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Abstract—Deep Learning (DL) models for super-resolution
(DLSR) are an emerging trend in response to the growth of
ML/DL applications requiring high-resolution images. DLSR
methods have also shown promise in domains such as medical
imaging, surveillance, and microscopy. However, DLSR models
are extremely computationally demanding, and require unrea-
sonably long training times on modern Volta GPUs. In our
experiments, we observed only 10.3 images/second on a single
Volta GPU for training EDSR, a state-of-the-art DLSR model
for single-image super-resolution. In comparison, a Volta GPU
can process 360 images/second while training ResNet-50, a state-
of-the-art model for image classification. Therefore, we believe
supercomputers provide a good candidate to speed up DLSR
model training. In this paper, we select EDSR as the represen-
tative DLSR PyTorch model. Further, we introduce Horovod-
based distributed EDSR training. However, we observed poor
default EDSR scaling performance on the Lassen HPC system
at Lawrence Livermore National Laboratory. To investigate the
performance degradations, we perform exhaustive communica-
tion profiling. These profiling insights are then used to optimize
CUDA-Aware MPI for DLSR models by ensuring advanced
MPI designs involving CUDA IPC and registration caching are
properly applied by DL frameworks. We present a comprehensive
scaling study of EDSR with MVAPICH2-GDR and NCCL up
to 512 GPUs on Lassen. We demonstrate an improvement in
scaling efficiency by 15.6% over default Horovod training, which
translates to a 1.26× speedup in training performance.

Index Terms—DNN Training, Performance Characterization,
MVAPICH2 MPI, PyTorch, Horovod, Super Resolution

I. INTRODUCTION AND MOTIVATION

Deep Neural Networks (DNNs)1 have seen widespread
adoption in many computer vision tasks, and are pioneering
state-of-the-art image processing problems such as image clas-
sification, image segmentation, and image super-resolution. A
DNN is a statistical model that trains a set of parameters to
learn unspecified relationships in data. An input x is passed
through the network and non-linearly mapped to a learned
output y. We label nodes in the graph as neurons, and a set of
neurons grouped at the same level as layers. When processing
image data, each image is passed through each layer of the
DNN sequentially. After each forward pass through the DNN,
a loss value will be computed according to the difference

1We use the terms DNN and model interchangeably in this paper

between the model’s output and the expected output. To reduce
the loss value, the neuron parameters will be adjusted to
produce a function f such that y = f(x). These parameter
adjustments are performed during the backward pass when
the loss gradients are propagated backwards through the DNN.
After a large number of forward/backward passes (iterations),
the trained DNN can be used to output predictions given a new
set of images. Training DNN models requires significant
computation and communication resources, making HPC
systems an ideal environment to conduct relevant research
[1] [2] [3] [4].

Recently, deep neural networks provide significantly im-
proved performance in terms of peak signal-to-noise ratio
(PSNR) in image super-resolution problems [5]. A standard
deep learning super-resolution (DLSR) model is SRResNet
in which the structure of the network mostly mimics the
ResNet architecture from He et al [6]. However, the ResNet
architecture is meant for high-level computer vision tasks such
as image classification and object detection. As a result, archi-
tectures such as ResNet architecture are typically suboptimal
for low-level vision problems like image super-resolution [5].

A better DCNN for such low-level vision tasks should
have fewer modules than high-level networks and should be
modified to a configuration that will be best for image super-
resolution. EDSR is one successful example of a DLSR model.
A key difference between conventional image classification
models (e.g. ResNet-50) and a super-resolution model (e.g.
EDSR) is that super-resolution models are significantly more
intensive on memory footprint and computation cost (see
Figure 1). From the previous exploration on computer vision
tasks performed in [7] and given that there exists few studies
that feature feasibility and performance of DLSR training
on HPC systems, studying the EDSR training process on
HPC systems is a timely contribution to the DL and HPC
community.

To the best of our knowledge, only the work of Zhang
[8] has scaled an image super-resolution model to an HPC
system on 16 GPUs using synchronized data parallelism with
Horovod. We demonstrated that comparable scaling perfor-
mance can be achieved across a much larger number of nodes
(512 GPUs) by optimizing the MPI layer to enable CUDA
inter-process communication (IPC) and registration cache de-
signs for DLSR workloads. In this work, we first modify the
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Fig. 1: Single-node performance for classification (ResNet-50)
and super-resolution (EDSR) models on a V100 GPU

existing SR network (EDSR) written in PyTorch to provide
multi-node data-parallel support via Horovod, then we exam-
ined the default scaling behavior on MVAPICH2-GDR and
NCCL communication backends. Finally, we demonstrated the
potential performance benefits that can be gained by ensuring
MPI-level enhancements are properly used by the target DL
framework.

A. Challenges
The key challenge addressed in this paper is: How do we

efficiently distribute DLSR models after taking into account
the unique characteristics of both the DLSR model and the
HPC system? We seek distributed training optimizations that
may be easily applied to other novel DNN architectures. To
answer this broad question, we solve the following concrete
challenges:

• What are the key communication properties of DLSR
networks that affect their training performance at scale?

• What MPI-level optimizations can be made to efficiently
train DLSR models on distributed systems, given these
key differences?

• What benefits can established MPI-level enhancements
(e.g. CUDA IPC and InfiniBand registration caching)
provide to emerging DLSR models?

B. Proposed Approach
To solve these challenges, we used a three-step process to

distribute existing DLSR models. First, introduce data-parallel
training support via Horovod to the existing DLSR training
code. Second, exhaustively profile the MPI layer of the stack
to gain insight into the communication properties of the model.
Third, resolve performance bottlenecks uncovered in step two
using optimizations at the MPI layer.

C. Contributions
This work provides a mapping from MPI-level enhance-

ments to DLSR training performance improvements. Further,
our proposed training approach is agnostic to the model, DL
framework, and system used for DNN training. To understand
the communication characteristics, we rely on a diagnostic tool

called hvprof [9], which is agnostic to the DL framework,
communication backend, and system. We make the following
key contributions in this paper:

• Demonstrate the productivity and performance shortcom-
ings of existing distributed DLSR training methods.

• Establish the usefulness of Horovod and MPI profiling
tools for distributing novel DNNs on GPU clusters, and
apply them to demonstrate a 45.4% improvement (Table
I) in total MPI Allreduce time.

• Ensure MPI-level optimizations are properly used by the
DL framework, and measure their affects on training
throughput.

• We demonstrate the superiority of our optimized
Horovod/MPI approach and report an improvement in
scaling efficiency by 15.6% (Fig. 13), which translates
to a 1.26× speedup over the default approach.

D. Organization

The rest of the paper is organized as follows. Section
II provides the necessary background, including details on
Horovod, DLSR, and CUDA-Aware MPI. Section III con-
tains an overview of the proposed optimizations to improve
distributed training performance. Section IV discusses char-
acterization metrics, software libraries, and platforms used
in this study. Sections V and VI provide insights into hy-
perparameter optimization for single-node training and the
scaling trend under Horovod and MVAPICH2-GDR’s default
settings, respectively. In Section VII, we show optimized
scaling performance using our proposed design, and then we
summarize key insights in Section VIII. Section IX contains
related work, and we conclude with Section X.

II. BACKGROUND

A. CUDA Inter-Process Communication

CUDA Inter-Process Communication (IPC) is a well-
established (since CUDA 4.1) interface that supports efficient
inter-process communication on GPU device memory. This
enables a process to share its GPU device buffer to a remote
process located on the same node. Then, the remote process
can map this device buffer into its own address space before
issuing operations like cuMemcpy directly to it.

Formally, a GPU-to-GPU transfer via CUDA IPC is set up
with the following steps:

1) A process creates an Inter-Process Communication (IPC)
handle on its device buffer by using cuIpcGetMemHan-
dle.

2) It then sends this handle to the remote process through
host-based communication.

3) The remote process calls cuIpcOpenMemHandle on this
handle to map the associated buffer into its local address
space.
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After the completion of the above steps, an MPI library
may now use the CUDA IPC handle to efficiently transfer
data within the GPUs on each node of the process group.

B. DL Frameworks

DL frameworks enable a transparent way for users to define,
train, and validate on various CPU and GPU architectures.
By assembling modular building blocks provided by DL
frameworks, novel and reproducible DNN structures are able
to be produced at minimal development cost. These frame-
works enable users to define and implement models targeting
specific end applications by hiding low-level mathematics and
algorithms. The DNN architecture, the size of dataset and the
DL framework in use are the three key components affecting
DNN training time. At an age where DNN training is requiring
increasing computation intensity, DL frameworks that include
accessible distributed training features are scarce. In addition
to limited distributed support in DL frameworks, we also need
to take various communication backends into consideration
for the distributed support that does exist. As an example,
a number of distributed TensorFlow backends exist including
gRPC, gRPC-X, and MPI/NCCL. [10].

C. Data-Parallelism

Data parallelism is a popular approach to distributed DNN
training that first duplicates the DNN model to each CPU/GPU
before partitioning the training data across all CPUs/GPUs.
The number of data samples sent to each CPU/GPU at each
global training step is known as the batch size. After each
training step, DNN parameters need to be synchronized by
averaging the gradients among all processes. This is typically
achieved with an MPI allreduce, which performs an element-
wise sum operation and sends the result to every process.
The standard data-parallelism approach, synchronous training,
requires each device’s model copy to send an updated gradient
before progressing to the next global training step. While asyn-
chronous training approaches can improve the throughput on
individual nodes, training convergence becomes complicated
to achieve.

Fig. 2: Example data parallel DNN training on 4 GPUs [11]

D. Horovod
Horovod is a distributed DL framework that employs data

parallelism to train DNNs [12]. Horovod primarily uses
MPI Allreduce and MPI Bcast to implement data-parallel
training. Horovod supports most communication backends
including MPI, DDL [13], and NCCL [14]. Horovod handles
synchronization across processes with a communication en-
gine and optimizes distributed training performance by apply-
ing techniques such as Tensor Fusion. Tensor Fusion is an
optimization technique that groups small allreduce operations
into a single reduction operation that enhance DNN training
performance. Tensor Fusion works as follows:

1) Determine which tensors are ready to be
reduced. Select first few tensors that fit in
HOROVOD_FUSION_THRESHOLD bytes and have
the same data type.

2) Allocate fusion buffer of size.
HOROVOD_FUSION_THRESHOLD if it was not allo-
cated before. Default fusion buffer size is 64 MB.

3) Copy data of selected tensors into the fusion buffer.

4) Execute the allreduce operation on the fusion buffer.

5) Copy data from the fusion buffer into the output tensors.

6) repeat until there are no more update tensors to reduce
in current cycle of length HOROVOD CYCLE TIME
(Default is 3.5 ms).

For all evaluations in this paper, the
HOROVOD FUSION THRESHOLD and
HOROVOD CYCLE TIME are carefully tuned at each
scale to maximize training throughput according to [7].
Currently, Horovod supports the TensorFlow, MXNet, Py-
Torch, and Keras DL frameworks. Horovod acts as a middle-
ware between these frameworks and a communication backend
as depicted in Figure 3.

Fig. 3: Overview of a Distributed DNN Training Stack
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E. Single-Image Super-Resolution

In single image super-resolution(SISR), researchers focus
on finding the corresponding high resolution (HR) image from
the low resolution (LR) image. SISR is applicable to a wide
range of relevant applications such as medical and satellite
imaging, image restoration, and microscopy. In general, the
LR training images can be obtained by downsampling HR
target images. Since the degradation process is unknown and
can be changed by a variety of factors including compres-
sion artifacts, anisotropic degradations, sensor noise, speckle
noise, etc, there always exist multiple SR output images in
accordance to one input LR image. Several classical SR meth-
ods were introduced such as prediction-based, edge-based,
statistical, patch-based, and sparse representation techniques,
etc. [15]

Given the emergence of DL techniques in recent years,
DL super-resolution (DLSR) models began to gain attention.
Examples range from the early Convolutional Neural Network
(CNN)-based method (e.g. SRCNN) to Generative Adversarial
Nets (GAN) (e.g. SRGAN). DLSR models possess a wide
range of DNN architectures, loss functions, learning strate-
gies, and principles [15]. For an example output comparing
traditional methods and EDSR, see Figure 4.

Fig. 4: Examples of HR images output using traditional
bicubic upsampling and EDSR [5]

In order to provide application-agnostic benchmarks for
image SR models, a variety of datasets have been made
available. some of those provide LR-HR image pairs while
others may only provide HR images. Common ones include
Set5, Set14, Urban100 and DIV2K. [15] DIV2K is a novel
image dataset that features diverse 2K resolution high-quality
images collected from the Internet. It includes 1000 images
at a higher resolution than most other popular datasets. [16]
The 1000 images consist of 800 train, 100 validation and 100
test images. We used DIV2K for EDSR evaluation because
of its diversity and size. The accuracy and performance of a
SR model can be determined using several Image Quality As-
sessment (IQA) methods such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) etc. [15] [17]

(a) Comparison between residual blocks in original ResNet,
SRResNet and EDSR (left to right) [5].

(b) General architecture of EDSR [5].

Fig. 5: EDSR Architecture improvements.

F. EDSR
Enhanced Deep Super-Resolution network (EDSR) serves

as an improved version of traditional residual learning tech-
niques. EDSR is one of the most popular image SR models
and addressed DNN limitations in architecture optimality and
performance shortage by analyzing and removing unnecessary
modules to simplify the network architecture. Further, EDSR
makes use of an appropriate loss function and makes careful
model modifications while training. An illustration of the
EDSR architecture is included in Figure 5. For a comparison
of residual blocks among different models, please refer to
Figure 5a. EDSR was evaluated using the standard benchmark
datasets along with the DIV2K dataset. The proposed EDSR
network outperformed all other solutions regarding PSNR and
SSIM, and ranked first in the NTIRE 2017 Super-Resolution
Challenge [5] [18]. We chose EDSR as one of our evaluation
model due to its popularity, performance, and open-source
implementation.

III. PROPOSED OPTIMIZATION APPROACH

We now describe our proposed approach to improve the
performance of EDSR distributed training. Broadly, we follow
a three-phase optimization approach:
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1) As EDSR’s default implementation is only for a single
CPU/GPU, we must first realize a distributed version of
EDSR. Based on the findings in [10], we choose Horovod
to implement distributed EDSR. Design details are discussed
further in Section III-A.

2) With a basic version of distributed EDSR in hand, we
identify performance bottlenecks using an in-house Horovod
profiler called hvprof [9]. The major insight is that the default
implementation using Horovod is not efficient at scale (See
Figure 13). More details are described in Section III-B.

3) Given the identified bottlenecks, we enhance
MVAPICH2-GDR to provide optimized distributed training
with Horovod and PyTorch for EDSR workloads. More
details are described in Sections III-C and III-D

A. Extending EDSR to Support Horovod

Given the largely formulaic structure of DNN training using
a DL framework, Horovod support can be added in a model-
agnostic manner. DNN training with a DL framework broadly
follows the following guidelines:

1) Setup training data and apply preprocessing, if neces-
sary.

2) Define model structure.

3) Declare optimizer and training hyperparameters.

4) Create a training loop or computational graph to carry
out each training iteration.

With this DNN training pipeline in mind, we added Horovod
support to EDSR by following the practice described by
Horovod developers. The guidelines are as follows.

1) Map the processes to the GPUs on each node (typically
one GPU per process).

2) Add a Horovod broadcast operation to set up the initial
model parameters at each device.

3) Wrap the training optimizer in Horovod’s distributed
optimizer.

4) Scale the learning rate of the optimizer by the number
of devices (Optional, but good practice to counteract the
effective increased batch size).

5) Add logging at each training step to monitor training.

Following this approach, we have added Horovod dis-
tributed training to an implementation of EDSR in PyTorch.

B. Profiling and Improving Performance of Communication

Our goal is to improve performance while maintaining
a model-agnostic approach. MVAPICH2-GDR [19], a GPU-
Direct RDMA (GDR) MPI implementation, can provide com-
petitive performance without sacrificing user productivity or
making explicit changes to the application code. We collected
the default distributed DNN training performance data dis-
cussed in Section VI.

(a) Example of a DL framework’s faulty mapping behavior.
Each process launches a small overhead kernel (OK) on each
device

(b) Previous method for avoiding unnecessary GPU cross-talk

Fig. 6: GPU mapping shortcomings in Python libraries

We ran an EDSR training job for 100 steps on 4 GPUs
with hvprof [9], which provides the user with a detailed
profile of Horovod’s communication backend performance
(MPI or NCCL) organized by message size and collective
used. The hvprof output is depicted in Figure 14 and a speedup
achievable for allreduce is in Section VII. After applying
hvprof to a training run, we discovered the following key
insight into the communication bottlenecks present in the basic
version of DLSR models.

• Large messages are being sent inefficiently in
MVAPICH2-GDR because DL frameworks are in
conflict with CUDA IPC.

C. Restoring CUDA IPC to MPI for DL Frameworks
Many of the efficient large-message designs for pt-to-pt

[20] and MPI Allreduce [21] in MVAPICH2-GDR are heavily
reliant on CUDA IPC. However, many Python libraries do not
respect the GPU mappings defined in the user program. These
libraries aggressively allocate GPU memory on all available
devices, which can interfere with MPI execution and overflow
GPU memory. In the best case, small sections of GPU memory
are duplicated on each GPU by each process (see Figure 6a).
These small ”overhead kernels” (OK) leave significantly less
space for the primary ”compute kernel” (CK) that performs the
forward/backward pass of each DNN training iteration. These
extra kernels frequently overflow GPU memory, and restrict
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the hyperparameter space. This behavior is also present in DL
frameworks such as PyTorch and distributed DL frameworks
such as Horovod.

To combat this behavior, many Python libraries recommend
that the user map the CUDA VISIBLE DEVICES environ-
ment variable to MPI’s local ranks, which restricts which
devices are visible to Python (and MPI) at the CUDA level.
While this restricts Python libraries from running unnecessary
kernels on remote GPUs, it also disables calls to CUDA IPC
within MPI (see Figure 6), which relies on CUDA to share
which devices within the node are available for IPC transfers.
Therefore, MPI must default to main memory for all GPU
transfers, which introduces significant overhead.

Fig. 7: Proposed variable MV2 VISIBLE DEVICES to re-
strict DL frameworks while maintaining CUDA IPC for MPI

As of CUDA 10.1, CUDA IPC no longer requires
CUDA VISIBLE DEVICES to include multiple local GPUs
for an IPC transfer to occur between them. Therefore, NCCL
and CUDA-Aware MPI libraries are able to perform IPC trans-
fers while the Python library is restricted to running kernels
and allocating memory on its own local GPU. To implement
this behavior, we introduce a flexible environment variable
MV2 VISIBLE DEVICES, which can be set to any combi-
nation of local GPUs on the system. MVAPICH2-GDR will be
able to see these devices while CUDA VISIBLE DEVICES
restricts the user application.

D. Registration Cache Optimization for PyTorch

MVAPICH2-GDR implements a registration cache which
enables the zero-copy transfer of large messages across In-
finiBand without memory registration if the communication
buffer is used again and is within the cache [22]. Despite the
benefits of registration caching across nodes (especially for
large messages), previous versions of MVAPICH2-GDR have
disabled the registration cache due to the conflicting custom
memory allocators used in TensorFlow. PyTorch, however,
does not require custom memory allocators. While it is not
the primary focus of this work, we also explored the effect of
MVAPICH2-GDR’s registration cache designs for PyTorch.

For the remainder of this work, we refer to the optimized
scenario in Figure 7 (and with the registration cache turned on)
as MPI-Opt. Further, we refer to the previous method without
CUDA IPC optimizations as MPI, and the same method with
registration cache turned on as MPI-Reg. These results are
discussed in detail in Sections VI and VII.

IV. CHARACTERIZATION METRICS AND PLATFORMS

We discuss different software libraries, evaluation platforms,
and experiments needed to fully characterize EDSR training
performance.

A. Evaluation Platforms

Fig. 8: Lassen Architecture

We performed all experiments on the Longhorn supercom-
puter at Texas Advanced Computing Center (TACC) and on
the Lassen supercomputer at Lawerance Livermore National
Laboratory (LLNL). Longhorn includes 96 nodes each with
four NVIDIA Tesla V100 GPUs connected to a IBM Power 9
CPU via NVIDIA NVLink. Each Tesla V100 GPU has 16GB
memory. Lassen is the #10-ranked machine in the TOP500 as
of June 2019 [23] and is comprised of a total of 792 GPU
nodes each with four NVIDIA Volta V100 GPU. Each node
has a total of 44 Cores on IBM Power 9 architecture CPU.
Each Volta V100 GPU has 16GB memory. For a look into
Lassen’s architecture, please refer to Figure 8.

B. Software Libraries
We use PyTorch v1.8.0 compiled with CUDA 10.2 and

CUDNN 7.6.5 on Horovod 0.19.1. Horovod was built against
the MVAPICH-GDR 2.3.5 GPU-direct MPI library [24]. Eval-
uations with NCCL used NCCL 2.8.3 from GitHub2. The
EDSR model was pulled and modified from the publicly-
available implementation3

Fig. 9: Single-GPU Batch Size Evaluation

2https://github.com/NVIDIA/nccl
3https://github.com/thstkdgus35/EDSR-PyTorch
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Fig. 10: Default Distributed EDSR Training Performance for Horovod built against MVAPICH2-GDR

C. EDSR Training

We used the standard EDSR training with a model of 32
residual blocks and 64 feature maps. We trained with an
upscaling factor of 2 and a residual scaling of 0.1. After
performing the single-node evaluation depicted in Figure 9,
we chose a training batch size of 4 images.

V. SINGLE-NODE - HYPERPARAMETER OPTIMIZATION

Before distributing EDSR, we comprehensively profiled
single-GPU and single-node training to find the best hyper-
parameters to maximize throughput. In particular, we sought
the best batch size and image patch size to maximize GPU
utilization while maintaining the speed of convergence. For
the single-node evaluation, we chose a batch-size of 4 and
hyperparameters listed in Section IV-C.

VI. DEFAULT SCALING - SHORTCOMINGS AND INSIGHTS

After default Horovod support was added to EDSR as
detailed in Section III-A, we scale the training up to 128
Lassen nodes (512 V100 GPUs) by adding benchmarking sup-
port (images/second) to the EDSR model. Results between
NCCL and MVAPICH2-GDR are compared to explore scaling
behavior of each communication backend.

From Figures 10 and 13, we can see that, while performance
is acceptable for a small number of nodes, throughput quickly
degrades at scale. This is due to the conflict between the
DL framework and CUDA IPC as detailed in Section III-C.
Further, scaling efficiency drops below 60% for large node
counts.

We then conducted an investigation into the system work-
load that SR models require to analyze the shortcomings of

default scaling performance. We performed an analysis with
our Horovod/MPI profiler hvprof as detailed in Section III-B.

VII. OPTIMIZED SCALING - PERFORMANCE AND
INSIGHTS

Before investigating CUDA IPC for DL workloads, we
investigated the performance impact of the MVAPICH2-GDR
registration cache on EDSR training throughput scaling up
to 128 Lassen nodes (512 GPUs). The results are depicted
in Figure 11, and show an average improvement of 5.1% in
training throughput. Further, cache hit profiling data from these
runs indicated an average cache hit rate of 93%.

Fig. 11: Optimized EDSR Training Performance with regis-
tration cache for Horovod built against MVAPICH2-GDR
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Fig. 12: Optimized Distributed EDSR Training Performance for Horovod built against MVAPICH2-GDR

Fig. 13: Optimized EDSR Scaling Efficiency for Horovod built
against MVAPICH2-GDR

After applying the MPI layer optimizations with CUDA IPC
presented in Section III-C, we re-ran our training experiments
and took scaling data up to 128 Lassen nodes (512 GPUs). The
optimized results are depicted below in Figures 12 and 13.
Furthermore, we applied hvprof to demonstrate the benefits
of MPI-Opt by profiling 100 training steps under default
MPI and MPI-Opt. The improvement for MPI Allreduce is
depicted in Figure 14 and Table I. We demonstrate a 45.4%
improvement in allreduce over the default

The improvement for training throughput is depicted in Fig-
ure 12. We demonstrate a 26% improvement in throughput
over default MPI training.

With MPI-Opt, we achieve vastly improved scaling up
to 512 GPUs, above 70% scaling efficiency, and a 15.6%
increase in scaling efficiency compared to default MPI. These
results demonstrate the feasibility and benefits of our proposed
approach.

Message Size (Bytes) Time (ms) Percentage ImprovementDefault Optimized
1-128 KB 392.0 391.2 ≈ 0

128 KB - 16 MB 320.7 342.4 ≈ 0
16 MB - 32 MB 1321.6 619.6 53.1
32 MB - 64 MB 5145.6 2587.151 49.7

Total Time 7179.9 3918.5 45.4

TABLE I: Allreduce time performance improvement

VIII. KEY INSIGHTS

We present our key insights as follows:

• Horovod support for existing models is feasible, and an
abundance of documentation makes this step approach-
able, even if the model is a novel DNN architecture (e.g.
EDSR).

• While default Horovod support provides acceptable scal-
ing efficiency for a small number of nodes, efficiency
quickly drops off at larger scales. Default Horovod does
not always perform optimally on novel DNN and system
architectures.

• Profiling Horovod at the communication backend layer is
vital to finding potential bottlenecks at larger scales.

• In order to achieve state-of-the-art performance at large
scales, advanced CUDA-Aware MPI designs such as
registration caching and CUDA IPC must be enabled.

We believe that this work provides general insights for
other compute and communication-intensive DNNs that could
benefit from distributed training on HPC systems. Figures 12
and 13 illustrate these insights for distributed training with
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Fig. 14: Hvprof allreduce training profile for 100 training steps of EDSR on 4 GPUs

novel DNN architectures (in particular single-image super-
resolution).

IX. RELATED WORK

There exists several studies that involved distributed scal-
able DL training in the field of computer vision. While
the optimization approach taken in [7] can be sufficient
for DL frameworks that respect GPU mappings, the larger
average message size for MPI Allreduce required by EDSR
are unable to be resolved with tuning at the Horovod layer
alone. Zhang et al. [8] proposed a new distributed DL model
based on self-attention mechanism and residual scaling. The
novel model was then used to perform Remote Sensing (RS)
image super-resolution tasks. In order to perform training on
large volumes of Sentinel-2 data, they featured synchronized
data parallelism and used Horovod to aggregate and average
gradients over multiple workers. They also evaluated their
model against DSen2 [25], another state-of-the-art CNN to
perform upsampling on Sentinel-2 data. They were able to
scale the training up to 16 GPUs while still achieving state-
of-the-art performance. Kurth et al. [26] in their work that
extended the DeepLabv3+ and Tiramisu segmentation models
to serve as a direction towards climate analytics explored the
possibilities of scaling DNN training across large number of
GPUs (27,360). To achieve this, they coupled TensorFlow with
Horovod support using Data Parallelism and implemented a
hierarchical allreduce structure. LBANN is a DL framework
that supports distributed training described by Jacobs et al
[27], which managed to scale up Deep Generative models on
scientific datasets. In their approach, a mix of data parallelism
and model parallelism is adopted to scale DNN training up
to 1,024 GPUs. A 109% parallel efficiency is achieved with
64 deployed trainers. According to CosmoFlow [28], it used
TensorFlow and CPE ML plugin to provide support for DNN
physical model training on 8,192 KNL nodes and reached 77%
parallel efficiency.

X. CONCLUSION

The computational workloads for Deep Learning are rapidly
increasing for emerging image processing applications such as
autonomous driving, automatic medical image diagnosis [29],
and climate analysis [26]. The extreme computation and
communication requirements of these applications provide an

excellent opportunity for distributed DNN training. We demon-
strate that scaling deep learning super-resolution (DLSR)
models to HPC systems is both feasible and approachable for
existing single-node DNN implementations. Our optimization
method achieves a percent improvement in scaling efficiency
by 15.6%, which translates to a 1.26× speedup in training
performance. We believe that these results pave the way for
efficiently training DLSR models and other novel DNNs that
require long training times.
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