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ABSTRACT
In this paper, we study a problem of trapping malicious web

crawlers in social networks to minimize the attacks from crawlers

with malicious intents to steal personal/private information. The

problem is to find where to place a given set of traps over a graph

so as to minimize the expected number of users who possibly

fall prey to a (possibly random) set of malicious crawlers, each of

which traverses the graph in a random-walk fashion for a random

finite time. We first show that this problem is NP-hard and also a

monotone submodular maximization problem. We then present a

greedy algorithm that achieves a (1−1/𝑒)-approximation. We also

develop an (𝜖, 𝛿)-approximation Monte Carlo estimator to ease the

computation of the greedy algorithm and thus make the algorithm

scalable for large graphs. We finally present extensive simulation

results to show that our algorithm significantly outperforms other

baseline algorithms based on various centrality measures.
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1 INTRODUCTION
Crawling web graphs and online social networks (OSNs) has been

central to building the databases of search engines for serving user

queries and also for complex network analysis, i.e., understanding

the properties of nodes, their relationships (edges), and more so-

phisticated relationship among multiple nodes (subgraph patterns)

of the large complex networks. In particular, it has been a key en-

abler for graph sampling, which has been extensively studied in

the literature, for estimating various target quantities, including

the size of a subset of nodes, degree distribution, assortativity co-

efficient, network-average and global clustering coefficients, and
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locally connected subgraph patterns such as triples, motifs and

graphlets [9, 14, 25, 44, 48].

The crawlers for graph sampling are often implemented in the

form of random walks to achieve statistical guarantees, while lever-

aging the public local-neighborhood-only interfaces (APIs) pro-

vided by the target-network companies, or following the URLs and

hyperlink structures (i.e., HTML screen scraping), especially when

the public APIs are not available [14, 31, 37]. The graph sampling

via crawling has been a non-trivial problem both in theory and

practice [42, 48], since the operation of crawlers can only be valid

for a limited amount of time due to (rather stringent) rate limits

on the usage of APIs and web access per IP address of a crawler,

and thus collected samples can only provide a partial view of the

underlying graph and may not be sufficient for estimation and

inference.

On the flip side, crawling can be misused and leveraged for

malicious purposes. Specifically, the topological information of

OSNs can be collected by adversaries who create false profiles, or

gain access to legitimate users who are already well-connected

to others by compromising their credentials, and then exploit the

neighbor-to-neighbor structures. They can be used with malicious

intents to identify well-connected individuals and communities of

users with common interests [34, 45], to infer private information

from users’ friends [29, 47], and to facilitate the extraction of user

profiles [2, 11]. It is thus crucial to prevent malicious crawlers from

compiling a collection of private social information and protect

user privacy from such adversarial attacks.

In this paper, we consider a relevant problem, which is to find

an optimal set of nodes to place ‘traps’ over a social graph (model-

ing a web-based social network or an OSN) in order to minimize

the expected number of users who possibly fall prey to malicious

crawlers. While the privilege of privacy control is generally given to

users to a large extent, many users still fail to protect their private

information, thereby becoming vulnerable to the adversaries.
∗
To

remedy this problem, traps can be implemented in the form of ‘spi-

der’ traps/honeypots [24, 40] or with anti-crawling measures such

as Captchas and user verification, to catch the crawlers and prevent

them from further accessing user pages to steal private data. As

another possible solution, restrictive ‘access control’ [2, 4, 50] can

be enforced selectively to a group of users on behalf of them, which

can be viewed as traps, to prohibit the crawlers from prying into the

underlying social network (by exploiting its neighbor-to-neighbor

structure) to the maximum extent possible. This problem can also

be viewed, in a weaker form, as that of finding an optimal set of

vantage points over the network for monitoring access patterns

and traffic to detect anomalous access behaviors [43, 46].
†

∗
It is reported in [2] that only 10% of Facebook users remove their profile pictures and

friend information from search results.

†
Enforcing restrictive access control to the entire social network and monitoring

over the entire network may be infeasible, due to possible negative effects of such an
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We formulate and study the problem as a combinatorial opti-

mization problem of finding a set of nodes on a general social graph

to trap a (possibly random) set of malicious crawlers to minimize

the expected number of their potential victims. Here each crawler

starts from a node chosen uniformly at random from a ‘launch’ set

𝑆 , in which nodes are possibly disconnected and scattered. It then

independently moves over the graph in a random-walk fashion for

a random finite time, which can have any arbitrary distribution. We

provide the following contributions in this paper.

• First, we present a system model and provide its mathematical

analysis to set the stage for the optimization problem.

• We next prove that the problem is NP-hard, but also show that

it essentially becomes a monotone submodular maximization

problem.

• Leveraging this nice functional property, we propose a greedy

algorithm that achieves a (1−1/𝑒)-approximation to the optimal

solution of the original NP-hard problem. Furthermore, to make

the greedy algorithm practical and scalable for large graphs,

we provide an (𝜖, 𝛿)-approximation Monte Carlo estimator that

enables an efficient computation of the key quantity required in

the algorithm operation with provable guarantee.

• Finally, we present extensive simulation results on various real-

world graphs to demonstrate the efficacy and scalability of our

greedy algorithm. In particular, the simulation results show that

our algorithm significantly outperforms other baseline algo-

rithms based on various centrality measures.

2 RELATEDWORK
This work is relevant to a rich literature that is concerned about how

to manipulate the structure of an underlying graph, i.e., removing

nodes and/or edges, to maximally suppress diffusion processes on

the graph, ranging from the spread of epidemics to the cascade of

influence (or information diffusion), under budget constraints.

First, there is a lot of work for developing immunization strate-

gies, which often boil down to removing a set of nodes (vaccinating)

or edges (quarantining), to control the spread of epidemics under

the susceptible-infected-susceptible (SIS) and susceptible-infected-

recovered (SIR) models on graphs. It was shown by Chakrabarti

et al. [5] and Ganesh et al. [12] that under the SIS/SIR models, an

epidemic dies out quickly if the spectral radius of the underlying

graph, i.e., the largest eigenvalue of its adjacency matrix, is less

than a ‘threshold’ that depends on the model parameters.
‡
This

observation has motivated several studies on the development of

strategies to find a set of nodes or edges for removal to reduce the

spectral radius of the resulting graph below the threshold (or to

minimize the spectral radius) so as to ensure the (quick) extinction

of an epidemic, e.g., [5, 7, 8, 38, 41]. Other spectral measures have

also been similarly used to identify critical nodes and/or edges from

the standpoint of network connectivity [6, 49]. Furthermore, cen-

trality measures, including the betweenness centrality, have been

enforcement (e.g., some users may lodge complaints and even quit the social network)

and the sheer size of the underlying network.

‡
Specifically, the threshold is the ratio of the recovery rate 𝛿 to the infection rate 𝛽

under the SIS/SIR models, where a susceptible node becomes infected with rate 𝛽 times

the number of infected neighboring nodes, and any infected node is independently

recovered with rate 𝛿 . Once an infected node becomes healthy, it is again susceptible

to infection under the SIS model, whereas it is permanently cured under the SIR model.

used as effective means for combating epidemics by immunizing a

fraction of nodes or removing edges [13, 39].

In addition, there is another body of literature, which has been

based on the diffusionmodels for the spread of influence, such as the

independent cascade (IC) and linear threshold (LT) models, since the

seminal work by Kempe et al. [19] on the influence maximization

problem. Note that these models are still different from the epidemic

models, because the former models define node-to-node influence

operations as a ‘one-time’ process, i.e., an active node attempts to

influence its neighbor only once, while the latter ones allow node-

to-node infections to remain effective. Kimura et al. [21] studied
the problem of ‘minimizing’ the propagation of rumors by blocking

a limited number of links under the IC model. In [16], the authors

tackled the ‘influence blocking maximization’ problem under the

competitive LT model (a variant of the LT model), which can be

viewed as a node deletion problem. Furthermore, Kuhlman et al. [22]
proposed heuristic algorithms for the problem of edge removal

under a deterministic variant of the LT model. Khalil et al. [20]
studied the problems of deleting and adding edges to minimize

and maximize the spread of influence, respectively, under the LT

model. More recently, Nguyen et al. [35] addressed the problem of

removing nodes or edges to stop a so-called cyber-epidemics under

the LT model.

While the process of random walks is another class of diffusion

processes, it is fundamentally different from the above diffusion

models, especially from a modeling perspective. The epidemic and

influence-diffusion models are characterized by the time-varying

behavior of the set of ‘infected’ nodes and that for ‘active’ nodes,

respectively. The process of random walks, however, is character-

ized by their trajectories, which are the sequences of nodes visited

by walks. Furthermore, in contrast to the aforementioned literature,

there are only few studies on manipulating the underlying network

structure to facilitate, but not suppress, the diffusion of random

walks or merely studying relevant hitting times of random walks.

Mavroforakis et al. [30] studied the so-called 𝑘-ARW-centrality

problem to place 𝑘 absorbing nodes on a graph in order to minimize

the absorption time of an ‘infinite-length’ random walk that is a

simple randomwalk with occasional jumps to a set of nodes. In [27],

the authors solved the problem of finding a set of nodes to minimize

the total hitting time of a ‘fixed-length’ random walk to the rest of

the graph. Golnari et al. [15] analyzed the hitting times of random

walks when they can avoid or must go through a specific node on

a graph, but without considering any optimization problem.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

3.1 Problem Setup and Justification
Consider a general connected, undirected graph 𝐺 = (𝑁, 𝐸) with
size |𝑁 |=𝑛, to model a web-based social network or an OSN. The

graph 𝐺 is an arbitrary given graph, as long as it is connected and

undirected. The graph 𝐺 is defined by an 𝑛 × 𝑛 adjacency matrix

A= [𝐴𝑖 𝑗 ] with elements 𝐴𝑖 𝑗 =1 if there is an edge between nodes

𝑖 and 𝑗 , i.e., (𝑖, 𝑗) ∈ 𝐸, and 𝐴𝑖 𝑗 = 0 if otherwise. Suppose that time

is divided into discrete slots. The problem of interest is to find

where to place a given set of traps over graph 𝐺 so as to minimize

the expected number of users who fall prey to a set of malicious



crawlers, when each of crawlers traverses 𝐺 in a random-walk

fashion for a random finite time that is drawn from any arbitrarily

given distribution.

The rationale behind the ‘random walk’ trajectories of malicious

crawlers stems from the fact that random walks have been widely

used and recommended as the trajectories of crawlers for sampling

OSNs and webs with statistical guarantees [9, 14, 25, 44, 48]. The ‘fi-
nite length’ also comes from the fact that the usage of APIs and web

access per IP address of a crawler are rate-limited [14, 31, 37, 42, 48].

Unlike the graph sampling literature, this work considers the ad-

versarial aspects of web crawling when misused and leveraged

for malicious purposes. We note that the trajectories of malicious

crawlers may be governed by more complicated (stochastic) pro-

cesses, and this extension would be an interesting future direction.

Nonetheless, as shall be shown later, the problem at hand is still

non-trivial while leading to fundamental insights.

In addition, the notion of ‘traps’ can be interpreted in practice

as follows. First, the traps can be spider traps/honeypots [24, 40],
which are the fake pages or embedded links that are only accessible

by (malicious) crawlers, not by humans, and get them stuck in infi-

nite loops or crashing. Second, they can also be implemented with

anti-crawling measures such as Captchas and user verification, pre-

venting the crawlers frommoving forward. Third, the traps can be a

group of users’ pages where some restrictive access control [2, 4, 50]

is enforced on behalf of them to keep their private information such

as user profiles and their list of friends undisclosed, which in turn

prohibits the crawlers from exploiting the neighbor-to-neighbor

structure for further crawling. Finally, in a broader sense, they can

be viewed as vantage points over the network for monitoring access

patterns and traffic to detect anomalous access behaviors and build

a blocklist of IP addresses. To summarize, the notion of traps for

anti-crawling/scraping has been widely used in practice, and we

then look at the problem of where those traps need to be installed

by mathematically formulating an optimization problem.

3.2 Model Description
Consider 𝐾 malicious crawlers, each of which has a random length

of 𝐿𝑘 . While 𝐾 can be random, for ease of exposition, we assume

that 𝐾 is a fixed value. We set 𝐿𝑘 , 𝑘 =1, 2, . . . , 𝐾, to be i.i.d. copies
of 𝐿 that has any general distribution over a finite support in that

lim𝑙→∞ P{𝐿 = 𝑙} = 0. Each crawler 𝑘 initially starts from a node

𝑠 chosen uniformly at random from a given node set 𝑆 ⊂ 𝑁 , and

independently moves over𝐺 for 𝐿𝑘 steps in a random-walk fashion.

Here, this source-node set 𝑆 can also be arbitrary, i.e., nodes in 𝑆
do not need to be connected. For crawler 𝑘 , we then consider the

nodes outside 𝑆 that crawler 𝑘 visits for 𝐿𝑘 steps as victims, or the
nodes that fall prey to crawler 𝑘 having malicious intents to steal

personal or private information. Thus, the number of victims by

crawler 𝑘 is identical to the number of unique nodes visited by 𝑘 .

We assume that when crawler 𝑘 moves from a node to one of

its neighbors at each step, it only moves to one of the neighbors

that are not in 𝑆 , since it has no incentive to visit 𝑆 from which the

crawlers are launched. Thus, the movement of crawler 𝑘 is modeled

as a simple random walk on amodified graph, say𝐺𝑆 , instead of the

original graph 𝐺 , where all the incoming edges into 𝑆 are removed

(but the nodes in 𝑆 still remain in the graph). To be precise, it is

defined by 𝐺𝑆 ≜ (𝑁, 𝐸𝑆 ), where 𝐸𝑆 ≜ {(𝑖, 𝑗) ∈ 𝐸 | 𝑗 ∉𝑆}. Note that

𝐴𝑖 𝑗 =0 for 𝑗 ∈ 𝑆 . The transition probability of the simple random

walk from node 𝑢 to 𝑣 on 𝐺𝑆 is accordingly defined by 𝑃𝑢𝑣 =1/𝑑𝑢
for (𝑢, 𝑣) ∈𝐸𝑆 and 𝑃𝑢𝑣 =0 for (𝑢, 𝑣) ∉𝐸𝑆 , where 𝑑𝑢 is the degree of

node 𝑢 on the modified graph 𝐺𝑆 , i.e., 𝑑𝑢 =
∑
𝑣∈𝑁 𝐴𝑢𝑣 .

LetV be the expected number of nodes that are victimized by

𝐾 crawlers, where the expectation is taken over the random trajec-

tories of the crawlers and their random lifetimes. For mathematical

tractability, we consider V as the expected value of the sum of

the numbers of victims (or unique visits) by 𝐾 crawlers. In other

words, some node 𝑖 may be visited/victimized by multiple crawlers

in which case they are counted separately. Nonetheless, it is still

non-trivial to characterize V analytically and the mathematical

analysis serves as a crucial point of departure for the design of

a practically usable algorithm. Furthermore, we evaluate our pro-

posed algorithm and demonstrate its superiority over other algo-

rithms through extensive simulations without such an assumption

in Section 5.

Fix crawler 𝑘 . Letting 𝑆𝑐≜𝑁 \𝑆 , we first evaluate the probability
that node 𝑖 ∈ 𝑆𝑐 is victimized by crawler 𝑘 . Define 𝑋𝑘 (𝑡) to be

the position at time 𝑡 of the corresponding infinite-length simple

random walk on 𝐺𝑆 , and 𝑇𝑘 (𝑖) to be its first hitting time of node 𝑖 ,

which is given by𝑇𝑘 (𝑖) ≜ min{𝑡 ≥ 0 | 𝑋𝑘 (𝑡)=𝑖}. Then, we observe
that node 𝑖 is victimized by crawler 𝑘 if it is visited by 𝑘 during

its lifetime 𝐿𝑘 . In other words, it happens with probability that the

first hitting time of node 𝑖 is no greater than 𝐿𝑘 , which is given by

P𝐼𝑘 {𝑇𝑘 (𝑖) ≤ 𝐿𝑘 } ≜ P{𝑇𝑘 (𝑖) ≤ 𝐿𝑘 | 𝑋𝑘 (0) ∼ u𝑆 }

=
1

|𝑆 |
∑
𝑠∈𝑆
P{𝑇𝑘 (𝑖) ≤ 𝐿𝑘 | 𝑋𝑘 (0) = 𝑠}, (1)

where u𝑆 denotes a uniform distribution over the set 𝑆 , and 𝐼𝑘 ≜
{𝑋𝑘 (0) ∼ u𝑆 } denotes an event that the initial position 𝑋𝑘 (0) is
chosen from 𝑆 uniformly at random. Note that since 𝐿𝑘 is random,

P𝐼𝑘 {𝑇𝑘 (𝑖) ≤𝐿𝑘 } is not in a simple form of the CDF of the first hitting

time 𝑇𝑘 (𝑖), which has been studied extensively in the literature [3,

36]. Nonetheless, we below show that it can also be written as a

weighted sum of P𝐼𝑘 {𝑇𝑘 (𝑖)=𝑡}, with coefficients given by the CCDF

of 𝐿𝑘 , and this representation shall be useful in the subsequent

analysis.

Lemma 1. The probability that node 𝑖 becomes a victim of crawler
𝑘 , starting from a uniformly random node from 𝑆 , is given by

P𝐼𝑘 {𝑇𝑘 (𝑖) ≤ 𝐿𝑘 } =
∞∑
𝑡=0

𝑞𝑡 · P𝐼𝑘 {𝑇𝑘 (𝑖) = 𝑡}, (2)

where 𝑞𝑡 ≜ P{𝐿 ≥ 𝑡}, with lim𝑡→∞ 𝑞𝑡 = 0.

Proof. See our technical report [28]. □

We next define 𝑉𝑘 to be the number of victims by crawler 𝑘 ,

which is given by

𝑉𝑘 ≜
∑
𝑖∈𝑆𝑐

1{𝑇𝑘 (𝑖) ≤ 𝐿𝑘 }, (3)

where 1{𝐴} denotes an indicator function of an event 𝐴, having

1{𝐴}=1 if 𝐴 occurs, and 1{𝐴}=0 otherwise. From (3), we have

E[𝑉𝑘 |𝐼𝑘 ] = E
[ ∑
𝑖∈𝑆𝑐

1{𝑇𝑘 (𝑖) ≤ 𝐿𝑘 }
��� 𝐼𝑘 ]



=
∑
𝑖∈𝑆𝑐
E
[
1{𝑇𝑘 (𝑖) ≤ 𝐿𝑘 } | 𝐼𝑘

]
=
∑
𝑖∈𝑆𝑐
P𝐼𝑘 {𝑇𝑘 (𝑖) ≤ 𝐿𝑘 }, (4)

where the second equality is from the linearity of conditional ex-

pectation. Then we can writeV – the expected number of nodes

victimized by 𝐾 crawlers, when each of them independently starts

from node 𝑠 chosen from 𝑆 uniformly at random, as

V = E
[ 𝐾∑
𝑘=1

𝑉𝑘

��� 𝐼1, 𝐼2, . . . , 𝐼𝐾 ] = 𝐾∑
𝑘=1

E[𝑉𝑘 | 𝐼𝑘 ] = 𝐾 ·E[𝑉1 | 𝐼1], (5)

where we have used the linearity of conditional expectation and

the fact that𝑉𝑘 depends only on 𝐼𝑘 for each 𝑘 . Therefore, by (2), (4),

and (5), we have

V = 𝐾
∑
𝑖∈𝑆𝑐

∑
𝑡<∞

𝑞𝑡 · P𝐼 {𝑇 (𝑖) = 𝑡}. (6)

Hereafter, we drop the subscript 𝑘 from 𝐼𝑘 and 𝑇𝑘 (𝑖) for brevity.

3.3 Problem Statement
We are now interested in finding a set of nodes𝑊 ⊂ 𝑆𝑐 of size

|𝑊 | =𝑏, i.e., where to place 𝑏 ‘traps’, to catch 𝐾 crawlers so as to

minimize the expected number of their victimsV , for a given set

𝑆 . To properly model the effect of traps𝑊 on 𝐺𝑆 , we assume that

once each crawler is trapped by any node in𝑊 , it stays there for

the rest of its lifetime. To model this, for any given choice of𝑊 ,

we define the resulting graph 𝐺𝑊 ≜ (𝑁, 𝐸𝑊 ), where 𝐸𝑊 ≜ {(𝑖, 𝑗) ∈
𝐸𝑆 | 𝑖 ∉𝑊 }, i.e., all the outgoing edges from𝑊 are removed from

𝐺𝑆 = (𝑁, 𝐸𝑆 ). Note that the entire node set 𝑁 still remains intact,

while the outgoing edges from𝑊 (and also the incoming edges into

𝑆) are removed. Furthermore, to properly indicate the differences

of our target quantityV without and with𝑊 traps, we reserveV
for the former and introduceV(𝑊 ) for the latter. To be precise, for
a given choice of𝑊 and its corresponding graph 𝐺𝑊 , we define

ℎ𝑡 (𝑠, 𝑖;𝐺𝑊 ) ≜ P{𝑇 (𝑖) = 𝑡 |𝑋 (0) = 𝑠}, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑆𝑐 . (7)

With a slight abuse of notation, we also define

ℎ𝑡 (u𝑆 , 𝑖;𝐺𝑊 ) ≜ P𝐼 {𝑇 (𝑖) = 𝑡} = P{𝑇 (𝑖) = 𝑡 | 𝑋 (0) ∼ u𝑆 }

=
1

|𝑆 |
∑
𝑠∈𝑆

ℎ𝑡 (𝑠, 𝑖;𝐺𝑊 ), 𝑖 ∈ 𝑆𝑐 . (8)

Here these definitions are given to clearly indicate the hitting time

probabilities to be the ones obtained on𝐺𝑊 . Thus, from (6), we can

write

V(𝑊 ) = 𝐾
∑
𝑖∈𝑆𝑐

∑
𝑡<∞

𝑞𝑡 · ℎ𝑡 (u𝑆 , 𝑖;𝐺𝑊 ). (9)

Using the notations in (7)–(8), we can also rewriteV in (6) as

V = 𝐾
∑
𝑖∈𝑆𝑐

∑
𝑡<∞

𝑞𝑡 · ℎ𝑡 (u𝑆 , 𝑖;𝐺𝑆 ). (10)

For a given set 𝑆 and a given budget (or size) 𝑏 of𝑊 , our opti-

mization problem is then to find

P1 : 𝑊★ = argmin

𝑊 ⊆𝑆𝑐 : |𝑊 |=𝑏
V(𝑊 ) .

4 MAIN RESULTS
Wepresent ourmain results for the optimization problemP1. In par-
ticular, we propose a (1−1/𝑒)-approximation greedy algorithm for

P1, by showing that its equivalent problem is a monotone submodu-

lar maximization problem.We also propose an (𝜖, 𝛿)-approximation

Monte Carlo (MC) estimator that allows us to efficiently compute

the key quantity V(𝑊 ) required in the execution of the greedy

algorithm, which makes the algorithm practical and scalable for

large graphs.

4.1 Submodularity and Greedy Algorithm
We first show that P1 is NP-hard. Specifically, we prove the NP-
hardness by reducing the decision problem of the Vertex Cover

problem [10] to the decision problem of P1.

Theorem 1. P1 is NP-hard.
Proof. See Appendix A. □

It is thus naturally expected that developing a computationally

efficient algorithm, even an approximation algorithm, for P1 is

simply a non-trivial task. Nonetheless, by transforming P1 to its
equivalent problem, we next show that it boils down to the problem

of maximizing a monotone submodular function, which is amenable

to the development of a greedy algorithm with provable guarantee.

To proceed, we collect the following definitions.

Definition 1 (Monotonicity [32]). A function 𝑓 : 2
𝑁 → R is

monotone if, for every 𝐴 ⊆ 𝐵 ⊆ 𝑁 , 𝑓 (𝐴) ≤ 𝑓 (𝐵).

Definition 2 (Submodularity [32]). A function 𝑓 : 2
𝑁 → R

is submodular if, for every 𝐴 ⊆ 𝐵 ⊆ 𝑁 and every 𝑢 ∈ 𝑁 \ 𝐵,
𝑓 (𝐴 ∪ {𝑢}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑢}) − 𝑓 (𝐵).

In other words, 𝑓 is submodular if it satisfies the ‘diminishing

returns’ property, which implies that the marginal gain from adding

an element to a set 𝐴 diminishes with increasing size of 𝐴.

We next define

D(𝑊 ) ≜ V −V(𝑊 ) . (11)

Then it is easy to see that P1 becomes equivalent to finding

P2 : 𝑊★ = argmax

𝑊 ⊆𝑆𝑐 : |𝑊 |=𝑏
D(𝑊 ).

We below show that D : 2
𝑆𝑐 → R is non-negative, monotone, and

submodular, thus implying that P2 becomes a monotone submod-

ular maximization problem. While it is straightforward to see that

D is non-negative, it is non-trivial to show its monotonicity and

submodularity.

Fix𝑊 ⊆ 𝑆𝑐 . For some 𝑢 ∈𝑆𝑐 \𝑊 , let𝑊 +≜𝑊 ∪ {𝑢}. We define

the marginal gain by

Δ(𝑊,𝑢) ≜ D(𝑊 +) − D(𝑊 ) = V(𝑊 ) − V(𝑊 +), (12)

where the equality follows from (11). To show the monotonicity and

submodularity ofD, we need to demonstrate that the marginal gain

Δ(𝑊,𝑢) is non-negative and diminishes with increasing size of𝑊 .

The technical challenge, however, is how to evaluate the quantities

V(𝑊 ) andV(𝑊 +), which are not directly comparable, since they
are defined on different graphs𝐺𝑊 = (𝑁, 𝐸𝑊 ) and𝐺𝑊 + = (𝑁, 𝐸𝑊 + ),
respectively. To overcome this challenge, we carefully define their

corresponding quantities on the baseline graph𝐺𝑆 so that they can



Algorithm 1: Greedy Algorithm

Input :𝐺𝑆 = (𝑁, 𝐸𝑆 ), 𝑆 , 𝑏
Output :𝑊

1 𝑊 ← ∅, 𝐺𝑊 ← 𝐺𝑆

2 while |𝑊 | ≤ 𝑏 do
3 ComputeV(𝑊 )
4 for 𝑢 ∈ 𝑆𝑐 \𝑊 do
5 𝑊+ ←𝑊 ∪ {𝑢}
6 𝐸𝑊 + ← 𝐸𝑊 \

{
(𝑢, 𝑣) ∈ 𝐸𝑊 | 𝑣 ∈ 𝑆𝑐

}
7 𝐺𝑊 + ← (𝑁, 𝐸𝑊 + )
8 ComputeV(𝑊 +)
9 Δ(𝑊,𝑢) = V(𝑊 ) − V(𝑊 +)

10 𝑢∗ ← argmax

𝑢∈𝑆𝑐\𝑊
Δ(𝑊,𝑢)

11 𝑊 ←𝑊 ∪ {𝑢∗}
12 𝐸𝑊 ← 𝐸𝑊 \

{
(𝑢∗, 𝑣) ∈ 𝐸𝑊 | 𝑣 ∈ 𝑆𝑐

}
13 𝐺𝑊 ← (𝑁, 𝐸𝑊 )

be compared on the same ground, as detailed in the proof of the

following.

Theorem 2. D is a non-negative monotone submodular function.
Proof. See our technical report [28]. □

Thanks to this nice property of D, we are able to build a greedy

algorithm for obtaining a solution 𝑊 to P2, as depicted in Al-

gorithm 1. For any given budget 𝑏 on the size of traps𝑊 , it is

essentially finding an element 𝑢∗ that maximizes the marginal gain

Δ(𝑊,𝑢) every iteration until the size of the resulting set𝑊 be-

comes 𝑏. Therefore, this algorithm naturally achieves the following

performance guarantee.

Corollary 1. Algorithm 1 achieves a (1−1/𝑒)-approximation to
the optimal solution of P2.

Proof. For any given non-negative monotone submodular func-

tion 𝑓 , which is D in our case, let𝑊 be a set of size 𝑏 obtained in a

greedy fashion, by choosing an element that provides the largest

marginal gain in the value of 𝑓 each time. Let𝑊★
be a set maxi-

mizing the value of 𝑓 over all 𝑏-element sets. It is well-known that

𝑓 (𝑊 ) ≥ (1 − 1/𝑒) 𝑓 (𝑊★) [19, 32]. Thus, the result follows. □

4.2 Monte Carlo Estimation
While our greedy algorithm in Algorithm 1 can effectively solveP2,
there is still a computational issue with the marginal gain Δ(𝑊,𝑢),
or V(𝑊 ) for each𝑊 . Specifically, as can be seen from (9), it re-

mains questionable how to efficiently compute

∑
𝑡<∞ 𝑞𝑡ℎ𝑡 (𝑠, 𝑖;𝐺𝑊 ).

To address this issue, we below propose an MC estimator of this

quantity based on 𝑅 i.i.d. realizations (or sample paths) of a sim-

ple random walk of fixed length 𝑙 on 𝐺𝑊 . We also establish an

(𝜖, 𝛿)-approximation of this estimator, which implies, for any small

𝜖, 𝛿 > 0, howmany realizations 𝑅 are necessary with a choice of 𝑙 so

that the approximation error can be bounded by 𝜖 with probability

at least 1 − 𝛿 .
Fix𝑊 ⊂𝑆𝑐 . For notational simplicity, we define

𝑐 (𝑠, 𝑖) ≜
∑
𝑡<∞

𝑞𝑡ℎ𝑡 (𝑠, 𝑖), (13)

where we here drop 𝐺𝑊 for ℎ𝑡 (𝑠, 𝑖;𝐺𝑊 ). We also define by

𝑐𝑙 (𝑠, 𝑖) ≜
𝑙∑
𝑡=1

𝑞𝑡ℎ𝑡 (𝑠, 𝑖), (14)

the 𝑙-truncated version of 𝑐 (𝑠, 𝑖), where ℎ0 (𝑠, 𝑖)=0. Let 𝑋 (𝑟 ) (𝑡), 𝑟 =
1, 2, . . . , 𝑅, be the position at time 𝑡 of the 𝑟 -th random-walk realiza-

tion on 𝐺𝑊 , assuming that 𝑋 (𝑟 ) (0)=𝑠 for each 𝑟 . We then define,

for all 𝑟 and 𝑡 > 0,

𝑓𝑖
(
𝑋 (𝑟 ) (0), 𝑋 (𝑟 ) (1), . . . , 𝑋 (𝑟 ) (𝑡)

)
≜ 1{𝑋 (𝑟 ) (𝑡) = 𝑖, 𝑋 (𝑟 ) (𝑡 ′) ≠ 𝑖 for all 𝑡 ′ < 𝑡},

i.e., an indicator function of the event that the walk visits 𝑖 at time

𝑡 for the first time, with

E
[
𝑓𝑖
(
𝑋 (𝑟 ) (0), 𝑋 (𝑟 ) (1), . . . , 𝑋 (𝑟 ) (𝑡)

) ]
= ℎ𝑡 (𝑠, 𝑖),

which is the probability that the walk visits 𝑖 at time 𝑡 for the first

time, i.e., the first hitting time to 𝑖 is 𝑡 . We first construct an MC

estimator of ℎ𝑡 (𝑠, 𝑖), for all 𝑡 > 0, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑆𝑐 , as

ˆℎ𝑅,𝑡 (𝑠, 𝑖) ≜
1

𝑅

𝑅∑
𝑟=1

𝑓𝑖
(
𝑋 (𝑟 ) (0), 𝑋 (𝑟 ) (1), . . . , 𝑋 (𝑟 ) (𝑡)

)
.

That is, this estimator is, in essence, the sample mean of 𝑓𝑖 over 𝑅

i.i.d. realizations of 𝑡-length simple random walk. By the strong law

of large numbers, we have

ˆℎ𝑅,𝑡 (𝑠, 𝑖)
a.s.−−→ ℎ𝑡 (𝑠, 𝑖), as 𝑅 →∞. (15)

We then construct an MC estimator of 𝑐𝑙 (𝑠, 𝑖) in (14), for all 𝑙 >

0, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑆𝑐 , as

𝑐𝑅,𝑙 (𝑠, 𝑖) ≜
𝑙∑
𝑡=1

𝑞𝑡 ˆℎ𝑅,𝑡 (𝑠, 𝑖) .

In other words, this estimator 𝑐𝑅,𝑙 (𝑠, 𝑖) is a weighted sum of 𝑙 esti-

mators
ˆℎ𝑅,𝑡 (𝑠, 𝑖), 𝑡 =1, 2, . . . , 𝑙 , with coefficients 𝑞𝑡 , which are built

upon 𝑅 i.i.d. realizations of simple random walk of length 𝑙 . By (15)

and the linearity of almost sure convergence, we have

𝑐𝑅,𝑙 (𝑠, 𝑖)
a.s.−−→ 𝑐𝑙 (𝑠, 𝑖), as 𝑅 →∞.

While 𝑐𝑅,𝑙 (𝑠, 𝑖) is an asymptotically consistent estimator of 𝑐𝑙 (𝑠, 𝑖)
in (14) for each 𝑙 , we below demonstrate that this estimator, with a

proper choice of 𝑙 , can also be used to approximate 𝑐 (𝑠, 𝑖) in (13).

To proceed, we need the following.

Theorem 3 (Hoeffding’s ineqality [17]). Let 𝑌1, . . . , 𝑌𝑛 be
i.i.d. random variables such that E[𝑌𝑖 ] = 𝜇 and 𝑎 ≤ 𝑌𝑖 ≤ 𝑏. Then, for
any 𝜖 > 0,

P
{��� 1
𝑛

𝑛∑
𝑖=1

𝑌𝑖 − 𝜇
��� > 𝜖} ≤ 2𝑒−2𝑛𝜖

2/(𝑏−𝑎)2 .

We below show that 𝑐𝑅,𝑙 (𝑠, 𝑖) achieves an (𝜖, 𝛿)-approximation

to 𝑐 (𝑠, 𝑖) in (13), when 𝑙 and 𝑅 are properly chosen.

Theorem 4. For any 𝜖 >0 and 𝛿 ∈ (0, 1), let 𝑙 be chosen such that∑∞
𝑡=𝑙+1 𝑞𝑡 ≤

𝜖
2
. If 𝑅 ≥ 2E[𝐿]2

𝜖2
log (2𝑙/𝛿), then we have, for 𝑠 ∈𝑆, 𝑖 ∈𝑆𝑐 ,

P
{��𝑐𝑅,𝑙 (𝑠, 𝑖) − 𝑐 (𝑠, 𝑖)�� > 𝜖} ≤ 𝛿.

Proof. See our technical report [28]. □
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Figure 1: (Case 1) The expected number of victims with varying budget 𝑏.

Theorem 4 suggests a systematic way of choosing 𝑙 and 𝑅

to achieve provable guarantee on the accuracy of the estimator

𝑐𝑅,𝑙 (𝑠, 𝑖) to approximate the quantity 𝑐 (𝑠, 𝑖) for Algorithm 1, i.e., the

approximation error is bounded by 𝜖 with probability at least 1 − 𝛿 .
In what follows, we numerically demonstrate that Algorithm 1 is

effective and robust, even with possibly noisy estimates of 𝑐 (𝑠, 𝑖)
by 𝑐𝑅,𝑙 (𝑠, 𝑖) for small 𝑙 and 𝑅.

5 SIMULATION RESULTS
In this section, we present simulation results on various real-world

graphs to demonstrate the efficacy of our greedy algorithm in Al-

gorithm 1. We consider six real-world network datasets from the

repositories such as SNAP [26] and KONECT [23], which allow us

to test a wide range of network topologies with different forma-

tions of the adjacency matrix A. In other words, we can evaluate

the impact of diverse network topologies on the performance of

our greedy algorithm. For simulations, we preprocess each graph

to remove self-loops. We use the largest connected component of

each graph to ensure graph connectivity. Their basic statistics are

summarized in Table 1. For Digg, its undirected version is used.

Table 1: Graph statistics
# Nodes # Edges Avg. Degree Diameter

GR-QC 4158 13422 6.456 17

HEP-TH 8638 24806 5.743 17

Facebook 22470 170823 15.205 15

Deezer 28281 92752 6.559 21

Digg 29652 84781 5.718 12

EmailEnron 33696 180811 10.732 11

Simulation setup. We consider the random length 𝐿𝑘 of each

crawler to be independently drawn from a common geometric

distribution with parameter 𝛼 , i.e., P{𝐿=𝑡}= (1−𝛼)𝑡𝛼 , 𝑡 =0, 1, . . .,
with E[𝐿]= (1−𝛼)/𝛼 . We use 𝛼 =0.1, unless otherwise specified. We

consider the following test cases for generating crawlers in each

simulation. For both cases, each crawler independently starts from

a node 𝑠 chosen uniformly at random from a given source set 𝑆 .

• Case 1: 𝐾 = 100 crawlers are launched simultaneously at the

beginning of each simulation, which lasts until the lifetimes of

all the crawlers are elapsed.

• Case 2: Crawlers are generated at different times according to a

Poisson process with rate 1/E[𝐿] for 105 time slots in each simu-

lation. To be precise, the inter-arrival time between two consecu-

tive crawlers is exponentially distributed with the mean equal to

E[𝐿]. Since time is divided into discrete slots, each inter-arrival

time is rounded up to the nearest integer value that determines

which time slot a next crawler is generated. In other words, a

new crawler is launched roughly every E[𝐿] time slots, which is

the average lifetime of each crawler. Each simulation runs for a

simulation time of 10
5
slots.

We also consider two different cases of choosing the source set 𝑆

for a given size |𝑆 |. One is a ‘cluster’ case, where all nodes in 𝑆 are

connected and form a cluster, and the cluster is chosen randomly

from the graph, as will be explained below in detail. Note that

this does not necessarily mean that 𝑆 forms a clique, i.e., nodes

in 𝑆 may not be direct/one-hop neighbors of each other, but they

are still connected via intermediate nodes. The other is a ‘scatter’
case, where nodes in 𝑆 are independently chosen uniformly at

random from the node set 𝑁 and thus they are likely disconnected

and dispersed over the graph. Every data point reported here is

obtained by taking the average over 10
4
independent simulations.

For a given source set 𝑆 and a given budget 𝑏 on the size of

𝑊 , to evaluate the performance of our greedy algorithm in Al-

gorithm 1, we consider the standard centrality measures such as

degree centrality, betweenness centrality, eigenvector centrality,

and PageRank [1, 33], as baseline algorithms. Since they measure

the importance of each node in the graph, they can be efficient

heuristics for P2 by choosing the top-𝑏 central nodes for the traps

𝑊 . While they are agnostic to the source set 𝑆 , we also consider

Personalized PageRank [18] as a source-aware baseline algorithm.

For Personalized PageRank, we set its damping factor (or teleporta-

tion probability) to be 1−𝛼 or its default value of 0.85 in [18], and

its preference vector to be u𝑆 , i.e., a uniform distribution over 𝑆 .

For the execution of Algorithm 1, we use the MC estimator 𝑐𝑅,𝑙 (𝑠, 𝑖)
with 𝑙 = 80 and 𝑅 = 4 × 10

4
to compute 𝑐 (𝑠, 𝑖) in (13) and eventu-

allyV(𝑊 ) in (9) for each𝑊 . We also tested the case of 𝑙 =60 and

𝑅 = 2 × 104 for 𝑐𝑅,𝑙 (𝑠, 𝑖), and observed almost the same results of

our algorithm. We thus omit them for brevity.
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Figure 2: (Case 1) The expected number of victims over time.
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Figure 3: (Case 1) The expected number of victims over time, when 𝛼 = 0.3.
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(b) GR-QC, 𝑏=8
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(c) HEP-TH, 𝑏=4

0 1 2 3 4 5
Time Steps 1e4

0.0

0.5

1.0

1.5

2.0

2.5

Ex
pe

ct
ed

 #
 o

f V
ic

ti
m

s

1e3

PageRank
P-PageRank
Eigenvector
Degree
Betweenness
Greedy

(d) HEP-TH, 𝑏=8
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(e) Deezer, 𝑏=4
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(f) Deezer, 𝑏=8
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(g) Digg, 𝑏=4
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(h) Digg, 𝑏=8
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(i) EmailEnron, 𝑏=8
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(j) EmailEnron, 𝑏=16
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(k) Facebook, 𝑏=12

0 1 2 3 4 5
Time Steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
pe

ct
ed

 #
 o

f V
ic

ti
m

s
1e3

PageRank
P-PageRank
Eigenvector
Degree
Betweenness
Greedy

(l) Facebook, 𝑏=24

Figure 4: (Case 2) The expected number of cumulative victims over time.

Simulation results. We first present simulation results for Case 1

with the ‘cluster’ case, where the source-set/cluster size |𝑆 | for each
graph is set to be roughly the same as its average degree. Specifically,

the cluster sizes are |𝑆 |=5 for GR-QC, HEP-TH, Deezer and Digg,

|𝑆 |=10 for EmailEnron, and |𝑆 |=15 for Facebook, respectively. For
each graph, the source set 𝑆 is selected by randomly choosing a

node among the ones having more (one-hop) neighbors than |𝑆 |
and then including its |𝑆 |−1 neighbors. We here report the results on

the performance of Personalized PageRank with its damping factor

of 0.9. We also observed the same results when the damping factor

is set to be the default value of 0.85, and omit them for brevity.

In Figure 1, we report the expected number of victims by 𝐾

crawlers (measured at the end of simulation), where the victims

are counted only once, when we change the budget 𝑏 for the size

of 𝑊 up to twice the source-set size |𝑆 |. Our greedy algorithm

in Algorithm 1 outperforms (no worse than) other baseline algo-

rithms for all test cases and all graphs. We also observe that the

performance improvement by Algorithm 1 compared to the base-

line algorithms generally becomes more drastic as we increase the

budget 𝑏. Another noticeable observation is that the performance

of source-agnostic centrality measures is not effective as much

as the source-aware algorithms, i.e., Personalized PageRank and

Algorithm 1, and remains ineffective even with increasing the bud-

get 𝑏. While our greedy algorithm generally performs better than

Personalized PageRank, there are few cases where they exhibit

very similar performance. The cases are when the budget is too

small, i.e., 𝑏=2 for GR-QC and HEP-TH, and 𝑏=4 for EmailEnron,

in which case their resulting sets𝑊 happen to be the same, and

when the budget is too large, i.e., 𝑏=20 for EmailEnron, in which

case their resulting sets𝑊 happen to be overlapped with common
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Figure 5: (Case 1) The expected number of victims with varying budget 𝑏, when the cluster size |𝑆 | increases by a factor of two.
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(a) GR-QC, |𝑆 | = 𝑛 · 1%
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(b) HEP-TH, |𝑆 | = 𝑛 · 0.5%
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(c) Deezer, |𝑆 | = 𝑛 · 0.1%
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(d) Digg, |𝑆 | = 𝑛 · 0.1%
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(e) EmailEnron, |𝑆 | = 𝑛 · 0.1%
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(f) Facebook, |𝑆 | = 𝑛 · 0.1%

Figure 6: (Case 2) The expected number of cumulative victims over time, when the choice of 𝑆 is the scatter case.

nodes/traps being the most effective ones in reducing the expected

number of victims.

We further examine how the expected number of unique victims

changes over time. Figure 2 shows the time-varying behavior when

the budget𝑏 is the one with the fourth instance of each sub-figure in

Figure 1, i.e., 𝑏=8 for GR-QC, HEP-TH, Deezer and Digg, 𝑏=16 for

EmailEnron, and 𝑏=24 for Facebook, respectively. We here only re-

port the results of our greedy algorithm and Personalized PageRank

for brevity, since they perform much better than the other baseline

algorithms. The results show that the superiority of our greedy

algorithm over Personalized PageRank remains intact over time.

In addition, we evaluate the impact of having different statistical

properties of the random length 𝐿 of each crawler, especially when

the value of the parameter 𝛼 of the geometric distribution changes.

We consider 𝛼 =0.3. Note that the larger value of 𝛼 makes the length

of each crawler more likely to be shorter with the smaller expected

length. As shown in Figure 3, which is obtained under the same set-

ting as the one for Figure 2 but when 𝛼 =0.3, the expected number

of victims becomes smaller as compared to that with 𝛼 = 0.1, for

each algorithm with the same budget 𝑏. While we again only report

the results of our greedy algorithm and Personalized PageRank in

Figure 3, we observe that our greedy algorithm is superior to other

baseline algorithms, including Personalized PageRank.

We next present simulation results for Case 2 with the cluster

source in Figure 4, where the cluster sizes remain the same as Case

1 for Figure 1, along with two cases of budget 𝑏, which correspond

to the second and fourth instances of Figure 1, respectively. We

report the expected number of cumulative (unique) victims over

time, since crawlers are continuously generated for the entire time

of each simulation. As shown in Figure 4, we first observe that

there is no significant difference among the source-agnostic central-

ity measures, which are degree centrality, betweenness centrality,

eigenvector centrality and PageRank, and the impact of increasing

the budget 𝑏 on their performance is still not much noticeable. We

also observe that our greedy algorithm remains the best.

Figure 5 shows the simulation results of Case 1 with the cluster

source when the cluster-source size |𝑆 | now increases by a factor

of two compared to the one for Figure 1. Specifically, the cluster

sizes are |𝑆 | = 10 for GR-QC, HEP-TH, Deezer and Digg, |𝑆 | = 20

for EmailEnron, and |𝑆 | = 30 for Facebook, respectively. For each
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(a) GR-QC, |𝑆 | = 𝑛 · 1%
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(b) HEP-TH, |𝑆 | = 𝑛 · 0.5%
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(c) Deezer, |𝑆 | = 𝑛 · 0.1%
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(d) Digg, |𝑆 | = 𝑛 · 0.1%
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(e) EmailEnron, |𝑆 | = 𝑛 · 0.1%
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(f) Facebook, |𝑆 | = 𝑛 · 0.1%

Figure 7: (Case 2) A fraction of non-victims over time for Algorithm 1, when the choice of 𝑆 is the scatter case.

graph, the set 𝑆 is selected by randomly choosing a node among the

nodes, each of whose number of one-hop and two-hop neighbors

is greater than |𝑆 |, and then including |𝑆 | −1 of them (one-hop

neighbors added first and then two-hop neighbors). The budget 𝑏

also varies up to twice the size |𝑆 |. The results again manifest the

superiority of our greedy algorithm over other baseline algorithms,

including Personalized PageRank, while exhibiting similar trends

as in Figure 1.

We finally consider Case 2 with the ‘scatter’ source, where the

nodes in 𝑆 are randomly chosen, and the source-set sizes are chosen

to be roughly the same for all graphs. We only report the results

of our greedy algorithm and Personalized PageRank in Figure 6,

since they significantly outperform the other algorithms. Here

we consider 𝑏 = 40 and 𝑏 = 80, which are about the same as the

source-set size |𝑆 | and twice as big as |𝑆 |, respectively. The results
again confirm the superiority of our algorithm. We also evaluate

the performance of our greedy algorithm in Algorithm 1 while

changing the budget 𝑏. Figure 7 depicts how a fraction of non-

victims over the nodes outside 𝑆 changes over time. We observe

that the amount of benefit with higher budget 𝑏 depends on the

underlying graph, and it decreases for certain graphs such as Digg,

EmailEnron, and Facebook.

6 CONCLUSION
We have studied the problem of finding where to place a set of

traps on a general social graph to catch adversarial crawlers with

malicious intents, to minimize the expected number of their victims.

We were able to show that the problem is essentially a monotone

submodular maximization problem and thus developed a (1−1/𝑒)-
approximation greedy algorithm. Furthermore, we developed an

MC estimator for the key quantityV(𝑊 ) of the greedy algorithm

to make it more computationally efficient and scalable for large

graphs. Extensive simulation results on various real-world graphs

have demonstrated the versatile properties of our greedy algorithm,

including its superior performance over other baseline algorithms

based on centrality measures.
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A PROOF OF THEOREM 1
Given an undirected, connected graph 𝐺 (𝑁 ′, 𝐸 ′) and an integer 𝐵,

which form an instance of the Vertex Cover decision problem,

the problem asks if there exists a subset𝑊 ⊆𝑁 ′ of size at most 𝐵

such that, for every (𝑖, 𝑗) ∈ 𝐸 ′, 𝑖 ∈ 𝑊 or 𝑗 ∈ 𝑊 . Equivalently, it

asks if there is a vertex cover𝑊 of size exactly 𝐵.§ Let |𝑁 ′ | =𝑛′.
In addition, an instance of the decision problem of P1 consists of
a graph 𝐺𝑆 =𝐺 (𝑁, 𝐸𝑆 ) with a source set 𝑆 ⊂𝑁 , an integer 𝑏, and

a real number 𝜂. Given an instance, our decision problem asks if

there exists a subset𝑊 ⊆ 𝑆𝑐 = 𝑁 \ 𝑆 of size 𝑏 such thatV(𝑊 ) ≥ 𝜂.
Without loss of generality, we assume that 𝐾 =1. For any given

instance of the Vertex Cover decision problem with 𝐺 (𝑁 ′, 𝐸 ′)
and 𝐵, with any arbitrary choice of 𝑆 , we can construct an instance

of our decision problem by setting 𝑁 := 𝑆 ∩ 𝑁 ′ and 𝐸𝑆 := 𝐸 ′ ∪
{(𝑖, 𝑗) | 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑁 ′}, which is a set of edges that include 𝐸 ′ and an
outgoing edge from each node in 𝑆 to every node in 𝑁 ′, forming

a graph 𝐺𝑠 =𝐺 (𝑁, 𝐸𝑆 ), along with 𝑏 := 𝐵 and 𝜂 := 𝑞1+𝑞2
(
1− 𝑏𝑛′

)
.

We below show that𝑊 is a solution of the Vertex Cover decision

problem if and only if it is a solution to our decision problem with

V(𝑊 ) ≥ 𝑞1+𝑞2
(
1− 𝑏𝑛′

)
, where 𝑆𝑐 = 𝑁 ′ with |𝑆𝑐 | = 𝑛′.

On one hand, assume that𝑊 is a vertex cover. Observe that

starting from 𝑠 ∈ 𝑆 , any random-walk crawler of length 𝑙 ≥ 1

moves to either 𝑖 ∈𝑊 or 𝑖 ∈ 𝑆𝑐 \𝑊 in the first step. For the former,

it is simply trapped in𝑊 in the first step. For the latter, it is always

caught by𝑊 in the second step, since all neighbors of 𝑖 ∈ 𝑆𝑐 \𝑊
belong to the vertex cover𝑊 . Thus, from (9), we have

V(𝑊 ) = 𝑞1
∑
𝑖∈𝑆𝑐

ℎ1 (u𝑆 , 𝑖;𝐺𝑊 ) + 𝑞2
∑
𝑖∈𝑆𝑐

ℎ2 (u𝑆 , 𝑖;𝐺𝑊 )

§
If there is a vertex cover of size less than or equal to 𝐵, then there is also one of size

exactly 𝐵.



= 𝑞1 + 𝑞2
(
1 − 𝑏

𝑛′

)
. (16)

The first term in the RHS of (16) follows from that∑
𝑖∈𝑆𝑐

ℎ1 (u𝑆 , 𝑖;𝐺𝑊 ) =
1

|𝑆 |
∑
𝑠∈𝑆

∑
𝑖∈𝑆𝑐

ℎ1 (𝑠, 𝑖;𝐺𝑊 )

=
1

|𝑆 |
∑
𝑠∈𝑆

∑
𝑖∈𝑆𝑐

𝑃𝑠𝑖 =
1

|𝑆 |
∑
𝑠∈𝑆

∑
𝑖∈𝑆𝑐

1

|𝑆𝑐 | = 1,

from which each 𝑠 has an outgoing edge to every 𝑖 ∈ 𝑆𝑐 . The second
term in the RHS of (16) also follows from that∑

𝑖∈𝑆𝑐
ℎ2 (u𝑆 , 𝑖;𝐺𝑊 ) =

1

|𝑆 |
∑
𝑠∈𝑆

∑
𝑗 ∈𝑊

ℎ2 (𝑠, 𝑖;𝐺𝑊 )

=
1

|𝑆 |
∑
𝑠∈𝑆

∑
𝑗 ′∈𝑆𝑐\𝑊

𝑃𝑠 𝑗 ′ · 1 = 1 − 𝑏

𝑛′
.

On the other hand, suppose that𝑊 is not a vertex cover. There

always exists a pair of two ‘uncovered’ nodes 𝑢 and 𝑣 , which are

neighbors of each other and 𝑢, 𝑣 ∉𝑊 . It implies that starting from

𝑠 ∈ 𝑆 , any crawler of length 𝑙 ≥ 2 can visit 𝑢 and then 𝑣 consec-

utively, or vice versa. The walk is then trapped in𝑊 in the next

step or further explores new nodes before it is trapped later, if

𝑙 ≥ 3, since the nodes in 𝑆𝑐 =𝑁 ′ are all reachable from each other.

Therefore, we have

V(𝑊 ) ≥
3∑
𝑡=1

𝑞𝑡

∑
𝑖∈𝑆𝑐

ℎ𝑡 (u𝑆 , 𝑖;𝐺𝑊 ) > 𝑞1 + 𝑞2
(
1 − 𝑏

𝑛′

)
,

which is from (16).
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