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Abstract—The Deep Learning (DL) training process consists of
multiple phases — data augmentation, training, and validation
of the trained model. Traditionally, these phases are executed
either on the CPUs or GPUs in a serial fashion due to lack
of additional computing resources to offload independent phases
of DL training. Recently, Mellanox/NVIDIA has introduced the
BlueField-2 DPUs which combine the advanced capabilities of
traditional ASIC based network adapters with an array of ARM
processors. In this paper, we characterize and explore how one
can take advantage of the additional ARM cores on the BlueField-
2 DPUs to intelligently accelerate different phases of DL training.
We propose multiple novel designs to efficiently offload the phases
of DL training to the DPUs. We evaluate our proposed designs
using multiple DL models on state-of-the-art HPC clusters. Our
experimental results show that the proposed designs are able to
deliver up to 15% improvement in overall DL training time. To
the best of our knowledge, this is the first work to explore the
use of DPUs to accelerate DL training.

Index Terms—DNN Training, DPU, CPU, Offloading, PyTorch,
ARM, Horovod, MPI

I. INTRODUCTION

The hyperscale data centers have been using Smart NICs to
offload a variety of functions from the host processor. These
functions typically include data and control plane switching,
Network Function Virtualization (NFV), intrusion detection,
encryption, and compression. This trend is effective since
it relieves the host processor cores to focus entirely on
user workloads and applications leading to better return on
investment.

More recently, Smart NICs (or Intelligent NICs) like
BlueField-2 Data Processing Units (DPUs) have been intro-
duced in the HPC community to enable offload of high-
value communication and compute operations. Unlike the data
center community, the exploration of these DPUs as additional
processing elements—along with CPUs and GPUs—is still in
its infancy. One approach [1] is to offload MPI communication
functionality on DPUs. While this is promising, it is also
possible to offload subsets of computation on DPUs in addition
to communication functions. We explore this approach in the
context of Deep Learning (DL) workloads in this paper.

Distributed Deep Learning has become the default approach
to achieve models with high accuracy in areas like natural
language processing, computer vision, and recommendation
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systems. DL uses deep neural networks (DNNs) to learn
the relationship between input and output by training it on
a large corpus of data. However, training DL models is a
compute-intensive and time-consuming task as it can take
weeks or months. Therefore, state-of-the-art DL models like
AmoebaNet [2] and GPT-3 are trained on multiple computing
nodes using distributed DNN training. In recent years, Intel
has optimized its processors for DNN training using MKL-
DNN library. Hence, CPU-based DNN training is gaining a
lot of traction in the community. In this paper, we explore
the possibility of offloading different phases of DL training to
DPUs.

II. CONTRIBUTIONS

In this paper, we first characterize the DNN training on a
single node for both CPU and DPU. We then optimize various
parameters like OMP_NUM_THREADS, number of processes
per node, and batch size for PyTorch DL framework to get
good performance on CPU and DPU. We use Multiple Process
Multiple Data (MPMD) support of MPI to run DL training on
heterogeneous architectures (Intel and ARM cores). Based on
our characterization, we explore the possibility of offloading
different DNN training phases to DPUs to accelerate CPU-
based DNN training on multi-node heterogeneous system
comprising a set of CPUs and DPUs. We present performance
evaluation results on 16 nodes, each with 32 CPU cores and
8 ARM cores. To the best of our knowledge, this is the first
work to explore the use of DPUs to accelerate DL training on
a multi-node heterogeneous CPU+DPU cluster.

To summarize, this paper makes the following contributions:

« Performance characterization of Data Parallelism on CPU
and DPU using multi-process per node configuration

« Proposing multiple novel designs for offloading different
phases of DL training to the BlueField-2 DPUs

o Performance evaluations of the proposed designs with
multiple DL models (ResNet-20, ResNet-56, and Shuf-
fleNet) on three datasets.

o Obtained speedup improvements up to 15%, 12.5%, and
11.2% for training the ResNet-20 model on the CIFAR-10
dataset, ShuffleNet model on the Tiny ImageNet dataset,
and ResNet-56 model on the SVHN dataset respectively.

o Scaled proposed designs to 16 nodes and achieved con-
sistent improvement for multi-node experiments.



III. BACKGROUND
A. Deep Neural Network (DNN) Training

Deep Neural Network (DNN) can be viewed as a mathe-
matical function with learnable parameters that transform the
input into output. It learns the relationship between input and
output data by updating the parameters known as weights.
DNN is composed of several smaller mathematical functions
known as neurons that combine weighted summation and
activation function. Weighted summation is a linear function;
hence activation function is required to introduce nonlinearity
into DNN. Layers are formed by grouping the subsequent sets
of neurons. DNN training has two steps: 1) Forward Pass and
2) Backward Pass. In the forward pass, the output is calculated
by feeding the input to the first layer of DNN and recursively
applying the next layer to the previous layer’s output. The
output of DNN is compared with the actual output to calculate
the Loss function and errors. Backward pass back propagates
the error to every layer to calculate the gradients used to update
the weights of DNN. This process is repeated several times to
reduce the loss function and get better accuracy.

B. Deep Learning Frameworks

DL frameworks provide a high-level interface to develop,
train, and test DL models for any application area like com-
puter vision, speech recognition, and natural language process-
ing. DL frameworks are optimized for various CPU, GPU,
TPU, and Al-specific architectures. DL frameworks provide
basic building blocks to customize the DNN according to the
application. They hide most of the complicated mathematics
like differentiation in the backward pass and provide an easy-
to-use interface to train DL models.

C. Distributed DNN Training

Distributed DNN training can be categorized into three
approaches; 1) Data Parallelism, 2) Model Parallelism, and 3)
Hybrid Parallelism. Data parallelism creates a model replica on
each processing element and conducts forward and backward
pass simultaneously. At the end of the backward pass, the
model is synchronized using an allreduce operation. In model
parallelism, a model is distributed over multiple processing
elements. Distributed forward and backward pass is imple-
mented to train the model [3], [4]. Hybrid parallelism [3], [5]
combines model-parallelism with data parallelism to scale the
distributed training to a large number of GPUs.

D. BlueField-2 DPU

Data processing units (DPUs) are rapidly becoming more
prominent in supercomputing for various purposes. They
mainly come with a wide range of network interfaces and
are used to enable resources on the server to move data
more efficiently. The BlueField-2 DPU is a system-on-chip
architecture which comes with ARMv8 A72 cores (64-bit),
DDR4 DRAM controller, ethernet, InfiniBand, and PCI in-
terfaces. BlueField-2 DPUs are used to offload I/O intensive
tasks from CPU taking the role of a traffic controller with
greater performance. Furthermore, BlueField-2 DPUs may be

used to offload encryption and compression workload from the
CPU [6].

IV. EXPLOITING DPUS FOR DEEP NEURAL NETWORK
TRAINING

Deep Neural Network training consists of several phases
like fetching training data, data augmentation, forward pass,
backward pass, weight update, and model validation. These
phases can be offloaded to Bluefield-2 DPUs to accelerate the
DNN training. In this section, we discuss different ways to
accelerate the training by offloading certain tasks to DPU.

A. Offload Naive (O-N): Offloading DL Training using Data
Farallelism

There are several ways to distribute DNN training on mul-
tiple processing elements. We use data parallelism to offload
training to DPUs as it has low communication overhead and
data dependency among different processing elements. Data
parallelism creates a model replica on each processing unit to
perform forward and backward pass simultaneously. Allreduce
operation is used to synchronize the gradients after backward
pass. Since CPU and DPU differ in the number of cores,
frequency, and computation power, we first characterize the
DL training on a single CPU and DPU, then we use this
characterization to distribute work between CPU and DPU.

CPU Performance Evaluation: Recent characterization
studies [7], [8] have suggested multiple processes per CPU
to get the best performance for DL training. Each process
creates a model replica and uses data parallelism to perform
DL training. Therefore, we conduct multi-process experiments
on single CPU to find the sweet spot between batch size,
OMP_NUM_THREADS, and the number of processes per
node (PPN). Based on our evaluations, we set PPN to 8 for
PyTorch. Figure 1(a) shows the performance for different batch
sizes and OMP_NUM_THREADS. The performance saturates
after batch size of 16 per process. Therefore, we use batch
size of 16 per process in our next set of evaluations. In our
multi-node experiments, we found that performance varies
for OMP_NUM_THREADS=3 as PyTorch initiates two extra
active threads in addition to the given value. Figure 1(b) shows
the performance evaluation for multi-node experiments. Based
on our characterization, we choose batch size of 16 per process
and OMP_NUM_THREADS=2 for CPU+DPU experiments.

DPU Performance Evaluation: We perform similar multi-
process experiments for DPUs to find the best configuration.
Based on our experiments, we choose 2 PPN for DPUs.
Figure 2 shows the performance evaluation for different batch
sizes and OMP_NUM_THREADS. Since DPUs have 8 cores,
we limit the number of threads to 3 as one thread is used by
Horovod for communication.

Offload Naive Performance Evaluation: In order to offload
training to DPU, we create additional model replicas on DPU
using data parallelism and distribute work between CPU and
DPU by specifying different batch sizes per process for CPU
and DPU. Figure 3 shows an example of data parallelism on
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Fig. 2. Performance Characterization of ResNet-50 on DPU

CPU and DPU for 8 PPN per CPU and 2 PPN per DPU.
We select 16 batch size per process for CPUs but we cannot
select 8 batch size per process for DPU as the time per batch
should be the same for both CPU and DPU. Based on time
per batch, we found that 2 batch size per process on DPU
takes approximately same time as 16 batch size per process
for CPUs. Therefore, we use 16 batch size per process for CPU
and 2 batch size per DPU for Offload Naive experiments.

Figure 4 shows the comparative performance of CPU and
Offload Naive for the ResNet-50 model. We report up to 1.03 x
speedup using the proposed Offload Naive design. For training,
the maximum speedup possible is 1.04X as the individual
performance for CPU and DPU is 25.1 and 1, respectively.
Forward and Backward passes are compute-intensive tasks
and DPUs are not as powerful as CPUs. Therefore, offloading
training to DPUs will not give significant speedup. Hence, we
evaluate the possibility of offloading other phases of DNN
training to DPUs in the next section.
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B. Offloading Data Augmentation and Model Validation

DL training consists of several phases and steps. Figure 5
shows different phases in DNN training. Each epoch consists
of fetching training data, data augmentation, forward pass,
backward pass, weight update, and model validation. Forward
and backward passes are the most compute-intensive opera-
tions. However, other operations also contribute to the overall
time per epoch. In this section, we explore the possibility of
offloading these operations to DPUs and characterize the time
taken by these operations.

Data augmentation is a set of user-defined operations that
are applied to raw training data before forward pass. Data
augmentation helps in generalizing the training of DNN by
making minor alterations to the input training data. Normaliza-
tion, resizing, ZCA whitening, random rotation, random zoom,
and random flip are standard data augmentation functions used
in computer vision. In model validation, loss and accuracy
are calculated for validation/testing data to avoid overfitting
and calculate the performance of the DL model after every
epoch. Size of validation/testing data and operations in data
augmentation depends on DNN, dataset, and DL researcher.
Therefore, we calculate the time for data augmentation (in-
cludes the reading of training data), model validation, and
forward/backward pass time for different models and datasets.
Figure 6 shows the time spent on data augmentation, model
validation, and forward/backward pass. Data augmentation and
model validation time range from 4% to 12% and 2% to 10%
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of the overall time per epoch, respectively. Therefore, data
augmentation and model validation can be offloaded to DPUs
to achieve better speedup for CPU+DPU.
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Fig. 6. Time spent on data augmentation (includes training data reading time),
model validation, and forward/backward pass

V. PROPOSED ADVANCE OFFLOADING DESIGNS

We investigate several designs to offload different phases
of DNN training to DPUs and reduce the time per epoch.
We propose strategies to offload data augmentation and model
validation to DPUs and overlap these phases with forward and
backward pass on CPUs. We use MPI4py for the communica-
tion between processes on CPUs and DPUs. Horovod is used
to train the model with data parallelism on CPUs. Overall
we propose three designs: 1) Offloading data augmentation,
2) Offloading model validation, and 3) Hybrid offloading that
combines data augmentation and model validation.
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A. Design 1: Offload Data Augmentation (O-DA)

In this design, we offload the reading of training data from
memory and data augmentation on input data to DPUs. Fig-
ure 7 shows the overall proposed design. There are two types
of processes: 1) Training process and 2) Data augmentation
process. For each training process on CPU, we initialize a data
augmentation process on DPUs. Training process on CPU does
forward pass, backward pass, gradient synchronization (for
data parallelism), weight update, and model validation steps.
Data augmentation process on DPUs fetch the training data
from storage, apply user-defined data augmentation functions,
and send the batch of input and output to training process on
CPU. Since DPUs have eight cores, we limit the number of
processes per CPU/DPU to 8.
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Fig. 7. Flow chart for proposed Offload Data Augmentation (O-DA) design.
It offloads the reading of data from memory and data augmentation functions
to DPU.

Training process: We create two buffers of the same size
as input and output to overlap commutation overhead with
forward and backward pass of DNN training on CPUs. One
buffer is used to receive the next batch from the data augmen-
tation process and another buffer is used to perform forward



and backward pass. An irecv operation is initialized before
forward pass to overlap communication with computation.
Data augmentation process: We divide the training data
among processes on DPUs using Pytorch’s ”DistributedSam-
pler” class. Each data augmentation process initializes a set of
circular buffers to overlap communication with computation
on DPUs. If a free buffer is available, it fetches the next batch,
applies data augmentation functions, and posts an isend to the
training process. Otherwise, it waits for a buffer to become
available.

B. Design 2: Offload Model Validation (O-MV)

Instead of offloading data augmentation to DPU, we offload
model validation to the DPUs. Model validation is a less
compute-intensive task compared to training. It is similar to
inference using a trained model. We overlap the calculation of
validation loss and accuracy for epoch ¢ with the training of
epoch ¢+ 1. Figure 8 shows the offloading of model validation
to DPU for one CPU and DPU process. We create two types
of processes in this design: 1) Training Process on CPU and
2) Testing process on DPU.
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Fig. 8. Flow chart for proposed Offload Model Validation (O-MV) design.
It offloads the validation of model on testing dataset and overlaps the
computation with the training of next epoch.

Training process: In this strategy, the training process fetches
the training data from memory, applies data augmentation, and
performs forward pass, backward pass, and weight update. Af-
ter performing training on all the training samples, the training
process sends parameters to the corresponding DPU process
using point-to-point communication primitives. It moves to the
next epoch after sending weights to the testing process.
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Testing process: For every training process on the CPU, a
testing process is initialized on DPUs. The testing process
waits for the weights from the corresponding training process
for epoch i. Since DPUs are slower than CPUs, we expect the
model validation part on DPUs to take equal or less time than
the training part on CPUs.

In our evaluation, we found that model validation on DPUs
may take more time than the training part on CPUs for some
models and datasets. This leads to degradation as time per
epoch is the maximum of the testing part time on DPU and
the training part time on CPUs. Therefore, for such cases, we
do not offload the model validation to DPUs completely. We
divide the testing data between CPU and DPU to balance the
total time and achieve good overlap.

C. Design 3: Offload Hybrid (O-Hy)

We combine offloading of data augmentation and model
validation to achieve better speedup for the model that
spent a significant amount of time in forward and backward
pass (training). We create three types of processes: 1) For-
ward/backward process on CPU, 2) Data augmentation process
on DPU, and 3) Testing process on DPU. Figure 9(a) shows
the process placement of all three types of processes. Since
CPU has 32 cores, each process runs on four cores. Likewise,
each DPU process runs on one core. Figure 9(b) shows the
high-level distribution of work based on the type of data
among processes. Figure 10 shows the flow diagram of hybrid
offloading to DPU.
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CPU.
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Forward/Backward Process: Processes running on CPUs are
called forward/backward processes in this design. They receive
augmented training data from the data augmentation process
on DPU and perform forward pass, backward pass, and weight
update for the given training batch. At the end of the training
epoch, it sends weights of DNN to a testing process on DPU.
Data Augmentation Process: We run four data augmentation
process on each DPU that fetch training data from memory,
augment the data, and send it to the forward/backward process
on CPU. We use the same optimizations for the data augmen-
tation process discussed in Section V-A. In hybrid design, each
data augmentation process sends data to two forward/backward
processes on the CPU using asynchronous communication.
Testing Process: Testing processes validate the DL model on
the validation/testing dataset. It overlaps the validation with
the training of the next epoch. We divide testing data among
testing processes and use the same optimizations discussed in
Section V-B.

VI. EVALUATING PERFORMANCE OF PROPOSED
OFFLOADING APPROACHES

This section provides a comprehensive performance eval-
uation of our proposed offloading designs using a variety of
DL models and datasets. These proposed approaches include
Design #1: Offload Data Augmentation (O-DA), Design #2:
Offload Model Validation (O-MYV), and Design #3: Offload
Hybrid (O-Hy). Note that O-Hy combines O-DA and O-MV.
We also add No Offload to our evaluation in order to provide
baseline performance in the absence of DPUs.

22

A. Experimental Setup

We used the HPC Advisory Council High-Performance
Center (HPCAC) [9] cluster for our evaluation. HPCAC has
32 nodes that contain the BlueField-2 network adapters. These
adapters have an array of 8 ARM cores operating at 1999
MHz with 16 GB RAM. Each BlueField-2 adapter is equipped
with Mellanox MT41682 EDR ConnectX-5 HCAs (100 Gbps
data rate) with PCI-Ex Gen3 interfaces [6]. The host is
equipped with the Broadwell series of Xeon dual-socket, 16-
core processors operating at 2.60 GHz with 128 GB RAM.

For the purpose of evaluating DL training workloads, this
section used the following models: ResNet-20 [10], ResNet-
56 [10], and ShuffleNet [11], The following datasets were
used: CIFAR-10 [12], [13], Street View House Numbers
(SVHN) [14] Dataset, and Tiny ImageNet [15].
Software Libraries: PyTorch v1.9 [16], Horovod v0.21 [17],
MPIl4py v3.0.3 [18], and MVAPICH2 2.3.6 MPI library [19]

B. Single Node Experiments

This sub-section presents performance evaluation of our
proposed designs using various DL models and datasets on
a single node of the HPCAC system. The idea here is to
understand the performance on one node before scaling our
proposed designs to multiple nodes in Section VI-C. As
described earlier in Section VI-A, a single node is equipped
with 32 Intel CPU cores and 8 ARM DPU cores. We launch 8
MPI processes on the host processor—each MPI process has
4 OpenMP threads in order to fully utilize the available 32
processing cores on the system. Also, we launch 8 additional
MPI processes on the BlueField-2 DPU to fully exploit the
avaiable 8 ARM cores. These 8 MPI processes are used for
different purposes in the proposed designs—data augmentation
in O-DA, model validation in O-MYV, and data augmentation
and model validation in O-Hy. For the O-Hy design, 4 MPI
processes are used for both data augmentation and model
validation in a hybrid manner.

Training ResNet-20 with the CIFAR-10 Dataset: Fig-
ure 11 depicts the time taken for each epoch during training for
no offload and proposed designs. O-DA and O-MYV, achieve
13.8% and 3.1% speedups, respectively. In this experiment, the
O-Hy design results in a slow down. In this case, performing
data augmentation on DPU cores produced best overall results.
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Fig. 11. Performance characterization of training ResNet-20 model with
CIFAR-10 dataset using different designs

Training ResNet-56 with the Street View House Numbers
(SVHN) Dataset: Figure 12 depicts the time taken for each



epoch during training for no offload and proposed designs.
0-DA, O-MV, and O-Hy result in 7%, 5.5%, and 10.1%
speedups, respectively.
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Fig. 12. Performance characterization of training ResNet-56 model with
SVHN dataset using proposed designs

Training ShuffleNet with the Tiny ImageNet Dataset:
Figure 13 depicts the time taken for each epoch during training
for no offload and proposed designs. O-DA, O-MYV, and O-Hy
result in 12.5%, 1.2%, and 8.9% speedups, respectively.
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Fig. 13. Performance characterization of training ShuffleNet model with Tiny
ImageNet dataset using proposed designs

Experiments conducted in this sub-section demonstrate that
O-DA achieves better performance when data preprocessing
is significant to provide overlap to DNN training executing
on the host processor. The other two designs namely O-MV
and O-Hy achieve good performance if DNN training time—
that includes forward and backward pass—dominate the total
execution time. In this case, the data preprocessing time is
typically negligible.

C. Multiple Node Experiments

This sub-section presents performance evaluation of our
proposed designs using various DL models and datasets on
multiple nodes of the HPCAC system. The idea here is to
understand the scaling behavior of our proposed designs. We
make use of the lessons learned from single node comparisons
done as part of Section VI-B and appropriately choose best
performing design for particular DL model and dataset. We
learned from Section VI-B that O-MYV and O-Hy generate best
performance when data preprocessing is negligible as com-
pared to DNN training (forward and backward pass stages).
Otherwise, O-DA performs the best.

Training ResNet-20 with the CIFAR-10 Dataset: Fig-
ure 14 depicts the performance of the O-DA design up to 16
nodes of the HPCAC system. The number of MPI processes
on each node remains the same—S8 MPI processes (each with
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4 OpenMP threads) on the host and 8 MPI processor on the
DPU—as described in Section VI-B. Results indicate that the
O-DA design achieves an average speedup of 13.9% on 1—16
nodes. The maximum speedup of 15% was achieved on 4

nodes.
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Fig. 14. Scalability evaluation of ResNet-20 on increasing number of nodes
on the HPCAC system for the CIFAR-10 dataset using O-DA

Training ResNet-56 with the SVHN Dataset: Figure 15
shows the performance of the O-Hy design up to 16 nodes
of the HPCAC system. Results indicate that the O-Hy design
achieves an average speedup of 9.7% on 1 — 16 nodes. The

maximum speedup of 11.2% was achieved on 2 nodes. The

speedup achieved on 16 nodes is 9.3%.
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Fig. 15. Scalability evaluation of ResNet-56 on increasing number of nodes
on the HPCAC system for the SVNH dataset using O-Hy

Training ShuffleNet with the Tiny ImageNet Dataset:
Figure 16 shows the performance of the O-DA design up to
16 nodes of the HPCAC system. Results indicate that the O-
DA design achieves an average speedup of 11.1% on 1 — 16
nodes. The speedup achieved on 16 nodes is 10.2%.
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Fig. 16. Scalability evaluation of ShuffleNet on increasing number of nodes
on the HPCAC system for the Tiny ImageNet dataset using O-DA

VII. RELATED WORK
Several studies [20]-[23] have evaluated GPU-based DNN

training as GPU clusters are mostly used for training DNN.



However, CPUs can also be used for DNN training as Intel
has optimized its architecture using the MKL-DNN library.
Few studies [3], [7], [8], [24], [25] exist in the literature that
evaluates CPU-based DNN training. In this paper, we evaluate
CPU-based DNN training and exploit BlueField-2 DPUs to
accelerate the DNN training pipeline. Data preprocessing
backends like PyTorch’s Dataloader and TFRecord [26] are
implemented by DL frameworks to facilitate DL applications.
Several solutions [27]-[30] have been proposed data prepro-
cessing for GPU-based DNN training using CPUs and FPGAs.
However, BlueField-2 DPUs present different challenges as
they lack support for unified and shared memory. In this paper,
we explore different offloading designs for DPUs in CPU-
based DNN training and offload model validation in addition
to data preprocessing.

VIII. CONCLUSION

In this paper, we characterized and explored how one
can take advantage of the additional ARM cores on the
Bluefield DPUs to intelligently accelerate different phases of
DL training. We proposed four designs: 1) Offload Naive, 2)
Offload Data Augmentation, 3) Offload Model Validation, and
4) Offload Hybrid to offload different phases of DL training to
the Bluefield DPUs. The reported max speedup improvements
are 15%, 12.5%, and 11.2% for training the ResNet-20 model
on the CIFAR-10 dataset, ShuffleNet model on the Tiny
Imagnet dataset, and ResNet-56 model on the SVHN dataset
respectively. Our experimental results show that the proposed
designs are able to deliver up to 15% improvement in DL
training time. To the best of our knowledge, this is the first
work to explore the use of DPUs to accelerate DL training.
In the future, we would like to study the offloading schemes
for Machine Learning and Data Analytics algorithms and use
DPUs to improve the performance.
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