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Parameter Space Exploration in Pedestrian Queue
Design to Mitigate Infectious Disease Spread
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Abstract | Reducing the interactions between pedestrians in crowded
environments can potentially curb the spread of infectious diseases
including COVID-19. The mixing of susceptible and infectious individuals
in many high-density man-made environments such as waiting queues
involves pedestrian movement, which is generally not taken into account
in modeling studies of disease dynamics. In this paper, a social force-
based pedestrian-dynamics approach is used to evaluate the contacts
among proximate pedestrians which are then integrated with a stochas-
tic epidemiological model to estimate the infectious disease spread in
a localized outbreak. Practical application of such multiscale models to
real-life scenarios can be limited by the uncertainty in human behavior,
lack of data during early stage epidemics, and inherent stochasticity
in the problem. We parametrize the sources of uncertainty and explore
the associated parameter space using a novel high-efficiency param-
eter sweep algorithm. We show the effectiveness of a low-discrepancy
sequence (LDS) parameter sweep in reducing the number of simula-
tions required for effective parameter space exploration in this multiscale
problem. The algorithms are applied to a model problem of infectious
disease spread in a pedestrian queue similar to that at an airport security
check point. We find that utilizing the low-discrepancy sequence-based
parameter sweep, even for one component of the multiscale model,
reduces the computational requirement by an order of magnitude.
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1 Introduction

Computational models play a key role during
pandemics by enabling the exploration of dif-
ferent “what if” scenarios for planning public
health interventions. Most common infectious
disease models, however, focus on large popu-
lations at the scale of large geographic regions.
Unlike models that evaluate the disease spread
dynamics using demographic or environmental
conditions, contact-based models directly relate
the disease transmission to the contact network.
Computational models of smaller local out-
breaks that incorporate proximate contacts have
been used to correlate fine-scale human inter-
ventional behavior to disease transmission'. For
example, such analysis during the 2014-2015
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Ebola outbreak helped assess transmission and
preventative strategies for specific settings such
as funerals’ and airplanes’. Analysis of the het-
erogeneous mixing patterns in epidemiological
modeling facilitates a better understanding of
the disease dynamics®. Ignoring the heterogene-
ity in the contact network may lead to inaccurate
results”. While researchers have developed mod-
els that incorporate contact data through con-
tact tracing data’ and survey data®, the spread
of COVID-19 poses unique challenges. There is
direct evidence for the spread of COVID-19 clus-
ters in various high-people density locations with
variations of above factors, including shopping
malls’, concerts®, nursing homes’, cruise shipsm,
churches'!, and mass gatherings'?. These reports

REVIEW

" Aerospace Engineering
Department, Embry
Riddle Aeronautical
University, Daytona
Beach, FL, USA.

2 Computer Science,
University of West Florida,
Pensacola, FL, USA.
*namilaes@erau.edu

ARTICLE


http://orcid.org/0000-0003-1487-9573
http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-021-00254-0&domain=pdf

Pedestrian dynamics

models: computational
models commonly used in
civil engineering to model the
movement of pedestrians in
build environments. Examples
include agent based models
and social force models.

Molecular dynamics: A
computational method in
chemistry and materials
science wherein movement of
atoms is modeled using New-
ton’s laws and an interatomic
potential.

Susceptible-infected model:
An infection dynamics model
with individuals changing
from susceptible to infected
state based on the contact
with infected individuals
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suggest that colocation and movement of people
in a crowded location even over relatively short
periods lead to the disease spread. Pedestrian
movement modeling can provide possible trajec-
tories of pedestrians that can be used to model
contact heterogeneity in crowded locations men-
tioned above.

Among the various pedestrian movement
models, e.g., cellular automata'?, fluid flow'4, and
queuing'?, social force models'®'” are most suited
for individual trajectory evolution, required for
contact estimation. Social force models first pro-
posed by Helbing and Molnar'® extend the con-
cepts of force balance from molecular dynamics
to pedestrian movement. Here, the forces are
a measure of the internal motivations of indi-
vidual pedestrians to move toward their desti-
nation in the presence of obstructions like other
pedestrians and objects. Social force models
have been applied to crowd simulations situa-
tions in paniclg, traffic dynamicsw, evacuation®’,
and animal herding®!. Algorithmic developments
have included generation of force fields using
visual analysis of crowd flows?, explicit collision
prediction®, and collision avoidance?*. Namilae
et al.»*** have combined pedestrian dynam-
ics and stochastic epidemic models to study the
spread of infectious diseases in settings like air-
planes and pedestrian queues.

Airborne diseases including COVID-19 are
spread when susceptible individuals inhale patho-
gens suspended in the air. These organic particles
are secreted by the nasal tracts and throat of an
infected individual and are dispersed to the envi-
ronment through expiratory events including
breathing, talking, sneezing, or coughing. As these
viral particles are able to remain suspended in the
air and navigate distances of several feet, there is a
high risk of disease outbreak in a local area with
high density of people. Several factors determine
the extent of transmission that will take place
between the infective and the susceptible popula-
tion; these include (1) the infectivity of the conta-
gion, (2) survival lifetime of the pathogen, (3) the
environmental conditions like the temperature
and airflow that determine the contagion spread,
(4) the extent of mixing between susceptible and
infectious individuals resulting in new contacts,
and (5) the duration of the contacts. The para-
metric range associated with each of these factors
and the diversity in the initial conditions and the
locations of potential disease spread exacerbate
the prediction problem.

The uncertainty associated with the large
parameter space can be addressed using param-
eter sweep algorithms and parallel computing.
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Parameter sweep is an important computational
tool that employs parallel computing resources
to execute multiple computations with differ-
ent combinations of values of the same param-
eters. Large-scale parameter sweep runs have
found extensive applications in many scientific
and engineering fields”’. For example, param-
eter sweeps have been used to model electro-
magnetic cascade showers®®, high-energy physics
applications®; etc. Chunduri et al.>” used a Low
Discrepancy Sequence-based scrambled Halton
sequence to effectively reduce the parameter space
for a pedestrian-dynamics-based contact esti-
mation problem. Here, we extend this approach
to address the parameter space in the multiscale
pedestrian-dynamics infection spread problem.

The objective of this research is to evaluate the
effect of pedestrian movement in a winding
queue configuration on the spread of infectious
diseases. We utilize a social force-based pedes-
trian-dynamics model and integrate it with a sto-
chastic infection dynamics model to analyze the
spread of infectious disease in the pedestrian
queue. There are several parameters with inherent
uncertainties in both pedestrian dynamics and
infection spread models. To comprehensively
understand this problem, the infectious disease
spread needs to be investigated for various com-
binations of the parameters. Here, we show that a
parameter sweep algorithm based on low-dis-
crepancy sequence can be extremely effective in
reducing the parameter space for this multiscale
problem.

2 Multiscale Modeling Approach

This computational model addresses the trans-
mission and dispersion of fatal infectious patho-
gens in locations, where large groups of people
gather at high densities, through a multiscale
model that combines pedestrian dynamics with
stochastic infection spread models. The pedes-
trian-dynamics model uses a molecular dynamics
(MD)-based numerical approach called social
force method. The MD algorithm captures the
step-by-step evolution of the system of particles
tracing their trajectories and can be used to esti-
mate the contact frequency between passengers
during air-travel. We incorporate this contact
analysis into a discrete-time stochastic Suscepti-
ble-Infected (SI) model with infection probability
and contact radius as primary inputs. This
generic model is applicable to several directly
transmitted diseases including COVID-19 by var-
ying the input parameters, and can be used to
assess the influence of pedestrian movement on
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disease spread. This multiscale framework is used
to analyze the infectious disease spread in a wind-
ing queue configuration under various transmis-
sion scenarios using a parameter sweep.

2.1 Pedestrian Dynamics

In the context of modeling the pedestrian mixing
patterns to analyze infection spread in crowded
environments, numerical simulations are per-
formed to mimic the movement behavior of
pedestrians. Here, the pedestrians are considered
to be particles whose motion is determined by a
balance of repulsive and propelling forces. The
resulting trajectories are used to estlmate the
number of contacts. The repulsive ( fp ) and
attractive ( f int) forces are summated as in as in
Namilae et al.3 5, The tendency to avoid colli-
sion and impenetrability with other individuals
in high-density crowds and immobile obstacles in
the pedestrian’s path are represented by the repul-

sive terms
12
(r il )

=NV = YV
(1)

i#l i#l

where € and o are repulsive force field parameters
and r;; is the distance between the ith and the Ith
nearest front pedestrian in the queue. On the
other hand, pedestrian self-propulsion to their
target destination (e.g., an exit) either individu-
ally or collectively results in another force. This
intention force is obtained by the average rate of
change of momentum

AP 1
fi" = — = = |Pot) = Pi(t)|.
T T
Pedestrians move at the speed of the nearest
person ahead in a queue. This is accounted for
by the location-dependent desired velocity, in

the direction of motion ey, in the self-propulsion
term as

81 if i&j of same group

where § = { 8y if i&j of different groups °

The proposed social force model allows evo-
lution of the pedestrian in time domain. The
number of contacts is then obtained from the
generated trajectories. The contact data are uti-
lized in an epidemiological model to map the
infectious disease propagation in the population.

2.2 Epidemiological Model

The contact data are obtained from pedestrian
trajectories by comparing the distance between
pedestrians to the transmission threshold (x)
dependent on the types of pathogen and mecha-
nisms for its spread

m;(t) = number of individuals at time ¢ that satisfy,

rij < X.

The contact data are then integrated Witi:l)a
stochastic epidemic individual-based model to
estimate the distribution of the newly infected
individuals. The probability that an infectious
individual “i” in the crowd comes into contact
with other individuals is m,;/N, where m; is the
number of contacts. Using Bayes’ theorem of con-
ditional probability, P(contact and infection) =P
(infection|contact). P (contact) = Pjy¢ - % Here,
Pyt is the infection probability. To account for the
inherent stochasticity of the susceptible individu-
als, the number of newly infected by this infective
“1” is estimated by a binomial distribution I; ()~
B(S;, p;) with parameters S;, the number of sus-
ceptibles, and p; = Pins. -

We assume that there is one infected indi-
vidual among the pedestrians, but the location
of the infected individual is not known apriori.
We account for all the possible combinations
“C” of the infective in the pedestrian movement
simulation by varying the position of infected
individual. The total number of newly infected is

Doi(t) = mivf)(t)El = m; (va+yvs) <1 —

8
min {r,ﬂﬁont i;ﬁj}) ’ (3)

0 lfrl/ Ifront <36
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Low discrepancy sequences:
sequence of numbers that

are well distributed with low
irregularity for which conver-
gence to uniform distribution
on [0, 1] occurs rapidly.

Lattice parameter sweep:
A conventional param-
eter algorithm in which the
parameters are uniformly
partitioned.
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estimated by combining all the resulting binomial
distributions of new infections and averaging it
based on the weight of repetition w; (4;) of the
mean /; in these runs

parameter sweep techniques offer better conver-
gence and faster outcomes.

Non-uniform domain partition methods
based on the pseudo-random and quasi-random

I(t) ~ Z; Zil {Binomial [S,'(t - 1),%.””%\[_1)} } s« w;(13)/C, (5)

where S; and Pj,¢ represent the number of sus-
ceptible pedestrians and the transmittance
probability, respectively. The transmittance prob-
ability depends on the day post-onset of symp-
toms denoted by ¢, of the d total incubation
period.

The infection probability, radius of infection,
and pedestrian-dynamics model parameters are
all considered to be parametric variables. By vary-
ing these parameters over the space of possible
numerical values, one can analyze how mitiga-
tion measures related to pedestrian movement
would impact the disease spread in a wide variety
of conditions. However, given the extremely large
parameter space, efficient algorithms are desired
to cover the parameter space effectively.

2.3 Parameter Sweep Methods

Parameter sweep algorithms are used to effi-
ciently cover the parameter space and account for
combination of the parameters that significantly
affect the model outcome. A conventional param-
eter sweep approach is lattice-based method
wherein the parameters are uniformly parti-
tioned. For example, consider a two-dimensional
parameter space; in the lattice parameter sweep,
the points (or parameters values) in the horizon-
tal and vertical directions are equally spaced,
respectively. This scheme is inefficient in terms of
domain coverage and for checking convergence™.
For example, consider a situation where the
model has d parameters resulting in a d-dimen-
sional parameter space. If this is partitioned uni-
formly in these dimensions with R points
(representing simulations) for each parameter,
the total number of points obtained is N=R". To
check for convergence, if we refine the space
domain by doubling the number of points. Then,
the number of points N becomes
N=RY=(R)?=2¢ R‘=2? N. This ratio
between the two consecutive lattice sizes (A
N=2%is very large and is imprecise for checking
convergence. Also, running a simulation of N’
grid points is computationally exhaustive and
time-consuming. Instead, alternate non-uniform

@ Springer a2

sequences are promising algorithms for nodes
sequence generation enabling faster convergence
at lower number of nodes compared to the lattice
method. These methods are commonly used in
Monte Carlo and quasi-Monte Carlo algorithms
to solve for numerical integration problems’'. In
a Monte Carlo simulation, the accuracy of the
results depends on the generation of the pseu-
dorandom sequence over a [0, 1] interval. Using a
random sequence was found to be asymptotically
slower than LDS, because sparse and clustered
regions are observed in the space domain’.

Quasi-random sequences are deterministic
alternatives to pseudo-random sequences. They
are infinite sequence of points, used in Quasi-
Monte Carlo (QMC) simulations’. These
sequences are referred as Low Discrepancy
Sequences (LDS), since the points are more
evenly distributed [0, 1]%. Here, discrepancy is the
measure of uniformity of the sequence. For
Monte Carlo method, the convergence is of the
order O (N ~'2) compared to O (logd (N)/N) for
QMC because of the Koksma-Hlawka
inequality’. Quasi-random sequences have dif-
ferent variants such as Halton, Scrambled (rand-
omized) Halton, and Hammersley sequences. The
Halton sequence construction, defined via the
radical inverse function, uses coprime numbers as
their bases’. In the Halton sequences, the lack of
correlation between the radical inverse functions
of different bases can lead to inadequate distribu-
tion of two-dimensional projections. The scram-
bled Halton sequence corrects this defect by
redistributing the projections more accurately.
Halton and Scrambled Halton sequences have
advantages over other sequences in terms of
extension of the domain’s dimensionality™”.

Here, we use Scrambled Halton LDS for a
parameter sweep as in Chunduri et al.*’. However,
we extend the application to the multiscale model
by applying the algorithm interchangeably for the
pedestrian and infection models. The results are
then compared to lattice sweep to show the effi-
ciency of LDS in terms of faster convergence and
execution time. We study the problem of infec-
tion spread in a pedestrian winding queue using
this approach.
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Figure 1: Evolution of pedestrians (=125 s)
from simulation of a pedestrian queue in a rectan-
gular layout.

2.4 Application to Pedestrian Queue

Pedestrian winding queues are an unavoidable
component of crowd management in places like
airport security checks, and religious and enter-
tainment venues. In Derjany et al.?®, different
queue configurations are evaluated in terms of
contact generation and infection propagation
among neighboring pedestrians. One pedestrian

first. The resulting trajectories are input to the
infection model (Eq. 5), incorporating a param-
eter sweep of infection variables. Table 1 lists the
ranges of the pedestrian and infection parameters
considered in the parameter sweep study. Both
lattice and LDS parameter sweeps are used with
these ranges to examine their efficiency in reduc-
ing the number of simulations needed to ade-
quately cover the design space.

For both Lattice and LDS sweeping algo-
rithms, a coarse grid is first considered, and then
refined until convergence is attained. At each grid
size, a histogram with the targeted variable (the
number of newly infected pedestrians) versus the
frequency of occurrence is plotted. Four descrip-
tive moments of the probability distribution,
mean, standard deviation, skewness, and kurto-
sis are analyzed to determine convergence. Once
the relative difference of the output between two
grid sizes is lower than a predetermined toler-
ance, as shown in Eq. (6), further refinement of
the parameter space is not required

queue configuration from this study, as shown in Vi Vin <e,
Fig. 1, is used in the current study. The modeling [%} (6)
work-flow shown in Fig. 2 consists of applying
the parameter sweep to the pedestrian parameters
== Pe&esuian location |
Pedestrian & movement e
‘d,ii, ) ) =i ; Ncmonnb;;tot“
Patameter sweep S
L
ok Wi —) | g
' Ty *e®
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Pa— -mq ‘ Pa;anletgrsv;'eep \
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Figure 2: Schematic depiction of the multi-scale approach.

Table 1: Parameters range of the pedestrian-infection model formulation.

Parameter Vo 81 82 R Ping
Range 3.2-5.4 ft/s 15-25in 25-40 in 36-84 in 0.025-0.225
Selected increments 0.1-0.2 1-5 1-5 0.5-12 0.01-0.025

. . . . : o]
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Figure 3: Infection distribution histograms for a 6480, b 11,664, ¢ 144,900, d 2,125,000, e 4,165,392, and

8,245,776 grid points using 5D Lattice method.

where V is a statistical moment and ¢ is a toler-
ance value. The selection of the tolerance order
depends on the statistical moment. For instance,
for the relative mean, ¢ is of the order of 10~ com-
pared to 107! for the root of standard deviation,
skewness, and kurtosis. The abrupt drop of the
relative kurtosis from a value greater than unity to
a value of order 107 indicates that the histogram
distribution is invariant between the runs. When
these conditions are met, convergence is attained.

3 Results

The workflow in Fig. 2 is applied with paramet-
ric variations in Table 1 as follows. First, a 5D
lattice parameter sweep is performed by varying
the three pedestrian-dynamics parameters, and
two infection model parameters over an evenly
spaced lattice grid. This baseline is compared
with two other situations in which 2D lattice grid
for infection model is combined with 3D LDS for
pedestrian-dynamics parameters, and 3D Lattice
grid for pedestrian dynamics is combined with
2D LDS parameter sweep for the infection model.
The convergence and model implications in each
case are discussed.

3.1 Lattice Parameter Sweep

The lattice-based parameter sweep is applied
to the parameters of the two models separately.
The trajectories are obtained from the pedestrian
model by varying pedestrian maximum speed
(va +vB) and allowable proximate pedestrian—
pedestrian distances (8; and 82). The resulting
contact data (m1;) for each simulation are used in

the infection model by varying the contact radii
(R) and transmission probability (Pj,¢). Chang-
ing the increment sizes for these five parameters
on a lattice grid results in six parameter sweeps
with 6480, 11,664, 144,900, 2,125,000, 4,165,392,
and 8,245,776 numbers of simulations.

Each of these simulations generates an aver-
age number of infections. For example, consider a
case where the infective has an infectious disease
(e.g., COVID-19) which is at a stage where the
transmission probability is 0.1 and the infection
radius is 72 in. Consider that this infective passes
through the pedestrian queue shown in Fig. 1.
If the pedestrians in the queue have an average
unobstructed speed of 4 ft/s and maintain a dis-
tance of 3 ft between each other, this results in
an average of 8 new infections. The average here
implies that the position of the infective in the
queue is not known apriori and this is varied and
averaged to obtain the number of new infections.
This result is one specific output for these specific
input parameter values. Figure 3 shows this out-
put as a function of frequency for the parameters
varied on different lattice grids.

There is uncertainty with respect to both
pedestrian parameters like speed and distance
between people, and also infection parameters
like transmission probability and infection spread
radius. By varying all of these parameters, we can
get a comprehensive idea of how disease would
spread. If these parameters are varied on a coarse
grid like in Fig. 3a, some of the variations are not
captured. As the parameter lattice is refined, more
of these variations are captured. A similar param-
eter sweep with an intervention would show how
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Figure 4: Infection distribution histograms for a 4,050, b 11,250, ¢ 52,500, d 157,500, e 525,000, and f

787,500 grid points using 3D pedestrian LDS combined with 2D lattice method.

the infection spread would change across the
entire parameter space.

Note that convergence can be visually ascer-
tained when the shape of the histogram remains
proportionally the same while increasing the
number of simulations. In this case, convergence
starts from Grid 4 in Fig. 3d. The convergence is
also validated theoretically using statistical vari-
ables mentioned earlier.

3.2 Mixed LDS and Lattice Parameter
Sweep

Here, LDS-based parameter sweep is applied to
the pedestrian-dynamics component of the mul-
tiscale model, i.e., to the three pedestrian-dynam-
ics parameters in Table 1, while the two infection
model parameters are varied on a lattice grid. Six
parameter grids with successively finer spacing are
considered. For Grids 1 and 2, the infection lat-
tice parameter spacing corresponding to Grid 2
of the 5D lattice sweep shown in Fig. 3b is used.
For Grids 3-6, a finer lattice spacing correspond-
ing to Grid 4 of the 5D lattice sweep shown in
Fig. 3d is used. The LDS algorithm is used to gen-
erate sequences for the 3D pedestrian-dynamics
parameter space. This combination of parameters
leads to six sequences with 4050, 11,250, 157,500,
525,000, and 787,500 simulations, respectively.
Figure 4 shows the histograms of the combined
lattice and LDS approach. With a low number of
combinations for the speed and distance param-
eters and a coarse lattice grid for the infection
parameters, the histograms corresponding to
Grids 1 and 2 do not capture the distribution of
the newly infected at high numbers. Grids 3—6 can

J. Indian Inst. Sci. IVOL 101:31329-339 July 2021ljournal.iisc.ernet.in

capture the distribution of infections much more
effectively, as shown in Fig. 4. It can be noted that
the convergence is reached by 157,500 simulations
in this case compared to the 2,125,000 simulations
needed with 5D lattice parameter sweep.

A similar analysis is conducted with 2D LDS
parameter sweep for the infection parameters,
combined with a 3D lattice sweep for pedestrian-
dynamics parameters. The variation of param-
eters again results in six simulation grid sizes with
108,000, 144,000, 288,000, 809,600, 1,012,000 and
1,214,400 simulation sequences. We find that the
visual and numerical convergence in this case
happens for Grid 4 with 809,600 simulations (see
Fig. 5).

3.3 Analysis of Convergence Measures
Figure 6 shows the convergence metrics for the
three parameter sweeps conducted in this work.
The convergence is analyzed by comparing the
four statistical measures mean, standard devia-
tion, kurtosis, and skewness. In the case of the 5D
lattice parameter sweep, convergence is attained
at Grid 4 with 2,125,000 simulations. The rela-
tive difference of the mean, standard deviation,
skewness, and kurtosis values are within tolerance
when a finer lattice grid with more simulations is
used.

The values of the relative mean and stand-
ard deviation vary minimally as the number of
simulations is increased, whereas the skewness
and kurtosis increase with parameter refine-
ment, which indicates the biasing of the histo-
grams toward a high-frequency value of three
newly infected pedestrians. The distribution of

@ Springer 1%
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Figure 5: Infection distribution histogram for
809,600 grid points (convergence) using 3D

pedestrian Lattice combined with 2D LDS
method.

the histogram in bell shape (Fig. 4) around the
peak accounts for the stochasticity of the model.
The histogram’s peak is attained at three newly
infected members, which indicates that there is
a highest probability of one infective generating
three new infections for the pedestrian queue
studied here. However, in preventive planning,
one should account for the worst-case scenario.
The plot extends to a worst-case scenario of 24
possible infection cases with a mean of about 7
new infections.

In the case of 2D LDS—3D Lattice param-
eter sweep, the same mean of 6.98 with a close
standard deviation is obtained at Grid 4 with
only 809,600 simulations compared to 2,125,000
required for 5D Lattice sweep. The convergence
is reached with the same increments used previ-
ously for the pedestrian model parameters and
only 200 low-discrepancy sequences to cover the
two-dimensional infection parameters space. The
computational effort is less than 50% compared
to that required for a 5D lattice. The plot in Fig. 7
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Figure 7: Number of simulations required for

each parameter sweep algorithm.

showing the relative difference of the four statisti-
cal moments behaves in a similar manner as that
of 5D lattice after convergence is reached. When
LDS parameter sweep is applied for the three
parameters in the pedestrian movement model,
convergence is attained at 157,500 simulations
with a similar mean of 7.04. Again, at Grid 4, the
relative differences of the statistical moments
converge toward a zero value, as shown in Fig. 6.
The parameters increments at convergence for
the three parameter sweeps are shown in Table 2.

4 Discussion

Low-discrepancy sequences have found various
applications in various fields. For instance, multi-
dimensional integrals are often evaluated using
quasi-stochastic Monte Carlo method (Cools,
2002). Parameter sweep for high-dimensional
space is a closely related problem. A disadvan-
tage with pseudo-random finite sequences is that
they are not equidistributed over the domain
of integration which can yield asymptotically
worse convergence rate. The usage of increased
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Figure 6: Statistical moment distribution with increment refinement for the three parameter sweep meth-

ods.
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Table 2: Parameters increments at convergence.

Parameters

increments

at conver- 3D Lattice- 3D LDS-2D
gence 5D Lattice 2D LDS Lattice

VA + VB 0.1 0.1 300

5, 1 1 sequences
5, 1 1

R 2 200 2

p 001 sequences o,

equidistributed random sequences improves
accuracy, but can be computationally expensive®.
The lattice-based space repartition is a uniform
distribution method that partitions the domain
uniformly. This method has a much higher com-
putational cost compared to the pseudo-random
sequences. Low-discrepancy sequences using
quasi-random numbers were originally intro-
duced to improve convergence in comparison
to Monte Carlo integration, but they can also
address the high computation time problem for
large parameter sweeps on parallel clusters. Low-
discrepancy (quasi-random) sequences have an
advantage of being more equidistributed than
pseudo-random numbers and are more effi-
cient both with respect to space coverage and
convergence.

Chunduri et al.*® used the low-discrepancy
sequence-based parameter sweep for analyz-
ing pedestrian movement in an airplane board-
ing and showed that this approach significantly
reduces the number of simulations needed to
adequately cover the parameter space. Many engi-
neering and public health problems are multidis-
ciplinary and multiscale in nature. For example,
consider the infectious disease spread in a pedes-
trian queue considered in this study. The contact
analysis is based on pedestrian movement and
mixing at one scale, while the infectious disease
propagation is at another scale. The results of
this study show that there is a significant reduc-
tion in computational requirements compared
to lattice-based parameter sweep, when the LDS
method is used in one of the sub-models. There is
an order of magnitude improvement in the num-
ber of simulations needed to adequately cover the
parameter space, as shown in Fig. 7. Another sig-
nificant advantage of LDS approach is that if fur-
ther refinement of the parameter space is needed,
the scrambled Halton sequence adds to the exist-
ing sequence, enabling reuse of the existing simu-
lations. This facilitates the restart of parameter
sweep problems.

J. Indian Inst. Sci. IVOL 101:31329-339 July 2021ljournal.iisc.ernet.in

5 Conclusions

In this paper, we model the infectious disease
spread in a pedestrian winding queue and analyze
the parameter space using novel parameter sweep.
A multiscale model is formulated combining
social force-based pedestrian-dynamics model
with an individual stochastic epidemiological
model. The model is applicable to many directly
transmitted diseases including COVID-19 based
on the input parameters. A five-dimensional
space consisting of three pedestrian-dynamics
parameters (free speed, cut-off distances) and
two epidemic model parameters (transmission
probability and infection radius) is considered for
the parameter sweeps.

A uniform lattice-based parameter sweep is
first used to analyze the five-dimensional param-
eter space. In each dimension, the increment
is taken to be constant, generating a uniformly
distributed vector of values within the range of
definitions of each parameter. A coarse uniform
partition of the parameters vectors may leave out
some critical parameter combinations, which can
lead to deficiencies in the results. This is undesir-
able for assessing preventive strategies that inhibit
the disease outbreak. A fine uniform lattice is
computationally expensive both for covering the
parameter space and convergence checks. We find
that 2,125,000 simulations are needed to obtain
convergence using the lattice approach.

An effective alternative to lattice parameter
sweep is a Scrambled Halton Low Discrepancy
Sequence approach. In the multidisciplinary
model used here, we find that use of LDS in even
one of the interconnected models is effective in
reducing the required number of simulations.
When LDS is used to generate sequence for three-
dimensional parameter space for the pedestrian
model and the conventional lattice is used for
the infection model, the convergence is achieved
with 157 500 simulations, which is an order of
magnitude improvement in computational effi-
ciency. When LDS is used for the two-dimen-
sional parameter space of the infection model,
the parameter space can be covered using 809,600
simulations.

A mean of seven newly infected individuals
is obtained for the distribution of new infections
over the entire parameter space. The number of
infections may extend up to 24 cases with the
highest probability obtained for 3 cases. Given
the stochasticity and uncertainty in infection
spread and human behavior; interventions to
reduce infections need to be effective across many
scenarios. The modeling and parameter sweep
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approach developed in this study can help iden-
tify such interventions.
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