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Abstract—In recent years, GPU-enhanced clusters have be-
come more prevalent in High-Performance Computing (HPC),
leading to a demand for more efficient multi-GPU communica-
tion. This makes it increasingly important to explore performance
enhancements that can be attained through the communication
middleware such as MPI, in order to fully take advantage
of the GPUs available on these systems. In this paper, we
propose locality-aware and adaptive schemes for hierarchical
All-to-all collective communication on large-scale dense GPU
systems. The proposed algorithms utilize the high bandwidth
made available through the NVLink interconnect between GPUs
in order to overlap communication latency. We focus on person-
alized and non-personalized all-to-all collective communication.
These are components of modern scientific computing applica-
tions that utilize matrix transpose and three-dimensional Fast
Fourier Transforms (FFT) and becoming more relevant for Deep
Learning workloads with model and hybrid parallelisms. The
performance evaluation with an application kernel performing
three-dimensional FFT indicates that the proposed schemes for
personalized all-to-all can lead to up to 15-25% lower execution
time on 256 GPUs on the Lassen system. We demonstrate
approximately 8% enhancement in training time for distributed
K-FAC used in Deep Learning training on up to 128 GPUs. We
also demonstrate approximately 22% and 30% improvement in
the performance of non-personalized and personalized all-to-all
benchmarks, respectively, compared to the state-of-the-art MPI
libraries on the Summit and Lassen systems.

Index Terms—Allgather, All-to-all, GPU, MPI, NVLink

I. INTRODUCTION

Graphics Processing Units (GPUs) have become prevalent
accelerators in modern high-performance computing (HPC)
systems for empowering various applications ranging from
traditional scientific applications to artificial intelligence (AI)
enabled applications. In recent years, more powerful HPC sys-
tems and cloud platforms are being deployed with thousands
of GPU nodes along with cutting-edge CPU, and high-speed
interconnects [1]. This dense-GPU configuration has become
a trend in HPC systems as a result of the rapid development
of GPU interconnects such as NVIDIA NVLink/NVSwitch,
AMD Infinity Fabric and Intel Xe link. For example, the
top-2 Summit system, Figure 1, is powered by 4,608 GPU
nodes where each node has 6 NVIDIA V100 GPUs, and each
socket is fully connected by high-speed NVLink. The topology

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, and XRAC grant #NCR-130002.

of the #3 ranked Sierra system and the #17 ranked Lassen
system use a similar hardware configuration as Figure 1 but
with 4 GPUs per node. The next generation of exascale HPC
systems will also be powered by multiple GPUs, and high-
speed interconnects [2], [3].

With the increased deployment of large and dense GPU
systems, it is vital to perform efficient data movement between
GPUs for running HPC applications at scale. Although plenty
of research has been addressing the optimization of point-to-
point [4]–[6] and collective communication such as Broadcast
and Allreduce [7]–[9] on large-scale GPU systems, GPU-
optimized personalized All-to-all (MPI Alltoall) and non-
personalized All-to-all (MPI Allgather) communications are
rarely discussed in the literature. All-to-all is heavily used to
perform matrix transposes or Fast Fourier Transforms (FFT)
in many legacy scientific applications when data is distributed
into multiple nodes or processes. All-to-all and Allgather
operations are also gaining attention and importance recently
for performing model parallelism for deep neural network
training on GPU clusters [10], [11]. Given these software and
hardware developments, it is vital to conduct an in-depth study
and to optimize All-to-all and Allgather communication on the
current and next-generation dense-GPU systems.
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Fig. 1. Hardware configuration of the Summit Cluster. (Courtesy [12])

A. Motivation
All-to-all and Allgather are data-intensive operations as they

would inject a large amount of data into the network. The well-
known All-to-all algorithms, as summarized in Table I, only
consider the communication among nodes through symmetric
interconnects, e.g., InfiniBand network. However, there are
various interconnect architectures used in modern dense-GPU
systems.
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In such systems with asymmetric interconnects, the tradi-
tional All-to-all algorithms can easily yield contention on the
slowest links, e.g., all GPUs within a node are performing
inter-node communication over IB, while high-speed NVLink
and PCIe remain idle. As a result, overall performance and
link utilization are low and prohibit us from scaling the
All-to-all to a large number of dense-GPU nodes. In this
scenario, even though the amount of data transferred over links
remains the same, the performance can be significantly varied
depending on how the communication is being scheduled. This
requires an in-depth analysis of existing personalized and non-
personalized All-to-all algorithms and optimized designs for
modern dense-GPU systems. This paper addresses the follow-
ing challenge: How to design hierarchical, adaptive, and
high-utilization personalized and non-personalized All-to-
all communication algorithms on dense-GPU systems?

B. Contribution
In this paper, we present a comprehensive analysis of

existing All-to-all and Allgather algorithms to identify their
deficiencies in dense-GPU systems with asymmetric intercon-
nects. Based on the extensive evaluation of existing algorithms,
we propose advanced algorithms to decompose the hierarchical
All-to-all algorithm and make use of non-blocking primitives
to enable traffic overlap between NVLink, PCIe, and IB.
As a result, the proposed design improves the All-to-all and
Allgather performance for large message sizes on dense-GPU
systems, including Lassen and Summit. This paper makes the
following contributions:

1) Comprehensive evaluation of existing All-to-all and All-
gather communication algorithms within the state-of-
the-art MPI library (Section IV-A)

2) Propose a new All-to-all algorithm that decomposes
the pair-wise communication pattern and utilizes the
interconnects such as NVLink available between GPUs
to minimize the link idle time (Sections III-A and III-B)

3) Propose an advanced hierarchical algorithm that
achieves high overlap between inter- and intra-node
communications to improve performance of All-to-all
and Allgather communication (Section III-C)

4) Conduct performance evaluation of All-to-all and All-
gather collectives with the proposed designs and various
CUDA-aware communication Libraries (MVAPICH2-
GDR, Spectrum-MPI, NCCL, and OpenMPI) using
micro-benchmarks, a 3D FFT application kernel, and
KFAC distributed DNN optimizer (Section IV)

II. BACKGROUND

A. Interconnect Technology
In optimizing an algorithm for dense GPU systems, we

utilize the high-bandwidth NVLink interconnects available
on systems such as Lassen, and Summit. In doing so, we
incorporate the topology of a system, and the interconnects
available to ensure that the design takes advantage of the
resources available. These interconnects are shown for the
Summit cluster in Figure 1. These interconnects also apply

to the topology of the Lassen system. The following intercon-
nects are available on the systems we evaluated the designs
on:

• NVLink is an interconnect provided by NVIDIA that is
available between GPU and GPU and also between CPU
and GPU on the Summit and Lassen systems.

• The X-Bus is an IBM interconnect between POWER9
CPUs on Summit, and Lassen

• The Mellanox InfiniBand network connects nodes via
dual-rail EDR for the Summit and Lassen clusters. These
system topologies are organized as a fat tree. [17]

• PCIe is a high-speed universal bus standard that supports
many parallel lanes and is used to connect the CPU to the
InfiniBand network interface card (NIC) on the Summit
and Lassen systems.

B. NVIDIA GPUDirect Technology

NVIDIA GPUDirect [18] allows the CPU, GPU, and net-
work devices to directly read and write device memory,
which eliminates the need to copy memory multiple times.
Various other features are also supported by GPUDirect,
including peer-to-peer transfers and remote direct memory
access (RDMA). External devices such as Mellanox Infiniband
Host Channel Adapters (HCAs) are able to directly access
GPU memory without involving the CPU, which reduces
latency further by eliminating the need for copies to CUDA
host memory. The CUDA inter-process communication (IPC)
interface allows a process to expose its GPU buffer to a remote
process. A process may achieve this by creating an IPC handle
on its buffer, then sending this handle to the remote process.
Then, the remote process can map this buffer into its own
address space and directly call operations (like cudaMemcpy)
on it.

C. CUDA-aware Communication Libraries

MPI is a parallel programming standard that enables pro-
cesses to communicate with each other. MPI libraries such
as SpectrumMPI [19], OpenMPI [20], and MVAPICH2 [21]
provide support for heterogeneous systems with CUDA-aware
features at the MPI level. By exploiting efficient GPU-based
communication schemes such as staging, CUDA Inter-Process
Communication (IPC), and GPUDirect RDMA, MPI libraries
are able to provide superior performance across different
combinations of GPUs and interconnects [12]. The NVIDIA
Collectives Communication Library (NCCL) is a library with
optimized collective communication patterns for NVIDIA
GPUs [22].

D. Personalized and Non-Personalized all-to-all Collective
Communication

There are various forms of communication within the MPI
standard [23], ranging from one-sided communication to point-
to-point and collective communication. In this paper, we delve
deeper into all-to-all and allgather based collective communi-
cation.
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TABLE I
EXISTING AND PROPOSED ALGORITHMS FOR PERSONALIZED AND NON-PERSONALIZED ALL-TO-ALL COLLECTIVE COMMUNICATION

Algorithm Used for Personalized Optimal Message Link Overlap Adaptive Hierarchical
or Non-Personalized Range Utilization

Bruck [13] Both Small 7 7 7 7
Scatter Destination [14] Personalized Medium 7 7 7 7
Pairwise [15] Personalized Medium 7 7 7 7
Inplace Personalized Medium 7 7 7 7
Direct Non-Personalized Medium 7 7 7 7
Recursive Doubling (RD) [16] Non-Personalized Medium 7 7 7 7
Ring [16] Non-Personalized Large 7 7 7 7
Proposed Hierarchical + Overlap Non-Personalized Large 3 3 3 3
Proposed Eager Personalized Large 3 3 3 3
Proposed Hierarchical Personalized Large 3 3 3 3

1) Non-Personalized all-to-all: Non-personalized all-to-all,
often referred to as MPI Allgather, is an MPI collective com-
munication pattern that acts as a combination of MPI Gather
followed by MPI Bcast. All processes gather the data from
every other process in rank order. At the end of the operation,
every process would have exchanged data with all other
processes.

2) Personalized all-to-all: Personalized all-to-all, referred
to as MPI Alltoall, is similar to MPIAllgather in that all
processes are sharing data with each other. However, every
process sends distinct data to other processes making all-to-
all a personalized collective communication pattern (i.e., every
process will send a different chunk of data to every other
process).

E. Distributed K-FAC for Deep Learning Training

The Kronecker-factored Approximate Curvature (K-FAC)
is a second-order optimization method that may be used as
a preconditioner to the gradient. The gradient can then be
updated by a standard optimizer such as stochastic gradient
descent (SGD). By using second-order information on the
DNN weights, K-FAC can reduce the number of training
iterations required for convergence while reducing the fre-
quency of communication [24]. Despite the reduced frequency
of communication, however, the communication volume is
greatly increased, requiring two calls to MPI Allreduce and
one call to MPI Allgather at each K-FAC precondition step.
These frequent calls to MPI Allgather make up a noticeable
portion of the communication volume and would benefit from
improved GPU-Direct designs.

III. PROPOSED DESIGNS

In this section, we thoroughly detail the proposed designs
for both personalized and non-personalized all-to-all collec-
tives.

A. Proposed Non-Personalized all-to-all (allgather) Design

The proposed design aims to improve the performance of
allgather collective communication algorithms for dense GPU
systems by leveraging the full potential of the interconnect
technology available on these clusters. In particular, it aims

to utilize the high bandwidth of NVLink interconnect be-
tween GPUs, yielding faster communication of large data
in order to overlap and hide intra-node communication. On
large-scale dense GPU systems, where GPUs are connected
by NVLink on a node, a different communication pattern
can be implemented for intra-node as opposed to inter-node.
These communication patterns can be overlapped to occur
simultaneously while maintaining program order. It allows for
restructuring the communication into a hierarchical setup such
that GPUs on a node are communicating directly with the
leader process on the node as the inter-node communication
is progressing. This enables link utilization by ensuring that
NVLink between GPUs is not idle during the communication
setup whenever possible.

We propose a collective allgather algorithm that implements
a tree-based inter-node communication algorithm in the form
of recursive doubling. It simultaneously implements a direct
gather (post data through Isend/Irecv to the leader) and broad-
cast (post data through Isend/Irecv to the GPUs on the node)
intra-node communication algorithm from a leader process on
the node. This algorithm utilizes a 2-level communicator to
distinguish between the intra-node steps and the inter-node
steps to establish communication amongst all the leaders for
every node involved in the communicator and between the
leader and local processes on the node. Figure 2 depicts the
proposed algorithm for two nodes. This depicts the first step
of the communication where GPU0, the node leader for Node
0, is communicating its data with GPU4, the node leader
of Node 1, while simultaneously receiving data from intra-
node processes for the next inter-node exchange between the
leaders. When the node leader has acquired data from another
node, it then sends this data to each of the processes on the
node.

An allgather Recursive Doubling algorithm requires the log-
arithm of the number of processes in steps to complete. In this
design, we are utilizing recursive doubling as the inter-node
communication mechanism, making the communication bound
by the log of the number of nodes instead. In overlapping the
intra-node communication with the inter-node communication,
we establish the following (N is number of nodes, M is
message size, BIB is the bandwidth of IB, ts is the added
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GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

NODE 0 NODE 1
Send data from leader (GPU 0) to GPUs on Node 

Gather data to leader for inter-node communication between leaders

Inter-Node exchange among node leaders

Fig. 2. PROPOSED Allgather on 2 Nodes (8 Processes)

NODE 0
(GPU 0) 

INTER-NODE
Tree-based

INTRA-NODE
NODE 0

Gather + BCAST
                 to leader      from leader
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STEP 1

NODE 1
(GPU 4) 

NODE 2
(GPU 8) 

NODE 3
 (GPU 12) 

NODE 4
 (GPU 16) 

NODE 5
 (GPU 20) 

NODE 6
 (GPU 24) 

NODE 7
 (GPU 28) 

STEP 2

STEP 3

Fig. 3. PROPOSED Allgather on 8 Nodes (32 Processes)

overhead time in seconds, and GPN is GPUs per Node):

Proposed = log(N) ⇤ ( M

BIB
+ ts) ⇤ (GPN � 1) (3)

Figure 3 depicts the proposed design on a system with four
GPUs per node for an example using 8 nodes. The example
depicted in Figure 3 shows the various steps of the algorithm
for an eight-node problem with four processes per node. The
figure depicts each of the steps of the RD communication
between nodes and highlights the intra-node communication
that is occurring simultaneously. In this example:

1) Inter-Node Communicator: leader rank of Node 0,
GPU0, is doing an initial exchange of data with the
leader rank of Node 1, GPU4. Intra-Node Communica-
tor: Simultaneously, GPU1 is sending data to GPU0

2) Upon receiving the data from GPU4, GPU0 sends that
data to each of the processes on the node

3) Upon receiving the data from GPU1, GPU0 will send it
across the node to GPU4 for it to communicate to the
local processes on Node 1. This process continues until
each of the processes have now gathered all the data
from every other process.

Note that in Step 2 above, on Systems such as Summit
or Lassen, across socket communication is limited by the
bandwidth of the XBus. It would be expected in this sce-
nario to witness more performance gain compared to existing
algorithms with no communication overlap due to hiding
the overhead of communicating across the socket on these
systems. As an example, in Figure 3, when GPU3 attempts
to communicate with GPU0, there will be contention over the
XBus as a result of the communication happening between
GPU2 and GPU0, and vice versa. Algorithm 1 details the
implementation associated with this design.

Algorithm 1 PROPOSED: Hierarchical Allgather + Overlap
1: size size of communicator
2: gpn GPUs per Node
3: lrank  leader rank
4: n Number of Nodes
5: if lrank then
6: for i = 1!gpn do
7: MPI Isend() //Sends from lrank to local GPUs
8: MPI Irecv() //gather data from local GPUs
9: end for

10: while offset<n do
11: dst = (rank/gpn) ^ offset
12: root = dst>>i
13: for j = 1!(gpn ⇤ offset) do
14: if j<gpn then
15: MPI Wait() //wait for intra-node data before

sending over inter-node
16: MPI Isend() //send next node data to leader
17: end if
18: MPI Irecv() //exchange data between lranks
19: MPI Isend() //send from lrank to local GPUs
20: end for
21: offset<< = 1
22: end while
23: else
24: MPI Isend() //send data from sendbuf to node leader
25: for i = 1!gpn do
26: MPI Irecv() //initial data to lrank from local GPUs
27: end for
28: while offset<n do
29: dst = (rank/gpn) ^ offset
30: root = dst>>i
31: for j = 1!(gpn ⇤ offset) do
32: MPI Irecv() //recv inter-node data from leader
33: end for
34: offset<< = 1
35: end while
36: end if
37: MPI Waitall()

B. Proposed Eager Personalized All-to-all Design

Fig. 4. PROPOSED Eager All-to-all on 2 Nodes (8 Processes)

In Figure 4, we propose an algorithm for all-to-all that
utilizes pairwise communication with additional optimizations
to hide intra-node communication. As shown in Figure 4,
we decompose a pairwise all-to-all algorithm and overlap the
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communication within the node with the initial communication
across nodes (i.e. in the first step, GPU0 communicates with
GPU1 to exchange data while simultaneously exchanging data
across the node with GPU4). The benefits of this algorithm are
in its ability to hide the latency of intra-node communication
by overlapping the intra- and inter-node communication in the
first few steps. The disadvantage of this algorithm is that it
could lead to contention over the inter-node interconnect, IB as
every process is still trying to communicate with every process.
For example, while GPU0 is sending to GPU4, GPU1 is wait-
ing on this request to complete in order to communicate with
GPU5 and so forth. The details of this implementation can be
found in Algorithm 2. This problem is addressed in the next
proposed design in Section III-C that utilizes the interconnects
available amongst GPUs and a hierarchical implementation
in order to minimize idle NVlinks and establish a two-level
communication that handles the contention over IB.

Algorithm 2 PROPOSED: Eager Personalized all-to-all
1: size size of communicator
2: gpn GPUs per Node
3: for i = 1!size do
4: /* Determine src for exchange */
5: src rank^i
6: MPI Irecv(src offset, src)
7: end for
8: for i = 1!(size� gpn) do
9: /* Determine dest for exchange */

10: dst1 rank^i
11: dst2 rank^(i+ [gpn� 1])
12: if i<(size� gpn) then
13: MPI Isend(dst2 offset, dst2)
14: end if
15: if i<gpn then
16: MPI Isend(dst1 offset, dst1)
17: end if
18: end for
19: MPI Waitall()

C. Proposed Hierarchical and Adaptive All-to-all Design
Figures 5-8 depict a step-by-step execution of the proposed

design for all-to-all on dense GPU systems. It is a 2-level
all-to-all algorithm doing a pairwise communication amongst
leaders across nodes and doing a direct gather and scatter of
chunks of data sent and received at each step to local processes
on the node. The design takes into account the links available
on such a system in order to ensure minimal interconnects
are idle during the communication. In earlier all-to-all design
implementations such as pairwise or scatter-destination, the
performance of the algorithm is bound by the IB interconnect
as every process communicates with every other process. In
this scenario, every process is waiting until the completion
of the process acquiring the IB. In the proposed design, we
address this bottleneck by modifying the processes that will
be communicating with each other and utilize a hierarchical
approach that entails only the leader would be communicating

over IB while intra-processes utilize the NVLink available
between GPUs. We evaluate the proposed algorithms in an
adaptive manner. The comprehensive evaluation in section IV
utilizes the adaptive designs such that for every message size,
the best algorithm for that message size is selected. Different
algorithms are appropriate and optimized for varying message
sizes, by adaptively selecting algorithms based on performance
in relation to message size, we optimize the performance
across a larger message range. The algorithms are beneficial
for varying message ranges across different clusters. In their
utilization of links between GPUs, they demonstrate improved
performance on dense GPU systems connected by NVLink.
This is depicted in the evaluations in section IV.

In the first step, every process local to a node sends the
relevant data to each of the processes on the node (i.e. GPUs
0-3 communicate the first chunk of data to each other with
direct send and receives to each process over NVLink). At this
point, GPU 1 posts the chunk of data that is relevant to the
node GPU 0 is communicating with to a temporary buffer in
GPU 0. Simultaneously, GPU 0 is communicating the chunk
of data from its send buffer to GPU 4. When GPU 4 and
GPU 0 receive their respective data chunk from each other,
they scatter this data to each of the processes on the node
with a direct send and receive to each of the local processes.
This pattern continues such that every process on a node has
sent its data to the leader on the node and the leaders of each
node communicate with each other in a pairwise fashion. The
implementation details are outlined in Algorithm 3.

To breakdown each of the steps presented in Figures 5-
8, we execute the algorithm in the following way (note the
communication overlap that is done simultaneously to ensure
available links are not idle during execution at each step):

1) GPU0 sends index 1 of buffer to GPU1, index 2 of buffer
to GPU2, and so forth. Likewise, every other process
communicates with the local processes on the node to
establish intra-node all-to-all amongst processes. (starts
in step 1 of execution (Figure 5))

2) GPU0 sends initial chunk (index 4-7 of buffer) to GPU 4
and receives initial chunk (index 0-3 of GPU4’s buffer)
over the Infiniband interconnect between the nodes.
(starts in step 1 of execution)

3) GPU1 sends initial chunk (index 4-7 of buffer) to tem-
porary buffer at GPU0 indexed appropriately. Other pro-
cesses on the node communicate the same indexed chunk
to the temporary buffer at GPU0 over the NVLinks
available between the GPUs. On the Summit (Figure1)
or Lassen system, cross-socket communication is bound
by X-Bus.

4) GPU0 copies index 0 of chunk received from GPU4 to
its receive buffer and scatters the data it received from
GPU4 amongst the local processes through a direct send
and receive (i.e. send index 1 of chunk to GPU1 and so
forth).

5) GPU0 waits to receive the first chunk from GPU1
and sends it over Infiniband to GPU4. This happens
repeatedly until the appropriate chunk of data from every
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local process is communicated over the node. (starts in
step 1 of execution)

6) As shown in Figure 6, the first simultaneous execution
between the first pair of leaders is repeated with the next
intra-GPU processes data, and so forth (Figure 7).

7) The inter-node communication utilizes pairwise logic
such that Node 0 and Node 1 communicate their data.
Then this entire process repeats with different indexing
of each of the buffers when Node 0 and Node 2 com-
municate whilst Node 1 and Node 3 are communicating.
Figure 8 depicts the inter-node communication pattern
between node leaders on an example with 32 GPUs and
8 nodes.

8) After every receive across the node, the leader node
shares the data across the local processes.

    GPU 4 Chunk     GPU 0 Chunk

 
GPU 0

STEP 1

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

NODE 0 NODE 1

Gather GPU 1 data to leader for Inter-Node Comm.

                      : Exchange initial 
chunk of data amongst processes 

on the same node

Fig. 5. PROPOSED Hierarchical All-to-all: Step 1 of Execution

    GPU 5 Chunk     GPU 1 Chunk

 GPU 0

STEP 2

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

NODE 0 NODE 1
Scatter GPU 4-7 Chunk from Step 1 to GPUs on Node Scatter GPU 0-3 Chunk from Step 1 to GPUs on Node

Gather GPU 2 data to leader for Inter-Node Comm.

Fig. 6. PROPOSED Hierarchical All-to-all: Step 2 of Execution

    GPU 6 Chunk     GPU 2 Chunk

 GPU 0

STEP 3

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

NODE 0 NODE 1
Scatter GPU 4-7 Chunk from Step 2 to GPUs on Node Scatter GPU 0-3 Chunk from Step 2 to GPUs on Node

Gather GPU 3 data to leader for Inter-Node Comm.

Fig. 7. PROPOSED Hierarchical All-to-all: Step 3 of Execution

 GPU 0

STEP 1

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

NODE 0 NODE 1

 GPU 8 GPU 9 GPU 10 GPU 11 GPU 12 GPU 13 GPU 14 GPU 15

NODE 2 NODE 3

 GPU 16 GPU 17 GPU 18 GPU 19 GPU 20 GPU 21 GPU 22 GPU 23

NODE 4 NODE 5

 GPU 24 GPU 25 GPU 26 GPU 27 GPU 28 GPU 29 GPU 30 GPU 31

NODE 6 NODE 7

STEP 4STEP 2 STEP 3

Fig. 8. PROPOSED Hierarchical All-to-all: Inter-Node Communication
Pattern Between Node Leaders

Algorithm 3 PROPOSED Hierarchical Personalized all-to-all
1: size size of communicator
2: gpn GPUs per Node
3: lrank  Rank of node leader
4: n Number of Nodes
5: tmp buf
6: for i = 0!gpn do
7: /* recv initial data from local GPUs and send initial

data to local GPUs */
8: src = dst = i
9: MPI Irecv(src)

10: MPI Isend(dst)
11: end for
12: if lrank then
13: for i = 1!n do
14: for j = 0!gpn do
15: define recv offset offset in leader recvbuf
16: MPI Irecv() //recv from inter-node leader
17: define gather offset  offset in leader recvbuf
18: MPI Irecv() //gather data from local GPUs
19: end for
20: for j = 0!gpn do
21: define scat offset
22: MPI Isend() //send initial chunk from leader
23: MPI Isend() //scatter data to local GPUs
24: end for
25: end for
26: else
27: for i = 1!n do
28: dst lrank^i
29: MPI Isend() //data from local GPUs to leader
30: for j = 0!gpn do
31: offset = dst ⇤ gpn
32: MPI Irecv() //scatter inter-node data from lrank
33: offset++
34: end for
35: end for
36: end if
37: MPI Waitall()

IV. EVALUATION

In this section, we show the benchmark-level and
application-level performance of existing algorithms and other
CUDA-aware MPI Libraries compared to using the proposed
algorithms. We utilize profiling tools including mpiP [25],
nvprof [26], and INAM with profiling support for GPU clus-
ters [27] to acquire a deeper insight into the communication
pattern used in applications.

A. Existing Designs

Details related to existing designs for non-personalized all-
to-all communication can be found in [15]. Many of these
designs are also applied for personalized all-to-all communi-
cation. We evaluate our proposed designs to the performance

���



of existing designs for each of these collective communica-
tion patterns. Specifically, for non-personalized all-to-all, we
evaluate against the following algorithms: Bruck, Recursive
Doubling (RD), Ring, and Direct. For personalized all-to-all,
we evaluate against RD, Scatter-Destination, Pairwise, and
Inplace. These algorithms specifically are bound by InfiniBand
for inter-node communication and do not efficiently utilize the
links available to achieve optimal performance. We address
these drawbacks and challenges in the proposed designs to
develop hierarchical and adaptive all-to-all algorithms suitable
for dense GPU systems.

B. Benchmark-Level Performance

The algorithms were analyzed at the benchmark level us-
ing OSU Micro-benchmarks(OMB) [28] v5.7. We evaluated
the performance of the existing all-to-all algorithms within
MVAPICH2-GDR 2.3.4 compared to the proposed algorithms
and evaluated the performance of all-to-all when using various
MPI libraries. OMB supports evaluating point-to-point, multi-
pair, and collective CUDA-aware communication using GPU
buffers. We used the osu alltoall and osu allgather tests to
determine the latency of personalized and non-personalized
all-to-all communication, respectively, when the buffers used
for communications are located on the device.

The existing algorithms in the MVAPICH2-GDR library
mentioned in Section IV-A were evaluated against the pro-
posed designs over 64 Nodes with 4 GPUs per node (256
GPUs) on the Lassen System and over 64 Nodes with 6 GPUs
per node (384 GPUs) on the Summit system.

Figure 9 shows the results of running the proposed algo-
rithm compared to existing algorithms in the MVAPICH2-
GDR Library on the Lassen system. We scaled the algorithms
from 32 GPUs to 256 GPUs and showed benefits for the
proposed algorithm beyond 64KB. We typically observed vast
performance gain in the range of 20 - 30% at 8KB message
size communication and beyond. In Figure 9(d) running the
proposed algorithm on 256 GPUs for 1 MB message size, we
see approximately a 39% performance gain in the proposed
algorithm compared to the best performing existing algorithm
for that configuration, scatter-destination. We also evaluated
the algorithm on the Summit system. Note that the Summit
system has 6 GPUs per node as opposed to 4 GPUs per node
on Lassen. Similar to the results presented earlier, when we run
the algorithm on 256 GPUs for 2MB we see a 35% enhance-
ment in performance compared to the best performing existing
algorithm for this case on Summit, Pairwise. The varying
upper limit message ranges presented for each configuration
are a result of memory limits when running OMB at scale.

The current implementation of the Bruck algorithm in
MVAPICH2-GDR 2.3.4 does not support communication be-
tween GPU buffers, excluding this algorithm from the compar-
isons we make between the existing designs. There were also
some limitations to scaling the existing RD algorithm which
is demonstrated in the graphs with missing values associated
with RD.

Overall, we see more improvement in personalized all-to-
all latency on the Summit system (Figure 10) compared to the
Lassen system (Figure 9) due to the number of GPUs per node.
In overlapping the intra-node communication with the inter-
node communication, we hide the contention caused by the
X-Bus when processes are communicating across the socket
at the initial exchange. Since more processes will be doing so
on the Summit system due to the greater number of GPUs per
node, we see more benefit in applying this algorithm on such
a dense GPU system.

Figure 11 shows the results of existing allgather algorithms
compared to the proposed algorithm. The upper bound of
the message range shown as we scale up is limited by the
memory limitation of running OMB at a large scale with a non-
personalized or personalized all-to-all collective algorithm.
We see increasing performance benefits ranging from 9 -
18% improvement over the best existing algorithm, ring,
for each of the configurations shown. The proposed design
overlaps the intra-node communication to hide the latency. The
communication overlap hides the intra-node communication
and shows performance gain at this message range.

We also evaluated other existing MPI libraries such as
Spectrum-MPI which is deployed on the systems that we are
running these experiments on (Summit and Lassen). We use
Spectrum-MPI 10.3.0.1 to compare with the available and
proposed designs. Other CUDA-aware MPI libraries used in
the evaluations made include OpenMPI 4.0.4 with UCX 1.8.1,
and NCCL 2.7.8.1. We evaluated these libraries using CUDA
version 10.1.243 on the Summit and Lassen systems with
MLNX-OFED version 4.7. The results are presented in 12.
Overall, there is a 30% better latency associated with the
proposed designs for large message sizes compared to other
state-of-the-art MPI libraries for device performance of all-to-
all. Through the recent release of NCCL including support
for point-to-point operations, an all-to-all operation can be
done using NCCL with a loop of multiple send and receive
operations to and from all the peers. Due to limitations in the
message range printed with the all-to-all nccl-tests however,
these numbers are not shown in this comparison. In Figure 13,
we demonstrate 20-60% better latency for allgather with the
proposed schemes.

C. 3D-FFT Application Kernel

In this section, we evaluated the performance of each of the
existing all-to-all algorithms using an All-to-All FFT Person-
alized Exchange. This kernel imitates the FFT computation of
an application requiring MPI Alltoall communication. Figure
14 depicts the results of using the existing algorithms to run the
FFT Suite on the Lassen System for 64, 128, and 256 GPUs.
We observe a 15-20% range of improvement in performance
across the message ranges shown over existing algorithms.

D. Distributed K-FAC

In this section, we observe the benefits in distributed K-
FAC performance from the improved allgather algorithm. To
compare the communication performances, we recorded and
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(a) 8 Nodes - 32 GPUs (b) 16 Nodes - 64 GPUs (c) 32 Nodes - 128 GPUs (d) 64 Nodes - 256 GPUs

Fig. 9. Comparison of Different Node/PPN configurations of Personalized all-to-all Algorithms on the Lassen System

(a) 8 Nodes - 48 GPUs (b) 16 Nodes - 96 GPUs (c) 32 Nodes - 192 GPUs (d) 64 Nodes - 384 GPUs
Fig. 10. Comparison of Different Node/PPN configurations of Personalized all-to-all Algorithms on the Summit System

(a) 4 Nodes - 16 GPUs (b) 8 Nodes - 32 GPUs (c) 16 Nodes - 64 GPUs
Fig. 11. Comparison of Different Algorithms for Allgather Algorithms on the Lassen System. The percentages indicate the improvement the proposed scheme
has over the best of the state-of-the-art algorithms.

(a) 32 Nodes - 128 GPUs (Medium) (b) 32 Nodes - 128 GPUs (Large)
Fig. 12. Personalized all-to-all Comparison using MVAPICH2-GDR 2.3.4, Spectrum-MPI 10.3.1, and OpenMPI 4.0.4 + UCX 1.8 on the Lassen System

(a) 32 Nodes - 128 GPUs (Small Messages) (b) 32 Nodes - 128 GPUs (Large Messages)

Fig. 13. Allgather Comparison using MVAPICH2-GDR 2.3.4, Spectrum-MPI 10.3.1, OpenMPI 4.0.4 + UCX 1.8, and NCCL 2.7.8 on the Lassen System
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(a) 16 Nodes - 64 GPUs (b) 32 Nodes - 128 GPUs (c) 64 Nodes - 256 GPUs
Fig. 14. Personalized all-to-all Algorithms for 3D FFT application kernel

averaged the total time for each epoch of training on ImageNet
[29]. The results are depicted in Figure 15, and show an
improvement of up to 8% in comparison to the best performing
state-of-the-art library at each GPU count depicted in the
figure. KFAC utilizes other MPI operations as well such
as MPI Allreduce. In purely optimizing the MPI Allgather
schemes that are then utilized here, the reduced percentage
of the time the application spends in MPI Allgather leads to
overall enhanced training time.

Fig. 15. K-FAC Allgather Evaluation on the Lassen System. The percentages
indicate the improvement the proposed scheme has over the best performing
state-of-the-art library for each GPU count.

V. RELATED WORK

While there has been effort spent on developing and op-
timizing allgather algorithms for host buffers [30] [15], few
studies exist on allgather algorithms for GPU buffers. While
existing all-to-all broadcast collective algorithms for GPUs
rely on pipelining [31] [14] or non-blocking methods [32] to
hide the communication overhead of GPU collectives, no prior
all-to-all collective algorithm has taken advantage of the high-
bandwidth NVLink interconnects on modern HPC systems.
Leveraging the network topology to design better collective
algorithms has demonstrated superior performance on host
buffers [33] [34]. In [35], Kielmann et al. account for the hier-
archical structure of network topology to propose MagPIe for
grid-aware MPI implementations. Despite the shortcomings of
previous algorithms on modern GPU clusters, an increasing
number of applications rely upon high-bandwidth all-to-all
broadcast GPU collectives for data analytics [36] and deep
learning [37]. While improvements for topology-aware [38]
[39] [40] and memory-aware [41] collective algorithms on

GPU buffers have been made, modern network topologies
require that new methods be proposed and extended to achieve
enhanced performance on dense NVLink GPU systems.

VI. CONCLUSION

As the trend in deploying dense-GPU hardware configu-
rations for the next-generation HPC systems continues, it is
important to revisit and study the GPU-based communication
schemes on such systems. In this paper, we conduct a thorough
study of personalized and non-personalized all-to-all collective
communication. Based on our analysis, we propose adaptive
schemes with hierarchical All-to-all and Allgather algorithms
that can achieve high overlap between intra- and inter-node
communication on large-scale dense GPU systems. As a
result, the proposed design demonstrates up to 22% and 30%
improvements for personalized and non-personalized alltoall,
respectively, on Summit and Lassen systems for large All-to-
all data transfer at benchmark-level experiments.

The proposed designs were evaluated against existing de-
signs within the MVAPICH2-GDR library and with state-of-
the-art communication libraries such as NCCL, SpectrumMPI,
and OpenMPI. At the application level, the performance
evaluation with a three-dimensional FFT application kernel
indicates that the proposed schemes for personalized all-to-all
communication can yield 15-25% lower execution time on the
Lassen system on up to 256 GPUs. The non-personalized all-
to-all designs demonstrate improvement in performance up to
8% on 128 GPUs on the Lassen system for distributed K-FAC
used in Deep Learning training. The proposed designs address
these challenges in order to yield performance enhancements
at both the benchmark-level and the application-level.

In the future, we plan to evaluate the proposed designs
with more applications that heavily rely on GPU-based All-
to-all communication [42], [43] to demonstrate performance
enhancements that can be gained through hierarchical schemes
that utilize link bandwidth on dense GPU systems.
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