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Abstract—Transformer models have revolutionized the field of
Natural Language Processing (NLP) and they achieve state-of-
the-art performance in applications like machine translation,
question answering, regression, and summarization. However,
training Transformers is challenging because of their large
memory and compute requirements. The literature contains
several approaches to parallelize training, like layer parallelism
and pipeline parallelism, but they are optimized to benefit out-
of-core models and they don’t exploit the inherent parallelism
in Transformer models. Other work uses model parallelism to
achieve weak scaling by increasing the model size. In this paper,
we propose sub-graph parallelism that provides a significant
performance improvement over pure data parallelism with a
fixed number of resources, and as an additional technique for
strong- and weak-scaling without increasing model capacity.
Our technique accelerates the training of Transformer models
and we generalize the concept to any neural network with
multiple branches. We optimize the communication for sub-
graph parallelism and combine it with data parallelism to scale
performance up to 1024 GPUs. To decrease communication
overheads, we propose a topology-aware scheme that limits
inter-node communication. Finally, we empirically compare sub-
graph parallelism with pure data parallelism and demonstrate
its performance benefits in end-to-end training.

Index Terms—scalable deep learning, transformers, sub-graph
parallelism, algorithms, deep learning, distributed training

I. INTRODUCTION

A. Motivation

The task of training Transformer models is one of the most
important workloads in contemporary deep learning. Since
their development in 2017 [1], Transformers have continually
pushed the state of the art in natural language processing
[2]–[4] and they have recently achieved impressive results in
computer vision and object recognition [5]–[7]. The distin-
guishing feature of a Transformer is the attention operation,
which allows the model to selectively focus on specific entries
in a data sequence. Multi-head attention performs multiple
attention operations independently, allowing for models that
can learn complicated patterns like the grammars of natural
languages. While there are many variants of the original
model like BERT [8], GPT-2 [2], GPT-3 [4], and T5 [3],
they share the same basic architecture (autoencoder built of
stacked multi-head attention operations) and differ primarily
in the number of trainable parameters, in whether they are
encoder- or decoder-centric, and in the objective function for
training.

While they achieve excellent results, Transformers have
significant memory, compute, and data requirements to train.
Increasing the number of trainable parameters tends to improve
learning quality, so the best models approach or exceed the
memory capacity of a single GPU. In addition, the large
number of parameters necessitates very large training sets
in order to avoid overfitting, making scalable performance a
necessity to train a Transformer in a reasonable time.

Traditional data-parallel approaches are poorly suited to this
task since they require redundant copies of the model on
every parallel process. Even if a model fits on a GPU, the
mini-batch sizes may be too small to achieve good compute
efficiency. Memory pressure can be mitigated with out-of-core
training, but that requires the complexity and overhead of fine-
grained data transfers between CPUs and GPUs. Furthermore,
the compute graph of a Transformer contains branching sec-
tions where each individual branch is relatively inexpensive,
so executing the entire graph on each GPU will incur the
latency cost of many kernel launches. Finally, the large size
of Transformers means that synchronizing the parameters or
parameter gradients will incur major communication costs,
especially at scale. Work such as Megatron-LM [9] lays out the
initial groundwork for sub-graph parallelism on Transformers,
focusing on enabling weak-scaling by increasing the model
capacity. In this work we present a generalization of sub-graph
parallelism that applies to both strong- and weak-scaling,
without requiring changes in the neural network architecture
to increase parallelism.

B. Challenges for Sub-graph Parallelism
We propose a hybrid of data parallelism and sub-graph

parallelism to efficienty train deep neural networks (DNNs)
with multi-branch architectures. Such models, like Transform-
ers and ResNeXt [10], present excellent opportunities for
parallelization, namely by distributing the branches between
parallel processes and processing them independently. Dis-
tributing sections of the compute graph between processes also
distributes the memory and compute, alleviating some of the
specific difficulties with training Transformers. However, this
approach requires surmounting several challenges:
Challenge 1: Exploiting the inherent parallelism in multi-
branch DNN architectures

Multi-branch DNN architectures usually have branches that
are individually short and somewhat inexpensive. Therefore,

���

�����*&&&�*OUFSOBUJPOBM�1BSBMMFM�BOE�%JTUSJCVUFE�1SPDFTTJOH�4ZNQPTJVN�	*1%14


978-1-6654-4066-0/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPS49936.2021.00071

20
21

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g 
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

40
66

-0
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 | D

O
I: 

10
.1

10
9/

IP
D

PS
49

93
6.

20
21

.0
00

71



the communication overheads can easily overwhelm the gains
from parallelization, resulting in a net loss in performance.
Furthermore, the splits and joins at the beginning and end
of branches cannot be neatly assigned to a specific branch.
These layers are the logical point for communication, so
it is important to optimize their performance to minimize
communication overheads.
Challenge 2: Designing efficient communication patterns

Sub-graph parallelism requires a large volume of commu-
nication at the beginning and end of each branch. However,
the branching sections are usually organized sequentially, so
it is impractical to overlap computation and communication.
In other words, sub-graph parallelism introduces blocking
communication into the the forward and backward passes of
training. The performance of training is thus highly sensitive to
the efficiency of the communication patterns. In addition, there
are multiple ways to split or join branches, each with different
communication characteristics, so we must implement and
optimize multiple designs.
Challenge 3: Maintaining performance at scale

Multi-branch architectures, especially Transformers, are
computationally expensive and they require training on large
data sets. Parallelization solutions that can scale to large num-
bers of GPUs are especially important to train in a reasonable
time frame. However, increasing the number of GPUs involved
in communication tends to increase communication overhead.
Sub-graph parallelism involves blocking communication, so
the scalability of sub-graph parallelism is highly sensitive to
communication overhead.

C. Contributions

• A generalized hybrid of data and sub-graph paral-
lelism (D&SP) that significantly outperforms pure data-
parallelism, and strong- and weak-scales the training of
multi-branch DNN architectures like Transformers.

• Topology-aware optimizations of communication patterns
to achieve better scalability on a large number of GPUs.

• Performance evaluations on three Transformer models us-
ing a large GPU supercomputer. Compared with existing
techniques, we observe that D&SP achieves up to a 3.05×
speedup with T5 and 1.5× with GPT-2 when using the
same amount of resources.

• A publicly available open-source implementation at
https://github.com/LLNL/lbann.

II. BACKGROUND

A. Transformer Architecture

The core operation in a Transformer model is multi-head
attention [1]. Given L query vectors qi ∈ Rdk and S key-value
vector pairs (ki, vi) ∈ Rdk ×Rdv , the basic attention operation
compares the queries and keys to construct L weighted sums
of the value vectors. More precisely, packing these column
vectors into matrices Q ∈ Rdk×L, K ∈ Rdk×S , V ∈ Rdv×S ,

Attention(Q,K, V ) = V softmax
(
KTQ√

dk

)
(1)

Softmax is applied independently to each matrix column. A
masking matrix M ∈ {0,−∞}S×L is sometimes applied
to the softmax input and dropout to the softmax output.
Multi-head attention (see Figure 5a) performs h independent
attention operations,

MultiHead(Q,K, V ) = WO Concat (head1, . . . , headh) (2)
with headi = Attention (Qi,Ki, Vi)

We have Qi = Slicei
(
WQQ

)
, Ki = Slicei

(
WKK

)
,

Vi = Slicei
(
WV V

)
and the slice and concatenation oper-

ations are across matrix columns, i.e. unstacking and stack-
ing respectively. WQ ∈ Rhdk×dmodel , WK ∈ Rhdk×dmodel ,
WV ∈ Rhdv×dmodel , and WO ∈ Rdmodel×hdv are trainable matrix
parameters. Self-attention involves passing identical Q, K, and
V into multi-head attention.

Transformer models are typically built out of stacks of self-
attention operations and multilayer perceptrons (MLPs). The
MLPs usually have one large hidden layer and are applied
separately to each sequence vector.

Fig. 1: Strategies for distributed training of Transformers. We
focus on distributed algorithms to accelerate in-core models.

B. Related Work

The computational requirements for training DNNs have
doubled every three to four months since 2012 [11], leading to
the development of several strategies for distributed training.
See Figure 1 for an overview of existing techniques. Data par-
allel training for convolutional neural networks [12] has proven
to be enormously successful, leading to incredibly quick
training times [13]. However, as discussed in Section I-A, this
does not appear as promising for training Transformers due to
their memory and compute requirements. Pipeline parallelism
is a very general strategy that has been applied to achieve
modest scaling on Transformers, but it requires the complexity
of micro-batching and introduces the bubble overhead of filling
and draining the pipeline [14]. It also has similar high-volume
communication requirements as our approach, but is unable to
apply our topology-aware optimizations to the communication
patterns. [15] introduces a clever scheme to reduce memory
pressure by distributing model parameters between processes,
but it requires global collective communication in the forward
pass as well as backward pass.
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Other work has explored algorithmic changes to the Trans-
former model like introducing sparsity [16] or improving the
asymptotics of the attention operation [17]. We note that most
of the literature focuses on accelerating out-of-core models,
i.e. models that cannot fit inside the memory of a single GPU.
Our approach does not have the same memory requirements as
data parallelism, but we focus primarily on optimizing in-core
models and use data parallelism as a performance baseline.
That said, our technique is flexible and may be composed
with the other approaches. MetaFlow [18] and TASO [19]
proposed compiler-level optimizations to generate efficient
graph substitutions automatically; however, they executed the
generated graph on a single GPU and did not take advantage
of distributed processing.

As discussed earlier, we build upon and generalize some of
the work presented with Megatron-LM [9]. They implement
a simple form of sub-graph parallelism combined with layer
parallelism, enabling training of larger models by increasing
the model capacity. The result is similar to our D&SP-
cSub strategy. However, they do not address the challenges
of data movement nor the opportunities for topology-aware
optimizations. Furthermore, since they use the same local
mini-batch throughout the entire model, within and without
the branching sections, they limit the memory scaling in the
non-branching sections. And finally, they rely on achieving
a specific sequence of splits in their data tensors to perform
communication. Our work seeks to generalize these ideas and
offer more flexibility for future parallelism methods.

We remark that this work is a generalization of the SUMMA
algorithm for distributed matrix multiplication [20]. If we
decompose a fully-connected layer by slicing the input tensor,
applying pieces of the weights matrix to each slice, and adding
the results together, applying our D&SP scheme essentially
recovers SUMMA. Decomposing a convolutional layer in a
similar manner, possibly with multiple levels of sub-graph
parallelism, recovers channel and filter parallelism [21].

III. DESIGN OF DATA AND SUB-GRAPH PARALLELISM
(D&SP)

We investigate and propose several designs to exploit the
inherent parallelism in Transformer models. Throughout this
section we discuss how computations are parallelized across
multiple MPI processes in a distributed training framework
(LBANN), with one GPU per process.

A. Sub-graph Parallelism
Transformer models are examples of multi-branch DNN

architectures. These architectures have compute graphs similar
to Figure 2, where a “common layer” splits into multiple
“branch layers”, which eventually join into another common
layer. The computation within a branch can be arbitrarily
complex, and can be accelerated as long as the branches
are independent and have similar compute requirements. For
Transformers, each head in multi-head attention can be con-
sidered as a branch, with splits at the slice layers and joins at
the concatenation layers.

Fig. 2: Simple example of a multi-branch DNN architecture. A
common layer (Layer 1) splits into eight branch layers (Layers
2-9), which join back into another common layer (Layer 10).

In pure sub-graph parallelism, the branches in the compute
graph are divided into sub-graphs and each parallel process
executes one sub-graph. Figure 3 shows an example of 4-way
sub-graph parallelism. Observe that the common layers (layers
1 and 10) are all executed on GPU 1, and thus experience
no benefit from parallelization. If the common layers involve
significant computation, this results in under-utilization and
load imbalance issues. In addition, the maximum number
of processes is one per branch. If individual branches are
sufficiently inexpensive, there may also be a point where the
extra compute from adding processes is offset by the growth
in communication overhead. The poor parallel efficiency and
the limits to scaling compel us to refine this design.

Fig. 3: 4-way sub-graph parallelism for the multi-branch
architecture in Figure 2.

B. Data and Sub-graph Parallelism (D&SP)

The issues in Section III-A can be addressed by combining
data parallelism with sub-graph parallelism. Pure data par-
allelism involves distributing the data samples in a training
step mini-batch between processes. Each process applies a
duplicate copy of the model to its local data and accumulates
parameter gradients between processes. This approach can
scale indefinitely if the mini-batch size is made sufficiently
large and the communication cost of gradient accumulation is
small. However, the redundant model copies on each process
impose high memory requirements. If the model is large, then
it may not fit on a single process or the per-process mini-batch
size might be too small to get good compute efficiency. Also,
the scalability in practice is limited since the communication
overhead grows with the number of processes.

We propose Data and Sub-graph Parallelism (D&SP) as a
strategy to exploit the inherent parallelism in multi-branch
DNN architectures while retaining the scalability properties
of data parallelism. Common layers are parallelized in a
standard parallel fashion and branch layers are divided into
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sub-graphs as discussed in Section III-A. However, sub-graphs
are not executed by a single process, but by a “sub-grid” of
multiple processes. Each sub-grid operates independently and
uses data parallelism internally. Figure 4 shows 4-way D&SP
where each sub-grid consists of one GPU. Note the all-to-all
communication required at the split and join layers (layers
1 and 10). If the global mini-batch size is 32, then the per-
process mini-batch size is 8 in the common layers and 32 in
the branch layers.

Fig. 4: 4-way D&SP with 4 processes for the multi-branch
architecture in Figure 2. Branch layers use 4-way sub-graph
parallelism and common layers are distributed using data
parallelism.

Unlike pure sub-graph parallelism, D&SP manages to par-
allelize the common layers, achieves good load balancing,
and can accommodate a number of processes up to the mini-
batch size. Within branching sections, it improves on data
parallelism by reducing the memory requirements for the
model parameters and reducing the number of processes that
participate in gradient accumulation. In addition, processes
have larger local mini-batch sizes in the branching sections
than with data parallelism and perform fewer operations, so
they tend to achieve higher compute efficiency on GPUs. The
major challenge is optimizing the all-to-all communication at
the beginning and end of branching sections.

To make this approach concrete, consider applying D&SP
to multi-head attention as shown in Figure 5. For a global
mini-batch size of 32, the per-process mini-batch size is 16
in the common layers. In the first process, the slice layer
will divide its 16 input sequences into four pieces, perform
intra-GPU transfers with the first two pieces, and send the
second two pieces to the second GPU. Each of its two heads
will also receive 16 input sequence pieces from the second
process, resulting in a local mini-batch size of 32. An opposite
communication pattern occurs at the final concatenation layer.

C. D&SP-cSub
Pure sub-graph parallelism and D&SP lie at two extremes

of a spectrum: sub-graph parallelism assigns common layers
to a single process and D&SP distributes common layers
between all available processes. However, the optimal number
of processes may differ between common layers and branch
layers. In particular, the communication cost of gradient accu-
mulation increases with the number of processes, so placing
common layers on a subset of available processes may give
better performance. This is more likely if the mini-batch size is
small and poor compute efficiency eliminates the performance

(a) Multi-head attention with 4 heads. See Equations 1 and 2.

(b) 2-way D&SP with 2 processes for multi-head attention with
4 heads. Compute and communication patterns are highlighted for
GPU1.

Fig. 5: D&SP for multi-head attention.

benefit of running with extra processes. D&SP-cSub is a
variant of D&SP that places the common layers on one of
the sub-grids. Instead of all-to-all communication patterns at
the beginnings and ends of branching sections, splits will
involve one-to-all communication and joins will involve all-to-
one communication. Note that D&SP and D&SP-cSub will be
better in different situations since their performance depends
on factors like the mini-batch size, the model size, and the
ratio between compute and communication.

IV. ENHANCING COMMUNICATION PATTERNS IN D&SP
AND D&SP-CSUB

The performance of sub-graph parallelism depends heavily
on its communication patterns. Branch layers cannot start
their computation without receiving data from the preceding
common layers, so communication is a blocking operation.
Since we can not hide communication behind computation,
we must take care to minimize communication overheads.
We observe that the following common layers can split into
branching sections:

• Split: Copy the input tensor and send to each branch.
• Slice: Slice the input tensor along a given dimension and

send each piece to its own branch. For our case, we slice
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tensors across the inner-most dimension (the embedding
vector dimension) into equally-sized pieces.

The following common layers can join branching sections:
• Sum: Add input tensors together.
• Concatenation: Concatenate the input tensors along a

given dimension. For our case, we concatenate along the
inner-most dimension.

Observe that the split and sum layers are closely related: the
forward and backward passes of the split layer are equivalent
to the backward and forward passes of the sum layer, respec-
tively. The slice and concatenation layers are similarly related.
With these insights, we first develop a general communication
pattern before optimizing special cases.

A. General Communication Design

We implemented sub-graph parallelism within the LBANN
deep learning toolkit [22]. Distributed tensors are managed
with Hydrogen [23], a GPU-enabled fork of the Elemental
library for distributed linear algebra [24]. LBANN implements
data parallelism by storing activations and error signals in 2D
distributed matrices where each column corresponds to a mini-
batch sample. A Hydrogen distributed matrix is distributed
over a “grid”, which is a group of parallel processes with one
GPU per process. For our purposes, a grid is equivalent to an
MPI communicator. The matrices have column-major ordering
and matrix columns are distributed over the grid in a round-
robin manner, i.e. the [STAR,VC] distribution in Elemental’s
notation, as shown in Figure 6.

Fig. 6: [STAR,VC] distribution of a 2D matrix over four
parallel processes. The matrix columns are distributed over
the processes in a round-robin manner.

Sub-graph parallelism simply involves distributing the data
matrices of common layers on a common grid and the data
matrices of branch layers on smaller sub-graph grids. The
common grid is the global grid for D&SP and the first
sub-graph grid for D&SP-cSub. The major challenge lies in

optimizing the communication between the common grid and
sub-graph grids whenever branchs are split or joined. We be-
gan by optimizing Hydrogen’s TranslateBetweenGrids
function to support transferring [STAR,VC] matrices between
any two grids. It involves an all-to-all communication pattern,
as shown in Figure 7, and is built out of point-to-point com-
munication primitives instead of collectives since the number
of send and receive processes may differ and the message sizes
may not follow a nice pattern. In addition, this approach is not
scalable with the number of sub-graphs grids since it requires
one call of TranslateBetweenGrids per sub-graph grid.
Thus, having a general fallback for communication between
grids, we move on to optimize some important special cases.

Fig. 7: All-to-all communication pattern for Hydrogen
TranslateBetweenGrids function.

B. Split and Sum Layers

Split and sum layers have the simplest communica-
tion pattern for sub-graph parallelism. A naive implemen-
tation of the split layer forward pass would call the
TranslateBetweenGrids function once per sub-graph
grid. Let us assume from now on that the sub-graph grids
have equal size, are disjoint, and divide the global grid. Since
LBANN data matrices distribute columns in a round-robin
manner, process i in the common grid will own columns
corresponding to process i mod ng in each sub-graph grid,
where ng is the sub-graph grid size, as shown in Figure 8.
Thus, if we form ng disjoint sub-communicators, each corre-
sponding to a process in the sub-graph grids, all the necessary
communication takes place within these sub-communicators.
For D&SP, a gather collective on each sub-communicator
will deliver the correct matrix columns from the common
grid to the sub-graph grids (with some column reshuffling
required afterwards). Note that these simultaneous collectives
on disjoint sub-communicators can be considered as a single
segmented collective.

Fig. 8: Communication pattern for the forward pass of the
split layer, using D&SP with TranslateBetweenGrids.
Observe the all-to-all pattern within the two disjoint sub-
communicators.

5
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We can do even better by consolidating all of the
TranslateBetweenGrids calls into a single segmented
collective. As shown in Figure 9, the processes in the common
grid are sending the same data to each sub-graph grid, so the
repeated segmented gathers in D&SP can be replaced with
a segmented all-gather. For D&SP-cSub, the communication
is a segmented broadcast. Applying similar analysis to the
sum layer forward pass finds that D&SP involves a segmented
reduce-scatter and D&SP-cSub a segmented reduce.

(a) D&SP

(b) D&SP-cSub

Fig. 9: Communication patterns for the forward pass of the
split and slice layers, using D&SP and D&SP-cSub.

C. Slice and Concatenation Layers

As discussed in Sections II-A and III-B and shown in
Figure 5b, slice and concatenation layers are required to
implement D&SP for multi-head attention. We are interested
particularly in slicing and concatenating along the inner-most
dimension of 3D data tensors. Let us consider the forward
pass of the slice layer for now and assume that the sub-graph
grids evenly divide the global grid. Recall that LBANN data
matrices interpret the outer-most tensor dimension (mini-batch
size) as the matrix width and flatten the remaining dimensions
into the matrix columns. Conveniently, we can use basic matrix
operations to reorder the data into a format amenable to
communication. As shown in Figure 10, it simply requires
resizing the data matrix and transposing. Resizing is a logical
operation that does not require any data movement and the
resize dimensions determine the slice dimension. The columns
of the resulting matrix are transferred and then reordered with
another transpose and resize. The communication pattern is
similar to the split layer’s (see Section IV-B and Figure 9),
except that each sub-graph grid receives different data from
the common grid. For D&SP, this means that the segmented
all-gather should logically be replaced with a segmented
all-to-all. However, we use a GPU communication library,
NCCL, without an optimized all-to-all implementation. We
find that is faster in practice to perform an all-gather and
to discard unneeded data than to implement all-to-all out of
point-to-point primitives. For D&SP-cSub, the split layer’s
segmented broadcast is replaced with a segmented scatter. A

similar approach can be applied to the forward pass of the
concatenation layer: D&SP involves a segmented all-to-all (in
practice an all-gather) and D&SP-cSub a segmented gather.

Fig. 10: Implementation of slice layer with D&SP-cSub. Note
that the matrix is column-major and that only basic matrix
operations are required.

V. TOPOLOGY-AWARE D&SP AND D&SP-CSUB

D&SP and D&SP-cSub can be scaled to a large number
of GPUs by increasing the number or size of sub-graph
grids. This involves two phases of communication: segmented
collectives between sub-grids at branch splits and joins, and
segmented all-reduces within sub-grids to accumulate parame-
ter gradients. The gradient all-reduces can be overlapped with
compute, in a similar manner as standard data parallel training,
so we focus on the communication at branch splits and joins
since it is blocking and typically involves large data volumes.
Recall that the sub-communicator size in the segmented col-
lectives is equal to the number of sub-grids. Thus, assuming a
perfectly uniform network topology, keeping a fixed number
of sub-grids and scaling the size of the sub-grids should have
no impact on the communication overhead. This would just
increase the number of disjoint sub-communicators operating
in parallel.

However, real systems are not so homogeneous. GPUs are
resident within compute nodes, and communication within a
node has much better latency and bandwidth than commu-
nication between nodes. Intra-node communication is often
optimized by vendors in both software and hardware, e.g. with
CUDA peer-to-peer communication primitives and NVLink.
Communication costs between nodes can also vary based on
the network topology, e.g. if the nodes are resident on different
server racks. Thus, even if a communication pattern involves
the same number of GPUs, the run time can vary significantly
based on process placement.

We can model the communication cost of D&SP by count-
ing the number of messages required when splitting branches
(see Section IV-B),

Messages = IntraNode + InterNode (3)
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Let us say g is the number of sub-grids, n the number
of processes, nnode the number of processes per node, and
ng = n/g the sub-grid size. Observe that the segmented all-
to-all communication pattern implies Messages = ng. With
the naive communication pattern shown in Figure 9a,

IntraNodenaive =

{
n ng ≤ nnode

nnodeg ng > nnode
(4)

InterNodenaive =

{
n (g − 1) ng ≤ nnode

(n− nnode) g ng > nnode
(5)

We propose a simple topology-aware optimization to mini-
mize the communication volume between nodes. If we reorder
the processes in the global grid so that they are distributed
round-robin over the compute nodes, as shown in Figure 11
then we maximize the intra-node communication volume. In
fact, the segmented collectives have no inter-node communi-
cation at all if the sub-grid size is less than the number of
GPUs per node. Equations 4 and 5 become

IntraNodetopo =

{
ng g ≤ nnode

nnnode g > nnode
(6)

InterNodetopo =

{
0 g ≤ nnode

n (g − nnode) g > nnode
(7)

Thus, this modification to D&SP and D&SP-cSub significantly
reduces the communication overhead of segmented collectives
and reduces its sensitivity to the network topology at scale.
Although we haven’t implemented it, we remark that the inter-
node communication could be optimized in a similar manner
by reordering nodes round-robin over server racks.

(a) D&SP

(b) D&SP-cSub

Fig. 11: Communication patterns for the forward pass of the
split and slice layers, using topology-aware D&SP and D&SP-
cSub. Compare with Figure 9 and observe that there no inter-
node communication since the number of sub-graph grids is
less than the number of GPUs per node.

VI. EVALUATION

A. Setup
a) Hardware: We conducted all our experiments on the

Lassen supercomputer [25] at Lawrence Livermore National
Laboratory. A compute node consists of two 22-core IBM
Power9 CPUs and four Nvidia V100 GPUs. The GPUs have 16
GB HBM2 memory and each CPU has NVLink interconnects
with two GPUs. Racks are composed of 18 nodes connected
with InfiniBand EDR.

b) Deep Learning Framework: We implemented sub-
graph parallel training in LBANN 0.100 [22]. LBANN was
built with GCC 7.3.1, Spectrum MPI 10.3.1, CUDA 10.1,
cuDNN 7.6.4, NCCL 2.4.2, Aluminum 0.5.0 [26], Hydrogen
1.5.0 [24].

B. Evaluation Setup and Performance Metrics
We perform experiments on several Transformer models

using DP (pure data parallelism), D&SP (Section III-B), and
D&SP-cSub (Section III-C). The models are trained with
samples from the WMT14 English-German data set [27].
We focus on performance results since our algorithm is
mathematically equivalent to single-GPU training and data-
parallel training. Since we are particularly interested in steady-
state performance, we perform a few warmup iterations (32
iterations) and report median mini-batch times (128 iterations).
We perform both weak-scaling studies (keeping the per-GPU
mini-batch constant while increasing the number of GPUs) and
a strong-scaling study (keeping the global mini-batch constant
while increasing the number of GPUs).

C. Single Node Evaluation with the Original Transformer
We performed single-node experiments with the original

“Attention Is All You Need” Transformer model [1] and
present them in Figure 12. Figure 12a shows the effect of
varying the mini-batch size on the mini-batch time. With a
mini-batch size of 4, 4-way D&SP achieved a 1.8× speedup
relative to pure DP. Note the mini-batch time with DP was in-
dependent of mini-batch size, even when increasing the mini-
batch size increases the compute requirements, indicating that
its performance was dominated by kernel launch overheads
rather than compute. On the other hand, the run time of D&SP
increased slightly with the mini-batch size. Figures 12b and
12c show the effect of increasing the number of heads in each
multi-head attention operation. When the compute per head
was kept constant (Figure 12b), the run time roughly scaled
with the number of heads (as expected) and the benefit of
D&SP increased to achieve a 2.16× speedup at 32 heads.
Figure 12c shows an increase in run time when keeping
the total compute constant, indicating compute inefficiency
due to over decomposition. While the run time of DP grew
proportionally with the number of heads, implying a run time
completely dominated by kernel launch overheads, it was sub-
linear with D&SP. All these results demonstrate that D&SP
can achieve moderate compute efficiency in situations where
DP does not, e.g. when the mini-batch size is small or the
number of heads is large.
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(a) Different global mini-batch (b) Constant compute per head (c) Constant total compute

Fig. 12: Single-node performance of the original Transformer model, varying the global mini-batch size and the number of
heads h in multi-head attention. Recall the dk, dv , and dmodel parameters for multi-head attention from Section II-A. In these
experiments, dkv = dk = dv determines the amount of compute per head and dmodel = hdkv determines the total compute.

D. Weak Scaling with GPT-2

Figure 13 shows a weak-scaling study with GPT-2 [2]. On
1 node (4 GPUs), 4-way D&SP achieved a 1.47× speedup
relative to DP. However, we see that the advantage disappeared
with larger numbers of compute nodes. Our profiling indicates
that the primary limit to scaling for D&SP was the segmented
all-reduces. Disabling the gradient all-reduces in the backward
pass (without affecting any other computation or communica-
tion) resulted in perfect weak scaling. This result provides
a compelling use-case for GPU communication packages to
optimize the performance of segmented collectives, i.e. parallel
collectives on disjoint sub-communicators. This would be
especially interesting for the case where the number of sub-
graph grids matches the number of GPUs per node, since
communication between sub-grids (e.g. redistributing between
parent and sub-graph grids) would be purely intra-node and
communication within a sub-grid (i.e. gradient accumulation)
would be purely inter-node.

Observe that D&SP and D&SP-cSub achieved nearly iden-
tical performance when the number of nodes was small,
suggesting that the common layers have insufficient compute
efficiency to benefit from increased parallelism. However,
D&SP-cSub showed better scaling behavior, which can be
attributed to the smaller grid size for gradient all-reduces in
the common layers.

Fig. 13: Weak-scaling study with GPT-2 model. The per-GPU
mini-batch size was 1 and all of the D&SP runs used topology-
aware communication.

E. Weak Scaling with T5

Our final weak scaling evaluation was with a T5 model
[3]. In particular, we trained with a variant of T5-Large with
32 heads (T5-Large-Mod). This model is substantially more
compute-intensive than GPT-2, to the extent that gradient all-
reduces can be almost fully overlapped with compute. The
weak-scaling study in Figure 14 demonstrates the importance
of topology-aware communication. The naive communication
pattern did not weak-scale due to the high volume of inter-node
communication, but topology-aware communication achieved
near-perfect weak-scaling.

Figure 15 shows a weak scaling study with DP and
topology-aware D&SP. We were not able to evaluate D&SP-
cSub because the common layers were too big to store in a
single sub-graph grid. DP, 2-way D&SP, and 4-way D&SP all
showed excellent weak-scaling. On 4 GPUs, 4-way D&SP was
up to 2.22× faster than DP with a per-GPU mini-batch size of
1 and up to 2.17× faster with a per-GPU mini-batch size of
4. 8-way D&SP was the outlier since it involved high-volume
inter-node communication. With a per-GPU mini-batch size
of 1, the extra communication cost was minor and more than
offset by the improved compute efficiency, resulting in a 3.05×
speedup on 8 GPUs relative to DP. However, increasing the
per-GPU mini-batch size to 4 improved the compute efficiency
of 2-way and 4-way D&SP, reducing the relative efficiency
gains of 8-way D&SP. In addition, the extra communication
cost of inter-node communication in 8-way D&SP became
more onerous with a greater volume of data. The result was
that 8-way D&SP had about the same performance as 4-
way D&SP. Also observe that 8-way D&SP experienced more
fluctuations in performance than 2-way and 4-way D&SP.
In part this may be attributed to node placement across
multiple racks. If so, this could be ameliorated with multi-level
topology-awareness to reduce the amount of communication
between racks, but that would greatly increase the algorithm’s
complexity. For now, we conclude that using more sub-grids
than there are GPUs per node is a complicated decision that
depends on the model characteristics, mini-batch size, and
network topology.
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(a) 2-way D&SP (b) 4-way D&SP (c) 8-way D&SP

Fig. 14: Weak-scaling study with T5-Large-Mod model, comparing D&SP with naive and topology-aware communication. The
per-GPU mini-batch size was 4.

(a) Per-GPU mini-batch size of 1

(b) Per-GPU mini-batch size of 4

Fig. 15: Weak-scaling study with T5-Large-Mod model. All
of the D&SP runs used topology-aware communication.

F. Strong Scaling the “Attention Is All You Need” Transformer

Our implementation of D&SP is tuned to provide an
algorithmic advantage over pure data parallelism, as well
as the ability to apply strong-scaling when training with
more compute resources. Figure 16 illustrates both of these
improvements on the original “Attention Is All You Need”
Transformer model. Peak strong-scaling is achieved using 16
GPUs on 4 compute nodes, where D&SP is able to achieve
a 1.84× speedup relative to the data-parallel baseline with
4 GPUs, a parallel efficiency of 46%. Scaling beyond that
point is unprofitable for this model, but we expect that larger

Fig. 16: Strong-scaling study with the original “Attention
Is All You Need” Transformer. The global mini-batch size
was 128 and all of the D&SP runs used topology-aware
communication. We ran 2-, 4-, and 8-way D&SP and report
the best result.

models would offer more room for scaling. Note that even
with a moderate mini-batch size, D&SP continues to provide
more efficient GPU utilization than DP. Figure 16 shows that
with sixteen GPUs, there is a 1.52× speedup versus DP.

G. Reducing Training Time
Finally, one of the critical challenges of accelerating the

training of deep neural networks is to do so without degrading
the learning of the model. Our algorithms for sub-graph
parallelism result in an implementation that is mathematically
equivalent to a non-parallel implementation, similar to how
data parallelism does not impact a model’s learning as long
as the global mini-batch size is not changed. Figure 17 shows
how the progression of the objective function is identical for 4-
way D&SP and DP, demonstrating that the training is actually
equivalent. It takes D&SP the same number of epochs to to
achieve a fixed objective function as DP, and the wall-clock
time is 35% shorter.

VII. CONCLUSION

Transformer-based neural network architectures are making
breakthroughs in natural language processing and are showing
great promise in scientific machine learning, but are extremely
expensive to train. This paper presents a generalized approach
to sub-graph parallelism that provides algorithmic optimiza-
tions over pure data parallelism. It allows for both strong- and

���



Fig. 17: Training the original “Attention is All You Need”
Transformer on 64,000 samples from WMT14 with 16 GPUs.
Batch size is 128 and the objective function is the average
cross entropy loss on the reconstructed text.

weak-scaling when training Transformers, without requiring
increases in model capacity to maintain compute efficiency.
We provide a thorough discussion of the communication
patterns and performance trade-offs, allowing these techniques
to be applied to general multi-branch neural network architec-
tures. We demonstrate how combining sub-graph parallelism
with data parallelism and using a topology-aware layout allows
a 1.84× speedup when strong-scaling the original “Attention
Is All You Need” Transformer and a 3.05× speedup when
weak-scaling a variant of T5-Large. Finally, we contribute
these optimizations to an open-source distributed deep learning
framework to enable the wider community to apply these
algorithms for their own applications.
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