


T. W. Christopher and S. G. Llewellyn Smith
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FIGURE 1. (a) The physical z-plane with the corner; (b) the auxiliary ξ -plane; (c) the ζ -plane
containing the annulus, where ρ is the radius of the inner circle of the annulus, and α and α are
the pre-images of the stagnation points along the corner boundary. (Here, ρ = 0.3 and θc = π/3;
stagnation points along the wall are denoted by black circles.)

2. Problem formulation

A sketch of the physical domain is shown in figure 1(a). We consider flow inside a
corner with interior angle θc. The fluid lies between a solid wall along positive x and a
solid wall making the angle θc with the positive real axis. We have 0 < θc < 2π; the case
θc = π recovers the Pocklington dipole.

A hollow vortex is a steady-state constant-pressure region of finite area with non-zero
circulation around it. The boundary of a hollow vortex is a streamline. For two-dimensional
inviscid, incompressible, irrotational flow, Bernoulli’s equation on the boundary gives

p + |u|2
2

= constant, (2.1)

where p is pressure and u is velocity. The pressure on the hollow vortex boundary is
constant, and therefore Bernoulli’s equation shows that the speed of the flow must be
constant on the boundary as well. This shows that the boundary of a hollow vortex is a
vortex sheet, and hollow vortices can be thought of as steady vortex sheets. As this is a
two-dimensional incompressible and irrotational flow, the solution can be written in terms
of a complex potential, w, with a corresponding complex velocity dw/dz.

The flow describing a stationary point vortex in a corner gives insight into the hollow
vortex solution because, as the area of a hollow vortex goes to zero, the point vortex

flow field should be recovered. In particular, the flow for a hollow vortex in a corner is
therefore expected to have the same number of stagnation points as a point vortex in a
corner. Furthermore, the flow far away from the hollow vortex must be the same as the
flow far away from the point vortex. Streamlines for a point vortex in equilibrium in a
corner are shown in figure 2, where it can be seen that the flow has two stagnation points
along the wall (for θc < π, the flow velocity is also zero at the origin). Note that the flow
is self-similar: one can rescale using the distance from the corner to the stagnation points
as a unit of length, and then there is a unique flow.

The complex potential for a point vortex in a corner is found using conformal mapping
and the method of images and is

wpv(z) = Γ

2πi

[

log
(

zπ/θc − z
π/θc

0

)

− log
(

zπ/θc − z0
π/θc

)

]

− Szπ/θc, (2.2)

where S is a real number with the same sign as Γ that describes the strength of the
background generalized straining flow, and z0 is the position of the vortex. The potential
(2.2) behaves like −Szc for large |z|, where c = π/θc. This behaviour will also hold for the
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Hollow vortex in a corner

FIGURE 2. Streamlines for a point vortex in equilibrium in a corner. The point vortex is denoted
by an asterisk. The two stagnation points of the flow on the walls are denoted by filled circles.
The speed of the flow is also zero at the origin.

hollow vortex. The condition for the vortex to be stationary comes from requiring ż0 = 0,
where

ż0 = Γ

2πi

[

c − 1

2z0
−

czc−1
0

zc
0 − z0

c

]

− Sczc−1
0 . (2.3)

The result is z0 = (iΓ/(4πSc))1/c, so that z0 is along the bisector of the corner (when
π = θc, the position parallel to the boundary is arbitrary and can be taken to be on the
y-axis).

3. Conformal mapping

The solution for the hollow vortex is constructed using conformal maps between the
three planes shown in figure 1. The physical z-plane (figure 1a) is related to the ξ -plane
(figure 1b) via

z = f (ξ) = (−iξ)θc/π, (3.1)

where θc is the interior angle of the corner. The function f (ξ) has a branch point at the
origin, and its branch cut is taken to be in the right half-plane, i.e. outside the physical
domain. The ξ -plane is essentially the same as the physical plane in CLSF. An extension
of the Riemann Mapping Theorem shows that any doubly connected domain can be
mapped onto a concentric annulus. We take g to be the unknown map from the circular
annulus ρ < |ζ | < 1 in the ζ -plane (figure 1c) to the ξ -plane with the interiors of the
vortex and of its unphysical image removed. The flow region will correspond to the region
ρ < |ζ | < β, where β will be found. The map from the annulus to the corner is written as
h(ζ ) = f (g(ζ )).

In terms of the variable ζ , we write the complex potential describing the flow around
the hollow vortex in the corner as W(ζ ) and the complex velocity in the physical z-plane
as dw/dz = R(ζ ).

We require the map g to be one-to-one, and take the point at infinity in the ξ -plane to
correspond to the simple pole β in the ζ -plane. Hence,

g(ζ ) = b

ζ − β
+ · · · (3.2)

near ζ = β, where b is chosen to be a positive real number. This means that the inner
circle |ζ | = ρ maps to the image of the vortex boundary in the left half-plane in ξ , while
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T. W. Christopher and S. G. Llewellyn Smith

the circle |ζ | = β maps to the imaginary axis in the ξ -plane. The outer circle |ζ | = 1 maps
to the reflection of the vortex boundary image about the imaginary ξ -axis, which is not in
the physical domain.

From the above, we see that the complex potential W(ζ ) satisfies the following
conditions. The kinematic boundary condition requires Im W(ζ ) to be constant on the
boundaries and on the vortex boundary. The circulation of the vortex, which is the change
in the multivalued function W(ζ ) around the vortex, is Γ . Large |z| corresponds to large
|ξ |, so that

W(ζ ) ∼ −Szπ/θc = iSξ ∼ iSb

ζ − β
(3.3)

near ζ = β.
In turn, the complex velocity, dw/dz = R(ζ ), satisfies the following conditions. From

differentiating the asymptotic conditions of the complex potential in the physical plane,
we have

R(ζ ) ∼ −Sπ

θc

( −ib

ζ − β

)1−θc/π

(3.4)

near ζ = β. The hollow vortex property of constant speed on the boundary from (2.1)
means |R(ζ )| is constant on the vortex boundary. Finally, R(ζ ) = 0 at the two stagnation
points. The behaviour of R(ζ ) near the origin depends on the angle: it vanishes for 0 <

θc < π, it is finite for θc = π, and it has an algebraic singularity for π < θc < 2π.
We seek a hollow vortex that is symmetric about the real and imaginary axes in

the ξ -plane. These symmetries should persist in the ζ -plane, and we now use them to

determine which points in ζ correspond to the important points in z: the origin, infinity
and the stagnation points.

In the ξ -plane, the vortex boundaries are symmetric under reflection about the vertical
axis. In the annulus, the boundaries are concentric circles, and mapping them onto each
other is carried out by inversion. Hence, to retain the symmetry of the vortex, the vortex
boundaries should be inverse circles about the image of the axis in the annulus. The
boundary circles have radii ρ and 1, so the axis between the vortices in the ξ -plane must
correspond to a circle with radius β ≡ √

ρ inside the annulus. The stagnation points are
on this circle.

In the ξ -plane, the vortex boundaries are also symmetric about the real axis which runs
through the centroids of the vortices. From (3.1), we map the real ξ -axis to the real axis

in the ζ -plane. The images of the ξ -axes meet at 0 and ∞, and these map to −β and β,

respectively, in the ζ -plane. The two stagnation points on the walls are complex conjugates
of each other in the annulus, so that we can write them as α and α with |α| = β.

4. Solution

4.1. Complex potential and complex velocity

The conformal mapping solution is constructed using the SK prime function.
Schottky-Klein prime functions exists for higher connectivity domains (i.e. with larger
genus). For genus 2, i.e. the annulus, the SK prime function can be written explicitly as
(Crowdy 2020)

ω(ζ, a) = (ζ − a)

∞
∏

k=1

(

1 − ρ2kζ/a
) (

1 − ρ2ka/ζ
)

(

1 − ρ2k
) , (4.1)
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Hollow vortex in a corner

where ζ lies inside the annulus, 0 ≤ ρ ≤ 1, and a can be any complex number. For the
annulus, the following prime function identities hold:

ω(ζ, a) = −ζaω(1/ζ̄ , 1/a), ω(ρ2ζ, a) = −a

ζ
ω(ζ, a). (4.2a,b)

The conditions on the conformal map W(ζ ) characterize it as a map that takes circular
vortex boundaries in ζ to horizontal lines in W. This type of map is called a parallel slit
map, and can be written using the SK prime function as

φθ (ζ, a) =
(

∂

∂a
− e2iθ ∂

∂a

)

log

(

ω(ζ, a)

|a|ω(ζ, 1/a)

)

. (4.3)

The map φθ (ζ, a) takes concentric circles in the annulus to parallel lines making an angle
θ with the real axis, with a simple pole at ζ = a. This allows us to write the complex
potential as

W(ζ ) = De−iθpφθp(ζ, β) + Γ

2πi
log ζ. (4.4)

The form of the parallel slit map ensures that W has constant imaginary part along the
images of the vortex boundaries as long as D is real and θp is π/2. The logarithm term
ensures the correct circulation. It does not affect the kinematic boundary condition, since
the logarithmic term has constant imaginary part on constant |ζ |. The potential (4.4) is
the same as that in CLSF and does not depend on the angle θc. The relations between the
notation used in CLSF and that used here are discussed in appendix A.

Starting with the prime function product representation in (4.1) and carrying out the
operations in the definition of a parallel slit map in (4.3), the parallel slit map for the
present domain can be written as

φθ (ζ, a) = − 1

ζ − a
+

∞
∑

k=1

(

ρ2kζ

a2(1 − ρ2kζ/a)
− ρ2k/ζ

1 − ρ2ka/ζ

)

+ 1

2

(

aei2θ − a

|a|2
)

+ ei2θ

a2(ζ − 1/a)
− ei2θ

a2

∞
∑

k=1

(

a2ρ2kζ

1 − ρ2kζa
− ρ2k/ζ

1 − ρ2k/(ζa)

)

, (4.5)

showing that φθ (ζ, a) has a simple pole with residue −1 at ζ = a. Condition (3.3) then
implies that

D = Sb. (4.6)

The constants S and b are both real, and θp is π/2. The zeros of dw/dz are the same as
those of W ′(ζ ). Hence, W ′(α) = 0, which leads to a relationship between the constants of

the problem, which is the same as (24) of CLSF.
The condition of constant speed, |R(ζ )|, on the boundary of the vortex leads us to view

R(ζ ) as a conformal map that takes the circular vortex boundaries in ζ to circular arcs in
R. This type of map is called a circular slit map, and can be written using the SK prime
function as

wa(ζ ) = ω(ζ, a)

|a|ω(ζ, 1/a)
, (4.7)

which has a simple zero at ζ = a and a simple pole outside the domain at ζ = 1/a.
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T. W. Christopher and S. G. Llewellyn Smith

This allows us to write the complex velocity as

R(ζ ) = A

ζ
wα(ζ )wα(ζ )

(

w−β(ζ )

wβ(ζ )

)1−θc/π

, (4.8)

where A is a constant determined below. This function has zeros at the stagnation points
and has the appropriate pole at ζ = β to satisfy the behaviour in (3.4). Any power of ζ

can be considered as a circular slit map because |ζ | is constant along arcs of constant
radius. The complex velocity R(ζ ) is therefore a product of circular slit maps, since each
individual circular slit map has constant magnitude on the circular boundaries of the
domain. The inverse power of ζ in (4.8) ensures that the speed on the two boundaries
in the ξ -plane is the same as in CLSF; this is essentially the method of images. The branch
cut is the same as discussed previously.

One can use the definition of the prime function in (4.1) to obtain an expression for A in
terms of the other quantities from

R(ζ ) ∼ A

β
wα(β)wα(β)

(

w−β(β)βω(β, 1/β)

(ζ − β)
∏∞

k=1 (1 − ρ2k)

)1−θc/π

(4.9)

as ζ → β. Using this in (3.4) gives

A = − Sπβθc/π

θcwα(β)wα(β)

(

−ia
∏∞

k=1 (1 − ρ2k)

w−β(β)ω(β, 1/β)

)1−θc/π

. (4.10)

The details of this expression are not needed below, because there is still an arbitrary
scaling in the solution that will be determined a posteriori. It is useful, however, to note
the argument of A above in the numerical calculations.

4.2. Determining parameters

For each angle θc, we expect a one-parameter family of solutions parameterized by ρ. We
require the map to be single-valued, which means that

∫

C

dz

dζ
dζ = 0, (4.11)

where C is any closed loop in the domain. Note that the branch cuts lie outside the interior
of the annulus with ρ < |ζ | < β. We have

dz

dζ
= dW/dζ

R(ζ )
, (4.12)

where dW/dζ can be obtained explicitly from (4.4). This leads to the relation

z(ζ ) =
∫ ζ

−β

dW/dζ ′

R(ζ ′)
dζ ′. (4.13)

Given ρ and θc, we solve (4.11) to obtain Θ , the argument of the stagnation point α, as
in CLSF. Results of Θ for a variety of corner angles are shown in figure 3. In this and all
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Hollow vortex in a corner

0 0.1

0.2

0.4

0.6

0.8

1.0

1.2
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0.2 0.3 0.4 0.5

ρ

(3
/
π

)Θ

0.6 0.7 0.8 0.9 1.0

FIGURE 3. Normalized stagnation point phase, 3Θ/π, as a function of ρ for θc = π/4, π/2,
3π/2, π, 5π/4 and 3π/2. Smaller values of θc correspond to smaller Θ .

subsequent figures, the values θc = π/4, π/2, 3π/2, π (the Pocklington dipole), 5π/4 and
3π/2 are used. One can show that

Θ = tan−1

√

4θcπ − θ2
c

2π − θc

(4.14)

for ρ = 0. The integrand in (4.11) is independent of the constants D and A.
This calculation leaves an undetermined parameter. This can be used to set the overall

scale of the vortex. We choose it so that |z(α)| = 1, so that the distance to the stagnation
points is unity. Alternatively, we can take the distance of the centroid of the vortex to the
corner to be the unit of distance. As a result, the plots of vortex boundaries in figures 4, 5
and 6 do not have axes.

Once the condition (4.11) has been enforced, the boundary of the hollow vortex is found
by evaluating (4.13) along the circle |ζ | = ρ. We first integrated from −β to −ρ to move
from the corner to the closest point of the vortex to the corner (which is along the bisector
of the angle by symmetry). This integrand has an algebraic singularity at ζ = −β, since
R(ζ ) is singular at a corner with π < θc < 2π. The integral, however, can be carried out
numerically with no trouble.

5. Results

Figure 4 shows the boundaries of a number of stationary hollow vortex solutions for
different values of ρ and different angles. The hollow vortices in each plot have been
individually normalized so that the stagnation points are the same for all vortices. Figure 5
shows the same solutions normalized so that their centroids are at unit distance from the
corner. The point vortex solution is plotted as a filled circle in each figure. As ρ → 0, the
hollow vortex boundary shrinks to the point vortex, as expected. For θc > π, the vortex
boundary intersects itself for large enough ρ, as shown in figure 6(b). This is similar to
what happens for the hollow vortex in strain examined by Llewellyn Smith & Crowdy
(2012), which self-intersects if the strain is too large.
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T. W. Christopher and S. G. Llewellyn Smith

(a) (b) (c)

(d ) (e) ( f )

FIGURE 4. The five vortices in each corner correspond to five equally spaced values of ρ in
0.01 ≤ ρ ≤ 0.5. Each vortex is scaled individually so that the stagnation points are at distance
unity from the corner.

(a) (b) (c)

(d ) (e) ( f )

FIGURE 5. As for figure 4, but normalized so that the geometric centroid is at distance unity
from the corner. The stagnation points of the point vortex are in red.

6. Discussion

As shown in figure 6(b), we find numerically that, as ρ increases for θc > π, the vortex
boundary ends up being tangent to itself at a point along the bisector of the corner,
by symmetry. This solution is not physically acceptable. It is possible to find the
corresponding critical value ρc numerically, and as θc increases, ρc decreases. One can find
further solutions for ρ > ρc; these self-intersecting solutions are not physically acceptable
either. Presumably another solution family branches off at the critical value of ρc, with the
solution beyond it consisting of two symmetric vortices with near-cusps. Finding it will
be difficult, since the flow domain now has genus 2, which requires a completely different
analysis.

Figure 6(a) shows that as ρ → 1 for θc < π, the vortex starts to conform to the shape
of boundaries and take the shape of a curvilinear triangle. While there do not seem to be
any discussions in the literature of the asymptotics of the prime function as ρ → 1, we
see physically that the solution takes the form of two narrow flows of constant velocity
along the boundary, connected by a stagnation point flow near the apex of the corner, with
the outer side slightly curved. The velocity profile in the jets is parallel to the boundary
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Hollow vortex in a corner

(a) (b)

FIGURE 6. (a) For θc ≤ π and large ρ, the vortex conforms to the shape of the corner boundary.
Here, θc = π/4 and ρ = 0.8. (b) For θc > π and large ρ, the vortex boundary can become
tangent to itself, which is unphysical because the speed is constant along the boundary and
would therefore have two different values at the tangency point. Here, ρ = 0.64 and θc = 3π/2.

and uniform, and the speed is just the speed of the fluid on the vortex boundary, which
is given exactly by q0 = |A|ρ−1. The width of the jet d can be obtained from the relation
2q0d = −Saβ−1(1 + µ log ρ), resulting from the difference in streamfunction between
the two vortices. We find numerically that µ = m(1 − ρ)−1 as ρ → 1 with m depending
on θc, but the form of m does not seem to be available from analysis. We are hence led to
the leading-order result

d ∼ −Sa
√

ρ

2|A|

(

1 + m log ρ

1 − ρ

)

. (6.1)

We have only examined symmetric solutions, as in CSLF. We do have some evidence
that no asymmetric solution exists in this problem: if one can be found in the same form
as above, but with asymmetric stagnation points on the circle |ζ | = β, then the condition
that W ′(ζ ) vanishes at the stagnation points becomes four equations in two unknowns and
is found numerically to have no solution except for the symmetric case. This is not a fully
rigorous proof, however.

One could also generalize to multiple vortices along the bisector of the angle. A counting
argument shows that this configuration has (multiple) solutions in the point vortex case,
and then an approach, such as that in Llewellyn Smith (2014), indicates that desingularized

versions will exist. Finding them numerically will be a challenge, requiring higher-genus
SK functions.

The stability of the family of vortices could be examined using the same approach as in
CLSF. The non-dimensional growth rate is σ = λΓ/(2πq2

0), where λ is the dimensional
growth rate. The general stability problem combines stability of the interface shape and
stability associated with displacements of the centroid. In the point vortex limit, one finds
σ ∼ λρd2/Γ (up to multiplicative factors), where d is the distance to the point vortex.
Hence, the spectrum of neutral modes found in CLSF has high dimensional frequency
when expressed in terms of variables relevant to the point vortex pair. This is consistent
with the fact that in the point vortex limit the equilibrium solution obtained from (2.3)
is neutrally stable with non-zero frequency for θc < π, has zero growth rate for θc = π

and is unstable for θc > π (this does not appear to have been mentioned in the literature).
Hence, for θc > π the system is unstable for arbitrary small ρ, and there is not much sense
examining it for general ρ. As ρ increases, one can no longer separate displacement and
shape instability. The stability problem is formulated in the complex w-plane, in which
the vortex takes a simple shape, which is then transformed to the ζ -plane. An important
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T. W. Christopher and S. G. Llewellyn Smith

difference is that there is now only one vortex, along with a solid boundary at |ζ | = β,

at which, in the notation of CLSF, δ̂ = ∂Φ/∂r = 0, where δ̂ and Φ now designate the
streamfunction and potential perturbations, respectively, along the solid boundary, while
r is the radial distance in the ζ -plane. We do not pursue the calculation further. It now
contains θc-dependence, and preliminary indications suggest that as θc approaches 0 or π,
the calculations become numerically delicate. Away from this range, one can find a critical
instability threshold ρc(θc), with indications of multiple bubbles of instability (typical of
Hamiltonian stability problems) in the system. The current stability problem, which has
one free surface and one solid boundary, seems to have fewer degrees of freedom than that
of CLSF; the values obtained for ρc do seem larger, of the order of 0.08–0.12. More work
is required to understand the stability problem fully.

7. Conclusion

A stationary hollow vortex surrounded by irrotational flow has been found inside
a wedge of fluid bounded by a corner of arbitrary angle using a conformal mapping
approach. This is the first combined use of the SK prime function with algebraic functions
to the authors’ knowledge. For special values of θc, namely divisors of π such as π/2,
π/3, π/4 and so on, it should be possible to construct the solution using higher-genus
SK prime functions and symmetries. The algebra would rapidly become unmanageable,
although presumably the final form of the solution would lead to identities between SK
functions of different genus.

The problem of a steady vortex patch in a corner does not seem to have been investigated
in detail, although the propagating vortex patch dipole has been examined (Deem &
Zabusky 1978; Pierrehumbert 1980; Saffman & Tanveer 1982). The Sadovskii dipole (or
patch sheet), a vortex patch bounded by a vortex sheet, is a generalization of both Sadovskii

(1971) and Tanveer (1986). Similarly, one could examine patch sheet equilibria in a corner.
Perturbing the point vortex equilibrium with potential (2.2) leads to periodic motion for

θc < π. The general case of a point vortex in a right-angle corner was investigated by Suh
(1993), and its transport properties provide an interesting model problem for non-periodic
transport (authors’ unpublished observations). The case of the point vortex in the corner
could be examined similarly. For the hollow vortex, the problem is much more difficult,
since the vortex sheet would evolve and would have to be obtained using a numerical
approach similar to those used for water waves (e.g. Vanden-Broeck 2010; Baker & Xie
2011).
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Hollow vortex in a corner

Appendix A. Formulation using P, K and L

For ease of comparison with CLSF, we provide here the relevant formulas in terms
of the definitions of the SK functions used in that work. For the annulus, the SK prime
function and required related functions are defined by

P(ζ, ρ) = (1 − ζ )

∞
∏

k=1

(

1 − ρ2kζ
) (

1 − ρ2kζ−1
)

= −a−1
∞
∏

k=1

(

1 − ρ2k
)

ω(aζ, a),

(A 1)
and

K(ζ, ρ) = ζP′(ζ, ρ)

P(ζ, ρ)
, L(ζ, ρ) = ζK′(ζ, ρ). (A 2a,b)

Primes indicate derivatives with respect to ζ . Below we will suppress the ρ in the argument
list. Then

W(ζ ) = iSb

β

[

K(ζ/β) + K(ζβ)
]

+ Γ

2πi
log ζ = iSb

β

[

K(ζ/β) + K(ζβ) − µ log ζ
]

,

(A 3)
which is formally the same (with U replaced by S and a replaced by b) as in CLSF, and

R(ζ ) = A

ζ

P(ζ/α)P(ζ/α)

P(ζα)P(ζα)

(

P(−ζ/β)P(ζβ)

P(−ζβ)P(ζ/β)

)1−θc/π

, (A 4)

where we have used the fact that β is real. Equation (24) of CLSF is

L(eiΘ) + L(ρeiΘ) = µ. (A 5)
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