algorithms’ performances, the heuristic based
approach was sufficiently robust to generalize well to the real
world while our data-driven approaches were more sensitive to
the changes in sensor behavior.

Both types of policies, i.e., heuristic-based and data-driven,
had their pros and cons. The execution times of the policies
were less than 1 s for the data-driven policies and for the
heuristic ones they ranged from 0.5 to 5 s based on the size of
the target object. The speed difference is due to the processing
of raw point cloud data in the heuristic policies as opposed to
the compressed state vector used in the data-driven policies.
This data compression removes potentially useful information.
The nature of our state-vector makes data-driven policies less
reliable as seen with the tests involving the custom Lego
objects. Using different data compression methods to
generate the state vectors containing more data could be
used to enhance the performance of the data-driven
techniques along with using more objects for training and
testing.

Future research should prioritize what we have identified as
difficult objects over simple ones, as it is only in the more difficult
objects that gains can be made and good policies discerned from
poor ones. Additionally, our work depended on discrete
movements through the viewsphere. Future work should
consider the possibility that continuous motion through the
viewsphere may outperform discrete strategies.
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Ammirato, P., Poirson, P., Park, E., Košecká, J., and Berg, A. C. (2017). A Dataset
for Developing and Benchmarking Active Vision. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 1378–1385.

Arruda, E.,Wyatt, J., and Kopicki, M. (2016). Active Vision for Dexterous Grasping
of Novel Objects. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2881–2888.

Bekiroglu, Y., Marturi, N., Roa, M. A., Adjigble, K. J. M., Pardi, T., Grimm, C., et al.
(2020). Benchmarking Protocol for Grasp Planning Algorithms. IEEE Robot.
Autom. Lett. 5, 315–322. doi:10.1109/lra.2019.2956411

Caldera, S., Rassau, A., and Chai, D. (2018). Review of Deep Learning Methods in
Robotic Grasp Detection. Mti 2, 57. doi:10.3390/mti2030057

Calli, B., Caarls, W., Wisse, M., and Jonker, P. P. (2018b). Active Vision via
Extremum Seeking for Robots in Unstructured Environments: Applications in
Object Recognition and Manipulation. IEEE Trans. Automat. Sci. Eng. 15,
1810–1822. doi:10.1109/tase.2018.2807787

Calli, B., Caarls, W., Wisse, M., and Jonker, P. (2018a). Viewpoint Optimization for
Aiding Grasp Synthesis Algorithms Using Reinforcement Learning. Adv.
Robotics 32, 1077–1089. doi:10.1080/01691864.2018.1520145

Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., and Dollar, A. M. (2015).
Benchmarking in Manipulation Research: Using the yale-cmu-berkeley Object
and Model Set. IEEE Robot. Automat. Mag. 22, 36–52. doi:10.1109/
mra.2015.2448951

Calli, B., Wisse, M., and Jonker, P. (2011). Grasping of Unknown Objects via
Curvature Maximization Using Active Vision. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 995–1001.

Chollet, F. (2015). Keras. Available at: https://github.com/fchollet/keras.
Chu, F.-J., Xu, R., and Vela, P. A. (2018). Real-world Multiobject, Multigrasp

Detection. IEEE Robot. Autom. Lett. 3, 3355–3362. doi:10.1109/
LRA.2018.2852777

Daudelin, J., and Campbell, M. (2017). An Adaptable, Probabilistic, Next-Best
View Algorithm for Reconstruction of Unknown 3-D Objects. IEEE Robot.
Autom. Lett. 2, 1540–1547. doi:10.1109/LRA.2017.2660769

de Croon, G. C. H. E., Sprinkhuizen-Kuyper, I. G., and Postma, E. O. (2009).
Comparing Active Vision Models. Image Vis. Comput. 27, 374–384.
doi:10.1016/j.imavis.2008.06.004

Du, G., Wang, K., Lian, S., and Zhao, K. (2021). Vision-based Robotic Grasping
from Object Localization, Object Pose Estimation to Grasp Estimation for
Parallel Grippers: a Review. Artif. Intell. Rev. 54, 1677–1734. doi:10.1007/
s10462-020-09888-5

Fischinger, D., and Vincze, M. (2012). Empty the Basket - A Shape Based Learning
Approach for Grasping Piles of Unknown Objects. IEEE Int. Conf. Intell. Robots
Syst., 2051–2057. doi:10.1109/IROS.2012.6386137

Fu, X., Liu, Y., and Wang, Z. (2019). Active Learning-Based Grasp for Accurate
Industrial Manipulation. IEEE Trans. Automat. Sci. Eng. 16, 1610–1618.
doi:10.1109/TASE.2019.2897791

Gallos, D., and Ferrie, F. (2019). Active Vision in the Era of Convolutional Neural
Networks. In 2019 16th Conference on Computer and Robot Vision (CRV),
81–88.

Karasev, V., Chiuso, A., and Soatto, S. (2013). Control Recognition Bounds for
Visual Learning and Exploration. In 2013 Information Theory and
Applications Workshop (ITA), 1–8.

Khalfaoui, S., Seulin, R., Fougerolle, Y., and Fofi, D. (2012). View Planning
Approach for Automatic 3D Digitization of Unknown Objects. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Springer-Verlag, 496–505.
doi:10.1007/978-3-642-33885-4_50 vol. 7585 LNCS.
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