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Abstract—The growth of big data applications during the last
decade has led to a surge in the deployment and popularity
of machine learning (ML) libraries. On the other hand, the
high performance offered by GPUs makes them well suited
for ML problems. To take advantage of GPU performance for
ML, NVIDIA has recently developed the cuML library. cuML
is the GPU counterpart of Scikit-learn, and provides similar
Pythonic interfaces to Scikit-learn while hiding the complex-
ities of writing GPU compute kernels directly using CUDA.
To support execution of ML workloads on Multi-Node Multi-
GPU (MNMG) systems, the cuML library exploits the NVIDIA
Collective Communications Library (NCCL) as a backend for
collective communications between processes. On the other hand,
MPI is a de facto standard for communication in HPC systems.
Among various MPI libraries, MVAPICH2-GDR is the pioneer
in optimizing GPU communication.

This paper explores various aspects and challenges of pro-
viding MPI-based communication support for GPU-accelerated
cuML applications. More specifically, it proposes a Python API
to take advantage of MPI-based communications for cuML
applications. It also gives an in-depth analysis, characterization,
and benchmarking of the cuML algorithms such as K-Means,
Nearest Neighbors, Random Forest, and tSVD. Moreover, it
provides a comprehensive performance evaluation and profiling
study for MPI-based versus NCCL-based communication for
these algorithms. The evaluation results show that the proposed
MPI-based communication approach achieves up to 1.6x, 1.25x,
1.25x, and 1.36x speedup for K-Means, Nearest Neighbors, Linear
Regression, and tSVD, respectively on up to 32 GPUs.

Index Terms—Machine Learning, cuML, MPI, GPUs

I. INTRODUCTION

The last decade has witnessed unprecedented growth in data
generated from diverse sources. These sources range from
scientific experiments—Ilike the Large Hadron Collider [1] and
Sloan Digital Sky Survey [2]—to social media platforms [3]
to personalized medicine [4]. A daunting challenge—common
to these disparate Big Data applications—is to process vasts
amount of data in a timely manner to gain vital insights and
drive decision making. To aid with this quest for better un-
derstanding, there has been a resurgence of Machine Learning
(ML) libraries, tools, and techniques that allow processing and
extracting useful information from this data through iterative
processing.
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Some of the popular ML libraries employed for Data
Analytics include Scikit-learn [5] and Apache Spark’s MLIib
[6]. These libraries are natively designed to support the exe-
cution of ML algorithms on CPUs. On the other hand, GPUs
have emerged as a popular platform for optimizing parallel
workloads because of their high throughput. This also makes
them a good match for ML applications, which require high
arithmetic intensity [7].

To take advantage of the performance offered by GPUs,
NVIDIA has recently launched the RAPIDS Al [8] framework,
which is a collection of open-source software libraries and
APIs. The main goal of this effort is to enable end-to-end data
science analytic pipelines entirely on GPUs. One of the main
components of RAPIDS—within its data science ecosystem—
is the cuML[9] library. This GPU-accelerated ML library is the
GPU-counterpart of Scikit-learn and provides similar Pythonic
interfaces while hiding the complexities of writing compute
kernels for GPUs directly using CUDA. One of the main
benefits of cuML is that it supports the execution of ML
workloads on Multi-Node Multi-GPUs (MNMG) systems. For
this, it takes advantage of a task-based framework called Dask
[10], which allows the distributed execution of Python data
science applications. Dask is comprised of a central scheduler,
workers (one per GPU), and a client process.

When a cuML application is running in a MNMG config-
uration, workers need to communicate with each other. These
communications are required at two stages: 1) the training data
is distributed to all workers to execute the training stage (the
fit() function), 2) the output of the training stage i.e. the model
parameters are shared with all workers involved in the infer-
ence stage (the predict() function). These communications can
either be point-to-point or collective. cuML takes advantage
of Dask for handling the point-to-point communications while
using NVIDIA Collective Communications Library (NCCL)
to take care of collective communications.

Message Passing Interface (MPI) is considered the de facto
standard for writing parallel applications on clusters. The MPI
standard [9] provides efficient support for point-to-point and
collective communication routines. The MVAPICH2-GDR[10]
library is a pioneer MPI library that supports communication
between GPU devices. MVAPICH2-GDR has been used to



Table I: Comparison of different ML libraries

| Libraries

[ GPU Support | MNMG Support [ Python Interface | High Performance

Scikit-learn [5] X X v X
Apache Spark’s MLIib [6] X v v X
Apache Mahout [7] v v X X
RAPIDS cuML [8] v v v X
MPI [9] v v X v

Our paper v v v v

accelerate and scale [11] Deep Learning (DL) frameworks in-
cluding TensorFlow [12] on large clusters. In order to leverage
years of research and development behind the MPI standard
and its compliant libraries, this paper introduces support for
MPI-based communication for the cuML library. This is done
using the MVAPICH2-GDR library that has efficient collec-
tive communication designs — including MPI_Reduce (),
MPI_Bcast (), and MPI_AllReduce () — on GPU mem-
ory.

A. Motivation and Challenges

Table I compares different libraries that can be used to run
ML applications. Among these libraries, Apache Mahout [7],
RAPIDS cuML , and MPI support execution on GPUs. Note
that NVIDIA has recently created a RAPIDS Accelerator [13]
for Spark 3.0 that enables the launch of Spark applications
on GPUs. However, Spark does not natively support GPU
acceleration. Apache Mahout, however, has poor visualization
and it does not support Python interface. It also has poor
performance compared to the other libraries. The respective
strengths of cuML and MPI are complementary. While cuML
provides a Python interface and hides the complexities of
CUDA/C++ programming from the user, MPI is well-known
for its high performance in parallel applications. Therefore,
the question we ask is: How can we combine the ease-of-
use provided by cuML for running ML applications with the
high-performance provided by MPI?

As mentioned earlier, cuML utilizes NCCL for handling
collective communications. It has some APIs at the CUD-
A/C++ layer for MPI communications, but these APIs are not
available at the Python layer and cannot be applied by end
users developing Python code. At the same time, MPI libraries
have many years of research and development behind them.
Among these libraries, MVAPICH2-GDR, in particular, pro-
vides efficient designs of collective communications for GPUs.
We use the OSU microbenchmarks suite [14] to compare
the performance of the MVAPICH2-GDR library with NCCL
for different collective operations in Figure 1. We run the
experiments on the Comet cluster from XSEDE. A detailed
description of this cluster is provided in Section VII-A. We
run the experiments for Allreduce, Bcast, and Reduce for
the 4 Bytes to 16 KBytes message range. These collectives
are extensively used by cuML algorithms within this message
range—this will be further discussed in Section VII. Figure 1
shows that MVAPICH2-GDR is performing significantly better
than NCCL. This brings up another question: How can we
replace NCCL-based collective communications in culML

with MPI-based communications to take advantage of ef-
ficient and GPU-aware collective communication designs in
MVAPICH2-GDR?

The cuML library supports training/inference based on sev-
eral compute-bound ML algorithms. These include: 1) Cluster-
ing (like K-Means), 2) Dimensionality reduction (like Princi-
pal Component Analysis (PCA) and Truncated Singular Value
Decomposition (tSVD)), 3) Ensemble methods (like Random
Forests), and 4) Linear models (like Linear Regression). Data
scientists should attempt to understand cuML in order to
achieve the best possible performance on these algorithms.
However, cuML—being a relatively new ML library—has not
been studied well by the community. With this background
in mind, the question is How can we provide performance
characterization for GPU-accelerated cuML Algorithms and
provide guidelines for data scientists to best take advantage
of them?

Each of the cuML algorithms mentioned above has a unique
format for data and model features. Moreover, each cuML
model has a unique set of hyperparameters that must be tuned
for accuracy at every scale. In order to run cuML applications
in a fast (time-to-solution) and accurate manner, a synthetic
benchmarking suite as well as a hyperparameter tuning frame-
work is required. This brings up another question: How can we
provide a synthetic benchmarking suite for cuML algorithms
in order to understand their scaling behavior?

B. Contributions
The key contributions of this paper are as follows:

o We provide MPI-based communication support for GPU-
accelerated cuML applications in Python. More specifi-
cally, we propose a Python API to take advantage of
MPI-based communications for cuML applications.

« We provide in-depth analysis and characterization of the
state-of-the-art cuML applications and identify regions
that can be enhanced using MPI-based communications.

« We provide synthetic benchmarking of cuML algorithms
to characterize their throughput behavior. Further, we
apply Dask_ML’s hyperparameter optimization library on
the Higgs Boson dataset to ensure cuML’s distributed
algorithms maintain accuracy at scale.

« We provide a comprehensive performance evaluation
and profiling study comparing MPI-based versus NCCL-
based communication for cuML applications. The evalua-
tion results show that with adding support for MPI-based
communications, we gain up to 38%, 20%, 20%, and
26% performance improvement for K-Means, Nearest
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Figure 1: The performance of collective operations with MPI (MVAPICH2-GDR) vs. NCCL with 8 GPUs across 2 nodes on
Comet cluster and for various collective operations: Allreduce, Reduce, and Bcast. MVAPICH2-GDR performs 84%, 74%, and
85% better that NCCL for Allreduce, Reduce, and Bcast, respectively.

Neighbors, Linear Regression, and tSVD, respectively on
up to 32 GPUs.

The rest of the paper is organized as follows. Section II
provides background information on different libraries that are
currently used to run cuML applications (such as Dask and
NCCL) and MPI. Section III discusses different ML applica-
tions that are supported by cuML and are targeted in this paper.
This includes K-Means, Random Forest, Linear Regression,
and truncated SVD (tSVD). Section IV provides detail on the
synthetic benchmarking and hyperparameter optimization of
these applications. In Section V, we provide a comprehensive
overview of cuML’s software stack and discuss the use of
Dask and NCCL for handling different communications paths
in cuML. The proposed MPI-based communication support is
discussed in Section VI. Section VII characterizes state-of-
the-art cuML applications and compares the performance of
the proposed MPI-based approach vs the default NCCL-based
communication design. We discuss related works in Section
VIII. Finally, we conclude the paper in Section IX.

II. BACKGROUND

In this section, we provide background information on the
Dask, MPI, and NCCL libraries. These libraries are used to
discuss and analyze the cuML software stack in upcoming
sections.

A. Dask

Dask is an open source library for parallel computing in
Python. It enables the Python ecosystem to scale into multi-
core machines and distributed clusters. The main advantage
of Dask is that it integrates well with analytic tools (such as
Pandas, Scikit-Learn, Numpy, etc.) and provides ways to scale
them on distributed clusters with minimal rewriting. In the
past, Dask only supported execution on the host processors
(CPUs). However, it has recently been integrated with the
RAPIDS framework for processing cuDF data structures on
GPU devices and also GPU-accelerated machine learning
with cuML. For this, it distributes data and computation over
multiple GPUs. These GPUs can be located on the same
system or they can be distributed over a multi-node cluster.

|
Scheduler

| Cluster

Worker }-» -+|  Worker

Worker }-- -

Figure 2: Dask Architecture

Figure 2 shows the Dask architecture. As can be seen in
the figure, Dask consists of a client, a scheduler, and multiple
worker processes. These processes communicate with each
other to execute the Python application in a distributed manner.
The scheduler is responsible for coordinating data access and
sending tasks to workers for execution. It also manages the
state of the workers. The workers are responsible for actual
execution of the tasks. The scheduler along with N workers
is called a Dask cluster. The Dask cluster in Figure 2 has
3 workers. As the figure shows, the workers are directly
connected to each other for sending/receiving the data during
the execution of parallel jobs. In the past, Dask only supported
TCP for the communication between client, scheduler, and
the workers. However, recently, it has been extended to take
advantage of the UCX [15] library for communication between
the processes.

The end-users submit their Python applications to the Dask
cluster through the client process. The client process is con-
nected to the scheduler and provides the execution code and
the input data to the scheduler. Then, the scheduler divides up
the input data and store the chunks on workers to achieve data
parallelism.

B. MPI

MPI has been the de facto standard for communication in
HPC systems, and is by far the dominant parallel programming
model in large-scale parallel applications. In MPI, the concepts
of groups and communicators are used to define the scope
and context of the communications. A group is an ordered



set of processes with ranks 0 to m — 1, where n is the
number of ranks. When a program initializes, the rank number
is assigned to each process. Communicators use groups to
represent the processes that participate in each communication.
Each process can be a member of one or more communicators.

MPI supports different types of communications including
point-to-point and collective communications. The point-to-
point communication is a basic mechanism in which only
the sender and receiver take part in the communication. In
collective communication, which is extensively used by the
applications in cuML , messages are exchanged among a group
of processes. Collective communications give this opportu-
nity to the process to have one-to-many and many-to-many
communications in a convenient, portable, and optimized way.
Bcast, Reduce, and Allreduce are some examples of collective
communications.

There are various MPI libraries available in the HPC
community. Among them, MVAPICH2-GDR is specifically de-
signed to improve the communication performance on GPU
devices and provides efficient performance for GPU-enabled
HPC and deep learning applications [16]. It has support for
GPUDirect-RDMA, OpenPOWER with NVLink interconnect,
CUDA-aware managed memory, and MPI-3 one-sided com-
munication, among many other features.

C. NCCL

NCCL implements a subset of the collective communication
routines. Specifically, NCCL provides optimized collective
communication algorithms for NVIDIA GPUs. The available
primitives for collective communication in NCCL are: All-
gather, Allreduce, Reduce, Reduce-scatter, and Bcast. It is
important to note that NCCL does not follow the MPI standard,
and lacks support for many common MPI operations such as
point-to-point, Gather, Scatter, and Alltoall. NCCL was created
to meet the need for communication routines in common
distributed deep learning workloads. Given the growth of Deep
Learning applications and the volume of NVIDIA processors
on HPC systems, NCCL has become a competitor to MPI for
some applications.

III. DISTRIBUTED MACHINE LEARNING ALGORITHMS

This section discusses various ML algorithms that are
currently available in cuML. This includes clustering algo-
rithms (e.g. K-Means), dimensionality reduction (e.g. PCA and
tSVD), ensemble methods (e.g. Random Forests), and linear
models (e.g. Linear Regression) It also explains how these al-
gorithms are parallelized in cuML under MNMG configuration.

Each algorithm in cuML is split into fit () and
predict () functions that loosely take the place of training
and inference functions. Namely, £it () acts on the training
data (e.g. a dense matrix for K-Means) as input, and adjusts
the weights of the initial model. After £it () has ended and
the model is trained, predict () acts on the test data (e.g.
a mapping from points to clusters for K-Means) as input, and
provides a mapping to the output for each test sample.
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A. K-Means

K-Means is an algorithm that separates n data
points into k clusters by minimizing each cluster’s
> of squarederror(SSE) :

. 2
Xn:ﬂg{llwﬁuj\\ }

where f; is the mean of the samples in cluster C'. The
extent of parallelism in Scikit-learn is in splitting the data
into chunks, and processing each chunk with a separate thread.
In cuML, however, the single-GPU K-Means model is copied
onto each node, and the initial centroid is communicated
to each worker GPU via a Bcast operation, and the total
cluster cost and centroid selections are performed with one-
time calls to Allreduce and Allgather, respectively. At each
training iteration, the centroids from each Dask worker GPU
are communicated with an Allreduce operation. Since the data
communicated at each training step is small (the centroid
information), the message size for each communication call
is also small.

B. Random Forest

Random Forest is an ensemble model made up of deci-
sion tree classifiers. Decision tree classifiers predict a target
variable’s value by learning simple decision criteria from
the training data’s features. A decision tree may be easily
explained as a set of yes or no questions posed to the input
training variable. The decision tree makes a classification
decision based on the answers to these questions. A random
forest combines many individual decision trees, and takes
a majority vote on the tree outputs to decide on the final
classification.

In cuML, there is no collective communication used for
Random Forest training at the time of writing this paper.
Instead, Dask is used to partition the data over each worker
GPU. Specifically, to train N trees with w workers, each
worker initializes N/w trees and trains them on that worker’s
local data subset. cuML’s distributed Random Forest algorithm
takes an embarrassingly-parallel approach: all communication
is carried out at the outset of training, and workers act indepen-
dently once training has begun. Therefore, the communication
overhead for random forests is small; we do not expect any
performance difference between communication backends.

C. K Nearest Neighbors

Nearest-neighbors classification seeks to assign each data
point based on a simple majority vote of its neighbors. An
example of K Nearest Neighbors on a single worker with K =
3 is depicted below in Algorithm 1

In cuML’s distributed implementation of K Nearest Neigh-
bors, a subset of data is sent to each worker GPU with a call
to Bcast, and the output of each local model is communicated
at each global training step with a call to Reduce.



Algorithm 1 Example K Nearest Neighbors (with K = 3)

load(input_data)
K+ 3

/+ Classify each point */
foreach data_point; in input_data do
list < {} foreach data_point; in input_data do
/* Store distances */
list.append(distance(data_point;, data_point;))
/* Sort points by distance */
list.sort()
end
/* Class set by closest k points */
data_point;.class < majority_class(list[0 : k])

end

D. Linear Regression

Linear Regression is the classical problem of fitting a set
of data points y with a linear combination of the predictors.
In cuML, Linear Regression on multiple GPUs can take one
of two forms: a standard data-parallel Linear Regression
algorithm with two possible fit algorithms (SVD and Eig), or
a model-parallel Solver class. For the standard data-parallel
version, cuML provides the choice of fit algorithms: SVD and
Eig. While computing the SVD (singular value decomposition)
for a linear system of equations is stable, it tends to be much
slower than finding the Eigen decomposition of the associated
covariance matrix (the solution in cuML referred to as Eig).
Nevertheless, for the purposes of this paper, we found SVD
to be more useful for taking reproducible benchmarks. For
more details on the SVD, refer to the next section on the
tSVD algorithm in cuML. Linear Regression was parallelized
in cuML by applying a Bcast operation at the outset of training
and then applying a Reduce operation at each training step.

E. Truncated SVD (tSVD)

The Truncated Singular Value Decomposition (tSVD) is
another widely-used method of dimensionality reduction (in
addition to PCA) that is more suited to sparse matrices.
Specifically, is a matrix factorization that generalizes the
eigendecomposition of a matrix M, computing:

M =~ UkEkaT

Where M is an m x n large matrix, U is an m X m unitary
matrix, X is an m X n rectangular diagonal matrix, and V' is
an n X n unitary matrix.

tSVD is a less computationally intensive version of full SVD
that only computes the %k largest singular values of a large
matrix M. Scikit-learn and cuML use a randomized matrix
approximation algorithm originated by Halko et al. [17] that
consists of two major steps: First compute an approximation
to the range of M with randomization methods. That is,
an intermediate matrix () must be constructed with a small
number of orthonormal columns such that:

M~ QQTM
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This approximate matrix Q may be computed by taking a
collection of random vectors {2103, ...} and take the action
of M on each vector. The resulting subspace of actions may
be used to form another intermediate matrix €2, which may be
used to compute Q.

In the second step, a small intermediate matrix B is con-
structed such that B = QT M, and compute its SVD. Then,
since M ~ QQTM = Q(STVT), it is clear that U = QS
constitutes an approximation M ~ UXVT. In cuML, tSVD
is parallelized by performing distributed matrix computations.
Specifically, tSVD was parallelized in cuML by applying a
Bcast operation at the outset of training, and then applying a
sequence of Reduce and Allgather operations to perform the
matrix computation.

IV. SYNTHETIC BENCHMARKING AND HYPERPARAMETER
OPTIMIZATION

In order to take distributed training and accuracy perfor-
mance data, the existing benchmarking and hyperparameter
optimization implementations needed to be expanded to sup-
port a distributed workload. We were able to refer to the single-
GPU benchmarking suite in cuML as a model for distributed
synthetic benchmarking.

For synthetic benchmarking, we seek to maximize through-
put without exceeding the memory bound of the worker
GPUs. Therefore, cuML’s GPU-equivalent of the popular
Scikit-learn function make_blobs () was used to generate
random samples to feed into each clustering algorithm (K-
Means and K Nearest Neighbors). The make_blobs ()
function generates a set of random isotropic gaussian blobs
for clustering applications. To simulate a real dataset, each
class is allocated one or more normally-distributed clusters
of points. User-set parameters may be tuned to modify the
center and standard deviation of each generated cluster of
points. Given the flexibility of the make_blobs () function,
we also applied dimensionality reduction algorithms (tSVD) to
the clustered data for our throughput experiments. During the
initial throughput study in Figure 10 we set these parameters in
tandem with the hyperparameters to maximize GPU memory
allocation while forcing enough model complexity to keep the
GPU and interconnect under load for the duration of training.
For each algorithm in Figure 10, these parameters and the total
number of training iterations was kept fixed for each scale.

For the classification applications in cuML (Random
Forests), we applied make_classification () to create
a random n-class classification problem. The cuML function
make_classification () initially generates normally-
distributed clusters of points with std = 1 about vertices of
a K-dimensional hypercube with sides of length M, where
K, M are user-defined. An equal number of clusters is as-
signed to each class, while inserting both interdependence
and random noise into the data. Features are then horizontally
stacked and split into informative (independent) and redundant
(linear combinations of informative) features.

For the regression applications in cuML (Linear Regression),
we applied make_regression () to generate a set of



regression targets as a random linear combination of features
with noise. The user may set the levels of sparsity and whether
the informative features are uncorrelated or follow a low rank-
fat tail singular profile (where a few features account for most
of the variance). For the purposes of our study, the default
uncorrelated informative features are sufficient. Examples of
each of the three synthetic benchmarking methods are depicted
in Listing 1.

from cuml import make_blobs,
make_classification, make_regression

IS

make_blobs (n_samples, n_features,
n_parts, cluster_std)

centers,

o

make_classification(n_samples, n_features,
n_clusters_per_class, n_informative,
random_state, n_classes)

=

make_regression (n_samples,
random_state)

n_features,

Listing 1: cuML example code for generating synthetic
data for clustering, classification, and regression applications,
respectively

In order to ensure that accuracy is not affected by the
distributed algorithms in cuML, we trained K-Means and
Random Forest algorithms on the Higgs Boson dataset
[18]. We applied the hyperparameter optimization suite in
Dask_ML to maximize the accuracy achievable at each scale.
In particular, we used the adaptive cross-validation algo-
rithm HyperbandSearchCvV, which is specialized for spe-
cialized processors like GPUs, where the search space of
hyperparameters is large. Specifically, Hyperband optimizers
seek to spend the most time training high-performing sets
of hyperparameters. To achieve this, Hyperband optimizers
initialize many models, start to train all of them, and then drop
poor-performing models before high-performing models have
finished training. One can think of Hyperband optimizers as a
randomized optimizer that drops poor parameter sets before
training is finished, thus saving resources. The Dask_ML
implementation HyperbandSearchCV follows an embar-
rassingly parallel approach by assigning each model with a
unique parameter set to a worker GPU. Since there are many
more parameter sets than worker GPUs in our experiments,
we prioritize parameter sets based on the model’s most recent
loss score. This allows HyperbandSearchCV to be more
aggressive in dropping poor-performing parameter sets. This
is in accordance with the findings of [19].

Listing 2 shows an example HPO run on the cuML
K-Means algorithm with HyperbandSearchCV. In this
example, we pass K-Means parameter ranges for the
number of clusters (n_clusters), the oversampling fac-
tor (sample_factors), and the stopping tolerance (tol) to
HyperbandSearchCV, which performs at most maz_iter
training iterations on the best-performing parameter set. Fi-
nally, the aggressiveness in culling off the different estimators
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is passed to HyperbandSearchCV via the user-parameter
aggressiveness.

1| from cuml.dask.cluster.kmeans import KMeans as
cuKMeans

3| model_kmeans = cuKMeans (init="k-means]| |",
n_clusters=5, random_state=123,
oversampling_factor=3)

4
5| clusters = [i for i1 in range(1l,100)]

6| sample_factors = [1 for i in range(l,5)]
;

8

9

params = {’'n_clusters’ : clusters
"oversampling_factor’ : sample_factors
10 "tol’ loguniform(le-5, le-3)}
11
12| search = HyperbandSearchCV (model_kmeans,

params, max_iter=100,
random_state=123)

aggressiveness=3,

Listing 2: cuML example code for performing hyperparameter
optimization on KMeans

V. OVERVIEW OF THE SOFTWARE STACKS
A. RAPIDS

NVIDIA has recently launched RAPIDS AI which is a
collection of open source software libraries and APIs. It’s
used to run end-to-end data science analytics pipelines entirely
on GPUs. For low-level compute optimizations, it relies on
NVIDIA CUDA primitives and user-friendly Python inter-
faces to expose GPU parallelism and high-bandwidth memory
speed.

Python
RAPIDS
cubDF

cuML cuGraphs

APACHE ARROW

Figure 3: RAPIDS software stack

Figure 3 shows a high-level overview of the RAPIDS stack.
As can be seen in this Figure, RAPIDS is built on top of CUDA
and is under the standard specification of Apache Arrow
[20]. Apache Arrow is a cross-language development platform
for in-memory analytics. It defines a language-independent
columnar memory format for flat and hierarchical data. It
provides efficient analytic operations on both CPUs and GPUs.

RAPIDS has three main components: 1. cuDF which is a
pandas-like dataframe manipulation library and is used for data
preparation, 2. cuML which is a collection of machine learning
libraries and provides GPU versions of algorithms available
in scikit-learn, and 3. cuGraph which is an accelerated graph
analytics library. The Python layer is built on top of these
CUDA/C++ layers and data scientists can easily use it without
worrying about the complexities of underneath layers. In this
paper, we mainly focus on the cuML library as we aim to
improve the performance of machine learning applications.
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Figure 4: cuML components and software stack

B. cuML Library

cuML is a suite of fast, GPU-accelerated machine learning
algorithms within the RAPIDS data science ecosystem. cuML is
designed for data science and analytical tasks. It enables users
to run traditional ML tasks on GPUs without going into the
details of CUDA programming. Figure 4(a) shows three main
components of cuML: primitives, machine learning algorithms,
and the Python layer. Primitives are reusable building blocks
for building machine learning algorithms. They are common
for different machine learning algorithms. Linear algebra is
a big part of these primitives which includes element-wise
operations, matrix multiplication, eigen decomposition, etc.
The primitives also include statistical functions (such as the
mean and standard deviation), random number generation,
distance/matrix calculations, etc. These primitives are used in
the second layer to build different machine learning algorithms
such as Random Forest, K-Means, Linear Regression, etc.
Finally, there is a Python layer that provides a Scikit-learn-
like interface to expose these algorithms to data scientists.

The cuML library allows execution of ML workloads on
a variety of platforms with three configurations: 1) a single
GPU, 2) a system with multiple GPUs called Single-Node
Multi-GPUs (SNMG), and 3) multiple systems with multiple
GPUs called Multi-Node Multi-GPUs (MNMG). Figure 4(b)
shows the software stack of cuML in a system with single
GPU. The primitives and machine learning algorithms are built
on top of CUDA libraries in the CUDA/C++ layer. Thrust,
nvGraph, cuBlas, and cuRand are some example of these
CUDA libraries. The CUDA/C++ layer is wrapped to the
Cython layer to expose the cuML algorithms. The Python layer
is used to integrate cuML with other tools in the community
such as Numpy and cuDF and as mentioned earlier, it provides
a Scikit-learn-like interfaces to the user.

C. cuML Library in a Distributed Setting

One of the main advantages of cuML is its support of
distributed execution on MNMG systems. For distributed runs,
cuML takes advantage of Dask. Dask enables the cuML code in
Python to run in parallel across many nodes. To do this, Dask
creates a task graph and divides up the code between workers.
cuML also uses NCCL-based communication, especially for
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collective communications between the workers. This way,
cuML takes advantage of both the simplicity and flexibility
of Dask and the collective algorithms provided by NCCL.

Figure 4(c) shows cuML software stack in a distributed
setting. As can be seen in the figure, both Dask and NCCL
are used for communications in cuML . NCCL is mainly used
for the collective communications between the workers in
the £it () function. On the other hand, Dask is used for
communication between the scheduler and workers while also
handling point-to-point communications between workers. For
example, Dask is used for sending the model parameters
from one worker to the others in the predict () function.
The reason Dask is used at this stage is that at the time of
sending the model parameters, the root does not have any
knowledge on how the data is going to be distributed among
the workers/processes. More specifically, this communication
is happening among a limited number of workers which are
not known beforehand.

Another observation from this figure is that Dask uses
UCX underneath to handle the communications. In other
words, Dask uses UCX to pass CUDA objects between the
workers. The advantage of UCX is that it provides the best
communication performance to Dask based on the cluster’s
available hardware.

Client
+ — —» Dask/UCX 7
+~—— NCCL K
7
Cluster »
Scheduler
<o
) 7’ 1 ~ ~
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Figure 5: Dask and NCCL Communication paths in cuML

Figure 5 shows Dask and NCCL communication paths
for cuML in a cluster with three workers. The black dotted



lines show Dask communication paths, while the red lines
show NCCL communication paths. A NCCL communicator is
created across the worker processes for taking advantage of
collective communication support in NCCL. The NCCL com-
municator is then injected to cumlHandle. cumlHandle
is a class in cuML that is used to manage resources needed
for running machine learning algorithms. As can be seen in
Figure 5, cumlHandle is used by all workers.

Once the NCCL communicator is attached to the
cumlHandle, it can be used as the input of fit () and
predict (). This way, the fit () and predict () func-
tions take advantage of NCCL for running collective com-
munications. Note that £it () has the most communication
overhead in cuML algorithms. Figure 6 shows the procedure
of injecting a NCCL communicator to cumlHandle in
Python. As can be seen in the figure, this is done through
inject_nccl_comms_py (). Once the NCCL communi-
cator is attached to the cumlHandle, it is passed as the input
of £it ().

inject_nccl

cumlHandle —>
_comms_py()

cumlHandle
» with NCCL
communicator
T Attached

NCCL Communicator

Fit()

Figure 6: Injecting NCCL communicator to cumlHandle

VI. MPI-BASED COMMUNICATION SUPPORT IN CUML

In this section, we explain adding MPI-based communica-
tion support for cuML. More specifically, we discuss how to
take advantage of an MPI library for running collective com-
munications in the fit () function and replace the existing
NCCL-based communications. Figure 7 shows the software
stack of cuML with MPI-based communication support. We
use MVAPICH2-GDR as the MPI library in our work due to
its efficiency and high-performance on GPU clusters, but any
other MPI library can be used. We also take advantage of
mpidpy [21] as a Python binding library for MPI so that it can
be used for running cuML applications written in Python.

Dask

Python

Cython

MPI4PY

cuML Algorithms

cuML Primitives
CUDA Libraries

CUDA

MVAPICH2-GDR

Figure 7: cuML software stack with MPI-based communication

As discussed in Section V-C, to support NCCL-based
communications in cuML, a NCCL communicator should be
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injected to cumlHandle. A similar thing should be done
for MPI communicator to add support for MPI-based commu-
nications. cuML has a function initialize_mpi_comms
which attaches an MPI communicator to cumlHandle. This
function is defined in the CUDA/C++ layer, so it cannot
be used directly in the cuML applications written in Python.
To be able to practically use this function for running
cuML applications, we have developed a Cython wrapper
MPI_plugin.pyx shown in Figure 8. This wrapper defines
a new function inject_mpi_comms_py () which injects
MPI communicator to cumlHandle in Python. It requires
mpidpy to get an MPI communicator from cumlHandle
and the function initialize_mpi_comms. For includ-
ing cumlHandle and initialize_mpi_comms, cuML
and CUDA libraries are linked to the wrapper through
setup.py. We also linked MVAPICH2-GDR which is re-
quired by mpidpy. After compiling MPI_plugin.pyx, we
have an extension module that injects MPI communicator to
cumlHandle in Python. Listing 3 shows the details of defin-
ing inject_mpi_comms_py () in MPI_plugin.pyx.

MPI4PY import ____

Defines inject_mpi_comms_py()

=
Setup.py
- —
CUDA
Llibraries

Figure 8: A Cython wrapper MPI_plugin.pyx for
injecting an MPI communicator to cumlHandle
in Python. MPI_plugin.pyx defines a new
function inject_mpi_comms_py that wraps
initialize_mpi_comms for Python. For this,
MPI_plugin.pyx requires mpidpy to get an MPI communi-
cator from cumlHandle and initialize_mpi_comms.

- /
cumlHandle [ cdef in. — MPI_plugin..
extern " MPl-plugin.pyx _plugin.so

cdef
extern

initialize_mpi | -
_comms()

cimport mpidpy.MPI as MPI
cimport mpidpy.libmpi as libmpi

cdef extern from "cuml/cuml.hpp" namespace "ML":
cdef cppclass cumlHandle:
cumlHandle ()

© 9 L B W —

cdef extern from "cuML_comms.hpp" namespace
"ML":

9 void initialize_mpi_comms (cumlHandle,

mpi_comm)

10

1| def inject_mpi_comms_py (handle, MPI.Comm comm) :

12 handle_ = <cumlHandlex> handle.getHandle()

13 initialize_mpi_comms (handle_, comm.ob_mpi)

Listing 3: MPI_plugin.pyx



Listing 4 shows how inject_mpi_comms_py () is used
to inject an MPI communicator to cumlHandle in K-Means.
Here, we show the modifications we made to K-Means as
an example. We have made similar changes to other cuML
algorithms to make them use MPI-based communications.
The listing shows a part of _func_fit (). This function
is executed by all the worker processes in the cluster. First,
we import the module MPI_plugin that we have created
from our Cython code in Listing 3. In _func_fit (),
we create MPI communicator using mpidpy (Lines 3 and
4). This communicator is created between worker processes
that are calling _func_fit (). Then, we import Handle
from cuml.commom.handle (Line 6) and use it to create
a cumlHandle object handle (Line 7). In Line 8, we
call inject_mpi_comms_py () which we have defined
in MPI_plugin.pyx. This function gets two inputs, the
MPI communicator and the cuML handle and attaches the
communicator to handle. Then, we pass the new handle
to cumlKMeans () (Line 12). cumlKMeans () takes care
of running the algorithm. It uses an MPI communicator that
is attached to handle for executing the collective com-
munications. Note that in Listing 4, we show the parts of
_func_fit () that we have modified to be able to use the
MPI-based communications. Other parts of _func_fit ()
have not been changed, so we did not include it in Listing 4.

1| import MPI_plugin

2| def _func_fit():

3 From mpid4py import MPI;
4 mpicomm = MPI.COMM_WORLD
5

6 from cuml.common.handle import Handle

7 handle = Handle ()
8 MPI_plugin.inject_mpi_comms_py (handle,
mpicomm)

cumlKMeans (handle,

Listing 4: Injecting an MPI communicator to cumlHandle
in _func_fit (), which is a part of the KMeans code

VII. PERFORMANCE CHARACTERIZATION
A. Experimental Setup

We performed all experiments on the Comet cluster at
the San Diego Supercomputer Center. The GPU partition on
Comet is composed of 36 nodes each with 4 NVIDIA Pascal
(P100) GPUs. Each P100 has 16 GB HBM2 memory and is
connected to other nodes on the cluster via Infiniband FDR.
Table II shows detailed specifications of the Comet cluster. We
use cuML v0.15 compiled with CUDA 10.1, NCCL 2.7.8-1,
and MVAPICH2-GDR 2.3.4.

B. Experimental Results

First, we compare the baseline performance of different ML
algorithms when they are executed on a single CPU vs a
single GPU. Figure 9 shows the results for K-Means, Random

25

Table II: Hardware specification of the SDSC Comet cluster

Specification SDSC Comet
Number of Nodes 36

Processor Family Xeon Haswell
Processor Model ~ E5-2680 v3
Clock Speed 2.5 GHz
Sockets 2

Cores Per socket 12

RAM (DDR4) 128 GB

GPU Family NVIDIA Pascal P100
GPUs 4

GPU Memory 16 GB (HBM2)

Interconnect IB-EDR (56G)

Forest, Nearest Neighbors, tSVD, and Linear Regression.
Scikit-learn and cuML are used for the experiments on CPU
and GPU, respectively. As can be seen in Figure 9, GPU
performs significantly better than CPU for all the algorithms,
as expected.

Trainng Time (s)

Linear
Regression

Nearest tSVD

Neighbors

Random
Forest

K-Means

Figure 9: Training Time of different ML algorithms with GPU
vs CPU on Comet cluster. For all the algorithms, the training
time with GPU is significantly better than CPU.

Now that we have confirmed the efficiency of running ML
algorithms on a GPU, we discuss the performance of ML
algorithms on GPUs under a distributed or MNMG setting.
Figure 10 shows the results on up to 32 GPUs across 8 nodes
on the Comet cluster. We compare the performance of NCCL
vs MPI-based communication with MVAPICH2-GDR. One ob-
servation from Figure 10 is that as we increase the number of
GPUs, the training time reduces. This shows the scalability of
cuML in the distributed setting. Another observation from the
figure is that MVAPICH2-GDR is performing better than NCCL
for almost all algorithms, and the performance improvement
increases as we increase the number of GPUs. This is because
the communication requirement of each algorithm is increased
as the scale increases. The improved training performance
shows that the MPI-based approach provides better scalability
compared to the NCCL-based design. The only ML algorithm
that performs the same with NCCL and MVAPICH2-GDR is
Random Forest. The reason for this is that cuML does not
use any collective communication for training Random Forest.
Therefore, there is no room to take advantage of MVAPICH2-
GDR’s efficient design for this algorithm. In order to better
understand why MVAPICH2-GDR performs better than NCCL
at all scales, we collected the message size of each NCCL
collective call in a training run for both K-Means and Nearest
Neighbors on 2 Comet nodes (8 GPUs). From this profiling
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Figure 10: Training Time for GPU-Accelerated Distributed Algorithms using cuML.

information in Figure 11, we can see that the vast majority
of collective calls are for the small to medium message size
range. Note that we observed the same behavior for other
cuML algorithms that use collectives such as tSVD and Linear
Regression. We believe this to be the case for two primary
reasons:

e For many distributed cuML algorithms like K-Means
and Nearest Neighbors, the update information at each
training step consists of many small messages (e.g. for
K-Means, only the centroid information is shared between
workers at each step). This allows the cuML algorithms
to scale to many GPUs without significantly increasing
the ratio of communication to computation

o At the Dask level, each message is chunked before
distributing to individual workers. This increases the
volume of collective calls while reducing the size of each
individual message
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Figure 11: Profile of different collective operations in cuML
algorithms: K-Means and Nearest Neighbors.

Given that the communication overhead for cuML algo-
rithms consists of many small messages, we can take advan-
tage of MVAPICH2-GDR’s improved small-message algorithms
compared to NCCL, as in Figure 1. Further, while cuML’s
small-message strategy does keep communication overheads
low for increasing node counts, the increased number of
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collective calls allows MVAPICH2-GDR to improve its speedup
compared to NCCL for a large number of worker GPUs, as
depicted in Figure 10. Finally, we applied the hyperparameter
optimization (HPO) library discussed earlier in section IV
to the real-world Higgs dataset [18]. We used 30% of the
dataset to perform HPO at each scale (1-32 GPUs). The
accuracy on the test dataset was taken with the default
model parameters for Random Forest and K-Means, then
HPO was performed embarrassingly parallel via Dask_ML’s
HyperbandSearchCV across the job’s worker GPUs. The
accuracy results are depicted in Figure 12. The accuracy with
the optimal parameters for K-Means and Random Forests show
an approximate 5% improvement over the default model. We
used K-Means and Random Forests on Higgs because:

o They are representative of different communications in
cuML (K-Means following a data-parallel approach, and
Random Forests being embarrassingly parallel)



« Both algorithms have enough hyperparameters to stress
the HPO implementation in Dask_ML, while having a
broad parameter space to enable accuracy benefits

VIII. RELATED WORK

Gonzilez et al. [22] present a review of bagging and boost-
ing ML algorithms. XGBoost [23][24] is a gradient boosting
library that supports both distributed—through Dask—and
GPU-based execution. H203 [25] is another ML library that is
capable of distributed computation. H204GPU [26] is a variant
with shared memory GPU support. While the computational
support for ML workloads has been around for a long time
in the form of software library and packages, the support for
distributed execution on a cluster of GPUs is still in its infancy.
As we noted above, XGBoost is one such library that provides
boosting algorithms. However, a wide range of new and
existing ML algorithms are still being investigated for efficient
Multi-Node Multi-GPU execution—this is the main motivation
for the development of the cuML library. Deep Learning frame-
works like TensorFlow [12] and PyTorch [27] has support for
some ML tools and techniques. However, we only focus on
specialized ML libraries in this paper. Raschka et al. [28]
provide a survey of machine learning in Python, including
Scikit-learn training on CPUs and the RAPIDS ecosystem.
They also discuss the need and motivation for the cuML library.
The RAPIDS framework—and the cuML library—has been
gaining traction in the community as a viable option to support
the execution of performance-hungry applications on a cluster
of GPUs. For example, Napoli et al. [29] applied RAPIDS
[30] and Dask [31] ecosystems to analyze data for geophysics
simulations. While all of these studies exploit the RAPIDS
framework with cuML to exploit multiple NVIDIA GPUs,
none of them provide insight into improving communication
performance, nor explore other viable communication options.
We fill this gap—in this paper—by proposing MVAPICH2-
GDR as an alternative to NCCL in the Multi-Node Multi-
GPU setting. We also attempt to characterize our evaluation
for these GPU-aware messaging libraries to gain insights into
scaling behavior of ML applications in the cuML library.

IX. CONCLUSION AND FUTURE WORK

In this paper, we add support for MPI-based communica-
tions for cuML applications in Python. For this, we propose
a Python API that takes advantage of MPI calls to han-
dle collective communications between processes in cuML .
Moreover, we provide a synthetic benchmarking suite and
in-depth analysis of cuML applications to understand their
behavior and identify the regions that can be improved using
MPI-based communications. We believe these analysis and
characterizations provide a comprehensive guideline for cuML
application developers and data scientists to take the most
advantage of the features provided by cuML. Finally, we
compare the performance of the proposed MPI-based commu-
nication approach with NCCL-based communication design
that is used by default in cuML. The experimental results on
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state-of-the-art cuML algorithms show that the proposed MPI-
based communication approach gives up to 1.6x, 1.25x, 1.25x,
and 1.36x speedup for K-Means, Nearest Neighbors, Linear
Regression, and tSVD, respectively. For future work, we would
like to explore the impact of the MPI-based communication
support for real ML applications and larger data sets.
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