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Abstract—Data-parallelism has become an established
paradigm to train DNNs that fit inside GPU memory on
large-scale HPC systems. However, model-parallelism is
required to train out-of-core DNNs. In this paper, we deal with
emerging requirements brought forward by very large DNNs
being trained using high-resolution images common in digital
pathology. To address these, we propose, design, and implement
GEMS; a GPU-Enabled Memory-Aware Model-Parallelism
System. We present several design schemes like GEMS-MAST,
GEMS-MASTER, and GEMS-Hybrid that offer excellent
speedups over state-of-the-art systems like Mesh-TensorFlow
and FlexFlow. Furthermore, we combine model-parallelism and
data-parallelism to train a 1000-layer ResNet-1k model using
1,024 Volta V100 GPUs with 97.32% scaling-efficiency. For the
real-world histopathology whole-slide-image (WSI) of 100,000 x
100,000 pixels, we train custom ResNet-110-v2 on image tiles of
size 1024 x 1024 and reduce the training time from seven hours
to 28 minutes.

Index Terms—DNN, Model Parallelism, Keras, TensorFlow,
Eager Execution, MPI

[. INTRODUCTION

The popularity and effectiveness of Deep Learning (DL)
have led to advances in several areas, including image recog-
nition, speech processing, autonomous vehicles, and precision
medicine. DL is a subset of Machine Learning (ML) that
allows us to discover relationships between the input and
output by reducing the input into distinguishable features and
applying the model to accurately predict the output. Large-
scale Deep Neural Networks (DNNs) are a key component to
DL methods. Domain-specific modifications like convolution
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and recurrent layers are integrated into DNNSs to increase the
accuracy of models made for computer vision and natural lan-
guage processing, respectively. DNNs offer higher prediction
accuracy for these tasks, but training complex DNNs is a
significantly compute-intensive and memory-hungry [1], [2]
operation. Due to its relative simplicity, researchers employ
Data Parallelism [3] to train DNNs by replicating the model
on multiple processing elements (PEs) such as CPUs and/or
GPUs. Each replica of the DNN operates on a different
subset of the input data called a batch. This results in a set
of gradients for each replica that are accumulated with an
Allreduce operation [4].

While data parallelism works well for distributed DNN
training and offers near-linear scaling [5], it is bounded by the
size of the model itself, that is; even at the finest granularity
of a unit batch size (i.e., a single training example), the
entire model does not fit in the PE’s memory. To address this
fundamental limitation of data parallelism, a new parallelism
strategy called “Model Parallelism” is gaining attention in the
CS and AI communities. As shown in Figure 1, several real-
world image sizes are much bigger than the current 224 x
224 resolution of the widely used ImageNet [6] dataset. These
emerging application areas, including digital pathology, are
the primary motivators of model and hybrid parallelism (a
combination of model and data parallelism).

Given the advent of digital pathology over the last decade,
digital whole slide image (WSI) is now fast replacing the glass
slide for diagnostic purposes. A typical WSI is often extremely
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Fig. 1. The emerging need for Model Parallelism

large, and it is typical for pathologists to view images that are
100,000x 100,000 pixels in size and were captured at very high
magnification levels (10-60x). A pathologist will typically
follow a multi-scale resolution approach to examine tissue
regions on a whole slide image (WSI) as shown in Figure 2.
The goal of such examination is to objectively measure the
degree of abnormality (or grade) of a tumor for a disease
such as cancer.

To address these new requirements, we investigate various
parallelism approaches for DNNs in this paper. The basic
approach to implement model parallelism involves dividing the
model itself into smaller partitions and assigning these parti-
tions to different PEs. During training, each PE computes on a
given partition and communicates the result with neighboring
PEs during the forward pass and the backward pass. Because
of the data dependency in the forward and backward pass, at
any given time, only one PE does the computation while the
rest of the PEs remain idle. For example, an arbitrary layer
L; requires data from L(; 1) in the forward pass, forming
a dependency edge from Layer L;_1) to L;. The inverse
holds true for the backward pass. The inherent dependencies
of forward and backward pass serialize the workers involved
in model parallel training leading to the under-utilization of
resources as shown in Figure 3.

A. Motivation

Recent research studies [7], [8], [9] address some of the
requirements of model parallelism. However, under-utilization
(Figure 3) of resources largely remains unaddressed. Exist-
ing systems employ techniques like pipelining to overcome
the limitation of inherently serialized forward and backward
passes. However, pipeline parallelism, which is a special case
of model parallelism, is only applicable if several training
examples (i.e., batch size = K, where K >> 1) can fit inside
the PE’s memory. This is not always possible as certain state-
of-the-art models only fit in the PE’s memory for a unit batch
size. Any increase in batch size overflows the PE’s memory,
and hence the model becomes out-of-core and not trainable.
These problems exist for all out-of-core models. However, this
is exacerbated by pressing application-level needs for training
on even larger images.

In this context, we discuss a concrete digital pathology
scenario. To diagnose a disease or its grading, a pathologist
must identify certain histologic structures such as elongated
follicles, necrosis, glands, and cancer nuclei. The morphology
appearance of these structures is an important indicator for
the presence and the severity of a disease. Some of these
histologic structures are analyzed on a low magnification level
to capture their architecture arrangements (i.e tram tracks in
tall cell variant (TCV) of papillary thyroid cancer (PTC)) while
others need to be analyzed at a high magnification level to dif-
ferentiate diagnosis (i.e nuclear stratification). Therefore, due
to their relatively large size, the images are tiled into patches at
different resolution levels depending on the histologic structure
being analyzed. Larger tile sizes at a high magnification level
preserve the cellular features as well as their architectural
arrangement. These application-level requirements cannot be
satisfied by existing DNN training systems and thus there
is a need for a truly memory-efficient system. The broad
challenge that we solve in this paper is as follows: How can we
design a model parallelism solution that is 1) memory-efficient,
2) offers better training speed compared to state-of-the-art
systems, and 3) supports emerging real-world use cases like
digital pathology? Several concrete design and implementation
challenges lie in designing such a system:

o How can we reduce the under-utilization of memory in a
model parallelism system?

e How can we design a GPU-enabled system that can
avoid unnecessary data movement between CPU and
GPU caused by limitations in TensorFlow and other high-
level frameworks?

o« How can we design a memory-efficient system that not
only fully utilizes the memory but also offers better
throughput by exploiting additional compute?

e Can model parallelism be made as scalable as data
parallelism by a novel integration of data and model
parallelism?

e Can we design sufficiently deep neural networks that
can capture both finer-level cellular characteristics
and coarse-level tissue organization in high-resolution
histopathology images?

B. Contributions

To the best of our knowledge, no state-of-the-art model
parallelism system is truly memory-efficient. Related studies
on data, model, and hybrid-parallelism and their major features
are compared with the proposed system in Table I. We
extensively study and implement existing model parallelism
approaches to understand various limitations and address them
systematically in the proposed system called GEMS. Fur-
thermore, to highlight the real-world impact of GEMS, we
collaborate with pathologists and deploy GEMS to analyze
WSIs pertaining to the analysis for tall cell variant (TCV) of
the papillary thyroid carcinoma (PTC) manifest as histopatho-
logical images. The key contributions of this paper are as
follows:



(a) A whole slide image (WSI) (b) A tile at 10x magnification level (c) A tile at 20x magnification level

Fig. 2. 2(a) A Hematoxylin and Eosin stained whole slide image labeled as Tall Cell Variant (TCV) of the papillary thyroid cancer (PTC). 2(b) A 1024 x1024
image tile at 10x magnification level shows histologic feature of elongated follicles arranged in parallel cords or tram tracks. 2(c) A 1024 x 1024 image tile

at 20 x magnification level shows cellular features of tall cells (cf. Section IX-A)
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TABLE I

FEATURES OFFERED BY GEMS COMPARED TO EXISTING FRAMEWORKS

o We propose, design, and evaluate GEMS; an integrated

system that provides memory-efficient model parallel .

training and scalable hybrid parallel training.
o To overcome the limitations in existing systems, we pro-

pose several design schemes: 1) Basic Model Parallelism .

(GEMS-Basic), 2) Memory Aware Synchronised Train-
ing (GEMS-MAST), 3) Memory Aware Synchronised
Training with Enhanced Replications (GEMS-MASTER),

and 4) GEMS-Hybrid that combines model and data .

parallelism.

GEMS offers up to 1.36x speedup with MAST and
1.83x speedup with MASTER over existing model par-
allelism techniques including GEMS-Basic.

We develop a comprehensive analytical model for MAST
and MASTER that guides our performance expectations
and verify its effectiveness through experimental evalua-
tion.

We report near-linear scaling (97.32%) of hybrid parallel



training on 1,024 Volta V100 GPUs for GEMS-Hybrid.

e We develop a high-level TCV classifier (a custom
ResNet-110-v2) as an initial step to provide a robust
diagnosis on much-larger 1024 x1024 tiles that is only
made possible through the proposed GEMS system.

o GEMS provides reduced training time (from 7.25 hours
to 28 minutes) for out-of-core training of the newly
developed ResNet-110-v2 based TCV classifier on 128
Volta V100 GPUs.

II. BACKGROUND
A. DNN Training

A DNN is a directed, weighted graph of neurons with non-
linear mappings between a set of inputs x and a set of learned
outputs y. Each neuron is composed of a non-linear activation
function g applied to the neuron’s inputs. Each subsequent set
of neurons are grouped into layers. Training the DNN entails
adjusting the weights so that a prediction loss function L is
minimized; weights are adjusted iteratively in training steps.
At each training step, an input sample is fed through each
layer of the network, and each neuron’s weights/activations are
applied sequentially. The loss gradient L is then propagated
back through the network, and neuron weights are updated to
reduce the loss. This concludes a training step, and the process
is repeated until either the desired loss is achieved or the loss
function reaches a global/local minima. Deep Learning frame-
works like TensorFlow and PyTorch have dynamic memory
requirements for each DNN training step: 1) As each layer
of the DNN is computed in the forward pass, its values (and
all values from previous layers) must be held in memory. 2)
As each weight update is computed in the backward pass, its
values may be removed from memory. Therefore, the memory
requirements at each training step increase for each layer of
the forward pass, then decrease for each layer of the backward
pass. This insight is the key to our work. Distributed training
can be realized using different strategies like data, model, and
hybrid parallelism.

III. CHALLENGES IN DESIGNING MEMORY-AWARE
DISTRIBUTED DNN TRAINING

We now highlight challenges in designing a memory-aware
DNN training framework like GEMS that can support emerg-
ing real-world requirements including the high-resolution im-
ages common in digital pathology.

Challenge-1: GPU-based Communication in TensorFlow

Communication is a necessary evil in distributed/parallel train-
ing of DNNs. To improve its performance, we have to either
optimize the blocking communication primitives for GPU
communication or overlap it with the computation. In basic
Model Parallelism, DNN is divided into smaller partitions and
each partition is assigned to a different GPU. Partition P;
cannot start computation before receiving output from P;_;.
Therefore, model parallelism suffers from the serializability
problem (i.e. there are data dependencies in the computation)
and there exists little opportunity to overlap computation and

communication. MPI runtimes offer optimized communication
primitives and rely on CUDA-Awareness to optimize GPU-to-
GPU communication. mpi4py provides high-level MPI bind-
ings for Python. However, mpidpy cannot be directly used
with TensorFlow because of two main reasons: 1) mpidpy
requires NumPy or Numba arrays as data. At the same time,
TensorFlow has its own data management for storing Tensors,
thereby making usage of Numba arrays impossible, and 2)
TensorFlow’s Tensor objects can be converted to NumPy
objects, but it requires an additional copy from GPU to CPU
which increases the overhead for GPU-based communication.
Challenge-2: Memory management in TensorFlow

To develop a memory-aware model parallelism solution, it
is essential that deep learning framework provides memory
management functionalities. However, TensorFlow allocates
the memory at the beginning of the program and manages
this memory itself. Even if the memory is free for some time,
TensorFlow does not provide any functionality to deallocate
memory so that it can be used by other processes. The absence
of explicit memory management increases the difficulty of
implementing memory-aware designs for model parallelism.
Challenge-3: Scaling Memory-Aware solutions

A memory-aware solution that cannot scale to hundreds of
GPUs is not very useful. Generally, model parallelism is
used to fit the DNN into a small number of GPUs, and
data parallelism is used to scale out the DNN to a higher
number of GPUs. Therefore, a scalable solution for out-of-core
models is required. Applying data parallelism to the memory-
aware model parallelism is a non-trivial problem since a
model’s parameters are spread across multiple GPUs, which
is in contrast to basic data parallelism, where parameters are
stored in a single GPU. Therefore, we have to design an
advanced version of data parallelism that supports parameters
split across GPUs, and can also give similar or better speedup
than basic data parallelism.

IV. LIMITATIONS IN EXISTING APPROACHES FOR MODEL
PARALLELISM

We provide an overview of various existing model paral-
lelism approaches and discuss their limitations.

A. Basic Model Parallelism

A basic approach to train out-of-core DNNs is to split
the DNN across multiple GPUs before applying a distributed
forward and backward pass. The out-of-core DNN is parti-
tioned, and each partition is placed on a single GPU. Send
and Recv operations are used to implement distributed forward
and backward propagation. Figure 4 shows how a DNN is
split into two partitions using two GPUs with send and recv
communication.

L# : Layer number

Input Output [ Input -

Fig. 4. Conversion of a sequential DNN to basic model parallel approach.

In forward propagation, the data is input to the first model
partition at GPU1, and the result of the L2 layer is sent to



GPU2 using send and recv primitives. At GPU2, the received
activations are used to compute the final prediction and its
error (the loss value), which is used to calculate the gradient
in the backpropagation algorithm. Partial errors are needed at
GPU1 to implement the backward pass; therefore, GPU2 sends
partial errors to GPU1 in the backward pass. In basic model
parallelism, the DNN can be partitioned into more than two
partitions, but the maximum number of partitions is limited
by the maximum number of layers. There are two main issues
with basic model parallelism: 1) Under-utilization of resources
(cf. Figure 3) and 2) A non-trivial and complex implementa-
tion compared to data parallelism. Under-utilization happens
as follows. If a model is partitioned across eight GPUs, then
at any given time, only one GPU is doing computation while
the other seven GPUs are idle; therefore, the basic imple-
mentation of model parallelism suffers from under-utilization
of available computation resources. On the implementation
complexity front, model parallelism is challenging to design
since existing DL frameworks do not provide distributed back-
propagation implementations. Partitioning a DNN itself is a
complicated task as there can be skip connections or residual
connections [13] in the DNN topology.

B. Model Parallelism with Pipelining

To mitigate resource under-utilization in basic model paral-
lelism, pipelining divides the input batch into smaller batches
called micro-batches. The number of such micro-batches can
be called parts. When the number of parts=1, the pipelining
design becomes similar to basic model parallelism. Figure 5
shows the pipelining approach on 4 GPUs with 4 parts to fill
the pipeline. Typically, the number of parts should be equal
to the number of DNN splits to utilize the pipeline fully.
There are two main issues with the pipelining approach; 1) the
maximum number of parts is limited by the batch size, and
2) the performance is poor compared to Data Parallelism or
Hybrid Parallelism. If the batch size is smaller than the length
of pipelining, the micro-batches will not fill the pipeline.
Further, when the largest batch size is 1 for an out-of-core
DNN on multiple GPUs, it is not possible to use pipelining as
a batch cannot be further divided. The above two cases will
result in under-utilization of GPU resources. The second issue
becomes more relevant when training on a large number of
GPUs. Pipelining can improve the utilization of resources, but
it’s still limited in performance compared to DP after a certain
number of GPUs, and the length of the pipeline is limited by
the batch size. Because of the above two issues, there is a need
to further optimize both basic and pipeline model parallelism
to get better performance.

C. Model Parallelism with Delayed Synchronization

When the DNN size and image size become too large, it is
not possible to train the DNN with a Batch Size (BS) > 1 on
multiple GPUs. Training hyperparameters like the learning rate
and momentum depend on the BS, and training a model with
BS equal to 1 can lead to accuracy degradation as gradients
are not stable. Past research [14] has shown that the optimal
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Fig. 5. Computation pattern in Model Parallelism with pipelining approach.
Input batch is divided into smaller micro-batches to optimise the performance
of basic model parallelism.

BS is between 2 and 32, while [15] shows that increasing
BS can improve DNN training. A simple way to emulate
BS equal to N behavior is via the Delayed Synchronization
approach. In this approach, the global parameter update is
not performed immediately after the backward pass. In each
backward pass, gradients are added to the previous gradients.
After N backward passes, the accumulated gradients are used
to update the DNN parameters. Figure 6 shows an example
computation pattern of Model Parallelism using a DS ap-
proach. Parameters are updated after the 2nd backward pass in
Figure 6. The main issue with this approach is that it does not
increase the performance as we increase the BS and throughput
(images/second) remains constant in this approach. Therefore,
we need an approach that can train a DNN model with any
batch size and achieve better performance.
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Fig. 6. Model Parallelism with Delayed Synchronization approach.

V. PROPOSED GPU ENABLED MEMORY AWARE MODEL
PARALLELISM SYSTEM (GEMS)

We investigate several design schemes to address the limita-
tions in existing approaches. Due to lack of publicly available
implementations of basic model parallelism, pipeline paral-
lelism, and model parallelism with delayed synchronization,
we implement all existing approaches as well. We call them
GEMS-Basic and GEMS-Pipeline. These are in addition to the
three proposed approaches discussed below.

A. Memory Aware Synchronised Training (GEMS-MAST)

To address the limitations discussed in Section IV, we
propose a new design called Memory Aware Synchronised
Training (GEMS-MAST).

Memory View (Motivation): One of the major problems
with basic and pipelining model parallelism is the under-
utilization of resources. Figure 3 shows the memory vacuum



during forward and backward propagation. After completing
the forward and backward passes for a given model partition,
the GPU has both free memory and free compute. This free
memory can be utilized to perform the forward and backward
passes of a new model. GEMS-MAST uses this free memory
and compute by training a replica of the same DNN in an
inverted manner. Figure 7 shows a memory view of the GEMS-
MAST design for forward and backward passes of two model
replicas and the improvement made possible by it.
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Fig. 7. Memory-Aware Synchronous Training (GEMS-MAST): Compared
to GEMS-Basic, the proposed GEMS-MAST design utilizes free memory
available and fully utilizes the GPU computation to train an additional model
replica.
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Computational View (Detailed Design): The proposed de-
sign can be viewed as training two model replicas on the
same number of resources before applying data parallelism
in the end to synchronize the parameters. Therefore, each
process/GPU will have two model partitions that are trained
independently, and their parameters are synchronized in the
end. Figure 8(b) shows the order of computation and com-
munication in the proposed GEMS-MAST approach. Training
model replica 1 is similar to training in GEMS-Basic. After
completing the forward and backward passes on model replica
1, GPU4 has free memory and compute while the other GPUs
are applying backpropagation to their respective partitions of
model replica 1. GPU4 will start the forward pass for model
replica 2, essentially training model replica 2 in an inverted
way. After applying forward and backward pass for both model
replicas, the parameters are synchronized with an allreduce
operation. It is important to note here that two allreduce
operations are required to synchronize parameters as each rank
has two model partitions; however, these allreduce operations
are not global. For example, to synchronize parameters for
model partition 1, processes on GPU4, and GPU1 will perform
an allreduce, while at the same time processes on GPU3
and GPU2 will perform an allreduce for model partition 2.
Similarly, an allreduce is performed for model partitions 3
and 4. Hence, the allreduce operation can be overlapped.

B. Memory Aware Synchronized Training with Enhanced
Replications (GEMS-MASTER)

Instead of synchronizing the parameters after applying the
forward and backward passes for model replicas 1 and 2,

more compute can be stacked together. Specifically, the allre-
duce overhead can be minimized by stacking compute. It is
important to note that we are still using two model replicas
even if we are applying more than two forward and backward
passes, as the same model replicas can be used for subsequent
forward and backward passes. Each backward pass on the
same model replica has different gradients because the input
batch is different. Gradients for the same model replica can
be reduced locally with a summation operation. In the end,
we have to synchronize the parameters of two model replicas;
therefore, we need only two allreduce operations.

This approach enables researchers to train a model with
any batch size on the same number of resources and gives
improvement as you increase the batch size, which is not
possible in GEMS-Basic with delayed synchronization (Sec-
tion IV-C). Figure 8(c) shows the performance improvement
possible by using GEMS-MASTER compared to GEMS-Basic
and GEMS-MAST. It also shows the computation and com-
munication (allreduce) pattern for the GEMS-MASTER design
and contrasts them with other approaches. GEMS-MASTER
is a generalized version of the GEMS-MAST design. The
number of compute replications (denoted by 7 in Section VI)
is 2 for GEMS-MAST and 4 for GEMS-MASTER.

C. Integrating Memory Aware Model Parallelism and Data
Parallelism (GEMS-Hybrid)

Model parallelism is suitable for out-of-core DNNs, but
it is generally not as scalable as Data Parallelism (DP).
Traditionally, DP has given near-linear speedup for models
trainable on a single GPU. With some minor modifications,
model parallelism methods can be combined with DP such
that out-of-core DNNs can be trained while maintaining the
performance speedup of DP.

Hybrid Model Parallelism (GEMS-HY Basic): Both basic
and pipeline model parallelism can be combined with data
parallelism. At the end of the backward pass, each GPU/pro-
cess initiates an allreduce operation for the model partition it
is responsible for. Figure 9(a) shows a basic implementation
of the hybrid design. An Allreduce operation starts once
all the processes have finished the backward pass for their
model partition. There is no overlap of computation and
communication. But in hybrid model parallelism, the allreduce
communicator does not have all the processes, but only the
processes which have the same model partition. There will be
several simultaneous allreduce operations with a different set
of processes. The number of simultaneous allreduce operations
is equal to the number of model partitions. Figure 9(b) shows
the computation and communication patterns with respect to
time for two model parallelism replicas.

Hybrid Memory Aware Synchronized Training: Similar to
the GEMS-HY Basic, DP can be combined with the pro-
posed GEMS-MAST and GEMS-MASTER; labeled GEMS-
HY MAST and GEMS-HY MASTER in Section VII, re-
spectively. Similar to GEMS-MAST, there are two allreduce
operations at the end of each model partition in the hybrid
design. Each allreduce starts after all processes have finished
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the backward pass due to the data dependency. Unlike GEMS-
HY Basic, the number of processes in each allreduce is
twice the number of DP clusters since each DP cluster has
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two model parallelism replicas. In the GEMS-HY MASTER
approach, the number of allreduce operations and the number
of processes in an allreduce operation remains the same;
therefore, the allreduce cost can be minimized by increasing
the number of replications (7). Figure 10 shows the overall
architecture of the GEMS-HY MAST approach.

VI. ANALYTICAL MODEL FOR MODEL PARALLELISM

Basic Model Parallelism: We present an anlytical model to
calculate the time spent in computation and communication
in the basic model parallelism. In the end, we calculate the
idle time per GPU for basic model parallelism. The number
of model partitions as well as the number of GPUs are
represented by n. The computation and communication time
are denoted by Teompute and Teommunication, respectively.
Tompute 1s equal to the time spent in forward and backward
pass in each partition. Teommunication 1S given by Eq 2.
UnderutilizedCompute; denotes the time when the i** GPU
is free (idle) during one complete forward and backward
pass in DNN training. F'P; and BP; denote the forward and
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is used to synchronize the performance. Instead of two processes involved
in allreduce as in Hybrid Model Parallelism (Figure 9(b)), there are four
processes in each allreduce in GEMS-HY MAST since each partition is on 4
GPUs in two GEMS-MAST replicas.

backward pass times respectively for i*”* model partition. n; is

the number of send-recv operations between model partition
¢ and ¢ 4+ 1. The latency of communicating a given message
is denoted by lat, e.g., lat;; denotes the latency of sending a
message from ¢ to j.

n n
Teompute = y_ FPi+ Y  BP, (1
i= f
n—1 n;
Tcommunication =2x Z(Z Zaftm) (2)
i=1 j=1
Ttotal = Tcompute + Tcommunication (3)

UnderutilizedCompute; (%) = 100 x ( wmpu%;"fili-s-BP )

“)
Model Parallelism with Delayed Synchronization: The time
required for a batch size of "N’ can be seen in Eq 5. Similarly,
Tcommunica,tion is equal to Tcommunica,tion (Eq 2) mUItlphed
by ‘N’. The total time is given by Eq 3.

n n
Teompute =N x () FPi+)_ BP) ®)
i=1 i=1
GEMS-MAST: Egs. 6 and 7 show the time spent in com-
putation and communication for the proposed GEMS-MAST
design. Eq. 8 calculates the underutilized compute per GPU.
It may be directly inferred that the under-utilized compute for
MAST is less than MP-Basic by comparing Eqs. 8 and 4.

Tcompute_MAST:ZFPi‘FQZBPZ“I‘FPn (6)

i=1 i=lp_ 1 n,

Tcommunication =2x Tallreduce +4 x Z(Z latu) (7)
i=1 j=1

_ (FPH-BPx'+FP,L—L+1+BPn—'L+1)) % 100
Teompute_ MAST
®)

GEMS-MASTER: Eq. 9 shows the computation time for
MASTER with respect to the number of replications (7))
and forward/backward pass time. The total time for MAS-
TER is T amrasTeRr + Talireduce (time required for allreduce
operation) + Tiommunication (time required for send/recv
operation in forward and backward pass, similar to Eq 2).
The time improvement can be calculated by subtracting Eq 9
and Tyiireduce from Eq 5. It is hard to calculate time for
forward and backward pass for a particular partition as it
needs profiling variables in implementation. Thus, Eq 10 can
be rewritten as Eq 11 where 7 is the number of replications
(Analysis in Section VII-E).

UnderutilizedCompute; (%) = (1

LS (FPi+ BP,)

+(%)(FP” + BP,) when 7 is odd
T MASTER() = gzill(ppl + BP) (9)
+(4 - 1)(FP, + BP,) + FP,
Zzn:l BP, else

gz;z; FPL + (g - 1) Z;le BPZ - Talh‘educe

(10)

ﬂmpmmed (77) =

71’L'mp7‘o'ucd(77) = (% - 1)(En1pr0ved(4) - n7nprovcd(2)) + Timproved(2)
(1)

VII. PERFORMANCE EVALUATION

We first provide details on the evaluation platform and im-
portant performance metrics. Next, we divide the performance
evaluation section into three broad categories:

1) In-depth Performance Evaluation of various GEMS ap-
proaches (Sections VII-D, VII-E, and VII-F).

2) GEMS vs. existing frameworks that offer model/hybrid
parallelism (Section VIII).

3) Impact of GEMS on a real-world digital pathology
problem (Section IX-B).

A. Evaluation Platform

All the experiments were conducted on LLNL/Lassen,
which is an OpenPOWER system equipped with POWER9
processors and 4 NVIDIA Volta V100 GPUs. Each node of the
cluster is a dual-socket machine, and each socket is equipped
with 22-core IBM POWERDY processors and 2 NVIDIA Volta
V100 GPUs with 16 GB HBM2. NVLink is used to connect
GPU-GPU and GPU-Processor. X-Bus is used to connect two
NUMA nodes.

MPI Library: MVAPICH2-GDR [16] 2.3.3 is used.

Deep Learning Framework: TensorFlow v1.14 [17] is used
for performance evaluation and Keras model definition module
included in TensorFlow is used to define DNNs.

Deep Neural Networks: We used ResNet variants defined in
Keras examples/applications [18].



B. Evaluation Setup and Performance metrics

Two performance metrics are used to evaluate the perfor-
mance of proposed approaches; 1) Time per batch and 2)
Images per sec. Performance metrics and terms used in the
characterization are explained below.

o Time per batch: Time required to complete one weight
update step.

« Images per sec: Number of images processed per sec in
DNN training. Images per sec = EBS / Time per batch.

e 1: Number of model replications in GEMS-MASTER or
GEMS-Basic.

o Partition: A slice of DNN, which is trained on single
GPU in model parallelism.

o Parts: Number of micro-batches in model parallelism
with pipelining.

o Replica: A copy of DNN with same parameters.

« Effective Batch Size (EBS): This is equal to the effective
number of samples used in each weight update during
backward pass. It is calculated as follows:

— GEMS-Basic: EBS = BS (Batch Size) x n

— GEMS-MAST: EBS =2 x BS

— GEMS-MASTER: EBS =7 x BS

— GEMS-HY MP: EBS = number of DP replicas
(DPR) x BS

— GEMS-HY MAST: EBS = DPR x 2 x BS

— GEMS-HY MASTER: EBS = DPR x 7 x BS

C. Evaluation Methodology

In this section, we will describe our experimental method-
ology used to conduct the experiments. Performance can be
evaluated in two ways; 1) the number of images processed per
sec (higher the images/sec less will be the time required to
complete one epoch) and 2) Time needed to reach a particular
accuracy for the given DNN. We evaluate our proposed designs
on both fronts. Broadly, our experiments can be divided into
three categories; 1) Performance analysis of proposed designs
on different DNNs, 2) Comparison of GEMS with existing
strategies, and 3) Showing the benefit of GEMS on a real
dataset.

In Sections VII-D, VII-E, and VII-F, we evaluate the
performance of proposed designs in terms of time required
to process one batch of inputs. One of our main motivations
is to accelerate the training of DNNs, where the pipelin-
ing approach is not possible. In other words, the maximum
trainable batch size on the given number of resources is 1.
Therefore in Section VII-D, we increase the size of the DNN
so that maximum trainable batch size remains one and we
can show the effect of the number of model partitions on
the speedup of GEMS-MAST design. GEMS-MASTER is a
generalized version of GEMS-MAST; therefore, we pick one
DNN evaluated in Section VII-D to demonstrate the speedup
for the different numbers of replications 7 (a parameter used
in GEMS-MASTER). Our motive in this paper is to enable
the training of large DNNs; hence we scale ResNet-1k on
512x512 image size to 1024 GPUs and compare proposed

GEMS-HY MAST and GEMS-HY MASTER with GEMS-
HY Basic.

In Section VIII, we compare our proposed designs existing
solutions like spatial parallelism and pipelining. We compare
two types of DNNs in comparison with spatial parallelism:
1) DNNs trainable with BS>1 and 2) DNNs trainable with
maximum BS=1 on a given number of resources. We select
ResNet-56 model to compare both pipelining and spatial
parallelism approaches. We have considered ResNet-110 in
Section IX-B; therefore, we provide a comparison for this
model also. Further, we compare two different types of DNNs
to show speedup over GPipe. We consider AmoebaNet model
(used in [7] to show the speedup of pipeline parallelism)
and ResNet-110 (used in Section IX-B). In the end, we
train ResNet-110 in histopathology images and show speedup
possible with proposed designs in terms of training a DNN
model to the required accuracy.

D. Memory Aware Synchronized Training (GEMS-MAST)

We evaluated many ResNet variants to compare GEMS-
Basic and the proposed GEMS-MAST design. The main issue
with the use of pipelining for model parallelism is that it
requires an EBS greater than 1, which is not possible in large
DNNSs that barely fit in the memory of multiple GPUs. For
instance, the ResNet-164 v2 model requires at least 4 GPUs
to train on an image input of 1024. Even on 4 GPUs, it
requires an EBS of 1, which makes pipelining impossible
to use. To train this model with an EBS greater than 1,
we have to increase the number of GPUs. If we double the
number of GPUs, we cannot train the model with EBS > 2.
Therefore, the pipeline cannot be filled completely. Even if we
use EBS = 2 on 8 GPUs, the pipelining performance remains
a challenge compared to hybrid MP + DP (Section V-C) with
two DP replicas. Our proposed GEMS-MAST design enables
the researchers to train a model with EBS =2 and get speedup
over GEMS-Basic on the same number of GPUs, which is not
possible with any state-of-the-art approach.

Figure 11 shows the performance improvement when us-
ing GEMS-MAST over GEMS-Basic. We evaluated different
models to show performance improvement for DNNs with
different layer counts. Speedup or percent improvement in time
depends on the number of model partitions (can be inferred
from Eq. 8). In Figure 11, the speedup increases as the number
of model partitions increase, which corroborates with Eq. 8.
Theoretically, the maximum speedup possible with GEMS-
MAST is always less than 1.5x as we can only overlap one
full FP and BP in 2 FP’s and 2 BP’s. Allreduce is also required
in the proposed approach to synchronize the parameters. Thus,
the speedup is always less than 1.5x. For the 16 GPU case,
we are able to get 1.36x speedup over GEMS-Basic for the
ResNet-326 model evaluated on an input image size of 1024
x 1024.



4 |E=GEMS-Basic 14
E [CJGEMS-MAST
£ 3 |-m-Speedup
5 13 o
= 3
a2 @
5 2
g 129
o1 P
£ T
= o -

0 o B 11

ResNet 110 Resnet 164 ResNet 218 ResNet 326
v2 (2 GPUs) v2 (4 GPUs) v2 (8 GPUs) v2 (16 GPUs)
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E. Memory Aware Synchronized Training with Enhanced
Replications (GEMS-MASTER)

GEMS-MASTER enables researchers to train DNN with
any batch size, which is not possible with GEMS-MAST.
Training hyperparameters such as the learning and momentum
rates depend on a particular batch size. If the batch size is
changed then these hyperparameters must be tuned again to
maintain accuracy. Another reason for using this design is
to train the model faster, which is not possible in GEMS-
Basic with delayed synchronization (Section IV-C). GEMS-
MASTER is equivalent to the proposed GEMS-MAST design
when 1 = 2.

We evaluated GEMS-MASTER on different models train-
able on 4 and 8 GPUs to showcase the effectiveness of
the proposed design. Figure 12 compare GEMS-MASTER to
GEMS-Basic (with delayed synchronization) for ResNet-164.
We show up to 1.83x speedup for ResNet-164 on 1024 x 1024
image size using GEMS-MASTER.
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Fig. 12.  GEMS-Basic and GEMS-MASTER performance comparison
(ResNet-164 for 1024 x 1024 image size on 4 GPUs)

We present the validation of the analytical model in Fig-
ure 13 for ResNet-1k models. Equation 10 or Equation 11 can
be used to calculate the amount of improvement possible with
GEMS-MASTER for a given 7. Equation 10 needs profiling
variables to be introduced to calculate the improvement, which
is not the primary objective of this study. Therefore we use
Equation 11 to calculate the improvement for 7 > 4 since
we have values for T;pproved(n = 2) and Timproved(n = 4).
Figure 13 shows the time per batch predicted by the analytical
model and the actual time along with the error in percentage.
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Fig. 13. Experimental Validation of the Analytical Model for GEMS-
MASTER(ResNet-1K with 512x512 image size on 8 GPUs)

F. GEMS-Hybrid Designs

To showcase the scalability of proposed designs, we trained
ResNet-1K on up to 1024 GPUs using hybrid designs (Sec-
tion V-C). We are able to get near-linear speedup for proposed
designs. GEMS-MASTER (n = 64) gives a better speedup
than other approaches because the computation to communi-
cation ratio is higher. The number of DP replicas on 1024
GPUs is 128 since the model is partitioned across 8§ GPUs;
therefore, the ideal speedup is 128 x. GEMS-HY MAST and
GEMS-HY MASTER give 89 and 124.58x speedup on 128
model replicas (1024 GPUs), respectively.
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Fig. 14. GEMS-Hybrid: Scaling ResNet-1K on 1,024 GPUs.

VIII. GEMS vS. EXISTING FRAMEWORKS

In this section, we compare GEMS with state-of-the-art
existing frameworks like Mesh-TensorFlow (MTF) and GPipe.
Model Parallelism frameworks can be broadly into two cate-
gories; 1) Frameworks that use approaches like spatial and
channel parallelism and 2) Pipelining frameworks like Gpipe,
HyPar-Flow. Therefore we present comparison results for both
types of frameworks.

A. GEMS vs. Frameworks with Spatial Parlallelism

There are a few frameworks that implement spatial paral-
lelism to distribute DNN training across multiple nodes. The
performance of any parallelization strategy highly depends on
the DL framework [19], [20], [21] that is being used in the
backend. Therefore, we select MTF for the comparison as
it has support for spatial parallelism and uses TensorFlow
as backend. In this way, we ensure that the performance
gain is the result of the proposed design, not because of the



underlying framework. We compare two types of DL models
to demonstrate the effectiveness of our proposed designs: 1)
DNN trainable with BS > 1 and 2) DNN trainable only
with BS=1. Figure 15(a) shows the comparison for ResNet-
56 using 512x512 images trainable with maximum BS=8.
We show that GEMS-MAST is 1.31x and 1.16x better than
pipelining and MTF, respectively, while the GEMS-MASTER
is up to 1.54x and 1.36x better than pipelining and MTF,
respectively. Figure 15(b) shows the comparison for ResNet-
110 using 1024 x 1024 images (considered in Section IX-B)
trainable with maximum BS=1. Pipelining approach is not
possible for this DNN as the maximum BS trainable is 1. We
show that GEMS-MASTER is up to 1.74x and 1.24x better
than GEMS-Basic and MTF, respectively.
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Fig. 15. Comparison of GEMS with Mesh-TensorFlow.

B. GEMS vs. Frameworks with Pipeline Parallelism

We do not compare with GPipe’s public version for Ten-
sorFlow as it is based on the deprecated #f.Session API.
However, there exists an implementation of GPipe for PyTorch
called torchgpipe [22]. torchgpipe uses python’s multiprocess-
ing module to implement the pipelining approach. Therefore,
torchgpipe works only on a single node. Directly comparing
our TensorFlow implementation with torchgpipe will be unfair
as it will also include the performance difference of PyTorch
and TensorFlow DL frameworks. Therefore, we implement
GEMS-MAST and GEMS-MASTER designs in PyTorch to
give a fair comparison with torchgpipe. Figure 16(a) shows the
comparison of GEMS-MAST and torchgpipe for AmoebaNet
network with 1024 x 1024 image size. We have used the Amoe-
baNet network with num_layers=18 and num_filters=208 pro-
vided in models directory in torchgpipe’s GitHub repo and
show that GEMS-MASTER is 1.32x better than torchgpipe.
Figure 15(b) shows the comparison for ResNet-110 using
1024x 1024 images (considered in Section IX-B) trainable
with maximum BS=1. We show that GEMS-MAST is 1.21x
and GEMS-MASTER is 1.65x better than torchgpipe.
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Fig. 16. Comparison of GEMS with torchgpipe.

IX. DIGITAL PATHOLOGY
A. Need for Deep Learning

Tall cell variant (TCV) is the most aggressive subtype
of Papillary thyroid carcinoma. TCV was first defined as a
papillary thyroid cancer when at least 30% tall cells by Hawk
and Hazard in 1976 [23]. A cell is considered tall when its
height is at least twice or thrice its width. However, there is
still controversy regarding the proportion of tall cells in thyroid
tissue and the appropriate aspect ratios (height vs. width)
for diagnosis. The inherent subjectivity of TCV diagnoses
and inter-observer variability provides an opportunity for DL
methods to objectively classify TCVs. There is a need to
understand both the histopathology and the molecular basis in
order to be able to diagnose and treat afflicted patients. A sub-
group among authors is working to understand the morphology
and histological basis of TCVs and PTCs.

B. Benefits of GEMS for Digital Pathology

To highlight the benefits and impact of GEMS on a real-
world use-case, we obtained 16 Hematoxylin and Eosin (H&E)
stained WSI, 8 classified as classical papillary thyroid car-
cinoma (PTC), and 8 classified as the tall cell variant or
TCV. Each WSI was divided into 1024x1024 tiles at x10
magnification level (Figure 2). It should be noted that some
tiles will contain little or no tissue. For this study, the tiles
with the occupancy of 50% of the area were chosen for further
analyses. Our goal is to achieve higher levels of classification
accuracy in a reasonable time frame. In this section, we
provide results that include both the accuracy and training
speed for different models on high-resolution histopathology
images shown in Figure 2.

We experimented with several models pre-trained on the
ImageNet dataset and fine-tuned them on the digital pathology
dataset described above. We eventually settled on a custom
ResNet110-v2 model that offered the best accuracy for our
use-cases. We trained this model on image tiles of 1024 x 1024
resolution. Because of memory limitation, ResNet110-v2 with
image size 10241024 can only be trained with BS 1 using
GEMS-BASIC. BS is 2 and 16 for GEMS-MAST and GEMS-
MASTER designs, respectively. We have trained the network
using the Adam optimizer [24] Table II shows the time
required to train the ResNet110-v2 model to 90% accuracy
for various GEMS variants including GEMS-Basic, GEMS-
MAST, GEMS-MASTER, and GEMS-Hybrid.

It is important to note that the ResNetl10-v2 model is an
out-of-core DNN, and it is not possible to train this model
with a batch size of two on four GPUs with GEMS-Basic.
Training accuracy is similar for GEMS-Basic, GEMS-MAST,
and GEMS-MASTER. Proposed designs are able to train the
DNN to 90% accuracy. We observed a 1.16x speedup for
GEMS-MAST and a 1.51x speedup for GEMS-MASTER in
terms of the time required to complete one epoch. We scaled
the DNN training to a large number of GPUs to demonstrate
the scaling efficiency of GEMS-Hybrid. We were able to
decrease the training time from 7.2 hours to 28 minutes
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Glg:fcs 1@ 8 0.001 7.25 (435) 1.04
%ﬂ‘g 14 8 0.001 6.28 (377) 1.19
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f{};xisd' 416) 7 0.001 1,34 (80) 5.65 36
g];xii 8 (32) 10 0.0025 0.98 (59) 10.69 6.8
(l-,l]yza/rlii 16 (64) 12 0.0025 0.65 (39.5) 19.18 12.3
g?&sd- 32 (128) 15 0.004 0.46 (27.8) 34.51 22.1
TABLE II

SCALING RESNET-110 v2 ON 1024 x 1024 IMAGE TILES EXTRACTED
FROM HISTOPATHOLOGY DATA (CF. FIGURE 2)

using GEMS-Hybrid. We conducted these experiments to show
the impact of the GEMS framework and how GEMS can
benefit researchers in finding the right DL model for their
applications.

X. RELATED WORK

With the growth of scientific applications requiring massive
data sample sizes (e.g. high-resolution images [25]), some
models have correspondingly become intractably large to run
on a single GPU [26]. Early experiments in model parallelism
techniques on GPUs were performed by Alex Krizhevsky
in [27]. Krizhevsky’s work in [28] introduced a single-tower
design that used data parallelism in convolutional layers but
model parallelism in fully-connected layers. LBANN intro-
duced many model parallel solutions including support for
spatial convolutions split across nodes in [12]. GPipe [7]
employs pipeline parallelism to enable the training of a variety
of extremely large models like AmoebaNet [29] on Google
TPUs and accelerators. GPipe’s public version is based on the
deprecated tf.Session API, so we implemented their pipelin-
ing approach for GEMS (GEMS-Basic and GEMS-Pipeline).
Furthermore, we implement proposed designs on the top of
pipelining and exploit it wherever possible. FlexFlow [11]
searches through parallelization strategies with simulation
algorithms and highlights different DNN parallelism dimen-
sions. FlexFlow is built with Legion [30] for communication
within a node and GASNet across nodes. We attempted to
compare our work with FlexFlow but ran into issues with
large models on our system. Mesh-TensorFlow (MTF) [9]
is a popular language for distributed DNN training which
distributes tensors across a processor mesh. MTF, like GPipe,
only works with deprecated TF APIs (sessions, graphs, etc.).
Further, MTF users need to re-write their model. Unlike
MTF, GEMS does not require any changes to the code/model.
Experimental comparisons with MTF and FlexFlow have been
discussed in Section VIII. Out-of-core methods like [1], [2]
take a different approach to deal with large models, which
is not directly comparable to model/hybrid-parallelism. We
summarize these related studies and their features in Table I.

XI. CONCLUSION

In this paper, we presented GEMS — an integrated system
that provides compute- and memory-efficient model parallel
training and scalable hybrid (data + model) parallel training.
GEMS employed two novel design strategies (MAST and
MASTER) proposed in this paper for efficient out-of-core
training. The proposed designs are evaluated against state-
of-the-art model parallel approaches from the literature using
large DL models such as ResNet-1K. We reported up to
1.36x speedup for MAST and up to 1.83x speedup when
using MASTER design. Furthermore, GEMS-Hybrid, a hy-
brid scheme that combines MAST and MASTER with data-
parallelism to scale-out on up to 1,024 GPUs was presented.
We achieved a near-linear scaling efficiency of 97.32% for
1,024 Volta GPUs. Finally, we collaborated with pathologists
to develop a custom ResNet-110-v2 mode for TCV clas-
sification using high-resolution histopathology images. The
proposed designs reduced the training time from 7.25 hours
to just 28 minutes by exploiting 128 Volta V100 GPUs. We
believe that GEMS will pave a way forward for solving
overarching problems in digital pathology, computer science,
and artificial intelligence. GEMS is an effort that highlights the
importance of collaboration across different research themes
to solve real-world problems by exploiting large-scale HPC
systems.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

The artifact contains the GEMS framework that we have designed
for this work. GEMS is a distributed training framework for Tensor-
Flow, which enables users to perform model parallelism on GPUs
in a user transparent manner. GEMS has basic model parallelism,
pipelining along with the proposed designs MAST, MASTER, hy-
brid model parallelism, hybrid MAST, and hybrid MASTER. GEMS
also implements CUDA aware MPI operations like point to commu-
nications and Allreduce communication operations for TensorFlow
using TensorFlow operators written in C++.

1 EXPERIMENT WORKFLOW

Datasets can be imported by using TensorFlow’s data import
functions. In this study, we have used ImageDataGenerator class
from tensorflow.keras module and imported the dataset using
flow_from_directory function, which gives a generator for training
and validation dataset. GEMS uses this generator to generate input
and output for the distributed DNN training.

One can use following command to run the GEMS framework
on 4 GPUs by using the proposed optimization schemes as follows.
For GEMS-MASTER ,

$ mpirun_rsh --export-all -n 4 --hostfile hosts
MV2_USE_CUDA=1 MV2_SUPPORT_DL=1 python gems.py
--strategy master

--mp-size 4

--save-data /PATH/TO/FOLDER

--learning-rate $LR

--batch-size $BS

--replications $eta

--dataset /PATH/TO/DATASET

--num-epochs 100

When the number of processes is more than the number of parti-
tions (-mp-size) for DNN training, GEMS will automatically use the
hybrid approach for the given strategy (Basic, MAST, MASTER).
For GEMS-Hybrid (MASTER),

$ mpirun_rsh --export-all -n 16 --hostfile hosts
MV2_USE_CUDA=1 MV2_SUPPORT_DL=1 python gems.py
--strategy master

--mp-size 4

--save-data /PATH/TO/FOLDER

--learning-rate $LR

--batch-size $BS

--replications $eta

--dataset /PATH/TO/DATASET

--num-epochs 100

2 EVALUATION AND EXPECTED RESULT

The detail log and results will be generated to the standard I/O, and
a CSV file containing the train and test log will also be generated.
CSV file contains information like training loss, training accuracy,

test loss, test accuracy, time spent in training, time spent in testing
for every epoch. The output of the CSV file is used to generate Table
II in the paper. By default, model weights are saved in HDF5 data
format after every epoch that can be used to continue the training
later or make predictions.

3 EXPERIMENT CUSTOMIZATION

GEMS provides customization for model hyperparameters and
model parallelism hyperparameters in the form of command-line ar-
guments. GEMS also provides the process to GPU mapping support
in TensorFlow for HPC systems, which have multiple GPUs per
node. Currently, we have the following command-line arguments
to customize the training

e —learning-rate
e —batch-size

e —num-epochs

e —dataset (/PATH/TO/DATASET/FOLDER)

e —save-data (/PATH/TO/FOLDER where model weights and
CSV file should be saved)

—strategy (Basic, MAST, and MASTER)

—-mp-size (number of model splits)

~lps (number of layers per split)

—parts (number of microbatches when pipelining is possible)
—num-gpus-per-node (number of GPUs per node)

How software can be obtained (if available)
In the future, we plan to release the software through the project
website and it will be downloadable without any restrictions.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: System LLNL/Lassen, IBM Power9,
NVIDIA Volta V100-NVLink GPUs

Operating systems and versions: RHEL7.6
Compilers and versions: x1/2020.03.18
Applications and versions: TensorFlow 1.14

Libraries and versions: MVAPICH2-GDR 2.3.3



Key algorithms: Distributed Forward and Back Propagation for
Deep Neural Networks

Input datasets and versions: Histopathology Images: 16 Hema-
toxylin and Eosin (H&E) stained WSI, 8 classified as classical papil-
lary thyroid carcinoma (CPTC), and 8 classified as TCV
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