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Abstract—With the continued deployment of synchronized
Phasor Measurement Units (PMUs), high sample rate data are
rapidly increasing the real time observability of power systems.
Prior research has shown that the statistics of these data can
provide useful information regarding network stability, but it is
not yet known how this statistical information can be actionably
used to improve power system stability. To address this issue, this
paper presents a method that gauges and improves the voltage
stability of a system using the statistics present in PMU data
streams. Leveraging an analytical solver to determine a range of
“critical” bus voltage variances, the presented methods monitor
raw statistical data in an observable load pocket to determine
when control actions are needed to mitigate the risk of voltage
collapse. A simple reactive power controller is then implemented,
which acts dynamically to maintain an acceptable voltage stability
margin within the system. Time domain simulations on 3-bus
and 39-bus test cases demonstrate that the resulting statistical
controller can out-perform more conventional feedback control
systems by maintaining voltage stability margins while loads
simultaneously increase and fluctuate.

Index Terms—Synchronized phasor measurement units, volt-
age collapse, critical slowing down, holomorphic embedding, first
passage processes

I. INTRODUCTION

N order to optimize the use of limited infrastructure, trans-

mission systems frequently operate close to their stability or
security limits. Although economically advantageous [1]], this
can lead to elevated blackout risk given the fluctuating nature
of supply and demand [2]. Consequently, stability margin
estimation is an essential tool for power system operators.
Predicting the onset of voltage instability, though, is often
made difficult by reactive support systems and tap chang-
ing transformers that hold voltage magnitudes high as load
increases. Although voltage support is essential for reliable
operations, these controls can sometimes hide the fact that
a system is approaching a voltage stability limit, particularly
when operators and control systems rely on voltage magnitude
data for control decisions.

Across a variety of complex systems, there is increasing
evidence that indicators of emerging critical transitions can be
found in the statistics of state variable time series data [J3].
Termed Critical Slowing Down (CSD) [4], this phenomenon
most clearly appears as elevated variance and autocorrelation
in time-series data [|5]. More recently, CSD has been success-
fully investigated in the power systems literature, and strong
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connections have been drawn between bifurcation theory and
the elevation of certain statistics in voltage and current time
series data [[6]—[9]. In particular, 9] presents a method for
analytically calculating the time series statistics associated
with a stochastically forced dynamic power system model.
We leverage these results to predict key statistics of a power
system that is approaching a critical transition. Others, such
as [10], have developed control methods that use voltage
magnitude declination rate measurements, but do not explicitly
use statistical information as we present in this paper.

As reviewed in [[11], power systems are liable to experience
a variety of critical transitions, including Hopf, pitchfork, and
limit-induced bifurcations. This paper is primarily concerned
with the slow load build up, reactive power shortages, and
other Long Term Voltage Stability (LTVS) processes that may
contribute to a Saddle-Node bifurcation of the algebraic power
flow equations. Classic voltage stability, which refers to a
power system’s ability to uphold steady voltage magnitudes
at all network buses after experiencing a disturbance, is lost
after a network experiences this sort of bifurcation [[12]. The
methods in this paper aim to preserve such voltage stability
and thus prevent a system from experiencing voltage collapse.

The goal of this paper is to describe and evaluate a control
system that uses the variance of bus voltages to reduce the
probability of voltage collapse in a stochastic power system.
This control system leverages a number of innovative tools to
perform this task. The first uses the load scaling factor from
the Holomorphic Embedding Load Flow Method (HELM) [[13]]
to represent a slowly varying stochastic variable, such as
changes in overall load levels over time. Second, a First
Passage Process (FPP) [14] is used to identify critical loading
thresholds given the statistics of the slower load changes.
Finally, a full order dynamical system model is used to
analytically predict the expected algebraic variable covariance
matrix of the system, given stochastic load noise excitation,
for the previously identified critical loading level. The asso-
ciated critical variances from this matrix are then used as a
reference signal to control a static VAR compensator (SVC).
This reference signal is dynamically updated as network
configurations change and equilibriums shift. In building this
controller (see Fig. [8), we combine static algebraic voltage
collapse analysis through HELM, the first passage probability,
statistical estimation (based on system model and load noise
assumptions) and network feedback in order to leverage the
statistical properties of PMU data to reduce the risk of voltage
instability.

The remainder of this paper is organized as follows. Sec-
tion [l motivates the use of voltage variance as an indicator of
stability and presents the methods employed in our statistical



controller. Section describes the new statistical controller
along with two conventional reactive power controllers that we
use to benchmark our results against. Section |[V|demonstrates
the statistical controller on a 3 bus power system consisting of
a generator, a load bus, and an SVC bus. For further validation,
Section [V] tests the controllers on the IEEE 39 bus system.
Finally, conclusions and ideas for future research are presented
in Section [VII

II. BACKGROUND

This section motivates the use of bus voltage variance as a
measure of stability and presents the methods and tools used
to build our statistical controller.

A. Bus Voltage Variance in a 2 Bus Power System

A variety of systems, such as capacitor banks, tap changing
transformers, and various Flexible AC Transmission System
(FACTS) devices, are employed in power systems to ensure
that voltage magnitudes remain sufficiently high. As a result,
voltage magnitudes are an imperfect indicator of the proximity
of a system to its voltage stability limits. To understand how
an overloaded system with high voltage magnitudes may have
a compromised voltage stability margin, we begin with the
definition in [[15] (p.262): “For a particular operating point,
the amount of additional load in a specific pattern of load
increase that would cause a voltage collapse is called the
loading margin.”

Consider the system in Fig. where capacitive shunt
support B and a constant power load P+ jQ are placed at the
“to” bus and a generator with fixed voltage is located at the
“from” bus. Fig. 2] shows the power-voltage curves that result
if the load’s power factor is held fixed with several different
amounts of reactive power injection.
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Fig. 2. Load Bus Voltage as a Function of Pp for Various Shunt Values. As
more reactive power is injected into the system, the voltage magnitude at the
point of bifurcation drifts upwards towards nominal system voltage.

As reactive support increases, the system can sustain larger
increases in load before voltage collapse occurs. However,
if reactive resources are used to maintain voltages at their

nominal levels (1 p.u.), the load margin to the bifurcation
decreases (as seen by the upward drift of the star symbols).
On the other hand, as load increases, the magnitude of the
derivative of the PV curve (with respect to load) increases,
suggesting that this derivative is a useful indicator of proximity
to the bifurcation.

If load varies stochastically with variance o7, (1) describes
the expected bus voltage variance at the load bus, given load
noise 03 and load level expected value E[Pp]:

dv, 2
o, R (dPD E[PD}) by M

Predicting the distance to static voltage collapse with variance
measurements can be accomplished by (i) drawing the PV
curve for a system, (ii) defining a complex power loading
margin on the curve which should not be exceeded, and
then (iii) calculating the expected bus voltage variance at this
threshold. If measured voltage variance exceeds this threshold
value then the system may be at risk of exceeding its stability
limits. If reactive support is high, the voltage magnitude of
the system may be an unreliable real time measure of voltage
stability. The bus voltage variance statistic, however, can
potentially tell a more complete story about system stability.
In the following sections, we leverage the stability information
encoded in the variance in order to make real-time, data-driven
control decisions.

B. System Model Overview

As described in [9] a stochastically forced power system
can be modeled with a set of Differential-Algebraic Equations
(DAEsS) [[16] of the form

x =f(x,y) (2)
0 =g(x,y,u(t)) 3)

where f, g represent the differential and algebraic systems, x,
y are the differential and algebraic state variables, and u(t)
represents the time-varying stochastic (net) load fluctuations.
Neglecting for the moment the slow changes in load level, the
complex load at time ¢ can be represented by (@):

S(t) = So(1 + u(t)) )

with the dynamics of the fast load fluctuations given by the
Ornstein-Uhlenbeck process expressed in (3):

= —Fu+ L¢ 5)

where I, is the nxn identity matrix and F is a diagonal
matrix of inverse time correlations. £ is a vector of zero-mean
independent Gaussian random variables. We assume that a grid
operator can estimate the statistics of load fluctuations (£ and
&) from measurements.

C. Computing the Algebraic Variable Covariance Matrix

The process for deriving the approximate covariance matrix
for all variables in a stochastically forced power system is
derived in [9]. This computation allows one to characterize the
statistics of a system that is approaching a bifurcation. This



method is based on linearizing the equations encompassed by
(2) and (3) and then algebraically solving for Ax and Au by
eliminating the algebraic variable vector Ay.
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where A, is the standard state matrix. Using z =
T . . .

[ Ax Au ] s can be rewritten with compact matrices

A and B.

2= Az + BE 7)

As introduced in [17], the Lyapunov equation (8] can be solved
numerically to calculate the covariance matrix of z, where A
and B are defined in (7).

Aol +02A" = -BB' (8)

Since Ay = [ —g;'gx —8;'8u | Az = KAz, the state
variable covariance matrix can be transformed into the alge-
braic variable covariance matrix 032, = Ko2K'", and a subset
of the diagonal entries of 032, contain the bus voltage variances.

D. Adapting HELM to Solve CPF

The Continuation Power Flow (CPF) problem is a classic
approach to understanding and predicting voltage instability.
As outlined in [18], CPF involves drawing PV curves given
load and generation increase rates using iterative Newton-
Rapson methods. As introduced in [[13|], iterative techniques,
such as Newton-Raphson, can encounter a numerical issues,
such as divergence or finding undesirable low-voltage solu-
tions, when solving the nonlinear power flow equations, par-
ticularly when a system approaches a Saddle-node bifurcation.
An alternative is to use the Holomorphic Embedding Load-
flow Method (HELM), which uses complex analysis and re-
cursive techniques to to overcome these numerical difficulties.
If one exists, HELM is guaranteed to compute the high voltage
power flow solution [19].

Prior work [20] provides an important foundation for using
HELM to solve for the static stability margins of a power
system. After generating the holomorphic voltage functions,
the largest, positive zero of the numerator of the Padé approx-
imant approximates the maximum power transfer point of the
system. This method, though, scales all loads at uniform rates,
and does not account for more than one single generator bus
in the system. In order to solve these problems, we derive a
new method for scaling loads from a known base case solution.
This approach allows loads and generators to scale at different
rates.

In the conventional CPF problem, generation participation
rates are assigned to generators to pick up excess load as
it is scaled. This is not the approach we took. For math-
ematical simplicity, we instead solve the base case power
flow solution and then fix the generator voltage phase angles.
As load increases at the load buses, generation throughout a
system increases quasi-proportionally to the electrical distance
between the generator and the load. Electrically proximal
generators respond with the largest generation increases, while
electrically distant generators respond with smaller increases;
we justify these assumptions in [21]]).

The details of the method are described in [21] and sum-
marized in the following. We begin with the holomorphically
embedded power flow equation at the i*" PQ bus.

ey i€ PQ 9)

N
Z YixVi(s) =
k=1

In (12]), the parameter k;, which can be positive, negative, or 0,

corresponds to the rate at which bus ¢ will be loaded. If k; = 0,

the load at bus ¢ will not change as the overall loading rate

s increases from 0. The holomorphically embedded equations

at voltage controlled buses (PV and reference) are stated:

Vi(s) = Vied% e {PVUr} (10)

Generator voltages are independent of s (reactive power limits
are not considered). Once the power series coefficients of the
holomorphic voltage functions V;(s) have been calculated via
N. recursive routines, Padé approximants (A and B in (II)))
are evaluated at various values of s in order to compute the
complex voltages at each bus.

Ne—1 ¥ n
3 Vi) () = 220 AED N oaa
n=0 2 n=o Bln](s")
In order to validate this continuation method, which we refer
to as CPF via HELM, we test our method on the IEEE 39 bus
system. We first define the vector k which has length 39. The
elements of this vector contain the respective arbitrary loading
rates of the buses in the system.

1 i€{3,4, 7, 8}
k; = —-0.2 =20 (12)
0 otherwise

The loads of the system scale in the following way, where S?
is the base load at bus i in the system: S; = SY + sk;S?. In
this example, we scale s from 0 to 1.99, at which point the
Saddle-Node Bifurcation occurs. Once the Padé approximants
are known for each bus, we scale s and solve for the complex
voltages at each bus. The resulting PV curves are shown in
Panel (a) of Figure

We also validated HELM against conventional Newton
Raphson Power Flow (NRPF). As s was increased and the load
was scaled via HELM, we solved for load bus voltages using
NRFP. We then plotted the difference between the HELM
and the NRPF voltage magnitudes in panel (b). These results
suggest that CPF via HELM accurately computes load bus
phasor voltages for a given level of load increase.

E. Deriving a Probabilistic Loading Margin from First Pas-
sage Processes

CPF (via HELM or NRPF) allows one to estimate how
much margin exists between the current operating point and
voltage instability. However, it does not tell the chance of a
particular system coming dangerously close to the point of
instability. This section builds on the First Passage Process
literature to systematically compute the probability that load
will not increase beyond a collapse threshold during a given
time period. To do so, we model the holomorphic parameter
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Fig. 3. Panel (a) shows the voltage magnitude for load buses of the 39 bus
system as s is scaled, as computed by our adaptation of HELM; the curves
in this panel are drawn analytically. The thick black curve is the voltage
magnitude of bus 20, whose load is decreasing as s increases, according
to equation . Panel (b) shows the voltage magnitude difference (error)
for each PV curve between the NRPF and HELM solutions. The error is
numerically insignificant until s approaches the bifurcation point (s & 2).
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Fig. 4. An illustration of the values that the holomorphic parameter s, which
starts at a base load s = 0, can attain during its random walk. s, is the load
level at which the probability of s hitting the Saddle-Node bifurcation s,
exceeds a probability limit.

s as Wiener Process in which s begins at the origin and takes
Gaussian-distributed steps with variance 2D.

s[0]=0 (13)
slk + 1] = s[k] + V2D - N'(1,0) (14)

The values which s may attain are shown in Figure @] where
s. corresponds to a Saddle-Node bifurcation of the algebraic
power flow equations. If s is allowed to drift over a time period
t, and an absorbing boundary condition (the point of collapse)
sits at s = s, the survival probability of the system, as derived
in [14], is:

15)

Sc

S(t) =~ erf ( @>
where erf is the error function and D is the diffusion coef-
ficient (based on the known variability of the load). Eq. (I3))
gives the probability that the parameter s will, at any point
during time ¢, cross the voltage collapse threshold.

Additionally, we introduce the value s,, € [0,s.]. This
scalar value corresponds to the maximum allowable load level
that can be reached before the probability of voltage collapse
grows too high. For example, if an operator specifies that the
system must never have a collapse probability higher than

10%, then when the system reaches this probability the loading

margin of the system will be s. — s,,.

Se— 8
0.10 =~ erf| =
( V4Dt )

The connection between first passage processes and voltage
collapse is further spelled out in [21]]. We assume that system
load changes will have both fast and slow load changes on top
of some base load condition. The interaction between these
fluctuations and the base load are illustrated in Fig. 3]
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Fig. 5. The interaction between base load, the fast noise u(t) of the
Ornstein-Uhlenbeck process, and the slow noise from the randomly walking
Holomorphic scaling parameter s is portrayed.

III. CONTROLLER DESIGN

This section introduces a Variance Based Controller (VBC),
which is subsequently shown to successfully mitigate the prob-
ability of voltage collapse. For benchmarking and illustration
purposes, we also introduce two other, more conventional,
controllers: a Mean Based Controller (MBC) and a Reference
Based Controller (RBC). For clarity, we introduce these con-
trollers in reverse order of complexity (least to most). In actual
implementation, both the MBC and VBC controller systems
require real time (PMU) load voltage observability and a
controllable reactive power resource, such as a Synchronous
Condenser or a Static VAR Compensator (SVC) that can
support load voltage.

A. Reference Based Controller Overview

The RBC does not rely on the Wide Area Measurement
System (WAMS); instead, it uses a local voltage terminal
measurement V; as a feedback signal to control the reactive
power injected by a “quasi-static SVC” deVic This relatively
simple approach to feedback SVC control is illustrated in
Fig. [6| In this diagram, Ab,. is the change in susceptance
at the SVC and the regulator gain K, is tuned to properly
correlate voltage changes with reactive power injections. The
reactive power changes are limited by the size, in MVAr, of
the SVC. The “BAF” block represents a Buffered Average
Filter that provides a rolling average bus voltage magnitude
over an operator-specified time window T;,. After T, seconds,
the BAF computes average voltages and the SVC adjusts its

'In typical power system modeling, SVC devices can be dynamically
modeled with sets of ODEs. Since we are using the statistics of buffered
time series data to make control decisions, we have the SVC take discrete,
rather than continuous, control action every 7%, (time window) seconds. We
therefore refer to the device as a “quasi-static SVC”.



reactive power injection as needed. Finally, the “Network”
block represents the physical feedback provided by the natural
evolution of bus voltages due to control input, load fluctua-
tions, and system dynamics.
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Fig. 6. Reference Based Controller (RBC). Local terminal bus voltage V¢
is the only feedback signal.

B. Mean Based Controller Overview

Similar to the Automatic Voltage Control (AVC) system
outlined in [22], the MBC relies not only on local terminal
voltage, but also on bus voltage magnitude data from a WAMS.
These data, sampled at 30Hz, are also passed through a BAF
with time window T, and then are each subtracted from some
critical magnitude pi.ix and summed together. The thresholds
imposed by it are chosen based on minimum tolerable
voltages (such as 0.98 p.u., for example); probabilistic security
margins are not considered. As illustrated in Fig.[/] the voltage
magnitudes V; - - - V,, represent WAMS data from PMUs, and
the gain K, is set based on how the operator wishes for the
WAMS feedback and the local feedback to interact.
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Mean Based Controller (MBC). The WAMS acquire voltage
Vi, to use as feedback signals for the SVC.

The “step” function in Fig. [7] (and Fig. [8) operates exactly
as the unit step function of equation (I7). Its purpose is to
ensure that only WAMS bus voltages that are lower than the
critical voltage fi.,it impact the feedback signal.

x-u(x):{

C. Variance Based Controller Overview

The VBC builds on the tools described in Section [II] in the
following way. CPF via HELM is used to quickly determine
how much the load within a load pocket of concern may
increase before the system undergoes static voltage collapse.
Next, the First Passage Process is used to determine the load
level below which the probability of voltage collapse is suffi-
ciently low. Using this loading level, the critical bus voltage
variances are found by leveraging the analytical covariance
matrix solver along with load noise estimation. Finally, these
critical variances are used as a feedback signal to control the
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Fig. 8. Variance Based Controller (VBC). Wide Area Measurement Systems
(WAMS) gather load pocket voltage magnitude data. Buffered Average Filters
(BAFs) and Buffered Variance Filters (BVFs) are used to quantify bus voltage
magnitude and variance. The step functions ensure that only critically low
magnitude and critically large variance measurements have effect on bgyc.

reactive power injected by the quasi-static SVC device, as
shown in Fig.

The VBC process is formally described in Algorithm [} The
BVF, or Buffered Variance Filter, is similar to the BAF in that
it computes the variance from a window of measurement data.
The constant K, is a feedback gain parameter for the variance
measurements, and is tuned to allow the controller to use both
the voltage magnitude and the variance feedback signals.

Algorithm 1: Variance Based Controller (VBC)

START

1 Perform CPF via HELM on load pocket

2 Determine voltage collapse loading factor s,

3 Based on desired probabilistic security margin,
determine loading factor s, s.t. 0 < s, < S

4 Computationally scale loads based on s,, and then
analytically solve for load pocket critical variance

5 Use critical variances and magnitude constraints as
inputs to Fig. [] controller

if New State Estimate Data Available then
| Return to START

else
| Return to 5

end

IV. 3 BUS SYSTEM ILLUSTRATION

In order to illustrate and compare the effectiveness of the
controllers, we test each (RBC, MBC and VBC) on a three
bus system with identical simulation parameters.

A. System Overview

In our three-bus test case (Fig. [J), aggregate generation is
connected to a heavily loaded aggregate load pocket (such as a
city). The voltage magnitude of this load pocket is supported
by a fully controllable quasi-static SVC, and a PMU feeds
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Fig. 9. 3 Bus Test Case. Aggregate generation (bus 1) feeds an aggregate
load pocket (bus 2) with voltage supported by a local SVC (bus 3).
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Fig. 10.  Panel (a) shows a noisy time domain signal V(¢) with slowly

varying equilibrium changes (sped up for illustration purposes). A Savitzky-
Golay Filter is applied to V(t). In panel (b), the filtered signal is subtracted
from the noisy signal in order to generate the high frequency voltage
fluctuations. This difference signal is used to compute bus voltage variance.

voltage magnitude data back to the SVC in real time. (In the
case of the RBC, these PMU data are neglected.)

We outfit the generator with a 4" order Synchronous Ma-
chine (SM), a 4*" order Automatic Voltage Regulator (AVR),
and a 3¢ order Turbine Governor (TG). System parameters
are approximately based on the WSCC 9-bus system, and
component models are those described in [[16]. At the SVC, we
choose a buffering time window of T, = 3s. The load of the
load pocket is constant power (PQ); the fast load fluctuations
are described by the Ornstein-Uhlenbeck process of (3) and
the slow load variations are monotonically increased (see panel
(b) of Fig. [L1). Both fast and slow load fluctuations were
applied to the active and reactive power demands equally in
order to hold power factor constant.

To compare the three controllers, we (i) initialized the
heavily loaded 3 bus system, (ii) performed a time domain
simulation with a stochastically increasing load, and (iii)
measured the survival time achieved by each controller. Fast
Ornstein-Uhlenbeck noise is applied at each integration time
step of At = 0.01. For each simulation, we record the random
fast and slow noise vectors applied to the loads such that each

controller experiences identical simulation realizations.

In order to estimate the high frequency variance o2 of a

voltage signal whose underlying equilibrium point is con-
stantly shifting due to the slow load fluctuations the real-time
measurements must first be detrended. To do so, we employ a
27d order FIR Savitzky-Golay Filter (SGF) to the voltage time
series data and then subtract the smoothed voltage signal from
the original data. This yields the zero-mean high frequency
voltage perturbations, as illustrated in Fig. [I0]

A 105
E
=
095 — VBC Test
& ——MBC Test
= | —RBC Test
< 09 ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
724
g 22
&
= 2
®
Q
S ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
Simulation Time (sec)
Fig. 11. Panel (a) shows the load bus voltage magnitude over the span of

the simulations associated with all three controllers up to the point of voltage
collapse. Panel (b) shows the active power demand at the load bus (identical
for all three simulations).

B. Simulation Results

With each controller, we simulated the system up until the
point of voltage collapse. As previously indicated, the fast
and slow noise vectors for the simulation were computed
and saved before running each simulation, such that each
controller experienced an identical simulation case. Table [[|
summarizes two primary test results: the amount of time each
controller kept the system “alive” (prevented bifurcation) and
the amount of load increase that the system was able to
sustain. Clearly, the Variance Based Controller most effectively
preserved voltage stability while load increased.

TABLE I
SIMULATION RESULTS SUMMARY
Test Result RBC MBC VBC
Bifurcation Time (sec) 39426 487.87 623.05
Bifurcation Load Increase (%) 21.2%  27.0% 32.8%

To further illustrate these results, Fig. E] shows the load
bus voltage magnitude over time (panel (a)) for all three
controllers until the point of bifurcation and the active power
demand (panel (b)) at the load bus.

The results in Fig. [TI] show that all three controllers take
identical action until roughly 200 seconds. At this point, the
WAMS feedback signal of the remote load bus voltage begins
to drop low enough to warrant control action. The RBC
simulation bifurcates at around 400 seconds, but the MBC
is able to maintain stability until about 490 seconds. At this
point, the VBC begins to take control action due to the extreme
increases in the bus voltage variance. Since it relies only on bus
voltage magnitude data, the MBC is unaware that additional
control action is needed and fails to maintain stability.

In Fig. [I2] the bus voltage variance crosses the “critical”
threshold just before ¢ = 400. The VBC simulation begins to
call for increasing SVC support and thus prevents the system
from bifurcating at ¢ = 490, when the MBC system fails.
As can be inferred from Fig. [2] and equation (I), the bus
voltage variance begins to show an exponential increase when
the system load approaches the stability limit. As a result,
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Fig. 12. The discretely measured (every T4, = 3 seconds) load bus voltage
variance is plotted over the simulation lifespan for the VBC.
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Fig. 13. Panel (a) show the load bus voltage over a period of four seconds
for two controllers, where both controllers taken control action at ¢ = 462
based on measurements taken over the time window of ¢ = 459 to t = 462.
Panel (b) shows the associated active power demand at the load bus.

the control signal associated with the bus voltage variance,
Ky (02 0as — 024¢)» also begins to increase exponentially. This
explains the upward trend of the bus voltage magnitude for
the VBC test during the last 100 seconds of simulation (seen
in panel (a) of Fig.[L).

It is helpful to consider a critical point when the VBC
and the MBC take very different control actions. To do so,
Fig. [[3] zooms in on Fig. [I1] to the window of time from
t = 459 to t = 463. In panel (b) of Fig. the load
fluctuations from ¢ = 459 to ¢ = 462 spike downwards despite
a slow upward trend. Since the system is operating close to
the stability limit at this point, bus voltages spike high, above
1 per unit. Therefore, since the mean voltage over the time
window from ¢ = 459 to ¢ = 462 appears relatively high,
the MBC takes almost no control action. The VBC, on the
other hand, measures an extremely high bus voltage variance
and thus takes strong control action, despite the relatively high
mean voltage magnitude (which is above 0.99 p.u.). This is
but one of many examples of the VBC taking control action
when the MBC does not. As more and more SVC support is
added to the system, the mean voltage magnitude becomes an
unreliable signal for system voltage health as the bifurcation
voltage drifts closer to nominal system voltage. Bus voltage
variance, on the other hand, is a robust indicator of a system’s
proximity to voltage collapse.

Fig. 14.

T
12 Busdo0

| — —=

Volt. Mag.

50

=

% ——Bus 40
> L L ]

0 200 400 600 800 1000 1200
. i T T

op =

— 4
=

% ——DBus 40
= | ‘ 4

0 200 400 600 800 1000 1200

Simulation Time (sec)

Fig. 15. Bus voltage magnitudes from simulations of the 39 bus test case
with three different control systems, as load increases up until the point of
voltage collapse. Panel (a) shows results from the VBC, panel (b) shows
results from MBC, and panel (c¢) includes results for RBC. In each panel, the
SVC bus voltage (bus 40) is noted.

V. 39 BUS SYSTEM TEST RESULTS

For further validation, we tested the controllers on a modi-
fied version of the IEEE 39 bus system. As shown in Fig. [T4]
an SVC bus (bus “40”) was added to the system and connected
to 4 other buses to form an observable (via PMU) load pocket
with reactive support. To test the controllers in this system,
monotonically increasing slow load changes were applied to
all load pocket buses (3, 4, 14, 15, 16, 17, and 18), in addition
to fast mean reverting Ornstein-Uhlenbeck load noise. As with
the three-bus results in Fig.[T1] the results clearly illustrate that
the Variance Based Controller improves voltage stability most
effectively, relative to the reference controllers.

Fig.|15|shows the voltage evolution for the tests correspond-
ing with all three controllers. The VBC deters voltage collapse
270 seconds longer than the MBC and 579 second longer than
the RBC. To better understand the success of the VBC, Fig.[16]
shows the bus voltage variance and the average critical voltage
variance. Since each bus has a unique critical voltage variance,
as computed by ([I-C), for the sake of graphical clarity, only
the average critical variance is shown.

Because the VBC measures the differences between the
measured and critical variances, and then scales these values
by K, and sums them across buses, large increases in variance
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Fig. 16. Bus voltage variance in the 39 bus test case, as load increases over
time.

(which are expected as a system approaches its stability limit)
lead to very large reactive power injections, even when voltage
magnitude remains relatively “high”. These variance increases
are clearly seen in Fig.

VI. CONCLUSION

In this paper, we introduce and provide test results for
a new reactive power control system that uses bus voltage
variance as a control signal to improve voltage stability. Tests
of this system on a three-bus test case show that the Variance
Based Controller (VBC) can maintain voltage stability if load
increases to 32.8% above nominal, whereas a Mean Based
Controller (MBC) allows for a load increase of only 27.0%
above nominal, and the Reference Based Control (RBC) allows
for a load increase of only 21.2%. Tests of the new control
system on the 39 bus test case, in which load was steadily
increasing, show that the VBC deterred voltage collapse 270
and 579 seconds longer than the MBC and RBC, respectively.
Both sets of results clearly show that statistical information
can be valuable in reducing the risk of voltage collapse.

Future work aims to extend the validation to understand
how the VBC functions in a larger system with more realistic
load profiles. Similarly, future work could extend the variance-
based controller to include other types of statistical warning
signs, such as autocorrelation.
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