Trapping Malicious Crawlers in Social Networks

Shiju Li Chul-Ho Lee Do Young Eun
Florida Institute of Technology Florida Institute of Technology North Carolina State University
sli2015@my.fit.edu clee@fit.edu dyeun@ncsu.edu

ABSTRACT

In this paper, we study a problem of trapping malicious web
crawlers in social networks to minimize the attacks from crawlers
with malicious intents to steal personal/private information. The
problem is to find where to place a given set of traps over a graph
so as to minimize the expected number of users who possibly
fall prey to a (possibly random) set of malicious crawlers, each of
which traverses the graph in a random-walk fashion for a random
finite time. We first show that this problem is NP-hard and also a
monotone submodular maximization problem. We then present a
greedy algorithm that achieves a (1—1/e)-approximation. We also
develop an (e, §)-approximation Monte Carlo estimator to ease the
computation of the greedy algorithm and thus make the algorithm
scalable for large graphs. We finally present extensive simulation
results to show that our algorithm significantly outperforms other
baseline algorithms based on various centrality measures.

CCS CONCEPTS

« Information systems — Web crawling; Social networks;

KEYWORDS
social networks, crawlers, random walks, submodular optimization

ACM Reference Format:

Shiju Li, Chul-Ho Lee, and Do Young Eun. 2020. Trapping Malicious
Crawlers in Social Networks. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM 20), October
19-23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3340531.3412004

1 INTRODUCTION

Crawling web graphs and online social networks (OSNs) has been
central to building the databases of search engines for serving user
queries and also for complex network analysis, i.e., understanding
the properties of nodes, their relationships (edges), and more so-
phisticated relationship among multiple nodes (subgraph patterns)
of the large complex networks. In particular, it has been a key en-
abler for graph sampling, which has been extensively studied in
the literature, for estimating various target quantities, including
the size of a subset of nodes, degree distribution, assortativity co-
efficient, network-average and global clustering coefficients, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10....$15.00
https://doi.org/10.1145/3340531.3412004

locally connected subgraph patterns such as triples, motifs and
graphlets [9, 14, 25, 44, 48].

The crawlers for graph sampling are often implemented in the
form of random walks to achieve statistical guarantees, while lever-
aging the public local-neighborhood-only interfaces (APIs) pro-
vided by the target-network companies, or following the URLs and
hyperlink structures (i.e., HTML screen scraping), especially when
the public APIs are not available [14, 31, 37]. The graph sampling
via crawling has been a non-trivial problem both in theory and
practice [42, 48], since the operation of crawlers can only be valid
for a limited amount of time due to (rather stringent) rate limits
on the usage of APIs and web access per IP address of a crawler,
and thus collected samples can only provide a partial view of the
underlying graph and may not be sufficient for estimation and
inference.

On the flip side, crawling can be misused and leveraged for
malicious purposes. Specifically, the topological information of
OSNs can be collected by adversaries who create false profiles, or
gain access to legitimate users who are already well-connected
to others by compromising their credentials, and then exploit the
neighbor-to-neighbor structures. They can be used with malicious
intents to identify well-connected individuals and communities of
users with common interests [34, 45], to infer private information
from users’ friends [29, 47], and to facilitate the extraction of user
profiles [2, 11]. It is thus crucial to prevent malicious crawlers from
compiling a collection of private social information and protect
user privacy from such adversarial attacks.

In this paper, we consider a relevant problem, which is to find
an optimal set of nodes to place ‘traps’ over a social graph (model-
ing a web-based social network or an OSN) in order to minimize
the expected number of users who possibly fall prey to malicious
crawlers. While the privilege of privacy control is generally given to
users to a large extent, many users still fail to protect their private
information, thereby becoming vulnerable to the adversaries.” To
remedy this problem, traps can be implemented in the form of ‘spi-
der’ traps/honeypots [24, 40] or with anti-crawling measures such
as Captchas and user verification, to catch the crawlers and prevent
them from further accessing user pages to steal private data. As
another possible solution, restrictive ‘access control’ [2, 4, 50] can
be enforced selectively to a group of users on behalf of them, which
can be viewed as traps, to prohibit the crawlers from prying into the
underlying social network (by exploiting its neighbor-to-neighbor
structure) to the maximum extent possible. This problem can also
be viewed, in a weaker form, as that of finding an optimal set of
vantage points over the network for monitoring access patterns
and traffic to detect anomalous access behaviors [43, 46].T

“It is reported in [2] that only 10% of Facebook users remove their profile pictures and
friend information from search results.

fEnforcing restrictive access control to the entire social network and monitoring
over the entire network may be infeasible, due to possible negative effects of such an

https://doi.org/10.1145/3340531.3412004
https://doi.org/10.1145/3340531.3412004

We formulate and study the problem as a combinatorial opti-
mization problem of finding a set of nodes on a general social graph
to trap a (possibly random) set of malicious crawlers to minimize
the expected number of their potential victims. Here each crawler
starts from a node chosen uniformly at random from a ‘launch’ set
S, in which nodes are possibly disconnected and scattered. It then
independently moves over the graph in a random-walk fashion for
a random finite time, which can have any arbitrary distribution. We
provide the following contributions in this paper.

o First, we present a system model and provide its mathematical
analysis to set the stage for the optimization problem.

e We next prove that the problem is NP-hard, but also show that
it essentially becomes a monotone submodular maximization
problem.

e Leveraging this nice functional property, we propose a greedy
algorithm that achieves a (1—1/e)-approximation to the optimal
solution of the original NP-hard problem. Furthermore, to make
the greedy algorithm practical and scalable for large graphs,
we provide an (¢, §)-approximation Monte Carlo estimator that
enables an efficient computation of the key quantity required in
the algorithm operation with provable guarantee.

o Finally, we present extensive simulation results on various real-
world graphs to demonstrate the efficacy and scalability of our
greedy algorithm. In particular, the simulation results show that
our algorithm significantly outperforms other baseline algo-
rithms based on various centrality measures.

2 RELATED WORK

This work is relevant to a rich literature that is concerned about how
to manipulate the structure of an underlying graph, i.e., removing
nodes and/or edges, to maximally suppress diffusion processes on
the graph, ranging from the spread of epidemics to the cascade of
influence (or information diffusion), under budget constraints.
First, there is a lot of work for developing immunization strate-
gies, which often boil down to removing a set of nodes (vaccinating)
or edges (quarantining), to control the spread of epidemics under
the susceptible-infected-susceptible (SIS) and susceptible-infected-
recovered (SIR) models on graphs. It was shown by Chakrabarti
et al. [5] and Ganesh et al. [12] that under the SIS/SIR models, an
epidemic dies out quickly if the spectral radius of the underlying
graph, i.e., the largest eigenvalue of its adjacency matrix, is less
than a ‘threshold’ that depends on the model parameters.* This
observation has motivated several studies on the development of
strategies to find a set of nodes or edges for removal to reduce the
spectral radius of the resulting graph below the threshold (or to
minimize the spectral radius) so as to ensure the (quick) extinction
of an epidemic, e.g., [5, 7, 8, 38, 41]. Other spectral measures have
also been similarly used to identify critical nodes and/or edges from
the standpoint of network connectivity [6, 49]. Furthermore, cen-
trality measures, including the betweenness centrality, have been

enforcement (e.g., some users may lodge complaints and even quit the social network)
and the sheer size of the underlying network.

iSpeciﬁcally, the threshold is the ratio of the recovery rate to the infection rate
under the SIS/SIR models, where a susceptible node becomes infected with rate f§ times
the number of infected neighboring nodes, and any infected node is independently
recovered with rate 8. Once an infected node becomes healthy, it is again susceptible
to infection under the SIS model, whereas it is permanently cured under the SIR model.

used as effective means for combating epidemics by immunizing a
fraction of nodes or removing edges [13, 39].

In addition, there is another body of literature, which has been
based on the diffusion models for the spread of influence, such as the
independent cascade (IC) and linear threshold (LT) models, since the
seminal work by Kempe et al. [19] on the influence maximization
problem. Note that these models are still different from the epidemic
models, because the former models define node-to-node influence
operations as a ‘one-time’ process, i.e., an active node attempts to
influence its neighbor only once, while the latter ones allow node-
to-node infections to remain effective. Kimura et al. [21] studied
the problem of ‘minimizing’ the propagation of rumors by blocking
a limited number of links under the IC model. In [16], the authors
tackled the ‘influence blocking maximization’ problem under the
competitive LT model (a variant of the LT model), which can be
viewed as a node deletion problem. Furthermore, Kuhlman et al. [22]
proposed heuristic algorithms for the problem of edge removal
under a deterministic variant of the LT model. Khalil et al. [20]
studied the problems of deleting and adding edges to minimize
and maximize the spread of influence, respectively, under the LT
model. More recently, Nguyen et al. [35] addressed the problem of
removing nodes or edges to stop a so-called cyber-epidemics under
the LT model.

While the process of random walks is another class of diffusion
processes, it is fundamentally different from the above diffusion
models, especially from a modeling perspective. The epidemic and
influence-diffusion models are characterized by the time-varying
behavior of the set of ‘infected’ nodes and that for ‘active’ nodes,
respectively. The process of random walks, however, is character-
ized by their trajectories, which are the sequences of nodes visited
by walks. Furthermore, in contrast to the aforementioned literature,
there are only few studies on manipulating the underlying network
structure to facilitate, but not suppress, the diffusion of random
walks or merely studying relevant hitting times of random walks.
Mavroforakis et al. [30] studied the so-called k-ARW-centrality
problem to place k absorbing nodes on a graph in order to minimize
the absorption time of an ‘infinite-length’ random walk that is a
simple random walk with occasional jumps to a set of nodes. In [27],
the authors solved the problem of finding a set of nodes to minimize
the total hitting time of a ‘fixed-length’ random walk to the rest of
the graph. Golnari et al. [15] analyzed the hitting times of random
walks when they can avoid or must go through a specific node on
a graph, but without considering any optimization problem.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

3.1 Problem Setup and Justification

Consider a general connected, undirected graph G = (N, E) with
size |[N|=n, to model a web-based social network or an OSN. The
graph G is an arbitrary given graph, as long as it is connected and
undirected. The graph G is defined by an n X n adjacency matrix
A=[A;j] with elements A;; =1 if there is an edge between nodes
iand j, ie, (i, j) €E, and A;; =0 if otherwise. Suppose that time
is divided into discrete slots. The problem of interest is to find
where to place a given set of traps over graph G so as to minimize
the expected number of users who fall prey to a set of malicious

crawlers, when each of crawlers traverses G in a random-walk
fashion for a random finite time that is drawn from any arbitrarily
given distribution.

The rationale behind the ‘random walk’ trajectories of malicious
crawlers stems from the fact that random walks have been widely
used and recommended as the trajectories of crawlers for sampling
OSNs and webs with statistical guarantees [9, 14, 25, 44, 48]. The ‘fi-
nite length’ also comes from the fact that the usage of APIs and web
access per IP address of a crawler are rate-limited [14, 31, 37, 42, 48].
Unlike the graph sampling literature, this work considers the ad-
versarial aspects of web crawling when misused and leveraged
for malicious purposes. We note that the trajectories of malicious
crawlers may be governed by more complicated (stochastic) pro-
cesses, and this extension would be an interesting future direction.
Nonetheless, as shall be shown later, the problem at hand is still
non-trivial while leading to fundamental insights.

In addition, the notion of ‘traps’ can be interpreted in practice
as follows. First, the traps can be spider traps/honeypots [24, 40],
which are the fake pages or embedded links that are only accessible
by (malicious) crawlers, not by humans, and get them stuck in infi-
nite loops or crashing. Second, they can also be implemented with
anti-crawling measures such as Captchas and user verification, pre-
venting the crawlers from moving forward. Third, the traps can be a
group of users’ pages where some restrictive access control 2, 4, 50]
is enforced on behalf of them to keep their private information such
as user profiles and their list of friends undisclosed, which in turn
prohibits the crawlers from exploiting the neighbor-to-neighbor
structure for further crawling. Finally, in a broader sense, they can
be viewed as vantage points over the network for monitoring access
patterns and traffic to detect anomalous access behaviors and build
a blocklist of IP addresses. To summarize, the notion of traps for
anti-crawling/scraping has been widely used in practice, and we
then look at the problem of where those traps need to be installed
by mathematically formulating an optimization problem.

3.2 Model Description

Consider K malicious crawlers, each of which has a random length
of L. While K can be random, for ease of exposition, we assume
that K is a fixed value. We set Ly, k=1,2,...,K, to be i.i.d. copies
of L that has any general distribution over a finite support in that
lim;_,, P{L = I} = 0. Each crawler k initially starts from a node
s chosen uniformly at random from a given node set S C N, and
independently moves over G for L. steps in a random-walk fashion.
Here, this source-node set S can also be arbitrary, i.e., nodes in S
do not need to be connected. For crawler k, we then consider the
nodes outside S that crawler k visits for Ly steps as victims, or the
nodes that fall prey to crawler k having malicious intents to steal
personal or private information. Thus, the number of victims by
crawler k is identical to the number of unique nodes visited by k.
We assume that when crawler k moves from a node to one of
its neighbors at each step, it only moves to one of the neighbors
that are not in S, since it has no incentive to visit S from which the
crawlers are launched. Thus, the movement of crawler k is modeled
as a simple random walk on a modified graph, say Gg, instead of the
original graph G, where all the incoming edges into S are removed
(but the nodes in S still remain in the graph). To be precise, it is
defined by Gs £ (N, Es), where Es £ {(i, j) €E | j ¢S}. Note that

A;j=0for j € S. The transition probability of the simple random
walk from node u to v on Gg is accordingly defined by P,,=1/dy,
for (u,v) € Es and Py, =0 for (u,v) ¢ Es, where d,, is the degree of
node u on the modified graph Gg, i.e., dy, =2 e N Auo-

Let V be the expected number of nodes that are victimized by
K crawlers, where the expectation is taken over the random trajec-
tories of the crawlers and their random lifetimes. For mathematical
tractability, we consider V as the expected value of the sum of
the numbers of victims (or unique visits) by K crawlers. In other
words, some node i may be visited/victimized by multiple crawlers
in which case they are counted separately. Nonetheless, it is still
non-trivial to characterize V analytically and the mathematical
analysis serves as a crucial point of departure for the design of
a practically usable algorithm. Furthermore, we evaluate our pro-
posed algorithm and demonstrate its superiority over other algo-
rithms through extensive simulations without such an assumption
in Section 5.

Fix crawler k. Letting S £ N \ S, we first evaluate the probability
that node i € S¢ is victimized by crawler k. Define X (t) to be
the position at time ¢ of the corresponding infinite-length simple
random walk on Gg, and T (i) to be its first hitting time of node i,
which is given by Ti. (i) £ min{t > 0 | X.(t) =i}. Then, we observe
that node i is victimized by crawler k if it is visited by k during
its lifetime Lg. In other words, it happens with probability that the
first hitting time of node i is no greater than Ly, which is given by

Pr AT (i) < L} £ P{Tp (i) < Li | X (0) ~ ug}

=BT < L 1 X0 =sh (1)

|S|s€5

where ug denotes a uniform distribution over the set S, and I; £
{Xx(0) ~ ug} denotes an event that the initial position X} (0) is
chosen from S uniformly at random. Note that since L is random,
Py {Tk (i) <L} is not in a simple form of the CDF of the first hitting
time T (i), which has been studied extensively in the literature [3,
36]. Nonetheless, we below show that it can also be written as a
weighted sum of P, {Tj (i) =t}, with coefficients given by the CCDF
of Ly, and this representation shall be useful in the subsequent
analysis.

LEMMA 1. The probability that node i becomes a victim of crawler
k, starting from a uniformly random node from S, is given by

PrdTi() < Ly =) qr - PrATi(D) = 1}, 2)
t=0

where q; 2 P{L > t}, withlim;—c q; = 0.
PRrOOF. See our technical report [28]. o

We next define Vi to be the number of victims by crawler k,
which is given by

Vi 2 3 1{T(0) < L, 3)
ieSe

where 1{A} denotes an indicator function of an event A, having
1{A}=1if A occurs, and 1{A} =0 otherwise. From (3), we have

BVl = B[Y 1T < L) | 1]

ieS¢

= " B[U{T() < L} L] =) PrdTie() < i), (@)

ieS¢ ieS¢

where the second equality is from the linearity of conditional ex-
pectation. Then we can write V - the expected number of nodes
victimized by K crawlers, when each of them independently starts
from node s chosen from S uniformly at random, as

K K
V=B|) Vi |hbo o Ii| = Y IV [Il = K-E[Vi | 1],)
k=1 k=1

where we have used the linearity of conditional expectation and
the fact that Vi depends only on I for each k. Therefore, by (2), (4),
and (5), we have

V=K Y4 P{T()=1) ©

ieS¢ <o

Hereafter, we drop the subscript k from I and T (i) for brevity.

3.3 Problem Statement

We are now interested in finding a set of nodes W c S¢ of size
|W|=0, i.e., where to place b ‘traps’, to catch K crawlers so as to
minimize the expected number of their victims V, for a given set
S. To properly model the effect of traps W on Gs, we assume that
once each crawler is trapped by any node in W, it stays there for
the rest of its lifetime. To model this, for any given choice of W,
we define the resulting graph Gy = (N, Eyy), where Eyy 2 {(i, j) €
Es | i¢ W}, ie., all the outgoing edges from W are removed from
Gg=(N, Eg). Note that the entire node set N still remains intact,
while the outgoing edges from W (and also the incoming edges into
S) are removed. Furthermore, to properly indicate the differences
of our target quantity V without and with W traps, we reserve V
for the former and introduce V(W) for the latter. To be precise, for
a given choice of W and its corresponding graph Gy, we define

he(s,i;Gw) 2 P{T(i) =t |X(0)=s}, se€S,ieS. (7)
With a slight abuse of notation, we also define
he(us, isGw) £ PH{T(i) = t} = P{T(i) = t | X(0) ~ us}

1
=5 D hi(s,i:Gw), i€ S ®)
SES

Here these definitions are given to clearly indicate the hitting time
probabilities to be the ones obtained on Gyy . Thus, from (6), we can
write

VW) =K D > qr-hi(us,isGiw). ©
ieSe t<oo
Using the notations in (7)—(8), we can also rewrite V in (6) as
V=K Z Z qr - ht(us, ; Gs). (10)
i€Sc t<co
For a given set S and a given budget (or size) b of W, our opti-

mization problem is then to find

P1: W* = argmin V(W).

wcse : [W|=b

4 MAIN RESULTS

We present our main results for the optimization problem #1. In par-
ticular, we propose a (1—1/e)-approximation greedy algorithm for
#1, by showing that its equivalent problem is a monotone submodu-
lar maximization problem. We also propose an (¢, §)-approximation
Monte Carlo (MC) estimator that allows us to efficiently compute
the key quantity V(W) required in the execution of the greedy
algorithm, which makes the algorithm practical and scalable for
large graphs.

4.1 Submodularity and Greedy Algorithm

We first show that $1 is NP-hard. Specifically, we prove the NP-
hardness by reducing the decision problem of the VERTEX COVER
problem [10] to the decision problem of 1.

THEOREM 1. P1 is NP-hard.
ProoF. See Appendix A. O

It is thus naturally expected that developing a computationally
efficient algorithm, even an approximation algorithm, for 1 is
simply a non-trivial task. Nonetheless, by transforming $1 to its
equivalent problem, we next show that it boils down to the problem
of maximizing a monotone submodular function, which is amenable
to the development of a greedy algorithm with provable guarantee.
To proceed, we collect the following definitions.

DEFINITION 1 (MONOTONICITY [32]). A function f : 2N — R is
monotone if, for every AC B C N, f(A) < f(B).

DEFINITION 2 (SUBMODULARITY [32]). A function f : 2N — R
is submodular if, for every A € B C N and everyu € N \ B,

fAU{u}) = f(A) = f(BU{u}) - f(B).

In other words, f is submodular if it satisfies the ‘diminishing
returns’ property, which implies that the marginal gain from adding
an element to a set A diminishes with increasing size of A.

We next define

DW) £V -VW). (11)
Then it is easy to see that 1 becomes equivalent to finding

P2 : W* = argmax D(W).
WCSe : W =b

We below show that D : 25° — R is non-negative, monotone, and
submodular, thus implying that 2 becomes a monotone submod-
ular maximization problem. While it is straightforward to see that
D is non-negative, it is non-trivial to show its monotonicity and
submodularity.

Fix W C S¢. For some u €8¢\ W, let W* 2 W U {u}. We define
the marginal gain by

AW, u) £ D(WH) = D(W) = V(W) - VW), (12

where the equality follows from (11). To show the monotonicity and
submodularity of D, we need to demonstrate that the marginal gain
A(W,u) is non-negative and diminishes with increasing size of W.
The technical challenge, however, is how to evaluate the quantities
V(W) and V(W), which are not directly comparable, since they
are defined on different graphs Gy = (N, Eyy) and Gy+ = (N, Eyy+),
respectively. To overcome this challenge, we carefully define their
corresponding quantities on the baseline graph Gg so that they can

Algorithm 1: Greedy Algorithm
Input :Gs = (N,Es), S, b
Output: W

1 W« 0,Gy « Gs

2 while [W| < b do

3 Compute V(W)

4 foru € S° \ W do

5 Wy «— W U {u}
6 Ey+ <—Ew\{(u,0)€Ew|U€SC}
7 Gy+ < (N,Ey+)
8 Compute V(W)
9 AW, u) = V(W) —VWH)
10 u* « argmax A(W,u)
ueS\w

1 We—Wu{u'}
12 EW<—EW\{(u*,v)€EW|U€S”}
13 Gw <« (N,Ew)

be compared on the same ground, as detailed in the proof of the
following.

THEOREM 2. D is a non-negative monotone submodular function.

PRrOOF. See our technical report [28]. O

Thanks to this nice property of D, we are able to build a greedy
algorithm for obtaining a solution W to P2, as depicted in Al-
gorithm 1. For any given budget b on the size of traps W, it is
essentially finding an element u* that maximizes the marginal gain
A(W,u) every iteration until the size of the resulting set W be-
comes b. Therefore, this algorithm naturally achieves the following
performance guarantee.

CoroLLARY 1. Algorithm 1 achieves a (1—1/e)-approximation to
the optimal solution of P2.

Proor. For any given non-negative monotone submodular func-
tion f, which is O in our case, let W be a set of size b obtained in a
greedy fashion, by choosing an element that provides the largest
marginal gain in the value of f each time. Let W* be a set maxi-
mizing the value of f over all b-element sets. It is well-known that
f(W) = (1-1/e)f(W*) [19, 32]. Thus, the result follows. O

4.2 Monte Carlo Estimation

While our greedy algorithm in Algorithm 1 can effectively solve P2,
there is still a computational issue with the marginal gain A(W, u),
or V(W) for each W. Specifically, as can be seen from (9), it re-
mains questionable how to efficiently compute 3 ; .o, grh: (s, i; Gyy)-
To address this issue, we below propose an MC estimator of this
quantity based on R i.i.d. realizations (or sample paths) of a sim-
ple random walk of fixed length I on Gy,. We also establish an
(€, 6)-approximation of this estimator, which implies, for any small
€,0 > 0, how many realizations R are necessary with a choice of / so
that the approximation error can be bounded by € with probability
atleast 1 — 4.
Fix W c €. For notational simplicity, we define

c(s.i) 2) qehe(s.i), (13)

t<oo

where we here drop Gy for h; (s, i; Gy). We also define by

1
cr(s,1) 2 > qehe(s,), (14)
t=1

the [-truncated version of c(s, i), where hq(s,i)=0. Let x() (t),r=
1,2,..., R, be the position at time ¢ of the r-th random-walk realiza-
tion on Gyy, assuming that X () (0)=s for each r. We then define,
for all r and ¢ > 0,
XD 0.x7@),...x7 @)
29X () =i, XD (") #iforall ¢’ <t},

i.e., an indicator function of the event that the walk visits i at time
t for the first time, with

E [ﬁ (x®0),x"(1),....x" (t))] = he(s, i),

which is the probability that the walk visits i at time ¢ for the first
time, i.e., the first hitting time to i is t. We first construct an MC
estimator of h;(s, i), forall t > 0,s € S,i € S, as

R
hr(s,i) & %Zﬁ(xm(o),x(r)(l), LX),
r=1

That is, this estimator is, in essence, the sample mean of f; over R
i.i.d. realizations of t-length simple random walk. By the strong law
of large numbers, we have

hri(s,i) =25 hy(s, i), as R — oo. (15)
We then construct an MC estimator of ¢;(s, i) in (14), for all [>
0,s€S,i€Sas
1
cra(s,i) 2) qehre(s.).

=1

In other words, this estimator ¢g (s, i) is a weighted sum of [esti-
mators flR,t(s, i),t=1,2,...,1, with coefficients g;, which are built
upon R i.i.d. realizations of simple random walk of length I. By (15)
and the linearity of almost sure convergence, we have

Cri(s, i) 25, c;(s, i), as R — oo.

While ¢g (s, i) is an asymptotically consistent estimator of ¢;(s, i)
in (14) for each I, we below demonstrate that this estimator, with a
proper choice of I, can also be used to approximate c(s, i) in (13).
To proceed, we need the following.

THEOREM 3 (HOEFFDING’S INEQUALITY [17]). Let Y,...,Y, be
i.i.d. random variables such that E[Y;] = p and a < Y; < b. Then, for
anye€ > 0,

n
1P’{|l Divi- y| > e} < 2¢72n€'/ (-0)",
nia
We below show that ¢g (s, i) achieves an (e, §)-approximation

to ¢(s, i) in (13), when I and R are properly chosen.

THEOREM 4. For any € >0 and §€(0, 1), let | be chosen such that
2
Z;ilﬂ @t <5.IfR> % log (21/5), then we have, fors€S,i€SC,

P{|éry(s.i) — c(s,1)| > €} < 6.

PRroOF. See our technical report [28]. O

2 Greedy

(=9 P-PageRank 200

PageRank

Eigenvector

1 Degree

=71 Betweenness Greedy N

100f £ P-PageRank

PageRank

&5 Eigenvector §
Q
N
N

Expected # of Victims
Expected # of Victims
&
=3

T Degree
E=5 Betweenness

Budget

(a) GR-QC

Greedy

=9 P-PageRank
PageRank

&2 Eigenvector

71 Degree
£ Betweenness

Expected # of Victims

Budget

(c) Deezer

7 Greedy
ES9 P-PageRank
PageRank
&3 Eigenvector
7 Degree
@ Betweenness

Expected # of Victims

(d) Digg

Theorem 4 suggests a systematic way of choosing [and R
to achieve provable guarantee on the accuracy of the estimator
CRr1(s, i) to approximate the quantity c(s, i) for Algorithm 1, i.e., the
approximation error is bounded by e with probability at least 1 — 8.
In what follows, we numerically demonstrate that Algorithm 1 is
effective and robust, even with possibly noisy estimates of c(s, i)
by ¢ég (s, i) for small / and R.

5 SIMULATION RESULTS

In this section, we present simulation results on various real-world
graphs to demonstrate the efficacy of our greedy algorithm in Al-
gorithm 1. We consider six real-world network datasets from the
repositories such as SNAP [26] and KONECT [23], which allow us
to test a wide range of network topologies with different forma-
tions of the adjacency matrix A. In other words, we can evaluate
the impact of diverse network topologies on the performance of
our greedy algorithm. For simulations, we preprocess each graph
to remove self-loops. We use the largest connected component of
each graph to ensure graph connectivity. Their basic statistics are
summarized in Table 1. For Digg, its undirected version is used.

Table 1: Graph statistics
l [# Nodes [# Edges [Avg. Degree [Diameter]

PageRank
&2 Eigenvector

P-PageRank
PageRank
igenvector
Degree
Betweenness

)
2]
3
H
g
2
Expected # of Victims

(e) EmailEnron

Figure 1: (Case 1) The expected number of victims with varying budget b.

GR-QC 4158 13422 6.456 17
HEP-TH 8638 24806 5.743 17
Facebook 22470 170823 15.205 15

Deezer 28281 92752 6.559 21

Digg 29652 84781 5.718 12
EmailEnron 33696 180811 10.732 11

Simulation setup. We consider the random length L; of each
crawler to be independently drawn from a common geometric
distribution with parameter a, i.e, P{L=t}=(1 —a)ta, t=0,1,...,
with E[L] = (1-a)/a. We use @ =0.1, unless otherwise specified. We
consider the following test cases for generating crawlers in each
simulation. For both cases, each crawler independently starts from
anode s chosen uniformly at random from a given source set S.
e Case 1: K = 100 crawlers are launched simultaneously at the
beginning of each simulation, which lasts until the lifetimes of
all the crawlers are elapsed.

(f) Facebook

o Case 2: Crawlers are generated at different times according to a
Poisson process with rate 1/E[L] for 10° time slots in each simu-
lation. To be precise, the inter-arrival time between two consecu-
tive crawlers is exponentially distributed with the mean equal to
E[L]. Since time is divided into discrete slots, each inter-arrival
time is rounded up to the nearest integer value that determines
which time slot a next crawler is generated. In other words, a
new crawler is launched roughly every E[L] time slots, which is
the average lifetime of each crawler. Each simulation runs for a
simulation time of 10 slots.

We also consider two different cases of choosing the source set S
for a given size |S|. One is a ‘cluster’ case, where all nodes in S are
connected and form a cluster, and the cluster is chosen randomly
from the graph, as will be explained below in detail. Note that
this does not necessarily mean that S forms a clique, i.e., nodes
in S may not be direct/one-hop neighbors of each other, but they
are still connected via intermediate nodes. The other is a ‘scatter’
case, where nodes in S are independently chosen uniformly at
random from the node set N and thus they are likely disconnected
and dispersed over the graph. Every data point reported here is
obtained by taking the average over 10* independent simulations.

For a given source set S and a given budget b on the size of
W, to evaluate the performance of our greedy algorithm in Al-
gorithm 1, we consider the standard centrality measures such as
degree centrality, betweenness centrality, eigenvector centrality,
and PageRank [1, 33], as baseline algorithms. Since they measure
the importance of each node in the graph, they can be efficient
heuristics for P2 by choosing the top-b central nodes for the traps
W. While they are agnostic to the source set S, we also consider
Personalized PageRank [18] as a source-aware baseline algorithm.
For Personalized PageRank, we set its damping factor (or teleporta-
tion probability) to be 1—« or its default value of 0.85 in [18], and
its preference vector to be ug, i.e., a uniform distribution over S.
For the execution of Algorithm 1, we use the MC estimator ¢g (s, i)
with [=80 and R =4 x 10* to compute c(s, i) in (13) and eventu-
ally V(W) in (9) for each W. We also tested the case of /=60 and
R=2x 10* for ¢r (s, 1), and observed almost the same results of
our algorithm. We thus omit them for brevity.

& ppageRank & prageRank o] £ PopageRan & ppageRank & ppageRank & ppagerank
o Greedy 80| 8- Greedy & Greedy 50/ - Greedy A o Greedy
- . B . - - .
e , .
H e Bas N il H S
= 2 el H e e H
: JURS ; Py
H e H 2w i -
g g - 2 &0 H — g
M & g L § §
m «
+ + + + 5 5 + + + + + +
Tim Steps Time stops Time Steps Tim Steps Time Steps Tim Steps
(a) GR-QC (b) HEP-TH (c) Deezer (d) Digg (e) EmailEnron (f) Facebook
Figure 2: (Case 1) The expected number of victims over time.
24| A P-PageRank - P-pageRank & P-PageRank 4 P-PageRank 4~ P-PageRank & p-PageRank
@~ Greedy o @ Greedy 197 -0 Greedy o] @ Greedy - Greedy 22} @ Greedy
Ex H 19 H 1 £ H
£ £ H H " . £ H
* + 30 a1 w0 H wx
iu 3 3 3 3 3
H N 2 H H
gas H g g g
b H i H H g
¥ 20 ¢ ¥ 20 “20 Y 2
W ul
® Time Steps rime steps > Time Steps ® nime'steps * rime steps > Time Steps
(a) GR-QC (b) HEP-TH (c) Deezer (d) Digg (e) EmailEnron (f) Facebook
Figure 3: (Case 1) The expected number of victims over time, when « = 0.3.
le3 le3 2. le3 2.5 le3 —
1.4 1.4 -V~ PageRank P
_A- P-PageRank ,/'/ o
212 w12 -5 Eigenvector 22,0 w20 /
H H 5 oo H H /
10 £10 Betweenness 3 3
2 H 8- Greedy 215 21s o
Sos P So.8 I3 s P
- * * # y
Zos o pagenank Zos 210 - PageRank 310 55 pagenank
H e A rpagenank H g & epagenank H o i ropagenank
804 -5~ Eigenvector go.a g & Eigenvector g P & Eigenvector
& -5 Degree & & 0.5 -5 Degree & 0.5 - -5 Degree
02 % Betweenness 02 4 Betweenness 4 Betweenness
-8 Greedy -8 Greedy / -8 Greedy
o T 3 3 T o 1 2 3 2 o. T 3 3 @ o T 3 3 T
Time Steps les Time Steps les Time Steps 1es Time Steps 108
(a) GR-QC, b=4 (b) GR-QC, b=8 (c) HEP-TH, b=4 (d) HEP-TH, b=8
Loe3 1e3 s1s3 163
1.4 - PageRank
A P-pageRank /
goe g2 o pearee Ny £ e
% 10 & Betweenness b & e
206 %1 2 @ Greedy 23 23 o ol
o -
H — Sos H 5 /./’
Toa ~" -7 PageRank Tos %2 -7~ PageRank 32 - -7 PageRank
H & b rageRank H H & P pageRank H & b rageRank
H 2 iganvector foa g S Eigenvector H 2 Eiganvector
& 0.2 - Degree & PRI &1 -5 Degree &1 -5 Degree
6~ Betweenness 0.2 oo - Betweenness - Betweenness
@ Greedy % @ Greedy @ Greedy
o 1 2 3 4 0. 1 2 3 4 1 2 3 a 1 2 3 a
Time Steps led Time Steps 1ed Time Steps led Time steps led
(e) Deezer, b=4 (f) Deezer, b=38 (g) Digg, b=4 (h) Digg, b=8
le3 le3 le3 le3
7 PageRank 1.4 - 1.4 ¥ PageRank
2 /'/'/ A rPageRank / i p-pageRank
24 24 - Eigenvector w12 / w12 ©- Eigenvector
H - H 5 oo H H 5 oo
9 o Betweenness. £1.0 £1.0 Betweenness
: : $E- : TE
° 4 ©0.8] So.s8
" N « N B
32 -7 PageRank 32 306 -7 PageRank 3os o
g —A- P-PageRank 1 o1 % -A- P-PageRank K el
g ©- Eigenvector - e go0.4 & Eigenvactor 204 .
& 5 oegres i1 S i & oeoree i y o
4 Betweenness o 0.2 9~ Betweenness 0.2 A
@ Greedy e @ Greedy
T 3 3 3 i 3 E] T o. i 3] 03 o T 3 3 3
Time Steps led Time Steps led Time Steps led Time Steps led

(i) EmailEnron, b=8 (j) EmailEnron, b=16

(k) Facebook, b=12 (1) Facebook, b=24

Figure 4: (Case 2) The expected number of cumulative victims over time.

Simulation results. We first present simulation results for Case 1
with the ‘cluster’ case, where the source-set/cluster size |S| for each
graph is set to be roughly the same as its average degree. Specifically,
the cluster sizes are |S|=5 for GR-QC, HEP-TH, Deezer and Digg,
|S|=10 for EmailEnron, and |S|=15 for Facebook, respectively. For
each graph, the source set S is selected by randomly choosing a
node among the ones having more (one-hop) neighbors than |S|
and then including its |S|-1 neighbors. We here report the results on
the performance of Personalized PageRank with its damping factor
of 0.9. We also observed the same results when the damping factor
is set to be the default value of 0.85, and omit them for brevity.

In Figure 1, we report the expected number of victims by K
crawlers (measured at the end of simulation), where the victims
are counted only once, when we change the budget b for the size
of W up to twice the source-set size |S|. Our greedy algorithm

in Algorithm 1 outperforms (no worse than) other baseline algo-
rithms for all test cases and all graphs. We also observe that the
performance improvement by Algorithm 1 compared to the base-
line algorithms generally becomes more drastic as we increase the
budget b. Another noticeable observation is that the performance
of source-agnostic centrality measures is not effective as much
as the source-aware algorithms, i.e., Personalized PageRank and
Algorithm 1, and remains ineffective even with increasing the bud-
get b. While our greedy algorithm generally performs better than
Personalized PageRank, there are few cases where they exhibit
very similar performance. The cases are when the budget is too
small, i.e., b=2 for GR-QC and HEP-TH, and b=4 for EmailEnron,
in which case their resulting sets W happen to be the same, and
when the budget is too large, i.e., b=20 for EmailEnron, in which
case their resulting sets W happen to be overlapped with common

PageRank
= Eigenvector
[T Degree

£ Betweenness

Expected # of Victims
Expected # of Victims

7
%
.
.
.
.
.
.
/
4

Greedy

59 P-PageRank
PageRank

B Eigenvector

Greedy

E3) P-PageRank
PageRank
Eigenvector

P-PageRank
PageRank
B9 Eigenvector

Expected # of Victims
Expected # of Victims

AT

12
Budget

(d) Digg
Figure 5: (Case 1) The expected number of victims with varying budget b, when the cluster size |S| increases by a factor of two.

le3 le3

Budget
(e) EmailEnron

3 Greedy

P-PageRank
PageRank

= Eigenvector

P-PageRank

PageRank
= Eigenvector

Expected # of Victims

(f) Facebook

1e3

~
in

°

!

e
°

Expected # of Victims
5 & &
\
Expected # of Victims
n

—F Greedy b=40
—A- P-PageRank b=40
-O- Greedy b=80

-%- P-PageRank b=80

°
@
e

°
°

~7 Greedy b=40

»
n

N
°

o

Expected # of Victims
PR
o

-7 Greedy b=40
—A- P-PageRank b=40
-O- Greedy b=80

%~ P-PageRank b=80

A~ P-PageRank b=40
-6 Greedy b=80
-%- P-PageRank b=80

°
@

°

1 a 1

'iime Stepi 1ea
(a) GR-QC, |S| =n-1%

le3 le3

w

2 3
Time Steps 1e4

(b) HEP-TH, |S| = n - 0.5%

7 - T @

B 3
Time Steps led

(c) Deezer, |S|=n-0.1%

1e3

w

Expected # of Victims

boN N

S S
Expected # of Victims

NN

b 5 @

°
I
°

~7- Greedy b=40
~A- P-PageRank b=40
-~ Greedy b=80

-%- P-PageRank b=80

°
n
e

°
°

I
o

N
°

a/f

o

I
°

-7 Greedy b=40
~A- P-PageRank b=40
O Greedy b=80

% P-PageRank b=80

-7 Greedy b=40
~A- P-PageRank b=40
-5~ Greedy b=80

% P-PageRank b=80

Expected # of Victims
9
o

°
n

°

1 3 1

2 3
Time Steps led

(d) Digg, |S|=n-0.1%

2 3
Time Steps 1ed

(e) EmailEnron, |S|=n-0.1%

7 - T @

2 3
Time Steps 1ed

(f) Facebook, [S|=n-0.1%

Figure 6: (Case 2) The expected number of cumulative victims over time, when the choice of S is the scatter case.

nodes/traps being the most effective ones in reducing the expected
number of victims.

We further examine how the expected number of unique victims
changes over time. Figure 2 shows the time-varying behavior when
the budget b is the one with the fourth instance of each sub-figure in
Figure 1, i.e., b=8 for GR-QC, HEP-TH, Deezer and Digg, b=16 for
EmailEnron, and b=24 for Facebook, respectively. We here only re-
port the results of our greedy algorithm and Personalized PageRank
for brevity, since they perform much better than the other baseline
algorithms. The results show that the superiority of our greedy
algorithm over Personalized PageRank remains intact over time.
In addition, we evaluate the impact of having different statistical
properties of the random length L of each crawler, especially when
the value of the parameter o of the geometric distribution changes.
We consider a =0.3. Note that the larger value of @ makes the length
of each crawler more likely to be shorter with the smaller expected
length. As shown in Figure 3, which is obtained under the same set-
ting as the one for Figure 2 but when a=0.3, the expected number
of victims becomes smaller as compared to that with « =0.1, for
each algorithm with the same budget b. While we again only report

the results of our greedy algorithm and Personalized PageRank in
Figure 3, we observe that our greedy algorithm is superior to other
baseline algorithms, including Personalized PageRank.

We next present simulation results for Case 2 with the cluster
source in Figure 4, where the cluster sizes remain the same as Case
1 for Figure 1, along with two cases of budget b, which correspond
to the second and fourth instances of Figure 1, respectively. We
report the expected number of cumulative (unique) victims over
time, since crawlers are continuously generated for the entire time
of each simulation. As shown in Figure 4, we first observe that
there is no significant difference among the source-agnostic central-
ity measures, which are degree centrality, betweenness centrality,
eigenvector centrality and PageRank, and the impact of increasing
the budget b on their performance is still not much noticeable. We
also observe that our greedy algorithm remains the best.

Figure 5 shows the simulation results of Case 1 with the cluster
source when the cluster-source size |S| now increases by a factor
of two compared to the one for Figure 1. Specifically, the cluster
sizes are |S| = 10 for GR-QC, HEP-TH, Deezer and Digg, |S| = 20
for EmailEnron, and |S| =30 for Facebook, respectively. For each

Fraction of Non-victims

- b=0 ——o

o m
© o

4
©

Fraction of Non-victims
L
o N

°
n

4 3
Time Steps led

(a) GR-QC, |S| =n-1%

4 6
Time Steps led

(b) HEP-TH, |S| = n - 0.5%

4 6
Time Steps led

(c) Deezer, |S| =n-0.1%

4
©

e
®

Fraction of Non-victims
Fraction of Non-victims

°
©

4
®

100

Fraction of Non-victims
g e @
o N

ebmond
¢

4
s

0.7} “¥ b=10¢
X A~ b=80
- b=60
0.5f 5 b=d0 \'\. 0.6 5 b=40
- b=20 e - b=20
0.4] @ b=0 . -8 b=0
2 a 3 8 10 2

Time Steps led

(d) Digg, |S|=n-0.1%

a 3
Time Steps. led

(e) EmailEnron, |S| =n-0.1%

8 10

N

a 3 8 10
Time Steps led

(f) Facebook, S| =n-0.1%

Figure 7: (Case 2) A fraction of non-victims over time for Algorithm 1, when the choice of S is the scatter case.

graph, the set S is selected by randomly choosing a node among the
nodes, each of whose number of one-hop and two-hop neighbors
is greater than |S|, and then including |S| -1 of them (one-hop
neighbors added first and then two-hop neighbors). The budget b
also varies up to twice the size |S|. The results again manifest the
superiority of our greedy algorithm over other baseline algorithms,
including Personalized PageRank, while exhibiting similar trends
as in Figure 1.

We finally consider Case 2 with the ‘scatter’ source, where the
nodes in S are randomly chosen, and the source-set sizes are chosen
to be roughly the same for all graphs. We only report the results
of our greedy algorithm and Personalized PageRank in Figure 6,
since they significantly outperform the other algorithms. Here
we consider b = 40 and b = 80, which are about the same as the
source-set size |S| and twice as big as |S|, respectively. The results
again confirm the superiority of our algorithm. We also evaluate
the performance of our greedy algorithm in Algorithm 1 while
changing the budget b. Figure 7 depicts how a fraction of non-
victims over the nodes outside S changes over time. We observe
that the amount of benefit with higher budget b depends on the
underlying graph, and it decreases for certain graphs such as Digg,
EmailEnron, and Facebook.

6 CONCLUSION

We have studied the problem of finding where to place a set of
traps on a general social graph to catch adversarial crawlers with
malicious intents, to minimize the expected number of their victims.
We were able to show that the problem is essentially a monotone
submodular maximization problem and thus developed a (1-1/e)-
approximation greedy algorithm. Furthermore, we developed an
MC estimator for the key quantity V(W) of the greedy algorithm
to make it more computationally efficient and scalable for large
graphs. Extensive simulation results on various real-world graphs
have demonstrated the versatile properties of our greedy algorithm,
including its superior performance over other baseline algorithms
based on centrality measures.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-
tion under Grant Nos. IIS-1908375 and IIS-1910749. C. Lee is the
corresponding author.

A PROOF OF THEOREM 1

Given an undirected, connected graph G(N’, E’) and an integer B,
which form an instance of the VERTEX COVER decision problem,
the problem asks if there exists a subset W C N’ of size at most B
such that, for every (i, j) € E’,i € W or j € W. Equivalently, it
asks if there is a vertex cover W of size exactly B.S Let |[N’| =n’.
In addition, an instance of the decision problem of 1 consists of
a graph Gs =G(N, Es) with a source set S C N, an integer b, and
a real number 7. Given an instance, our decision problem asks if
there exists a subset W € S¢ = N\ S of size b such that V(W) > n.

Without loss of generality, we assume that K=1. For any given
instance of the VERTEX COVER decision problem with G(N’, E’)
and B, with any arbitrary choice of S, we can construct an instance
of our decision problem by setting N :== SN N’ and Eg := E’ U
{(i, j)| i € S, j € N}, which is a set of edges that include E’ and an
outgoing edge from each node in S to every node in N’, forming

a graph Gs = G(N, Eg), along with b :=B and 1 :=q1 +¢2 (1—%),
We below show that W is a solution of the VERTEX COVER decision
problem if and only if it is a solution to our decision problem with
V(W) = qi1+q2 (1—%), where S¢ = N’ with |S¢| = n’.

On one hand, assume that W is a vertex cover. Observe that
starting from s € S, any random-walk crawler of length [> 1
moves to either i € W or i € S¢\ W in the first step. For the former,
it is simply trapped in W in the first step. For the latter, it is always
caught by W in the second step, since all neighbors of i € S¢ \ W
belong to the vertex cover W. Thus, from (9), we have

VW) =q Z hi(us, i;Gw) + g2 Z ha(ug, i; Gw)

ieS¢ ieS¢

SIf there is a vertex cover of size less than or equal to B, then there is also one of size
exactly B.

b
=q1+q2 (1——/). (16)
n
The first term in the RHS of (16) follows from that

Zh1<us,i;cw>=| 512 2, h(s5Gw)

ieS¢ seSieSe
SRR DI
|S| seSieSe |S| seSieSe 151

from which each s has an outgoing edge to every i € S¢. The second
term in the RHS of (16) also follows from that

Z ha(us, i; Gy) = Z Z ha (s, i; Gw)
ieS¢ SES]EW
= Z > Pyet=1- E.
seS] ese\w

On the other hand, suppose that W is not a vertex cover. There
always exists a pair of two ‘uncovered’ nodes u and v, which are
neighbors of each other and u,v ¢ W. It implies that starting from
s € S, any crawler of length [> 2 can visit u and then v consec-
utively, or vice versa. The walk is then trapped in W in the next
step or further explores new nodes before it is trapped later, if
I > 3, since the nodes in S°=N" are all reachable from each other.
Therefore, we have

3
b
VYw) = ZCH Z ht(us, i;Gw) > q1 +q2 (1 - ;),

t=1 jeS¢
which is from (16).

REFERENCES

[1] A.-L.Barabasi. 2016. Network Science. Cambridge University Press.

[2] J.Bonneau, J. Anderson, and G. Danezis. 2009. Prying data out of a social network.
In Proceedings of IEEE/ACM ASONAM. 249-254.

[3] P. Brémaud. 1999. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and
Queues. Springer-Verlag.

[4] B.Carminati, E. Ferrari, and A. Perego. 2009. Enforcing Access Control in Web-
Based Social Networks. ACM Trans. Inf. Syst. Secur. 13, 1, Article 6 (Nov. 2009).

[5] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. 2008. Epidemic
Thresholds in Real Networks. ACM Trans. Inf. Syst. Secur. 10, 4, Article 1 (2008).

[6] H. Chan, L. Akoglu, and H. Tong. 2014. Make It or Break It: Manipulating
Robustness in Large Networks. In Proceedings of SIAM International Conference
on Data Mining. 325-333.

[7] C.Chen, H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos.
2016. Eigen-Optimization on Large Graphs by Edge Manipulation. ACM Trans.
Knowl. Discov. Data 10, 4, Article 49 (June 2016).

[8] C.Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and

D. H. Chau. 2016. Node Immunization on Large Graphs: Theory and Algorithms.

IEEE Trans. Knowl. Data Eng. 28, 1 (Jan. 2016), 113-126.

X. Chen, Y. Li, P. Wang, and J. C. S. Lui. 2016. A general framework for estimating

graphlet statistics via random walk. Proceedings of the VLDB Endowment 10, 3

(Nov. 2016), 253-264.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms. MIT press.

[11] G. Danezis and B. Wittneben. 2006. The Economics of Mass Surveillance and the
Questionable Value of Anonymous Communications. In Proceedings of the 5th
Workshop on the Economics of Information Security.

[12] A. Ganesh, L. Massoulié, and D. Towsley. 2005. The Effect of Network Topology
on the Spread of Epidemics. In Proceedings of IEEE INFOCOM. 1455-1466.

[13] C. Gao, J. Liu, and N. Zhong. 2011. Network immunization and virus propaga-
tion in email networks: experimental evaluation and analysis. Knowledge and
Information Systems 27, 2 (2011), 253-279.

[14] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. 2010. Walking in Facebook:
A case study of unbiased sampling of OSNs. In Proc. IEEE INFOCOM. 1-9.

[15] G. Golnari, Y. Li, and Z.-L. Zhang. 2015. Pivotality of nodes in reachability
problems using avoidance and transit hitting time metrics. In Proceedings of
International Conference on World Wide Web. 1073-1078.

[9

=

S
=}

[40

[41

[42]

[44

[45]

[46

[47]
[48]

[49

X. He, G. Song, W. Chen, and Q. Jiang. 2012. Influence blocking maximization in
social networks under the competitive linear threshold model. In Proceedings of
SIAM International Conference on Data Mining. 463-474.

W. Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13-30.

G. Jeh and J. Widom. 2003. Scaling personalized web search. In Proceedings of
International Conference on World Wide Web. 271-279.

D. Kempe, J. Kleinberg, and E. Tardos. 2003. Maximizing the spread of influence
through a social network. In Proceedings of ACM SIGKDD. 137-146.

E. B. Khalil, B. Dilkina, and L. Song. 2014. Scalable Diffusion-Aware Optimization
of Network Topology. In Proceedings of ACM SIGKDD. 1226-1235.

M. Kimura, K. Saito, and H. Motoda. 2009. Blocking Links to Minimize Contami-
nation Spread in a Social Network. ACM Trans. Knowl. Discov. Data 3, 2, Article
9 (April 2009).

C.J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and S. S. Ravi. 2013. Blocking
simple and complex contagion by edge removal. In Proc. IEEE ICDM. 399-408.
J. Kunegis. 2013. KONECT - The Koblenz Network Collection. In Proceedings of
International Conference on World Wide Web. 1343-1350.

Kaspersky Lab. [n. d.]. What is a honeypot? https://www.kaspersky.com/
resource-center/threats/what-is-a-honeypot.

C.-H. Lee, X. Xu, and D. Y. Eun. 2012. Beyond random walk and Metropolis-
Hastings samplers: Why you should not backtrack for unbiased graph sampling.
In Proceedings of ACM SIGMETRICS. 319-330.

J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data.

R. Li, J. X. Yu, X. Huang, and H. Cheng. 2014. Random-walk domination in large
graphs. In Proceedings of IEEE ICDE. 736-747.

S. Li, C.-H. Lee, and D. Y. Eun. 2020. Trapping Malicious Crawlers in Social
Networks. Technical Report.

J. Lindamood, R. Heatherly, M. Kantarcioglu, and B. Thuraisingham. 2009. Infer-
ring Private Information using Social Network Data. In Proceedings of Interna-
tional Conference on World Wide Web. 1145-1146.

C. Mavroforakis, M. Mathioudakis, and A. Gionis. 2015. Absorbing random-walk
centrality: Theory and algorithms. In Proceedings of IEEE ICDM. 901-906.

A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. 2007.
Measurement and analysis of online social networks. In Proceedings of ACM
SIGCOMM Conference on Internet Measurement. 29-42.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approxima-
tions for maximizing submodular set functions—I. Mathematical programming
14, 1 (1978), 265-294.

M. E. J. Newman. 2010. Networks: An Introduction. Oxford University Press.

M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community
structure in networks. Phys. Rev. E 69 (Feb 2004), 026113. Issue 2.

H. T. Nguyen, A. Cano, T. Vu, and T. N. Dinh. 2020. Blocking Self-Avoiding Walks
Stops Cyber-Epidemics: A Scalable GPU-Based Approach. IEEE Trans. Knowl.
Data Eng. 32, 7 (2020), 1263-1275.

J. R. Norris. 1997. Markov Chains. Cambridge University Press.

C. Reuter and S. Scholl. 2014. Technical Limitations for Designing Applications
for Social Media. In Proceedings of Mensch & Computer 2014 — Workshopband.

S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti. 2015. Approximation
Algorithms for Reducing the Spectral Radius to Control Epidemic Spread. In
Proceedings of SIAM International Conference on Data Mining. 568-576.

C. M. Schneider, T. Mihaljev, S. Havlin, and H. J. Herrmann. 2011. Suppressing
epidemics with a limited amount of immunization units. Phys. Rev. E 84 (Dec
2011), 061911. Issue 6.

Techopedia. [n. d.]. What is a Spider Trap?
definition/5197/spider-trap.

P. Van Mieghem, D. Stevanovi¢, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu,
and H. Wang. 2011. Decreasing the spectral radius of a graph by link removals.
Phys. Rev. E 84 (Jul 2011), 016101. Issue 1.

N. Vesdapunt and H. Garcia-Molina. 2016. Updating an Existing Social Graph
Snapshot via a Limited APL In Proceedings of ACM CIKM. 1693-1702.

B. Viswanath et al. 2014. Towards detecting anomalous user behavior in online
social networks. In Proceedings of USENIX Security Symposium. 223-238.

P. Wang, J. Zhao, J. C. S. Lui, D. Towsley, and X. Guan. 2015. Unbiased Character-
ization of Node Pairs over Large Graphs. ACM Trans. Knowl. Discov. Data 9, 3,
Article 22 (April 2015).

S. Wasserman and K. Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press.

C. Xiao, D. M. Freeman, and T. Hwa. 2015. Detecting clusters of fake accounts in
online social networks. In Proceedings of ACM AlSec. 91-101.

W. Xu, X. Zhou, and L. Li. 2008. Inferring privacy information via social relations.
In Proceedings of IEEE ICDE Workshops. 525-530.

X. Xu, C.-H. Lee, and D. Y. Eun. 2017. Challenging the limits: Sampling online
social networks with cost constraints. In Proceedings of IEEE INFOCOM. 1-9.

E. Zhang, G. Wang, K. Gao, and G. Yu. 2015. Finding critical blocks of information
diffusion in social networks. World Wide Web 18, 3 (2015), 731-747.

Y. Zhu, Z. Hu, H. Wang, H. Hy, and G.-J. Ahn. 2010. A collaborative framework
for privacy protection in online social networks. In Proc. CollaborateCom. 1-10.

https://www.techopedia.com/

https://www.kaspersky.com/resource-center/threats/what-is-a-honeypot
https://www.kaspersky.com/resource-center/threats/what-is-a-honeypot
http://snap.stanford.edu/data
https://www.techopedia.com/definition/5197/spider-trap
https://www.techopedia.com/definition/5197/spider-trap

	Abstract
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Problem Setup and Justification
	3.2 Model Description
	3.3 Problem Statement

	4 Main Results
	4.1 Submodularity and Greedy Algorithm
	4.2 Monte Carlo Estimation

	5 Simulation Results
	6 Conclusion
	Acknowledgments
	A Proof of Theorem 1
	References

