fi J. Indian Inst. Sci.

!
il A Multidisciplinary Reviews Journal

: I : ISSN: 0970-4140 Coden-JIISAD
A
[A

o~

Check for
updates

Architecture-Aware Modeling of Pedestrian

Dynamics

Mehran Sadeghi Lahijani', Rahulkumar Gayatr, Tasvirul Islam® Ashok Srinivasan®"
and Sirish Namilag*

Abstract | The spread of infectious diseases arises from complex inter-
actions between disease dynamics and human behavior. Predicting the
outcome of this complex system is difficult. Consequently, there has
been a recent emphasis on comparing the relative risks of different pol-
icy options rather than precise predictions. Here, one performs a param-
eter sweep to generate a large number of possible scenarios for human
behavior under different policy options and identifies the relative risks
of different decisions regarding policy or design choices. In particular,
this approach has been used to identify effective approaches to social
distancing in crowded locations, with pedestrian dynamics used to simu-
late the movement of individuals. This incurs a large computational load,
though. The traditional approach of optimizing the implementation of
existing mathematical models on parallel systems leads to a moderate
improvement in computational performance. In contrast, we show that
when dealing with human behavior, we can create a model from scratch
that takes computer architectural features into account, yielding much
higher performance without requiring complicated parallelization efforts.
Our solution is based on two key observations. (i) Models do not cap-
ture human behavior as precisely as models for scientific phenomena
describe natural processes. Consequently, there is some leeway in
designing a model to suit the computational architecture. (ii) The result
of a parameter sweep, rather than a single simulation, is the semanti-
cally meaningful result. Our model leverages these features to perform
efficiently on CPUs and GPUs. We obtain a speedup factor of around 60
using this new model on two Xeon Platinum 8280 CPUs and a factor 125
speedup on 4 NVIDIA Quadro RTX 5000 GPUs over a parallel implemen-
tation of the existing model. The careful design of a GPU implementation
makes it fast enough for real-time decision-making. We illustrate it on an

application to COVID-19.

Keywords: Pedestrian dynamics, GPU, Architecture aware modeling

1 Introduction

The spread of infectious diseases arises from
complex interactions between disease dynam-
ics and human behavior®. In recent years, pedes-
trian dynamics has found increasing application

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

in simulating human movement patterns dur-
ing the analysis of infection risk in crowded
locations™'*?*. Pedestrian dynamics simulates
the movement of individuals in a crowd, from
which social proximity can be characterized. An

! Department of Computer
Science, Florida State
University, Tallahassee,
USA.

2 awrence Berkeley
National Lab, Berkeley,
USA.

3 Department

of Computer Science,
University of West Florida,
Pensacola, USA.

4 Aerospace Engineering
Department, Embry-
Riddle Aeronautical
University, Daytona
Beach, USA.
*asrinivasan@uwf.edu

REVIEW
ARTICLE

http://orcid.org/0000-0003-0408-2886
http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-021-00250-4&domain=pdf

M. Sadeghi Lahijani et al.

infection spread model then uses the social prox-
imity information to estimate infection risk for
directly transmitted diseases.

Social-force models for pedestrian dynamics
are the most popular ones for simulating trajecto-
ries of individual pedestrians. Their computational
structure is similar to that of an N-body prob-
lem, involving the integration of Newton’s laws
of motion: md?r(t)/dt?> = Force(t), where r is
the position of a person with mass m at time t.
The force term is not modeled as the actual physi-
cal force. Rather, models for human behavior are
designed so that one term generates a “force” that
propels a person toward that person’s destination,
while a counteracting force term limits the speed
due to the presence of others nearby or because
of fixed surfaces through which a person cannot
move, such as walls. Solving the above differential
equation generates a trajectory for each pedestrian.

The trajectories can then be analyzed further
to determine quantities of interest to the appli-
cation. For example, the Self-Propelled Entity
Dynamics (SPED) model for pedestrian dynam-
ics has recently been used to analyze infection
spread in airplanes™*'>?2, Tt counts the number
of contacts between people from the trajecto-
ries and uses it to estimate the risk of infection
spread. This work was identified as one of the
twelve major scientific breakthroughs using
the flagship Blue Waters supercomputer at the
National Center for Supercomputing Applica-
tions (NCSA)"%.

One of the challenges in modeling arises from
inherent uncertainty in human behavior, which
makes predicting any specific outcome difficult.
A single simulation does not capture the diversity
of outcomes arising from variations in human
behavior. A recommended approach to dealing
with this problem is to parameterize the sources
of uncertainty—such as the natural speed of a
pedestrian in the absence of others nearby—and
carry out a parameter sweep to generate a large
number of possible scenarios™'**2, The number
of scenarios is large in situations that deal with
extreme events, such as stampedes or epidemics,
where we wish to capture a wide range of out-
comes so that it would include the extreme events
that one desires to observe. This leads to a high
computational cost.

The computational effort is currently han-
dled through efficient parallelization of these
models on massively parallel machines and
GPUs>!%1%2224 However, the times obtained are
inadequate for real-time decision-making. For
example, Chunduri et al.” observe that results are
often needed in the order of a minute during a

2

@ Springer

decision meeting to avoid discussions digressing
in other directions. Some large SPED simulations
take the order of ten minutes on massively par-
allel processes using the order of 30,000 cores,
without taking queue wait time into account™.
This limitation was handled by precomputing
the results and performing only the analyses in
real-time in our more recent work’. However,
this approach cannot help in analyzing pedestrian
movement for new procedures or policies that
have not been precomputed. Rather, it can only
help answer queries related to new epidemics but
with the precomputed trajectories.

We propose a new approach that can enable
social force-based pedestrian dynamics models to
meet the real-time simulation constraints required
for decision-making in an emergency. It is based
on the following key observations on the limita-
tions of the previous approaches. (i) Current opti-
mizations develop efficient implementations for
existing models. Such an approach is required in
physical sciences, where the models precisely cap-
ture the behavior of natural processes. Human
behavior cannot be captured with that level of
accuracy, and consequently, we have more leeway
to modify the model to suit the computational
architecture. (ii) Current optimization approaches
attempt to reproduce the results of each simula-
tion from the unoptimized code. However, the
results of a single simulation are not meaningful in
the application context. Rather, the output of the
entire parameter sweep is the meaningful result.
We develop a model that will lead to good compu-
tational performance while producing results that
are accurate over the entire parameter sweep.

We discuss our new Constrained Linear
Movement (CALM) model. Its name indicates
our target of simulating the movement of pedes-
trians in narrow passageways, with this paper
applying it to passenger movement when deplan-
ing from an airplane. However, the social force
model can be used in a wider context, although
our software implementation targets movement
in narrow passageways. It has been designed to
perform efficiently on GPUs but also yields sub-
stantial performance improvement on CPUs. It
has been designed to yield good computational
performance not just on a single simulation but
also on the parameter sweep.

We design this model by considering the
application needs and the computational require-
ments simultaneously. This contrasts with the
traditional approach, where the model is devel-
oped first based on application needs and then
optimized on different architectures. Design
considerations for performance include those

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

for the computational effort and data size, which
impacts the amount of parallelism in the param-
eter sweep due to memory limitations of GPUs.
We obtain a factor of around 125 improvement
in performance over SPED when we use 4 GPUs
on a single GPU node of the Frontera supercom-
puter, which is fast enough to meet the real-time
requirements for use in decision-support systems
during emergencies. Furthermore, we design a
hybrid CPU-GPU version that uses number-
theoretic properties of the parameter sweep for
efficient load balancing and increases the perfor-
mance of the parameter sweeps.

Our primary contributions lie in proposing
and demonstrating the effectiveness of architec-
ture-aware modeling for pedestrian dynamics,
optimized for both individual simulations and
for a parameter sweep. This approach can have a
transformative impact on enabling effective use
of GPUs for other models dealing with human
behavior because these models typically do not
capture human behavior so precisely that one
needs to replicate the results of the original model
exactly. This is particularly critical in dealing
with emergencies, such as the current COVID-
19 pandemic, because the human response to the
emergency and public policy choices need to be
understood to develop effective interventions to
mitigate the crisis.

The outline for the rest of the paper is as fol-
lows. We introduce pedestrian dynamics and the
SPED model in “Pedestrian Dynamics and the
SPED Model”. The CALM model is introduced
in “CALM Model”, along with the architectural
characteristics of GPUs relevant to its design.
This is the most significant section in this paper,
explaining our novel contribution. We provide
empirical results on the performance of the
CALM model on CPUs and GPUs in “Perfor-
mance Evaluation”. We then discuss the valida-
tion of the model and its application to analyzing
COVID-19 spread in “Validation” and “Appli-
cation to COVID-19%, respectively. We finally
present related work in “Related Work” and sum-
marize our conclusions in “Conclusions”

2 Pedestrian Dynamics and the SPED
Model

We first introduce pedestrian dynamics and then

provide details on the SPED model. We then

identify its computational limitations.

2.1 Pedestrian Dynamics
Pedestrian dynamics models have been developed
based on various approaches such as fluid flow'’,

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Architecture-Aware Modeling of Pedestrian Dynamics

cellular automata®, queuing theory'’, molecu-
lar dynamics-based social force models®, and
machine learning from videos'.

Pedestrian dynamics-based on social force
models have gained the most popularity recently
and are best suited for individual trajectory evo-
lution. These often adapt methods from molecu-
lar dynamics?, which simulates material behavior
at atomistic scales, by developing social force as
analogs to inter-atomic forces®. The SPED model
is one such model and has been used to study
infection spread in air travel'*!>?2,

This approach models both mobile pedes-
trians and stationary objects, such as walls and
seats, as particles, with multiple particles needed
for large objects such as walls. The trajectory of
a pedestrian evolves due to the pedestrian’s pro-
gress toward a goal and due to interactions with
other pedestrians and stationary objects. The
force f; acting on the ith pedestrian with mass m;
at any time ¢ is defined by the following equation:

fie A (@)
R N)

m
= Tl(Vol — Vi) + Zgzifys
(4

(1)

where r; is the current pedestrian position, vy; is
the desired velocity of pedestrian i in the absence of
anyone else, v; is the actual velocity, and ¢, is a time
constant. The first equality arises from Newton’s
laws of motion, while the last equality is a model’s
description of human behavior. The first term in
the human behavior is a self-propulsion force for
momentum generated by a pedestrian’s intention,
while the second represents a counteracting repul-
sive force that is the sum of the forces due to other
pedestrians, with pedestrian j contributing a force
Jij on pedestrian i. Social-force models typically dif-
fer in their definition of f;; 814 which is normally
driven by differing application contexts.

2.2 SPED Model

The SPED model was developed to simulate
the movement of passengers in an airplane. It is
based on a molecular dynamics code by Brenner
et al.’. The self-propulsion term is identical to
that in Eq. (1).

The repulsive forces f;; are determined as fol-
lows. Let the distance to the nearest passenger or
obstacle in 7’s direction of motion be d;. If d; is
greater than a certain threshold, then f;; <— 0 for
all j. If it is less than another threshold, then f;;
is the negative of the gradient of the Lennard—
Jones potential defined by Eq. (2), where r;; is the

@ Springer %

M. Sadeghi Lahijani et al.

distance between i and j, and € and ¢ are some
constant parameters.

y_ 0
Vi =em)
i

If d; is between the above two thresholds, then
a gradual reduction in speed is applied: v;(r+ At)
< «a; v(t), where «; is defined by Eq. (3), where
A is a constant representing the desired stopping
threshold of the passengers:

1 2
o = 4 (3)

Certain human behavioral features are added
into the SPED model through code outside of
Newton’s laws. For example, passengers take some
time to stow their luggage during boarding or
retrieving their luggage during deplaning. Passen-
gers also typically allow others in rows ahead of
them to get into the aisle before moving forward.

Algorithm 1 provides a high-level description
of SPED. The following details of the algorithm
are relevant to its performance. (i) Lennard—Jones
is a short-range force that is negligible beyond a
certain threshold. A neighbor list for each pas-
senger keeps track of all other passengers within
a threshold. Rather than sum this force over all
passengers in the plane, the code sums it only
over the passengers close by. The neighbor list
needs to be updated every iteration, even if the
Lennard—Jones force is not used in that iteration.
That is the reason for Lennard—Jones being called
each iteration. (ii) This model uses a third-order
Nordsiek solver, for which three derivatives of
the position (velocity, acceleration, and rate of
change of acceleration) are required. (iii) Position
update is performed only for passengers who are
in a position to move based on their behavioral
characteristics, as mentioned above. The model

has been validated by comparisons with empirical
data and has been successfully applied to airplane
boarding and deplaning'® pedestrian queues in
theme parks and airport security checks’.

2.3 Performance Optimizations and Their
Limitations

We now summarize performance optimizations
that have been performed on SPED and the limi-
tations of this optimized code, making it inad-
equate for decision-support meetings during
emergencies. These optimizations arise from (i)
optimizing an individual simulation and (ii) per-
forming the parameter sweep more efficiently.

The original SPED code took a few hours per
simulation. Conventional sequential code optimi-
zation, followed by an application-specific work-
flow optimization, led to an order of magnitude
improvement in performance’’, with maximum
computation time being around 20 min for a single
simulation on the Blue Waters machine at NCSA.

The parameter sweep was parallelized by hav-
ing each simulation run on one core, although a
single core could run several simulations. Simu-
lation times vary widely depending on the choice
of parameter values. Dynamic load balancing was
used to deal with this, and parallel I/O optimiza-
tion yielded additional efficiency, leading to par-
allel efficiency over 90%22,

In subsequent work®, the parameter sweep
itself was improved. The original parameter
sweep used a lattice of points. For example, if
there are 10 choices for parameter 1 and 10 for
parameter 2, then all 100 combinations of param-
eter values would be used. A low discrepancy
sequence'” can cover the parameter space more
efficiently. It could reduce the number of param-
eter combinations required by one to three orders
of magnitude in simulations with five parameters.

Algorithm 1: SPED algorithm

while (There are passengers remaining in the planc) do

for (cach passenger in the plane) do
Compute self-propulsion force
Compute neighbor list

Compute Lennard-Jones potential

Find the nearest neighbor in direction of motion

if (Nearest neighbor is too close) then

Use repulsive force computed by the Lennard-Jones potential

else if Nearest neighbor is too far then

Repulsive force =0
Else

Gradually decrease the speed of the passenger based on the distance to the nearest

entity
end if
end for

for (each passenger allowed to move) do

Update the velocity and position using Nordsiek solver

end for
end while

2

@ Springer

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

The computation time is still limited by the
time for the slowest simulation to around 20 min
on Blue Waters and 5 min on Frontera. Further-
more, to achieve the above limit on a parameter
sweep, one would need hundreds of cores. The
above work handled this issue by precomputing
the passenger trajectories and performed only
the analysis, such as determining the number of
contacts in real-time. This is inadequate for deci-
sion meetings where new policies, which could
impact passenger movement patterns, need to be
examined.

Furthermore, adequately accurate results
require thousands of simulations. This would
require several nodes of a supercomputer and
even more if individual simulations were par-
allelized. The queue wait time on a supercom-
puter itself would make it infeasible for real-time
results. Our goal is to design a model where such
a parameter sweep could be performed on a dedi-
cated in-house system accelerated with GPUs.

3 CALM Model
This section explains our novel contributions.
We first describe GPU architectural features
of relevance to our model design, then define
the CALM model, and finally discuss its GPU
implementations.

3.1 GPU Architectural Features

We use NVIDIA GPUs and CUDA for pro-
gramming and, therefore, adopt their ter-
minology. GPUs have several Streaming
Multiprocessors (SMs), each capable of running
thousands of threads in parallel. For example, the
NVIDIA Quadro RTX 5000 GPUs have 48 SMs.

A group of threads forms a block, and each
block is assigned to one SM for execution,
although an SM might handle several blocks.
Each GPU has a global memory (DRAM) that
is accessible to threads running on all SMs. Each
SM has a shared memory that is allocated per
block, with this memory being low-latency.
Only threads running on a block can access the
shared memory allocated to that block. The
NVIDIA Quadro RTX 5000 GPU has 16 GB of
global memory (DRAM) and up to 64 KB of
shared memory per SM, which is shared with the
L1 cache. Among other factors, the amount of
shared memory required by each block limits the
number of blocks that can simultaneously run on
each SM.

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Architecture-Aware Modeling of Pedestrian Dynamics

3.2 Model Design Features

Any pedestrian dynamics model clearly needs to
capture human movement features correctly. We
have discussed application-related aspects, such
as validating that the model correctly simulates
human movement, in a separate paper’'. In the
current manuscript, we identify the performance-
related features used to create the model on the
GPUs. Certain crucial aspects of the model design
are to (i) enable massive parallelism, (ii) reduce
thread divergence, and (iii) reduce the data move-
ment overhead.

GPUs rely on deploying a large number of
threads to hide data access latency. Limitations
in the shared memory size impact the number of
blocks that can run simultaneously, and conse-
quently the parallelism. It is, therefore, important
to reduce the amount of memory needed.

SPED uses the third-order Nordsiek solver”
for the numerical solution of the ordinary dif-
ferential equation, which is required for the high
accuracy and energy conservation desired in
molecular dynamics simulations. A disadvantage
of the Nordsiek solver is that it requires three
derivatives of position, even though Newton’s
law does not require the third derivative. This
increases the memory required, which can be a
bottleneck on the GPU, as explained later.

The mass of each passenger consumes addi-
tional memory, which is potentially not useful.
For example, it is fairly common in pedestrian
dynamics to use the same mass for each pedes-
trian. A formulation that avoids the use of the
mass would reduce the memory required.

Thread divergence arises when different
threads in the same warp (a subset of the threads
in a block) take different execution paths. In the
pedestrian dynamics computation, it is natural to
assign a passenger to one thread. This would lead
to thread divergence in the SPED model because
the computation of the repulsive forces can take
substantially different paths for each passenger,
depending on the distance to the nearest pas-
senger on the path (d;). Furthermore, repulsive
forces are the computational bottleneck, with the
Lennard-Jones potential itself consuming around
80% of the time in the SPED model. It is desir-
able for the model to use a single equation irre-
spective of the value of d;.

3.3 CALM Model

In the CALM model, rather than solving New-
ton’s law of motion directly, we reformulate it to
describe the evolution of the acceleration so that

@ Springer

M. Sadeghi Lahijani et al.

the mass does not need to be stored. It is also
intuitively appealing because the acceleration of
passengers in a plane is likely a behavioral charac-
teristic rather than being governed by their mass.
Furthermore, we perform a parameter sweep on
the model parameters, which would cover differ-
ent behavioral tendencies. The model is given by
the following equation:

(d*xi) _ (Bivoi —vi)
@ ot

(4)

The value of B; is a function of d;. It satisfies the
following properties. (i) If d; is large, it will tend to
make the pedestrian move toward that pedestrian’s
desired speed. (ii) If d; is very small, it will drasti-
cally decrease the pedestrian’s velocity. (iii) If d; is
between the two extremes, it will work as a slight
decelerator. An expression for g; of the form given
in Eq. (5) satisfies these properties, with constants
a=2.11, b=0.366, and ¢=0.966 selected to cap-
ture realistic human behavior. This is explained
in*!, because it deals with the behavioral rather
than performance aspect of the model.

—a(dj—b) (5)
Instead of the Nordsiek scheme for the solution
of the CALM model, we use the Euler method.
This has been used successfully by other research
groups in pedestrian dynamics’. (This detail is
available on the following website by its author
that provides further details on that paper: http://
angel.elte.hu/panic). It avoids storing an extra
derivative, thus reducing the memory required.
The CALM algorithm is presented in Algo-
rithm 2. It includes all behavioral features of the
SPED model in its code (which is not shown in
the algorithm below). In addition, it avoids dead-
lock that could arise in the SPED model. This
happens when two persons try to reach a location
that cannot accommodate both of them, such as
the center of the aisle in a plane. In that case, one
person wins the race, with a random component
to this decision. This step is explicitly coded.
Comparing Algorithm 2 and Algorithm 1
reveals the crucial differences between the CALM
and SPED algorithms. First, using Eq. (4) and the

pi=c—e

Euler solver instead of Lennard—Jones potential
and third-order Nordsiek solver, we decrease the
computational overhead significantly. Second, we
encode different repulsive forces in one formula
Eq. (4), which reduces the thread divergence on
the GPUs. Third, instead of keeping a neighbor
list for each passenger, we find the nearest entity
(passenger or physical-obstacle), which accurately
captures pedestrian movement in airplanes?'.
These optimizations also result in less data move-
ment and thus better performance on the GPUs.

3.4 CALM Parameters

We define six parameters to model uncertain-
ties in the human behavior. The first parameter
is the average walking speed of passengers which
is in the range of 1.1-1.3 m/s*’, and specifies the
maximum reachable speed for each passenger.
Passengers walk with this speed when there are
no obstacles in their path. However, we identi-
fied three situations in which passengers do not
walk with this speed and, therefore, define coef-
ficients to multiply in this average speed. When
passengers move toward the overhead bins, their
maximum reachable speed is multiplied by a
coefficient in the range of 0.2 to 0.6. When pas-
sengers want to align themselves on the center
of the aisle, their maximum reachable speed is
multiplied by a coefficient in the range of 0.2 to
0.7. Passengers in the aisle wait for the passengers
in front of them to move first. A passenger can
move in the aisle if their distance to the nearest
passenger in front of them is more than a param-
eter in the range of 0.5 to 1.6 m. When passen-
gers get closer than a threshold (0.2-1.5 m) to the
end of the intersection of the main aisle and the
exit aisle, their maximum speed threshold is mul-
tiplied by a parameter in the range of 0.2 to 0.8
while they are turning toward the exit door.

3.5 CALM Implementation on GPU

3.5.1 Data on DRAM

The CALM model has several feature arrays. We
first consider the case when these are present in
the GPUs DRAM.

Algorithm 2: CALM algorithm

while (There are passengers remaining in the plane) do

for (each passenger / in the plane) do

Find the nearest neighbor in direction of motion and compute d;

end for
for (each passenger / in the plane) do
Compute B

Compute the right hand side of equation (4)
Update the velocity and position using an Euler solver

end for
end while

2

@ Springer

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

http://angel.elte.hu/panic
http://angel.elte.hu/panic

Each pedestrian is assigned to one thread,
although, in principle, one thread could handle
M pedestrians, where M is the ratio of the num-
ber of pedestrians to the number of threads. We
will discuss the process of tuning M for our appli-
cation in the experimental setup section, “Perfor-
mance Evaluation”, of this article.

As Algorithm 2 shows, computing for a pas-
senger at each time step requires the most recent
position of other passengers (to find the correct
nearest passenger, for example). Therefore, syn-
chronization of all threads after each iteration is
necessary. To avoid inter-block synchronization,
we use a single block for each simulation. As a
consequence, synchronizations will happen only
among threads on the same block, which makes
this process feasible without solutions that would
incur significant overhead. On the other hand, it
decreases the efficient use of the GPU for a single
simulation. However, our goal is to use the GPU
efficiently for the parameter sweep. While a sin-
gle simulation would keep only one SM occupied,
the parameter sweep keeps the whole GPU occu-
pied by concurrently running several simulations,
one simulation per thread block. We use one ker-
nel call per parameter sweep, with each using one
block per simulation. Therefore, several simula-
tions execute simultaneously on the GPU and
make effective use of the whole GPU.

3.5.2 Shared Memory Implementation

We also develop a shared memory version of the
CALM model. Here, we copy the data into the
shared memory before initiating the execution of
the simulation. Therefore, we replace the accesses
to the DRAM in the previous implementation
with accesses to the shared memory during the
course of the simulation. This implementation
has potential advantages and disadvantages over
the DRAM version. On the one hand, access to
shared memory is much faster than access to the
DRAM. On the other hand, the shared memory
size is small, thus limiting the number of blocks
that can run simultaneously. “Comparing CALM
and SPED” evaluates the net impact of these two
factors by comparing the shared memory and
DRAM versions.

3.5.2.1 /0O The CPU version of the CALM
model writes the positions of passengers to the
output file every K iterations, where K is a suit-
ably chosen constant. We used gprof to profile
a single simulation on the CPU, and the profiling
information showed that I/O on the CPU takes
less than 0.01% of the execution time. 1/O, thus,

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Architecture-Aware Modeling of Pedestrian Dynamics

does not impose a noticeable cost in CPU simula-
tions. However, a similar procedure on the GPU
would incur a significant 1/O overhead since it
would involve several I/O calls with data move-
ment over the PCl-express link. Instead, we write
the positions of the passengers to an array every
K iterations on the device. After the execution of
the parameter sweep is finished and the kernel
returns to the host, the host writes the whole array
to the output files corresponding to each simula-
tion. Therefore, data transfer from the device to
host memory and subsequent I/O by the host has
to happen only after the parameter sweep execu-
tion is finished and involves a few large 1/O calls
instead of many small ones.

3.5.3 Floating Point Precision

We have a choice of using different precision
levels. While double-precision would be more
accurate, our basic assumption is that no model
captures human behavior so accurately that the
result of a single accurate simulation is mean-
ingful. Consequently, we observed that lower
precision can lead to sufficiently accurate results
for the parameter sweep. Half-precision is even
faster than single precision, but its results were
not correct. In fact, there was no progress in the
simulations using half-precision because the
numerical solution of the differential equation
solver requires increments to the current values
of variables that are very small and get rounded
to zero.

We quantify the performance gain from the
use of single-precision by implementing both
single-precision and double-precision versions.
There is potential for performance gains in sin-
gle-precision due to better compute performance
on it, especially on the GPU. Furthermore, on
the shared memory implementation on GPUs,
it increases the parallelism during the param-
eter sweep by decreasing the amount of memory
required per block, which increases the number
of blocks that can be assigned to each SM. While
single-precision also increases I/O speed, the I/O
overhead is not sufficiently high to contribute
much to the performance improvement.

4 Performance Evaluation

4.1 Experimental Platform

We use the Frontera supercomputer at the Texas
Advanced Computing Center for all our experi-
ments. This system is equipped with 8008 Cas-
cade Lake (Intel Xeon Platinum 8280) nodes
and 90 GPU nodes and is ranked the 9th fastest
supercomputer in the November 2020 Top 500

]
IS¢

@ Springer

M. Sadeghi Lahijani et al.

list. Each Cascade Lake node contains 56 cores
and 192 GB of DDR4 RAM. Each GPU node has
4 NVIDIA Quadro RTX 5000 GPUs and 2 Intel
Xeon E5-2620 v4 (Broadwell) CPUs with 8 cores
(16 simultaneous threads) and 128 GB of DDR4
RAM per CPU.

The operating system on the Frontera super-
computer is CentOS Linux 7.6.1810, and we use
g++ (GCC) 8.3.0, mpicxx (ICC) 19.0.5.281, mpi-
fort (IFORT) 19.0.5.281 compilers and NVIDIA
CUDA 10.1 compilers for compiling our codes.

We use the gettimeofday() function with 1 ps
resolution for measuring the timings that we
report in this section. We repeat all of our runt-
ime measurements five times and report the min-
imum measured runtime to decrease the noise
from the operating system jitter®.

4.2 Code Availability

We have provided a public repository on Git-
lab that contains all the codes and guidelines
for reproducing our results. This repository can
be accessed at https://gitlab.com/Mehran_SL/
gpu-calm.

4.3 Simulation Details

All of our experiments simulate passengers’ dis-
embarkation from a full Airbus A320 with 144
seats. We employ a low-discrepancy parameter
sweep using a scrambled Halton low discrepancy
sequence’. We have also implemented a hybrid
CPU-GPU version of the model to make use of
the entire hardware resource. For the CPU sim-
ulations of this hybrid implementation, we use
a master-worker algorithm to balance the load
dynamically among the cores. CPU simulations
start with one simulation per core, excluding the
core where the master runs. The master assigns a
new simulation to a core that has completed its
previous simulation. The hybrid simulations,
where CPU and GPU both run simulations, are
more complicated due to load balancing issues
that depend on number theory and are explained
separately.

We tuned the number of threads per block in
the GPU code by examining the performance of
the CALM model on GPU with different numbers
of threads. We observed that 144 threads—one
thread per passenger—yield peak performance.
Therefore, we use 144 threads for each simulation
in our experiments, which gives us the maximum
possible parallelism with having each thread
doing the computations of one pedestrian.

2

@ Springer

4.4 Convergence Analysis
As we mentioned earlier, we perform a param-
eter sweep to capture several possible scenarios,
including extreme, uncommon ones®'. We need
to determine a suitable size for the parameter
sweep so that we sample the space well. On the
other hand, taking too many samples would
unnecessarily increase the computational load.
We wish to find the minimum sample size N that
ensures that the results are accurate and reliable.
We use a convergence check to determine this
using the methodology of’. Here, we consider
histograms of quantities of interest and check
whether moments of their distribution change
less than a given threshold (5%) while the sam-
ple size doubles. Specifically, we use this criterion
for the following two quantities. (i) Deplaning
time, which shows the time in the real world for
the deplaning process that is simulated. (ii) The
total number of contacts between passengers dur-
ing deplaning, which counts the number of peo-
ple that come within a threshold distance of each
other. We choose this to be 1.83 m (6 feet), which
is the threshold corresponding to SARS-COV-2
transmission. We define N to be the number of
simulations in the parameter sweep and examine
the results for N=2000, N=4000, N= 8000 and
N=16,000 as shown in Figs. 1 and 2.
Convergence analysis of the moments, shown
in Fig. 3, shows that the mean, standard devia-
tion, skewness, and kurtosis have converged for
N=16,000. Comparing the histograms in Figs. 1
and 2, we see that the results with N=2000 are
qualitatively similar to those with N=16,000,
while the results with N=8000 are also quanti-
tatively close to N=16,000. Consequently, we use
N=2000 for real-time results—when qualita-
tively accurate results are needed quickly during
a decision meeting—and N=8000 when quanti-
tatively accurate results are desired. The conver-
gence check of the SPED model also shows that
it produces quantitatively accurate results in the
order of ten thousand simulations®. We empha-
size that this analysis provides an insight into the
convergence of the parameter sweep results, while
the accuracy and validity of the model and simu-
lations are discussed elsewhere”.

4.5 Selection of the Best CALM Version

We wish to choose the best CALM version on the
GPU to use for further study. We use N=2000 for
selecting the best implementation and then eval-
uate that implementation further with N==8000.
This ensures that evaluation is performed in a

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

https://gitlab.com/Mehran_SL/gpu-calm
https://gitlab.com/Mehran_SL/gpu-calm

Architecture-Aware Modeling of Pedestrian Dynamics

0.20 020
> o
Q Q
=} =
2 015 3015
= g
g =
S L=
2 010 = 010
= N
= =
g 005 £ 005
55 60 65 70 75 80 85 90 55 60 65 70 75 80 85 90
Deplaning time (minutes) for N = 2000 Deplaning time (minutes) for N = 4000
.. 020 . 020
Q Q
=] =}
S 3
5,015 5,015
(5] (5}
& &
3 010 3 010
e R
= =
E 005 £ 005
0.00 . ..-____ 0.00 - l--___
55 60 65 70 75 80 85 90 55 60 65 70 75 80 85 90
Deplaning time (minutes) for N = 8000 Deplaning time (minutes) for N = 16000

Figure 1: Histograms of deplaning times.

0.150 0.150
P B
2 0125 2 0125
[T [T
g_ =
F 0100 ' 0.100
& &
B 0.075 '8 0.075
N N
= 0050 = 0050
P ... - i

20 2 24 26 28 20 2 24 26 28
Number of contacts (10000s) for N = 2000 Number of contacts (10000s) for N = 4000

0.150 0.150

0075 0.075

0.050 = 0.050

= il = ol

0.000 - II.--__ 0.000 - I..-__
20 2 24 % 28 2 2 24 % 28

Number of contacts (10000s) for N = 8000 Number of contacts (10000s) for N = 16000

different situation than the selection. We carry of these four parameter sweeps in Table 1. These
out the GPU experiments on one NVIDIA results show that the parameter sweep with data
Quadro RTX 5000 GPU. We present the results —in DRAM is faster than shared memory.

e o
SR =
o N
(=IO
e o
RO
o N
S o

Normalized frequency
Normalized frequency

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021 ljournal.iisc.ernet.in @ Springer pk

10

M. Sadeghi Lahijani et al.

0.10 —< Mean 0.20 Mean
—5— Stdev 6 —#— Stdev
—#— Skewness —#— Skewness
. 0.10
Y 005 —e— Kurtosis "g’ 1 —e— Kaurtosis
§ ‘5 005
g &
S S 000 e
2 000 % 2
= ‘g 005
=]
3 3
-4 &~ —0.10
-0.05 5%
-0.20
-0.10 -
2000 4000 8000 16000 2000 4000 8000 16000

Parameter space size

(a) Statistical convergence check for

deplaning time

Parameter space size
(b) Statistical convergence check for the

number of contacts

Figure 3: Statistical convergence check for the parameter sweeps. a Statistical convergence check for
deplaning time; b Statistical convergence check for the number of contacts.

Table 1: Run-Time of parameter sweeps of the CALM model on one GPU with N=2000.

Memory type Floating-point precision Run-Time (s) STDEV
DRAM Single-precision 257.09 1.18
DRAM Double-precision 1189.10 14.27
Shared memory Single-precision 369.01 0.99
Shared memory Double-precision 1592.98 0.75

To better comprehend the performance of
these GPU implementations, we also profile our
code on the same system with the NVIDIA Nsight
suite. We profile on parameter sweeps of size 500,
and we see that again the parameter sweep on
DRAM is faster. We observe a 29.24% decrease
in achieved occupancy—the ratio of concur-
rent active warps—when we use shared memory
instead of DRAM. While better occupancy does
not necessarily mean better performance in all
applications, in our application, we can see that
each simulation (each thread block) uses slightly
less than a third of the available shared memory
(18.26 KB out of 65.54 KB). This is the main fac-
tor in decreasing occupancy. Our profiling results
also reveal that the shared memory parameter
sweep has around 26% less ALU utilization and
17% less Fused Multiply Add/Accumulate (FMA).
These results also support our hypothesis about
the reason for less occupancy in shared memory
parameter sweeps. We conclude that fewer simu-
lations can concurrently run when we use shared
memory, which makes parameter sweeps on
shared memory slower on these NVIDIA Quadro
RTX 5000 GPUs.

2

ssssss

@ Springer

We next assess the difference in theoretical
occupancy in the DRAM and shared memory
implementations with N=2000. The average
occupancy can be obtained as the ratio of the
sequential time to parallel time. The latter is
shown in Table 1. We used the clock() function to
determine the runtime of each block in the kernel
and added them to compute the total sequential
runtime. With single-precision floating-point
numbers, the average occupancy on DRAM is
;Lg%% ~ 190, while it is 35633.%({ ~ 146 on shared
memory. Thus, DRAM increases the occupancy
by approximately 30% in the single-precision
implementation.

According to the theoretical performance of
NVIDIA QUADRO RTX 5000 GPUs, peak FP32
(single-precision floats) performance is around
11.2 TFLOPS while the peak performance of
FP64 (double-precision floats) is only about 348
GFLOPS'®?. Moreover, our profiling results
show a 77% decrease in L1 cache throughput,
a 70% reduction in L2 cache throughput, and
a 91% decrease in DRAM throughput, and a
5% drop in SM throughput when we switch to
double-precision numbers on shared memory.

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Table 2: Comparison of SPED and CALM on par-
allel parameter sweeps with N=38000.

Model Run-Time (s) STDEV
SPED 31,947.8 189.56
CALM 975.4 8.10

Table 3: Performance of the CALM model
when using multiple GPUs for parameter sweeps

with N=8000.

Memory type of GPUs Run-Time (s) STDEV

DRAM 2 497.25 4.61
Shared memory 2 563.30 4.01
DRAM 4 256.36 7.36
Shared memory 4 307.12 4.09

Moreover, a 70% increase in the amount of
shared memory needed by each block leads to a
75% decrease in occupancy for these parameter
sweeps. We infer that the lower computation and
memory throughput are the major factors in the
performance drop of parameter sweeps that use
double-precision floating-point numbers. We
conclude that the single-precision DRAM is the
best GPU implementation for the system we are
using, while the shared memory implementa-
tion could perhaps perform faster on some other
architectures. All subsequent tests in this article
use single-precision and DRAM on the GPU.

4.6 Comparing CALM and SPED

We have previously shown that a CPU imple-
mentation of the CALM model outperforms the
SPED model by a factor of 58.7 on 56 CPU cores
(one node) with two Xeon Platinum 8280 28C
processors of the Frontera supercomputer when
we compare parameter sweeps of size 10007, In
this article, we want to show the effectiveness of
architecture-aware modeling. Therefore, we com-
pare each model’s performance on the architec-
ture that each model was, respectively, designed
for (multicore-CPU for SPED and GPU for
CALM). In our next experiment, we run param-
eter sweeps with N=38000 to compare the perfor-
mance of the SPED model (which has only a CPU
implementation) against the GPU implementa-
tions of the CALM model. We carried out a paral-
lel low-discrepancy parameter sweep of the SPED
model on 56 cores of a Cascade Lake (Intel Xeon

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Architecture-Aware Modeling of Pedestrian Dynamics

Platinum 8280) node on the Frontera supercom-
puter. The results of this experiment are shown
in Table 2. The key observation in these results is
that the CALM model significantly outperforms
the SPED model by a factor of 32.

4.7 Using Multiple GPUs

Modern architectures enable the use of mul-
tiple GPUs on each node of a cluster. GPU
nodes of Frontera supercomputer each contain
4 NVIDIA Quadro RTX 5000 GPUs. To fur-
ther improve the performance of the param-
eter sweeps, we use multiple GPUs on one GPU
node. In this approach, we split the parameter
combinations into equal-size subsets and assign
each subset to one GPU. Multiple GPUs then
execute simulations with the designated param-
eter combinations concurrently. We investigate
the performance of the GPU implementation
of the CALM model with both shared memory
and DRAM using 2 and 4 GPUs of one GPU
node on Frontera. Table 3 presents the runt-
imes of these four tested scenarios. These results
show good speedup when we use multiple GPUs
concurrently.

4.8 Hybrid Implementation

We now describe a hybrid CPU-GPU implemen-
tation in which we use CPU and GPU simulta-
neously to perform the parameter sweep. Load
balancing here becomes a little complicated
because the low discrepancy sequence used in the
parameter sweep has some regular patterns. Its
number-theoretic properties need to be consid-
ered while assigning simulations to the GPU and
CPU, respectively, as explained later.

GPU nodes on Frontera use Intel Xeon
E5-2620 v4 CPUs that are slower than the CPUs
of the regular compute nodes (Intel Xeon Plati-
num 8280 CPUs), and we can use only 16 MPI
ranks on one node. A parameter sweep of the
CALM CPU implementation with N=2000 on
one of these nodes takes 934.37 s, while a simi-
lar parameter sweep with the CALM GPU imple-
mentation takes about 257.09 s. The performance
of the CALM CPU on Intel Xeon E5-2620 v4
CPUs and CALM GPU on the NVIDIA Quadro
RTX 5000 GPUs gives us an insight into the suit-
able share for each of them from the parameter
space.

In other words, given the runtime of CPU and
GPU for parameter sweeps with N=2000, one
can compute the value of x such that the runtime
of x simulations on CPU is roughly equal to the
runtime of N —x simulations on the GPU. As we

@ Springer n%

11

12

M. Sadeghi Lahijani et al.

show below, solving this equation for N=28000
suggests assigning around 1700 simulations to
the CPU and 6300 simulations to the GPU. x x
257.09 = (8000 — x) x 934.37 = x=1727, where
the time for 2000 simulations of CALM on the
Broadwell CPU is 934.37 s.

4.8.1 Partitioning

We partition the parameter space into two non-
overlapping subsets. We assign one subset to the
CPU implementation and the other to the GPU
implementation. We let NCPU and NGPU denote
the sizes of the respective subsets.

Conventional partitioning techniques in par-
allel computing are block, cyclic, and block cyclic.
In the block decomposition, we assign the first
1700 parameter combinations to the CPU and
the remaining 6300 to the GPU. We also try the
reverse order in which we assign the first 6300
parameter combinations to the GPU and the
remaining 1700 to the CPU and call it reverse
block decomposition. In the cyclic decomposi-
tion, we would distribute alternate parameter
combinations to the CPU and GPU, respectively.
In the block-cyclic decomposition, we would
divide the parameter sequence into chunks of
some size C and then apply a cyclic decomposi-
tion to the chunks. Since N¢cpy; and Ngpyy are not
close to each other, the use of a cyclic decompo-
sition or a conventional block-cyclic decompo-
sition would lead to severe load imbalance. We,
therefore, modify the block-cyclic decomposition
to suit our needs.

We use unequal block sizes C; and C; on the
CPU and GPU, respectively. At each iteration of
the block-cyclic scheme, we assign C; simula-
tions to the CPU and C; simulations to the GPU.
There is an additional complication with the
use of a low-discrepancy parameter sweep. The
simulation time differs in different parts of the
parameter space, and the Scrambled Halton low
discrepancy sequence generates parameter com-
binations that sample the parameter space in a
deterministic manner®. In this process, it uses
some small prime numbers, and partitioning
sizes that resonate with these primes can yield
poor load balance. This was observed in> when
load balancing just on the CPU, while we balance
the load across the GPU and CPU. Therefore, we
pick C; and C; such that they are relatively prime,
and C; + Cy is relatively prime to the primes used
in the Scrambled Halton sequence. We choose
three pairs of numbers with the above character-
istics: (<8,29>,<19, 64>, and< 19, 64>) to test
this modified decomposition.

2

@ Springer

In each experiment, we assign the first block
or chunk to the GPU and the second one to the
CPU, and we continue with this order for the
modified block-cyclic method. We also repeat the
same approaches with the reverse order (assign
the first block or chunk to the CPU and the sec-
ond one to the GPU) to see if that can affect the
load balance. Table 4 presents the results of these
experiments.

Table 4 shows that certain choices of sizes in
the modified decomposition technique decrease
load imbalance and the total runtime of the
parameter sweep. This demonstrates that con-
sidering the number-theoretic features of the
low discrepancy sequence can further increase
the performance. In particular, the block-cyclic
scheme with block sizes equal to 19 and 64 takes
10 s less than the block decomposition. Besides,
we observe that the hybrid implementation of the
CALM model is approximately 18% better than
the best single GPU implementation. The use of
multiple GPUs will further increase performance.

4.8.2 Real-Time Simulations
We now consider using the GPU implementation
to obtain results within the real-time constraints
of a couple of minutes. We use a smaller param-
eter sweep size to accomplish this, with N=2000.
We have already shown that it yields qualita-
tively, accurate results. For this experiment, we
use four NVIDIA Quadro RTX 5000 GPU on
one GPU node of Frontera supercomputer to
run this parameter sweep with the CALM GPU
code. Table 5 represents the runtimes of these
parameter sweeps on DRAM and shared mem-
ory. We observe that in these simulations, the use
of shared memory leads to a slightly better per-
formance than with DRAM, in contrast to the
results of Table 3. This is caused by the trade-off
between the use of shared memory and the L1
cache mentioned in “CALM Implementation
on GPU”. However, with the smaller parameter
sweep of Table 5, a decrease in the use of shared
memory increases the available L1 cache, thus not
hindering the performance of the shared mem-
ory implementation. In both cases, the runtime
is less than two minutes. This clearly shows that
the CALM GPU can be used with the real-time
constraints of decision-making meetings. We are
currently using this model for a more accurate
analysis of the risk of COVID-19 spread in air-
planes than would not have been possible earlier.
In addition, as the results of Table 3 show, we
can run a parameter sweep with N=28000, which
produces quantitatively accurate results in about

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Architecture-Aware Modeling of Pedestrian Dynamics

Table 4: Run-Time (in seconds) of the parameter sweeps of the CALMyyprig model with N=8000.

Decomposition GPU time CPU time Total time
Block 800.95 800.75 801.83
Reverse block 771.17 794.79 795.95
Block-cyclic<8, 29> 796.22 790.23 797.25
Reverse block-cyclic<8, 29> 791.50 790.04 792.70
Block-cyclic< 16, 57> 792.47 788.21 793.28
Reverse block-cyclic< 16, 57 > 792.55 790.72 793.75
Block-cyclic< 19, 64> 790.12 790.91 791.93
Reverse block-cyclic< 19, 64 > 790.25 789.57 790.98

Table 5: Run-Time of the parameter sweeps

of the CALM model on four GPUs with N=2000.

Memory type Run-Time (s) STDEV
DRAM 113.29 2.10
Shared memory 104.00 1.08

4 min. This progress is a big step toward enabling
real-time policy analysis with quantitatively con-
verged parameter sweeps.

5 Validation

One also needs to show that the results from
our model match real pedestrian movement to
validate the model. Such results, focused on the
mechanics of pedestrian motion, are presented
in’!. As an instance, we compared the deplan-
ing times of three different airplanes (Boeing
B757-200 with 182 seats, Boeing B757-200 with
201 seats and CRJ-200 with 50 seats) against the
empirically observed times. For Boeing B757-200
with 182 seats, the empirically observed deplan-
ing time is in the range of [10.71, 12.13] minutes
and the deplaning times of simulations with our
model are in the range of [8.21, 16.43] minutes.

6 Application to COVID-19

Public health warnings recommend maintain-
ing a 1.83 m (6 feet) distance to avoid infection
through respiratory droplets of an infected per-
son. However, there is evidence of the drop-
lets being carried by airflow'®, in which case a
1.83 m distance may not be sufficient. We wish to
examine if an error in this threshold could lead
to a much larger risk of infection spread than
expected from models that use a 1.83 m thresh-
old. For symmetry, we also consider the possibil-
ity of the true threshold being 1.22 or 2.44 m (4

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

or 8 feet). Figures 2 and 4 show the number of
contacts for each threshold, while Table 6 gives
the average number of contacts. The contacts
are obtained by summing the number of distinct
pairs of passengers within the distance threshold
every 1.25 s of deplaning.

We see that a 2.44 m threshold leads to only
around a 15% increase in contacts over the rec-
ommended 1.83 m, while a value of 1.22 m would
lead to around a 38% decrease in the number
of contacts. This analysis suggests that an error
in the threshold would not lead to a substantial
increase in risk at the higher end, while it would
lead to a substantial decrease in the risk at the
lower end. The CALM model enabled this anal-
ysis on a single node with 4 GPUs. SPED would
have required massive parallelism.

7 Related Work

Work on the SPED model, explained earlier,
is most closely related to ours. It has not been
ported to GPUs. However, there are other works
that relate to pedestrian dynamics on GPUs.

For example, Richmond and Romano'® dis-
cuss a framework for agent-based pedestrian
dynamics on GPUs (each pedestrian in our model
could be considered an agent). The focus there is
on a software framework that could be used to
implement pedestrian dynamics on GPUs. New
models that are efficient on GPUs are not pro-
posed, unlike in our work. In fact, the focus of the
GPU is on visualization.

Dutta et al.'” propose two pedestrian dynam-
ics models and port them onto GPUs. This is the
conventional approach where a model is devel-
oped for an application and then optimized on
a GPU. They obtained a factor 18 performance
improvement over a single-threaded CPU code.
In contrast, we obtain a greater improvement in
performance over a multi-threaded code with 56

@ Springer n%

13

14

M. Sadeghi Lahijani et al.

12 13 14 15 16 17 18 19 20

Number of contacts (10000s) for N = 16000
with contact threshold = 4 feet

o o
2 £
N

o
-
o

o
[=1
(s3]

Normalized frequency
o o
e &

o
o
N

o o
= o
N A

o
s
o

=g
=]
>

Normalized frequency
2 8

=g
o
()

000 M

24 2 28 30 32 H 36 38

Number of contacts (10000s) for N = 16000
with contact threshold = 8 feet

Figure 4: Histograms of the number of contacts with different contact thresholds.

Table 6: Average number of contacts with differ-

ent contact thresholds for N=16,000.

Average num-

ber of con-
Contact threshold tacts
1.22 m (4 feet) 150,587
1.83 m (6 feet) 245,763
2.44 m (8 feet) 284,460

threads, even with a single GPU. Was and Mroz**
too take a conventional approach and port two
existing pedestrian dynamics models to GPUs.

Molecular dynamics with short-range forces
has some similarity with pedestrian dynamics,
and there is much work in porting such codes to
GPUs™. However, there are some fundamental
differences too. For one, the forces in pedestrian
dynamics are often not anti-symmetric because
pedestrians are influenced more by those in front
of them on their path than those around them
in other directions. In addition, while molecular
dynamics optimizations may also try to develop
approximations to the original force expressions
to speed up computation, these approximations
have to be very accurate, reflecting the physics.
Consequently, then cannot take an architecture-
driven modeling approach as we have.

8 Conclusions

We developed the idea of creating a human move-
ment model that was, by design, geared to effi-
cient computation on NVIDIA GPUs. We showed
that by relaxing the requirement that it replicates
an existing model’s computation accurately in a

2

ssssss

@ Springer

single simulation, we could obtain around a fac-
tor 125 improvement in performance. Using all
GPUs available on a single GPU node in a cluster,
we are able to obtain performance that can meet
the real-time constraints of decision-support
systems for policy-making in emergencies. Our
approach can help with computationally efficient
simulations of complex systems involving human
behavior, which is critical to decision-making in a
broader context than our specific example.

In future work, we wish to improve the per-
formance so that real-time constraints are met
with quantitatively accurate simulations rather
than just qualitatively accurate simulations. That
is, using N=28000 or 16,000, rather than 2000.
One direction for exploring such performance
improvement is to re-examine half-precision
floating-point numbers. It may require develop-
ing a novel algorithm that lets the small incre-
ments be accumulated.

Publisher’s Note
Springer Nature remains neutral with regard to
jurisdictional claims in published maps and insti-
tutional affiliations.

Acknowledgements

The authors acknowledge the Texas Advanced
Computing Center (TACC) for providing HPC
resources. Any opinions, findings, and conclu-
sions or recommendations expressed in this
material are those of the authors and do not nec-
essarily reflect the views of the National Science
Foundation or other funding sources.

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Author Contributions
MSL and AS designed the work; MSL, TT, and RG
conducted the experiment(s); MSL, AS, and RG
analyzed the results; and SN collaborated in the
design of the model and experiments. All authors
reviewed the manuscript.

Funding

This material is based upon work supported by
the National Science Foundation under Grants
No. 1931511 and 2027514.

Declarations

Conflict of Interest
The authors declare no competing interests.

Received: 25 March 2021 Accepted: 7 June 2021
Published online: 31 July 2021

References

1.

J. Indian Inst. Sci. IVOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L,
Savarese S (2016) Social LSTM: Human trajectory pre-
diction in crowded spaces. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016. IEEE

Brenner D, Harrison J, White C, Colton R (1991)
Molecular dynamics simulations of the nanometer-scale
mechanical properties of compressed buckminsterfuller-
ene. Thin Solid Films 206:200-223

Burstedde CK, Schaddschneider K, Zittartz J (2001)
Simulation of pedestrian dynamics using a two-dimen-
sional cellular automaton. Physica A: Stat Mech Appl
295(3):507-525

Chen J, Revels J (2016) Robust benchmarking in noisy
environments. arXiv preprint

Chunduri S, Ghaffari M, Lahijani MS, Srinivasan A,
Namilae S (2018) Parallel low discrepancy parameter
sweep for public health policy. In 18th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2018. IEEE

Funk S, Salathé M, Jansen VAA (2010) Modelling the
influence of human behaviour on the spread of infectious
diseases: a review.] R Soc Interface 7:1247—-1256

Helbing D, Farkas I, Vicsek T (2000) Simulating dynami-
cal features of escape panic. Nature 407(6803):487—-490
Helbing D, Molnar P (1995) Social force model for
pedestrian dynamics. Phys Rev E 51(5):4282

Derjany P, Namilae S, Liu D, Srinivasan A (2020) Mul-
tiscale model for the optimal design of pedestrian
queues to mitigate infectious disease spread. PLoS ONE
15(7):¢0235891

Architecture-Aware Modeling of Pedestrian Dynamics

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Dutta SB, McLeod R, Friesen M (2014) GPU accelerated
nature inspired methods for modelling large scale bi-
directional pedestrian movement. In Proceedings of the
International Parallel and Distributed Processing Sympo-
sium Workshops. IEEE

Henderson LF (1971) The statistics of crowd fluids.
Nature 229(229):381-383

Joseph EC, Conway S, Sorensen R, Monroe K (2016) An
investigation and evaluation of the scientific results from
the NCSA Blue Waters supercomputer system. In IDC
Special Report to the National Center for Supercomput-
ing Applications (NCSA)

Morokoff W, Caflisch R (1994) Quasi-random
sequences and their discrepancies. SIAM] Sci Comput
15(6):1251-1279

Namilae S, Srinivasan A, Mubayi A, Scotch M, Pahle R
(2017) Self-propelled pedestrian dynamics model: appli-
cation to passenger movement and infection propagation
in airplanes. Phys A 465:248-260

Namilae S, Derjany P, Mubayi A, Scotch M, Srinivasan
A (2017) Multiscale model for pedestrian and infection
dynamics during air travel. Phys Rev E 95(5):052320
NVIDIA (2018) NVIDIA Turing Architecture. https://
www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-
Turing-Architecture-Whitepaper.pdf

Okazaki S, Matsushita S (1993) A study of simulation
model for pedestrian movement with evacuation and
queuing. In: Smith RA, Dickie JF (eds) International con-
ference on engineering for crowd safety. Elsevier, Amster-
dam, pp 271-280

Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong
MSY, Marimuthu K (2020) Air, surface environmen-
tal, and personal protective equipment contamina-
tion by severe acute respiratory syndrome Coronavirus
2 (SARS-CoV-2) from a symptomatic patient. JAMA
323(16):1610-1612

Richmond P, Romano DM (2008) A high performance
framework for agent based pedestrian dynamics on GPU
hardware. Proc EUROSIS ESM 20:27-29

Rodrigues CI, Hardy DJ, Stone JE, Schulten K, Hwu
W-MW (2008) GPU acceleration of cutoff pair potentials
for molecular modeling applications. In Proceedings of
the 5th Conference on Computing Frontiers, pp 273-282
Sadeghi Lahijani M, Islam T, Srinivasan A, Namilae S
(2020) Constrained linear movement model (CALM):
Simulation of passenger movement in airplanes. PLoS
ONE 15(3):e0229690

Srinivasan A, Sudheer CD, Namilae S (2016) Optimiz-
ing massively parallel simulations of infection spread
through air-travel for policy analysis. (2016). In Pro-
ceedings of the IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp
136-145. IEEE

@ Springer %

15

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

16

M. Sadeghi Lahijani et al.

23. TechPowerUp (2018) NVIDIA Quadro RTX 5000.
https://www.techpowerup.com/gpu-specs/quadro-rtx-
5000.c3308. Last accessed: 23 Mar 2021

24. Was], Mroz H (2015) GPGPU computing for micro-
scopic simulations of crowd dynamics. Computing Infor-
matics 34:1418-1434

Mehran Sadeghi Lahijani is a Ph.D. can-
didate in the Department of Computer Sci-
ence at Florida State University. His
research spans the fields of high-perfor-
mance computing, parallel and distributed
systems, and algorithms.

Rahulkumar Gayatri is an Application
Performance Specialist at NERSC, LBNL.
Previously he did his postdoc in the NESAP
program at NERSC. He completed his
Ph.D. from Barcelona Supercomputing
Center, Spain. His research interests include
parallel programming frameworks and high-performance
computing.

Tasvirul Islam is a Research Assistant at

the University of West Florida. He com-

pleted his masters in Computer Science

from the University of West Florida. His

research interests are in high-performance

computing for scientific applications and
parallel programming.

@ Springer a2

25. Zebala J, Ciepka P, RezA A (2012) Pedestrian acceleration
and speeds. Problems Forensic Sci 91:227-234

Ashok Srinivasan is the William Nystul
Eminent Scholar Chair and Professor at the
University of West Florida and a Fulbright
Fellow. He obtained his Ph.D. in Computer
Science from the University of California,
Santa Barbara (UCSB). His research inter-

ests lie in the application of supercomputing to scientific
and public health policy applications.

Sirish Namilae is Associate Professor of
Aerospace Engineering at Embry-Riddle
Aeronautical University. He is an alumnus
of the Indian Institute of Science, where he
did ME in Materials Science, and he has a
Ph.D. in Mechanical Engineering from

Florida State University. His research interests are in the
areas of particle dynamics, multiscale modeling, and com-
posite materials.

J. Indian Inst. Sci.l VOL xxx:x|xxx—xxx 2021ljournal.iisc.ernet.in

https://www.techpowerup.com/gpu-specs/quadro-rtx-5000.c3308
https://www.techpowerup.com/gpu-specs/quadro-rtx-5000.c3308

	Architecture-Aware Modeling of Pedestrian Dynamics
	Abstract |
	1 Introduction
	2 Pedestrian Dynamics and the SPED Model
	2.1 Pedestrian Dynamics
	2.2 SPED Model
	2.3 Performance Optimizations and Their Limitations

	3 CALM Model
	3.1 GPU Architectural Features
	3.2 Model Design Features
	3.3 CALM Model
	3.4 CALM Parameters
	3.5 CALM Implementation on GPU
	3.5.1 Data on DRAM
	3.5.2 Shared Memory Implementation
	3.5.2.1 IO

	3.5.3 Floating Point Precision

	4 Performance Evaluation
	4.1 Experimental Platform
	4.2 Code Availability
	4.3 Simulation Details
	4.4 Convergence Analysis
	4.5 Selection of the Best CALM Version
	4.6 Comparing CALM and SPED
	4.7 Using Multiple GPUs
	4.8 Hybrid Implementation
	4.8.1 Partitioning
	4.8.2 Real-Time Simulations

	5 Validation
	6 Application to COVID-19
	7 Related Work
	8 Conclusions
	Acknowledgements
	References

