

Diversity and health risk potentials of the *Enterococcus* population in tropical coastal water impacted by Hurricane Lane

Prakit Saingam and Doris Y. W. Di and Tao Yan *

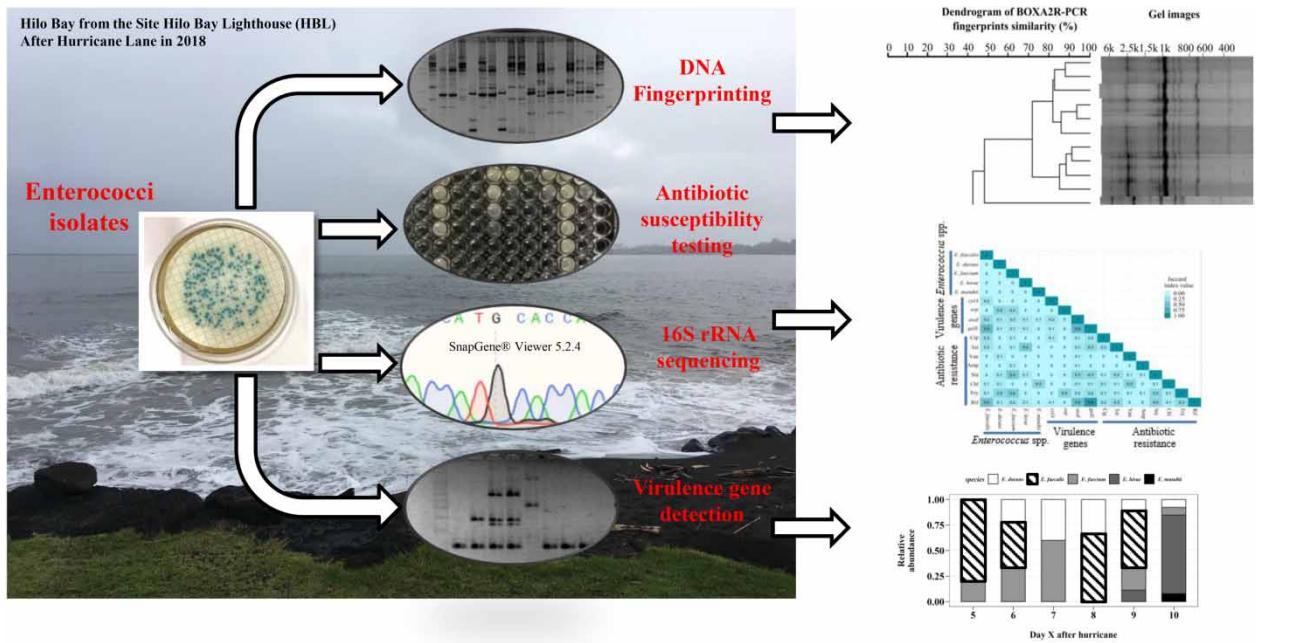
Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA

*Corresponding author. E-mail: taoyan@hawaii.edu

[†]P.S. and D.Y.W.D. contributed equally to the manuscript.

 PS, 0000-0003-2370-0467; DYWD, 0000-0002-0503-9030; TY, 0000-0001-7500-7993

ABSTRACT


Hurricane-caused stormwater runoffs transport diverse terrestrial pollutants, adversely impact microbiological water quality, and introduce fecal and other pathogens to coastal water environments. This study investigated the genotypic diversity, phylogenetic composition, antibiotic resistance patterns, and virulence gene repertoire of the *Enterococcus* population in the Hilo Bay coastal water after the immediate impact of Hurricane Lane. DNA fingerprinting of *Enterococcus* isolates exhibited large genotypic diversity, while 16S rRNA gene sequencing identified four major species, including *E. faecalis* (34.7%), *E. faecium* (22.4%), *E. hirae* (22.4%), and *E. durans* (18.4%). Four common enterococcal virulence genes (*cylA*, *esp*, *asa1*, and *gelE*) were detected in the *Enterococcus* population, with significant portions of *E. durans* (33.3%), *E. faecalis* (41.2%), *E. faecium* (36.4%), and *E. hirae* (27.3%) isolates possessing two or more virulence genes. Considerable antibiotic resistance to rifampin, erythromycin, tetracycline, and nitrofurantoin was detected in the *Enterococcus* population, with one *E. durans* isolate showing vancomycin resistance. The results indicate considerable health implications associated with *Enterococcus* spp. in the hurricane-impacted tropical coastal water, illustrating the needs for more comprehensive understanding of the microbiological risks associated with storm-impacted coastal water.

Key words: coastal, diversity, *Enterococci*, Hurricane, risks, water

HIGHLIGHTS

- The study investigated the *Enterococcus* population in a tropical coastal water immediately after the impact of a major hurricane.
- Genotypic diversity and phylogenetic composition of the *Enterococcus* population were determined.
- A significant portion of the *Enterococcus* population contains various virulence factors.
- Considerable antibiotic resistance was detected in the *Enterococcus* population.

GRAPHICAL ABSTRACT

INTRODUCTION

Hilo town area (Hawaii island, Hawaii), which has a tropical rainforest climate (NOAA 2021), is populated with dense sewer networks and a large number of on-site wastewater treatment systems (e.g. 8,700 cesspools; Silvius *et al.* 2005) and is also located next to the mouth of the Wailuku River. Hurricane Lane, a category five hurricane that affected the area during August 15–29, 2018, caused heavy rainfall over the Hilo town area and resulted in its wettest 3-day period on record in precipitation (80.9 cm) (Beven II & Wroe 2019). This unprecedented rainfall resulted in significant stormwater runoff and flooding, and sanitary sewer overflows due to rainfall-derived infiltration and inflow into the aging sewer infrastructures in the area. As a result, the microbiological quality of coastal water in Hilo Bay was deteriorated according to the high levels of fecal indicator bacteria (FIB) *Enterococcus* observed in the water samples collected after the heavy rains (Saingam *et al.* 2021).

The *Enterococcus* genus is a group of Gram-positive bacteria with 58 known species (Parte 2014), which are commensals in human and various animal guts (Layton *et al.* 2010) and are used as an important FIB in monitoring coastal marine water quality (USEPA 2012). Certain *Enterococcus* spp. are pathogenic and cause endocarditis, bacteremia, neonatal, central nervous system, urinary tract, abdominal, and pelvis infections (Lewis & Zervos 1990), which is estimated to cause more than \$539 million per year in healthcare costs (CDC 2019). *E. faecalis* and *E. faecium* are the two major species of opportunistic pathogens prevalent in health clinical, whereas *E. durans*, *E. gallinarum*, *E. avium*, *E. hirae*, and *E. mundtii* can also be responsible for infections (Blaimont *et al.* 1995). Pathogenicity of enterococci is contributed by several common *virulence* factors encoded by the *asa1*, *cylA*, *gelE*, *esp*, and *hyl* genes (Jett *et al.* 1994). The *asa1* gene encodes aggregation substance proteins that assist in attachment and colonization during renal tissue infection (Waters *et al.* 2004). The *cylA* gene encodes cytolysin that aggravates the endocarditis infection (Huycke & Gilmore 1995). The *gelE* encodes extracellular gelatinase which mediates the virulence by modulating host immune response and degrading tissues (Park *et al.* 2008). The *esp* gene encodes the enterococcal surface proteins that are involved in biofilm formation and urinary tract infection (Shankar *et al.* 1999). The *hyl* gene encodes hyaluronidase that is linked to increased gastrointestinal colonization in mouse models (Rice *et al.* 2003).

The presence of antibiotic-resistant genes (ARGs) could further increase and complicate health risks caused by the pathogenic enterococci in coastal water (Kristich *et al.* 2014). Enterococci were reported to be inherently tolerant to several

antibiotics within the classes of penicillin and aminoglycosides (Robbins & Tompsett 1951). Enterococci from environmental water also showed resistance to several other antibiotics, including tetracyclines, erythromycin, or gentamicin, likely through horizontal gene transfer (Macedo *et al.* 2011). Among them, vancomycin-resistant *Enterococcus* (VRE) are resistant to one of the last-resort antimicrobial agents (i.e. vancomycin) and have contributed to approx. 30% of enterococcal infections and about 5,400 mortalities each year in the USA (CDC 2019).

Previous studies on enterococcal isolates in coastal waters after the impact of major storms were largely focused on the abundance of *Enterococcus* population (Roca *et al.* 2019; Jiang *et al.* 2020). The phylogenetic composition of the population in Lake Pontchartrain, a fresh water lake, after the impact of Hurricane Katrina was also assessed by sequencing the 23S rRNA gene of the enterococcal isolates (Bae & Hou 2013). In a previous study, Saingam *et al.* (2021) reported that the Hilo Bay Lighthouse (HBL) site was the most contaminated site in Hilo Bay after the stormwater impact of Hurricane Lane, which had a mean enterococcal density of 144 CFU/100 mL and exceeded the water quality criteria statistical threshold value. Bae & Hou (2013) reported a large portion of classical fecal origins *E. faecalis*, *E. faecium*, *E. durans*, *E. hirae*, and *E. mundtii* were detected in freshwater as the impact of Hurricane Katrina-derived urban runoff. A study done by Jiang *et al.* (2020) reported that *E. faecalis* were detected in 60% of coastal waters and 67% of street surface runoff at a concentration of <10 MPN/L by the MPN-LAMP assay after the back-to-back hurricane strikes by Irma and Maria. High concentrations of enterococci (mean concentration of gene marker of 5.05×10^5 copies/100 mL) were detected in 40–100% of surface water samples collected from flooded regions of the river impacted by Hurricane Harvey which was also reported by Kapoor *et al.* (2018). However, the pathogenic potentials, genotypic diversity, and ARG repertoire of the *Enterococcus* population after major storms in coastal marine water have not been adequately investigated.

The aim of this study was to understand microbial risks of the *Enterococcus* population in coastal water immediately after the impact of a major hurricane. Enterococcal isolates were obtained from near-shore coastal water at the HBL site, where the high level of FIB *Enterococcus* after Hurricane Lane was detected (Saingam *et al.* 2021). The *Enterococcus* spp. distribution was determined by 16S rRNA gene sequencing of the enterococcal isolates. The *Enterococcus* spp. genotypic diversity was determined by BOX-PCR fingerprinting and then compared with their 16S rRNA gene-based phylogeny. The prevalence of virulence genes in the *Enterococcus* population was determined by multiplex PCR detection, and their antimicrobial susceptibility was determined by microbroth dilution assays.

MATERIALS AND METHODS

Water sampling and enterococcal isolation

Coastal water sampling immediately after Hurricane Lane and sample processing were described in detail in a previous publication (Saingam *et al.* 2021). Briefly, approximately 2 L of the water samples ($n = 7$) were collected at knee-depth at the HBL sampling site from Day 5 to Day 11 when field sampling became feasible immediately after the peak hurricane impact (i.e. Day 0). The HBL site (GPS coordinates: 19°43'38.0"N 155°05'11.0"W) is located at the shoreline of Downtown Hilo area and approximately 100 and 2,000 m from the mouths of the Wailuku River and Waioa River, respectively. Water samples (100 mL) were filtered through 0.45 μ m GN-6 filter membranes, which were then incubated on the mEI agar to selectively grow enterococci colonies according to the EPA Method 1600 (USEPA 2006). Presumptive enterococcal colonies (i.e. colonies with blue halo) were picked and further isolated via streak plating on tryptic soy agar. The presumptive enterococcal isolates were subsequently confirmed based on growth in both Brain Heart Infusion Broth (BHIB) ($35^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$, 48 h) and BHIB supplemented with 6.5% NaCl ($45^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$, 48 h). A total of 117 confirmed enterococcal isolates were obtained and cultured in BHIB at 35°C for 24 h and then stored at -80°C in the presence of 18% glycerol.

16S rRNA gene sequencing

Forty-nine of the 117 enterococcal isolates were randomly selected and subjected to 16S rRNA gene sequencing to determine the phylogenetic composition of the *Enterococcus* population. Total genomic DNA from the enterococcal isolates was prepared by using the freeze-thaw method (Ran *et al.* 2013). The universal 16S rRNA gene primers (27F: 5'-AGAGTTGATCMTGGCTCAG-3' and 1492R: 5'-GGTACCTTGTTACGACTT-3') were used for PCR amplification. The reaction mixture contained 200 μ M dNTPs, 0.125 U/ μ L Taq polymerase, and 0.4 μ M primers in a final volume of 25 μ L. The amplification program included initial denaturation at 94°C for 5 min, 30 cycles of denaturation (94°C for 30 s), annealing (53°C for 45 s), and extension (72°C for 1 min), and a final extension step (72°C for 10 min). PCR products were purified using a Wizard PCR Preps DNA Purification System (Promega, Madison, WI, USA). The sequencing reaction was performed

using the ABI 3730XL sequencer at the Advanced Studies in Genomics, Proteomics and Bioinformatics (ASGPB), University of Hawaii at Manoa. The sequence reads were quality trimmed and checked manually against the chromatograms by using the Sequence Scanner (Version 2.0; Thermo Fisher, Waltham, MA, USA), and the species identification was confirmed by using BLASTn. The 49 16S rRNA gene sequences were deposited in the GenBank database (accession no. MZ668452–MZ668500).

Multiplex PCR for virulence gene detection

The presence of enterococcal virulence genes, including *asa1*, *gelE*, *cylA*, *esp*, and *hyl*, were tested on the 49 *Enterococcus* spp. by following a multiplex PCR assay (Vankerckhoven *et al.* 2004). The reaction mixture contained 0.16 mg/mL BSA, 200 μ M dNTPs, 1 mM MgCl₂, 0.1 U/ μ L Taq polymerase, 0.1 μ M of *asa1* (F: 5'-GCACGCTATTACGAACATGA-3'; R: 5'-TAAGAAAGAACATCACCACGA-3'), *hyl* (F: 5'-ACAGAAGAGCTGCAGGAAATG-3'; R: 5'-GACTGACGTCCAAGTTCCAAG-3'), and *gelE* (F: 5'-TATGACAATGCTTTGAGAT-3'; R: 5'-AGATGCACCCGAAATAATATA-3') primer pairs each, and 0.2 μ M of *esp* (F: 5'-AGATTTCATCTTGATTCTGG-3'; R: 5'-AATTGATTCTTAGCATCTGG-3') and *cylA* (F: 5'-ACTCGGGGATTGATAGGC-3'; R: 5'-GCTGCTAAAGCTCGCCT-3') primers each. The amplification steps included the initial denaturation at 95 °C for 7 min, 30 cycles of 94 °C for 1 min, 1 min annealing at 56 °C, 1 min extension at 72 °C, and 10 min final extension at 72 °C. PCR amplicons were separated by 3.0% agarose gel electrophoresis for 3 h at 80 V in 1× TBE. Gel with PCR amplicons was stained in 1× GelRed solution (Biotium; Hayward, CA, USA) and visualized using a *GelDoc* imager (Bio-Rad, Hercules, CA, USA). *E. faecalis* MMH594 (*gelE*⁺ *asa1*⁺ *cylA*⁺ *esp*⁺) and *E. faecium* U0317 (*esp*⁺ *hyl*⁺) were used as positive controls. The *Enterococcus* isolates that carried more than two virulence genes were considered multi-virulence gene carrier.

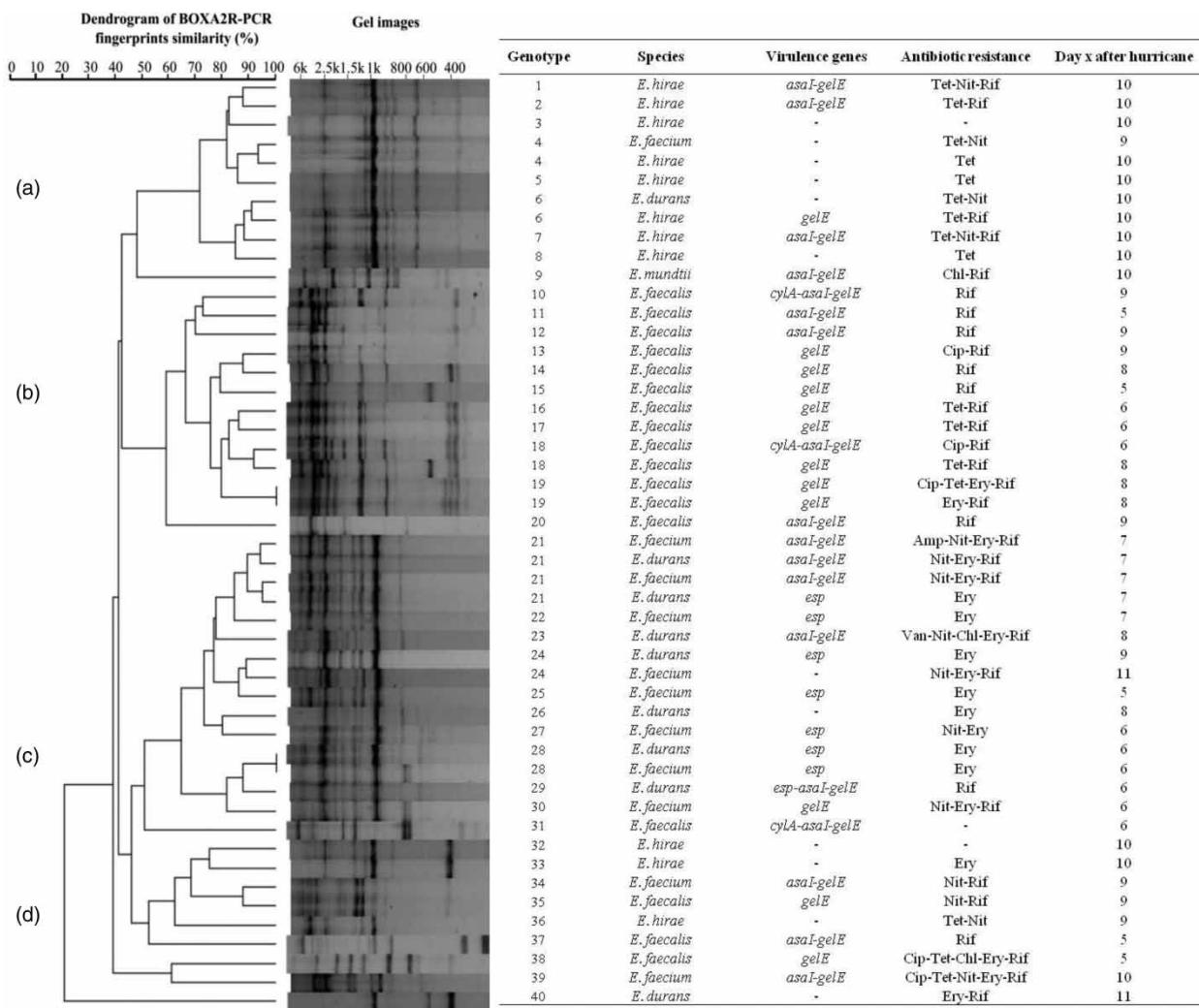
Antibiotic susceptibility testing

Antimicrobial susceptibility of the *Enterococcus* isolates ($n = 49$) was determined by the microbroth dilution method according to the Clinical and Laboratory Standards Institute (CLSI) protocol (CLSI 2012). Briefly, stock cultures were revived in the cation-adjusted Mueller Hinton broth (CAMHB) (BD; MD, USA) in 96-well microtiter plates at 35 °C until OD₆₂₀ reached 0.4, which was equivalent of 0.5 McFarland standard ($\sim 5 \times 10^8$ cells/mL). Approximately 5×10^5 cells were transferred to wells of CAMHB supplemented with different antibiotics at different concentrations. The antibiotics tested included ciprofloxacin (Cip) (0.5–8 μ g/mL), ampicillin (Amp) (4–32 μ g/mL), chloramphenicol (Chl) (4–64 μ g/mL), tetracycline (Tet) (2–32 μ g/mL), vancomycin (Van) (2–64 μ g/mL), erythromycin (Ery) (0.25–16 μ g/mL), rifampin (Rif) (0.5–8 μ g/mL), and nitrofurantoin (Nit) (16–256 μ g/mL). The microbroth dilution plates were incubated at 35 °C for 20 h. The minimal inhibitory concentrations were recorded, and the strains that showed growth at the resistant breakpoints were recorded as 'Resistant' per CLSI criteria (CLSI 2012). *E. faecalis* ATCC 29212 was used as a quality control for the test media and antibiotics. Isolates that showed resistance to equal or more than two antibiotics were categorized in a group named as multi-antibiotic resistance (MAR) carrier.

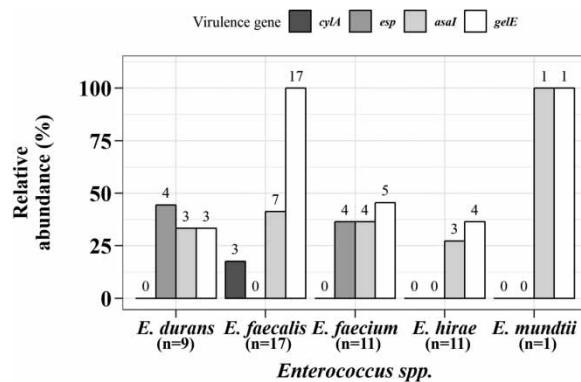
Co-occurrence of virulence factors and AR

Co-occurrence of virulence genes and antibiotics resistance in the *Enterococcus* isolates were calculated by using the Jaccard index, which is the number of isolates carrying both entities ($A \cap B$) divided by the total number of isolates carrying either entity ($A \cup B$). The Jaccard index ranged from 0 (no co-occurrence) to 1 (always co-occurrence). The analysis and plotting were performed in the R environment (Version 3.6.1).

BOX-PCR fingerprint clustering


The DNA fingerprinting of environmental *Enterococcus* isolates from the HBL site followed the procedures described previously (Saingam *et al.* 2021). Briefly, BOX-PCR fingerprints of the 49 *Enterococcus* isolates that had their 16S rRNA gene sequenced were generated and analyzed through clustering analysis in BioNumerics v.7.01 (Applied Maths Inc., Sint-Martens-Latem, Belgium). The level of similarity between fingerprints was calculated using the Dice coefficient at 1.0% optimization and 1.0% band position tolerance. Bands of up to 6 kb were included in the analysis. A representative dendrogram was constructed in BioNumerics using the unweighted pair group method with arithmetic mean. The relationship between phylogenetic clusters of DNA fingerprinting and species identification of enterococci isolates was evaluated by using Fisher's exact test. Comparisons of species among cluster groups were achieved by the post-hoc test, and the *p*-value

was adjusted by the Benjamini-Hochberg false discovery rate method. The analysis was performed by using the rcompanion package (Mangiafico & Mangiafico 2017) in R.


RESULTS

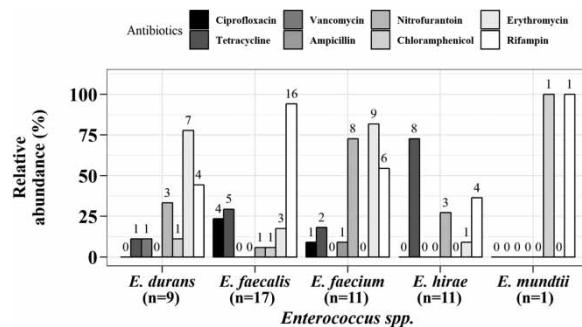
Diversity of *Enterococcus* in hurricane-impacted coastal water

Forty unique genotypes out of total 49 *Enterococcus* isolates were identified based on the similarities of the BOX A2R finger-printing patterns, which were grouped into four major clusters (Figure 1). The 16S rRNA gene sequencing showed that the *Enterococcus* isolates belong to five different species, including *E. faecalis* ($n = 17$, 34.7%), *E. faecium* ($n = 11$, 22.4%), *E. hirae* ($n = 11$, 22.4%), *E. durans* ($n = 9$, 18.4%), and *E. mundtii* ($n = 1$, 2.0%) (Figure 2). Fisher's exact test showed that there was a significant difference ($p < 0.05$) between clusters and *Enterococcus* spp. proportion in each clusters. In cluster A, the proportion of *E. hirae* is significantly different with other clusters, especially clusters B ($p < 0.001$) and C ($p < 0.001$). In cluster B, the proportion of *E. faecalis* is significantly different ($p < 0.001$) from all other clusters. There were 11 genotypes of *E. faecalis* ($n = 13$), all of which clustered in group B and possessed *gelE* gene and were resistant to rifampin. In cluster C, the proportions of *E. faecium* ($p = 0.006$) and *E. durans* ($p = 0.012$) were significantly different from other clusters, and the post-hoc test showed that *E. faecium* and *E. durans* in cluster C were specifically different

Figure 1 | Cluster analysis of *Enterococci* isolates ($n = 49$) based on the similarity between BOX A2R-PCR fingerprints of each strains, cutoff threshold of 89%. The detailed information of assigned genotype, species, virulence genes, AR profiles, and date of isolation were shown next to the dendrogram.

Figure 2 | Relative abundance of virulence genes detected among 49 isolates of *Enterococcus* spp. identified. Four virulence genes of *cylA*, *esp*, *asa1*, and *gelE* were identified among *E. durans* ($n = 9$), *E. faecalis* ($n = 17$), *E. faecium* ($n = 11$), *E. hirae* ($n = 11$), and *E. mundtii* ($n = 1$). The numbers of each virulence genes detected in the specific *Enterococcus* spp. were shown on top of the bars.

from cluster B (*E. faecium*: $p = 0.019$; *E. durans*: $p = 0.012$). Eleven genotypes comprised of *E. faecium* ($n = 8$), *E. durans* ($n = 7$), and *E. faecalis* ($n = 1$) were grouped in cluster C, where one strain of *E. durans* which was resistant to vancomycin and one strain of *E. faecium* which was resistant to ampicillin were grouped together in this cluster.


Genotypes 4, 6, 18, 19, 21, 24, and 28 were found to have more than one *Enterococcus* isolate grouped in the same genotype, with Genotype 21 which has the highest number of strains (*E. faecium*, $n = 2$; *E. durans*, $n = 2$) and the strains in this genotype were isolated on Day 7 after Hurricane Lane. Three of the strains in this genotype contained *asa1* and *gelE*, but only one strain contained an *esp* gene. One *E. faecium* in this genotype was found to be resistant to ampicillin and MAR (Amp-Nit-Ery-Rif). Genotypes 4, 6, 24, and 28 contained two different *Enterococcus* species in each genotype, but both species have different virulence genes and AR gene structures. Although, genotypes 18 and 19 contained the two strains of the same species that is *E. faecalis*, both strains in each genotype possess different characteristics of virulence genes and AR gene profiles. Genotype 23 has a single strain of *E. durans* which was found to be resistant to vancomycin and also to MAR (Van-Nit-Chl-Ery-Rif).

Detection and distribution of virulence genes

Four virulence genes (*cylA*, *esp*, *asa1*, and *gelE*) were detected in the *Enterococcus* species isolated from the HBL site (Figure 2). Most of the *Enterococcus* isolates contained the *asa1* gene (*E. durans*, 3/9; *E. faecalis*, 7/17; *E. faecium*, 4/11; *E. hirae*, 3/11; *E. mundtii*, 1/1) and/or *gelE* gene (*E. durans*, 3/9; *E. faecalis*, 17/17; *E. faecium*, 5/11; *E. hirae*, 4/11; *E. mundtii*, 1/1). Interestingly, the *cylA* gene was only detected in *E. faecalis* (3/17) and the *esp* gene in *E. durans* (4/9) and *E. faecium* (4/11), respectively. Overall, there were 33.3% of *E. durans*, 41.2% of *E. faecalis*, 36.4% of *E. faecium*, and 27.3% of *E. hirae* isolates possessing two or more virulence genes. Among the strains, three *E. faecalis* isolates possess *cylA-asa1-gelE* and one *E. durans* possess *esp-asa1-gelE* simultaneously. The rest of the species which possess more than one virulence genes were comprised of *asa1-gelE* that was distributed among the five species.

Antibiotic resistance

AR profiles of the *Enterococcus* isolates to eight different antibiotics are shown in Figure 3. *E. durans*, *E. faecalis*, and *E. faecium* exhibited AR to a maximum of six different kinds of antibiotic. The first, second, third, and fourth highest numbers of isolates resistant to rifampin (31/49 or 63.3%; *E. faecalis* = 16, *E. faecium* = 6, *E. durans* = 4, *E. hirae* = 4, *E. mundtii* = 1), erythromycin (20/49 or 40.8%; *E. faecium* = 9, *E. durans* = 7, *E. faecalis* = 3, *E. hirae* = 1), tetracycline (16/49 or 32.7%; *E. hirae* = 8; *E. faecalis* = 5; *E. faecium* = 2, *E. durans* = 1), and nitrofurantoin (15/49 or 30.6%; *E. faecium* = 8, *E. durans* = 3, *E. hirae* = 3, *E. faecalis* = 1) were enumerated. Only one *E. durans* isolate was detected to confer resistant to vancomycin, which, however, indicates significance due to VRE being an urgent threat of AR designed by the US CDC (CDC 2019). This *E. durans* isolate exhibited multiple resistant to five antibiotics (Van-Nit-Chl-Ery-Rif). Only one *E. faecium* was found to be resistant to ampicillin and was multiple resistant to four antibiotics (Amp-Nit-Ery-Rif). Two isolates were also shown to be resistant to five different antibiotics, including one *E. faecalis* isolate (Cip-Tet-Chl-Ery-Rif) and one *E. faecium* isolate

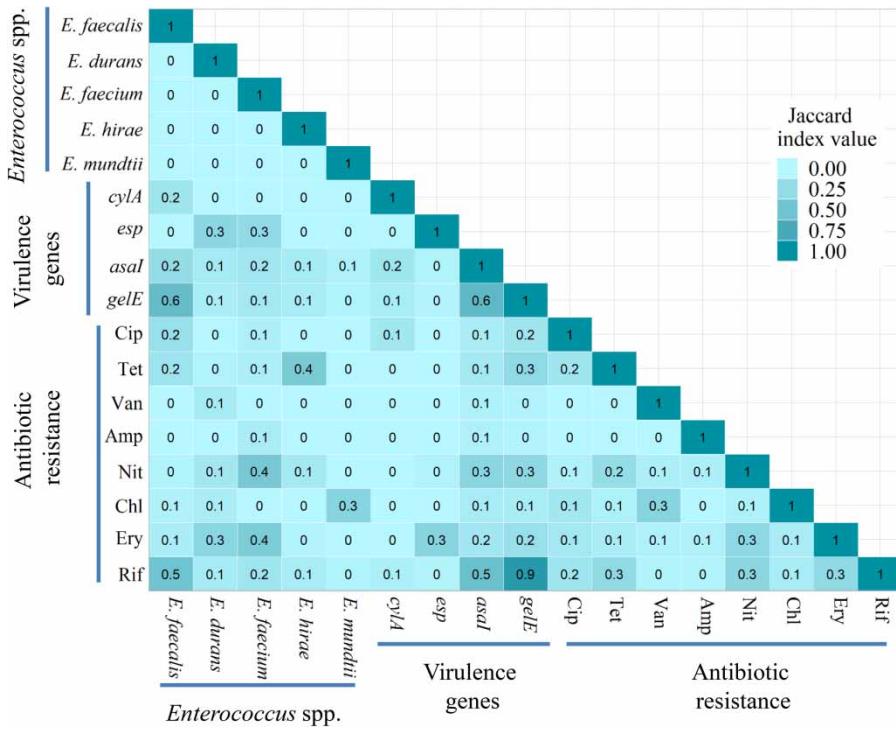


Figure 3 | AR profile of 49 *Enterococcus* spp. to eight different kinds of antibiotic tested (ciprofloxacin, tetracycline, vancomycin, ampicillin, nitrofurantoin, chloramphenicol, erythromycin, and rifampin). The numbers of each *Enterococcus* spp. resistant to each antibiotics were shown by the number on top of the bars.

(Cip-Tet-Nit-Ery-Rif). In total, 44.4% of *E. durans*, 52.9% of *E. faecalis*, 72.7% of *E. faecium*, 45.5% of *E. hirae*, and 100% of *E. mundtii* were found to be resistant to MAR (i.e. resistant to at least two antibiotics).

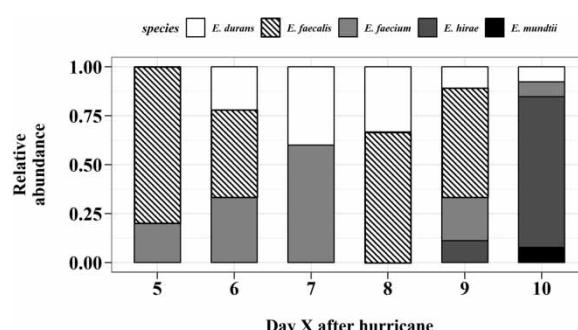
Co-occurrence frequency of virulence genes and AR

A co-occurrence pyramid based on the Jaccard index value (JIV) was constructed to illustrate the correlation of virulence genes and AR in the *Enterococcus* isolates (Figure 4). Most of the *E. faecalis* isolates possessed the *gelE* gene (JIV: 0.6) while resistant to rifampin (JIV: 0.5). *E. hirae* isolates have a high JIV of 0.4 to tetracycline that is shown in Figure 3 where this *Enterococcus* species has the highest number of isolates resistant to tetracycline. *E. faecium* isolates also have a high JIV to nitrofurantoin (0.4) and erythromycin (0.4) in which the highest number of isolates from this species were found to be resistant to nitrofurantoin ($n = 8$) and erythromycin ($n = 9$). Overall, there were high JIV numbers of the co-

Figure 4 | Matrix showing the co-occurrence frequency of virulence genes ($n = 4$) and the AR profile ($n = 8$) with the five *Enterococcus* spp. calculated by the JIV. A score near 1.0 indicates that the variables are perfectly correlated, whereas a score near 0 indicates that the variables are perfectly inversely correlated. The higher the number, the higher the frequency of co-occurrences.

occurrence of the *gelE* gene (0.9) when the presence of rifampin resistance (0.5) and the *asa1* gene (0.5) was detected simultaneously.

Temporal changes of pathogenic *Enterococcus* spp. after hurricane impact


A temporal change of *Enterococcus* spp. from the fifth day to the tenth day right after Hurricane Lane impact was observed (Figure 5). Overall, *E. faecalis*, *E. faecium*, and *E. durans* were commonly detected in the *Enterococcus* population after the impact of Hurricane Lane. *E. hirae*, on the other hand, was not detected from Day 5 to Day 8, but became more predominant starting on Day 9 (11.1%) and Day 10 (76.9%). The isolates detected on Day 11 were removed from this analysis because the sample number was below 5 ($n = 2$) and was considered as the lack of statistical significance.

DISCUSSION

E. faecalis and *E. faecium* are the two most common *Enterococcus* species causing approximately 87.7 and 8.6% enterococcal infections in clinical settings (Ruoff *et al.* 1990). Other *Enterococcus* species, including *E. durans* (Kenzaka *et al.* 2013), *E. hirae* (Bourafa *et al.* 2015), and *E. mundtii* (Higashide *et al.* 2005), typically contribute to much smaller percentage of enterococcal infections. In this study, 57.1% of the *Enterococcus* isolates obtained in the Hilo Bay water immediately after the Hurricane Lane impact were *E. faecalis* and *E. faecium*, and the remaining 42.9% were *E. durans*, *E. hirae*, and *E. mundtii*. A similar distribution of *Enterococcus* species were also isolated from fresh river water after the storm event, including *E. faecalis* (43%), *E. faecium* (18%), *E. mundtii* (14%), *E. casseliflavus* (12%), *E. durans* (6%), *E. hirae* (7%), and *E. avium* (2%) (Sidhu *et al.* 2014). Furthermore, *E. faecalis*, *E. faecium*, *E. casseliflavus*, and *E. mundtii* have been identified as the most commonly isolated enterococcal species from urban runoff and receiving water (Moore *et al.* 2008).

Stormwater has been shown to increase the number of enterococcal isolates in the runoff, and the sources of the *Enterococcus* spp. were related to fecal sources. A study done by Hou *et al.* (2006) showed that the discharged floodwaters after the impact of Hurricane Katrina had an elevated number of enterococci counts (170 CFU/100 mL) at stations near the mouth of a canal compared to stations 5 km from the mouth of the canal where the number of enterococci was 5 times lower. Sinigalliano *et al.* (2007) found that after the impacts of Hurricane Katrina and Rita, the number of enterococci was 380 CFU/100 mL at the middle of the main canal discharging water into a nearby lake. They also found that the source of enterococci was from within the city where the number of enterococci in the canal water increased from 93 to 1,400 CFU/100 mL before and after the pumping of the effluent water. Bae & Hou (2013) determined that the sources of enterococci in the Hurricane Katrina floodwater discharges were from fecal contamination by the sequencing results of typical fecal *Enterococcus* spp. isolated from the impacted water.

Enterococcus spp. are an important group of opportunistic pathogens capable of spreading AR at intra- and interspecies levels as demonstrated by the high prevalence of acquired AR (Da Silva *et al.* 2006). The dissemination of AR in environmental *Enterococcus* strains has increased concerns when AR gene transfer was reported in sewage water treatment plants (Tejedor Junco *et al.* 2001). The abundance of enterococcal isolates from different sources has been found to possess AR, including stormwater (Saingam *et al.* 2021), bay and ocean (Moore *et al.* 2008), municipal wastewater (Da Silva *et al.* 2006; Abriouel *et al.* 2008; Moore *et al.* 2008), vegetables and produce (Johnston & Jaykus 2004; Abriouel *et al.* 2008; Igbinosa & Beshiru 2019), and various other water bodies (Tejedor Junco *et al.* 2001; Abriouel *et al.* 2008; Macedo *et al.*

Figure 5 | Temporal changes of *Enterococcus* spp. after the hurricane impact. Sampling started on the fifth day after the heaviest impact of Hurricane Lane where the stream flow was recorded as the highest.

2011). Particularly, VRE is of concern because it is a leading cause of healthcare-associated infection that particularly affects critically ill and immunocompromised patients (Gouliouris *et al.* 2019). The detection of VRE is not limited to the clinical settings, but has been widely found in wastewater treatment plants (Beier *et al.* 2008; Varela *et al.* 2013; Rosenberg Goldstein *et al.* 2014; Oravcova *et al.* 2017; Gouliouris *et al.* 2019). In this study, an isolate of *E. durans* was found to be resistant to vancomycin and four other antibiotics. Vancomycin-resistant *E. durans* was not as common as *E. faecalis* and *E. faecium*, but it has been isolated from stool samples from patients (Cercenado *et al.* 1995) and sewage (Torres *et al.* 1994). *E. durans* were commonly found in human and animal fecal sources (Layton *et al.* 2010), which suggests that the source of the vancomycin-resistant *E. durans* isolated from Hilo Bay could be originated from non-environmental sources impacted by stormwater from Hurricane Lane.

While enterococci in the environment are generally considered to be benign, they can become opportunistic pathogens due to the possession or acquisition of virulent genes and antibiotic-resistant determinants through horizontal gene transfer (Ferguson *et al.* 2016). *E. faecalis* and *E. faecium* in human waste foster higher numbers of virulence genes compared to other sources (Ferguson *et al.* 2016). In this study, 75.5% of *Enterococcus* isolates were found to possess at least one virulence genes. Studies have shown that the most frequently detected virulent genes among environmental enterococcal species impacted by storm events were *gelE* (gelatinase) and *asa1* (aggregation substance) (Macedo *et al.* 2011; Sidhu *et al.* 2014), with *gelE* commonly associated in *E. faecalis* (Creti *et al.* 2004; Sidhu *et al.* 2014; Ferguson *et al.* 2016). However, *gelE* can also be detected in clinical isolates of *E. faecium* and *E. mundtii* (Biswas *et al.* 2016; Shokoohzadeh *et al.* 2018). Our findings indicated that *E. durans*, *E. faecalis*, *E. faecium*, *E. hirae*, and *E. mundtii* isolated from hurricane-impacted water possessed both *gelE* and *asa1*. The *asa1* gene was detected in various clinical enterococcal isolates (Biswas *et al.* 2016) and environmental isolates, except for *E. hirae* (Sidhu *et al.* 2014). The *asa1* gene, which was carried by a sex-phero-mone-containing plasmid, could spread among enterococci through conjugative transfer (Galli *et al.* 1990), and suggests the potential occurrence of horizontal gene transfer in the environment or when there are input of virulence genes from other sources through natural impacts.

The cytolysin gene *cylA*, which can be carried by either chromosome or plasmid elements, was reported primarily in *E. faecalis* isolates from clinical and food origins (Semedo *et al.* 2003; Sidhu *et al.* 2014), but rarely detected in environmental enterococcal isolates or only present in very low abundance (Semedo *et al.* 2003; Lanthier *et al.* 2011; Ahmad *et al.* 2014). Similarly, in this study, the *cylA* gene was only detected in *E. faecalis* isolates from the water environment (17.6%). The common clinically identified enterococcal surface protein, *esp*, was mostly found in *E. faecalis* and *E. faecium* (Willems *et al.* 2001; Biswas *et al.* 2016). However, in this study, the *esp* gene was not found in *E. faecalis*, but instead in *E. faecium* (36.4%) and *E. durans* (44.4%). A study revealed that *esp* genes were more frequently identified in *E. faecalis* (45%) than *E. faecium* (21%) among clinical isolates (Di Rosa *et al.* 2006). On the contrary, as much as 84% of clinical *E. faecium* were confirmed to possess the *esp* gene as compared to *E. faecalis* (33%) (Ferguson *et al.* 2016). A study done by Ferguson *et al.* (2016) found that the *esp* gene was not detected in any of the *E. faecium* isolated from beach water, but the genes are detected in 12% of *E. faecalis* (Ferguson *et al.* 2016). Since the *esp* genes were typically detected in the clinical samples, the *E. faecium* and *E. durans* isolated in this study could suggest the possibility of clinical input via excessive runoff as a result of hurricane impact.

CONCLUSIONS

In this study, we were able to isolate sufficient number of putative pathogenic *Enterococcus* spp. from coastal water immediately impacted by hurricane event, especially those responsible for human enterococcal infections such as vancomycin-resistant *E. durans*. The *Enterococcus* spp. isolated were found to possess prevalent virulence genes and multiple AR profiles that are related to non-environmental sources, suggesting considerable input from urban runoff nearby and from diffused sources of pollution. Temporal changes of *Enterococcus* spp. days after the hurricane impact suggested the ability of these bacteria to survive in the environment for a sustained period of time. Further monitoring of the coastal water quality was needed as the presence of these opportunistic human pathogenic *Enterococcus* spp. could adversely impact the human community health.

ACKNOWLEDGEMENT

This material is based upon work supported by the National Science Foundation under Grant No. CBET-1855128.

DATA AVAILABILITY STATEMENT

All relevant data are available from an online repository or repositories.

REFERENCES

Abriouel, H., Omar, N. B., Molinos, A. C., López, R. L., Grande, M. J., Martínez-Viedma, P., Ortega, E., Cañamero, M. M. & Galvez, A. 2008 Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. *International Journal of Food Microbiology* **123** (1–2), 38–49.

Ahmad, A., Dada, A. C., Usup, G. & Heng, L. Y. 2014 Occurrence of *Enterococcus* species with virulence markers in an urban flow-influenced tropical recreational beach. *Marine Pollution Bulletin* **82** (1), 26–38.

Bae, H.-S. & Hou, A. 2013 23S rRNA gene-based enterococci community signatures in Lake Pontchartrain, Louisiana, USA, following urban runoff inputs after Hurricane Katrina. *Microbial Ecology* **65** (2), 289–301.

Beier, R. C., Duke, S. E., Ziprin, R. L., Harvey, R. B., Hume, M. E., Poole, T. L., Scott, H. M., Highfield, L. D., Alali, W. Q., Andrews, K., Anderson, R. C. & Nisbet, D. J. 2008 Antibiotic and disinfectant susceptibility profiles of vancomycin-resistant *Enterococcus faecium* (VRE) isolated from community wastewater in Texas. *Bulletin of Environment Contamination and Toxicology* **80** (3), 188–194.

Beven II, J. L. & Wroe, D. 2019 *Tropical Cyclone Report: Hurricane Lane, 15–28 August 2018*. National Hurricane Center, Miami, FL.

Biswas, P., Dey, S., Sen, A. & Adhikari, L. 2016 Molecular characterization of virulence genes in vancomycin-resistant and vancomycin-sensitive enterococci. *Journal of Global Infectious Diseases* **8** (1), 16–24.

Blaimont, B., Charlier, J. & Wauters, G. 1995 Comparative distribution of *Enterococcus* species in faeces and clinical samples. *Microbial Ecology in Health and Disease* **8** (3), 87–92.

Bourafa, N., Loucif, L., Boutechnouchet, N. & Rolain, J. M. 2015 *Enterococcus hirae*, an unusual pathogen in humans causing urinary tract infection in a patient with benign prostatic hyperplasia: first case report in Algeria. *New Microbes New Infections* **8**, 7–9.

CDC 2019 Antibiotic resistance threats in the United States, 2013. [online] CDC:8.

Cercenado, E., Ünal, S., Eliopoulos, C., Rubin, L., Isenberg, H., Moellering Jr., R. & Eliopoulos, G. 1995 Characterization of vancomycin resistance in *Enterococcus durans*. *Journal of Antimicrobial Chemotherapy* **36** (5), 821–825.

CLSI 2012 *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically*. Clinical and Laboratory Standards Institute, Wayne, PA.

Creti, R., Imperi, M., Bertuccini, L., Fabretti, F., Orefici, G., Di Rosa, R. & Baldassarri, L. 2004 Survey for virulence determinants among *Enterococcus faecalis* isolated from different sources. *Journal of Medical Microbiology* **53** (Pt 1), 13–20.

Da Silva, M. F., Tiago, I., Veríssimo, A., Boaventura, R. A., Nunes, O. C. & Manaia, C. M. 2006 Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. *FEMS Microbiology Ecology* **55** (2), 322–329.

Di Rosa, R., Creti, R., Venditti, M., D'Amelio, R., Arciola, C. R., Montanaro, L. & Baldassarri, L. 2006 Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of *Enterococcus faecalis* and *Enterococcus faecium*. *FEMS Microbiology Letters* **256** (1), 145–150.

Ferguson, D. M., Talavera, G. N., Hernández, L. A. R., Weisberg, S. B., Ambrose, R. F. & Jay, J. A. 2016 Virulence genes among *Enterococcus faecalis* and *Enterococcus faecium* isolated from coastal beaches and human and nonhuman sources in Southern California and Puerto Rico. *Journal of Pathogens* **2016**.

Galli, D., Lottspeich, F. & Wirth, R. 1990 Sequence analysis of *Enterococcus faecalis* aggregation substance encoded by the sex pheromone plasmid pAD1. *Molecular Microbiology* **4** (6), 895–904.

Gouliouris, T., Raven, K. E., Moradigaravand, D., Ludden, C., Coll, F., Blane, B., Naydenova, P., Horner, C., Brown, N. M., Corander, J., Limmathurotsakul, D., Parkhill, J. & Peacock, S. J. 2019 Detection of vancomycin-resistant *Enterococcus faecium* hospital-adapted lineages in municipal wastewater treatment plants indicates widespread distribution and release into the environment. *Genome Research* **29** (4), 626–634.

Higashide, T., Takahashi, M., Kobayashi, A., Ohkubo, S., Sakurai, M., Shirao, Y., Tamura, T. & Sugiyama, K. 2005 Endophthalmitis caused by *Enterococcus mundtii*. *Journal of Clinical Microbiology* **43** (3), 1475–1476.

Hou, A., Laws, E. A., Gambrell, R. P., Bae, H.-S., Tan, M., Delaune, R. D., Li, Y. & Roberts, H. 2006 Pathogen indicator microbes and heavy metals in Lake Pontchartrain following Hurricane Katrina. *Environmental Science & Technology* **40** (19), 5904–5910.

Huycke, M. M. & Gilmore, M. S. 1995 Frequency of aggregation substance and cytolsin genes among enterococcal endocarditis isolates. *Plasmid* **34** (2), 152–156.

Igbinosa, E. & Beshiru, A. T. 2019 Antimicrobial resistance, virulence determinants and biofilm formation of *Enterococcus* species from ready-to-eat seafood. *Frontiers in Microbiology* **10**, 728.

Jett, B. D., Huycke, M. M. & Gilmore, M. S. 1994 Virulence of enterococci. *Clinical Microbiology Reviews* **7** (4), 462–478.

Jiang, S. C., Han, M., Chandrasekaran, S., Fang, Y. & Kellogg, C. A. 2020 Assessing the water quality impacts of two Category-5 hurricanes on St. Thomas, Virgin Islands. *Water Research* **171**, 115440.

Johnston, L. M. & Jaykus, L.-A. 2004 Antimicrobial resistance of *Enterococcus* species isolated from produce. *Applied and Environmental Microbiology* **70** (5), 3133.

Kapoor, V., Gupta, I., Pasha, A. T. & Phan, D. 2018 Real-time quantitative PCR measurements of fecal indicator bacteria and human-associated source tracking markers in a Texas river following Hurricane Harvey. *Environmental Science & Technology Letters* **5** (6), 322–328.

Kenzaka, T., Takamura, N., Kumabe, A. & Takeda, K. 2013 A case of subacute infective endocarditis and blood access infection caused by *Enterococcus durans*. *BMC Infectious Diseases* **13** (1), 1–4.

Kristich, C. J., Rice, L. B. & Arias, C. A. 2014 *Enterococci: From Commensals to Leading Causes of Drug Resistant Infection*. Massachusetts Eye and Ear Infirmary.

Lanthier, M., Scott, A., Zhang, Y., Cloutier, M., Durie, D., Henderson, V., Wilkes, G., Lapen, D. & Topp, E. 2011 Distribution of selected virulence genes and antibiotic resistance in *Enterococcus* species isolated from the South Nation River drainage basin, Ontario, Canada. *Journal of Applied Microbiology* **110** (2), 407–421.

Layout, B., Walters, S., Lam, L. & Boehm, A. 2010 Enterococcus species distribution among human and animal hosts using multiplex PCR. *Journal of Applied Microbiology* **109** (2), 539–547.

Lewis, C. M. & Zervos, M. 1990 Clinical manifestations of enterococcal infection. *European Journal of Clinical Microbiology and Infectious Diseases* **9** (2), 111–117.

Macedo, A. S., Freitas, A. R., Abreu, C., Machado, E., Peixe, L., Sousa, J. C. & Novais, C. 2011 Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. *International Journal of Food Microbiology* **145** (1), 315–319.

Mangiafico, S. & Mangiafico, M. S. 2017 Package 'rcompanion'. *Cran Repos* **20**, 1–71.

Moore, D., Guzman, J. & McGee, C. 2008 Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. *Journal of Applied Microbiology* **105** (4), 1017–1025.

NOAA 2021 *Station: Hilo INTL AP, HI. U.S. Climate Normals 2020: U.S. Monthly Climate Normals (1991–2020)*, National Centers for Environmental Information.

Oravcova, V., Mihalcin, M., Zakova, J., Pospisilova, L., Masarikova, M. & Literak, I. 2017 Vancomycin-resistant enterococci with vanA gene in treated municipal wastewater and their association with human hospital strains. *Science of the Total Environment* **609**, 633–643.

Park, S. Y., Shin, Y. P., Kim, C. H., Park, H. J., Seong, Y. S., Kim, B. S., Seo, S. J. & Lee, I. H. 2008 Immune evasion of *Enterococcus faecalis* by an extracellular gelatinase that cleaves C3 and ic3b. *The Journal of Immunology* **181** (9), 6328–6336.

Parte, A. C. 2014 LPSN – list of prokaryotic names with standing in nomenclature. *Nucleic Acids Research* **42** (D1), D613–D616.

Ran, Q., Badgley, B. D., Dillon, N., Dunny, G. M. & Sadowsky, M. J. 2013 Occurrence, genetic diversity, and persistence of enterococci in a Lake Superior watershed. *Applied and Environmental Microbiology* **79** (9), 3067.

Rice, L. B., Carias, L., Rudin, S., Vael, C., Goossens, H., Konstabel, C., Klare, I., Nallapareddy, S. R., Huang, W. & Murray, B. E. 2003 A potential virulence gene, hyl Efm, predominates in *Enterococcus faecium* of clinical origin. *Journal of Infectious Diseases* **187** (3), 508–512.

Robbins, W. C. & Tompsett, R. 1951 Treatment of enterococcal endocarditis and bacteremia: results of combined therapy with penicillin and streptomycin. *The American Journal of Medicine* **10** (3), 278–299.

Roca, M. A., Brown, R. S. & Solo-Gabriele, H. M. 2019 Fecal indicator bacteria levels at beaches in the Florida Keys after Hurricane Irma. *Marine Pollution Bulletin* **138**, 266–273.

Rosenberg Goldstein, R. E., Micallef, S. A., Gibbs, S. G., George, A., Claye, E., Sapkota, A., Joseph, S. W. & Sapkota, A. R. 2014 Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse. *Science of the Total Environment* **466–467**, 404–411.

Ruoff, K. L., De La Maza, L., Murtagh, M. J., Spargo, J. D. & Ferraro, M. J. 1990 Species identities of enterococci isolated from clinical specimens. *Journal of Clinical Microbiology* **28** (3), 435–437.

Saingam, P., Li, B., Sung, S. & Yan, T. 2021 Immediate impact of Hurricane Lane on microbiological quality of coastal water in Hilo Bay, Hawaii. *Environmental Science & Technology* **55** (5), 2960–2967.

Semedo, T., Santos, M. A., Martins, P., Lopes, M. F. S., Marques, J. J. F., Tenreiro, R. & Crespo, M. T. B. 2003 Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. *Journal of Clinical Microbiology* **41** (6), 2569–2576.

Shankar, V., Baghdayan, A. S., Huycke, M. M., Lindahl, G. & Gilmore, M. S. 1999 Infection-derived *Enterococcus faecalis* strains are enriched in esp, a gene encoding a novel surface protein. *Infection and Immunity* **67** (1), 193–200.

Shokohizadeh, L., Ekrami, A., Labibzadeh, M., Ali, L. & Alavi, S. M. 2018 Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. *BMC Research Notes* **11** (1), 1.

Sidhu, J. P. S., Skelly, E., Hodgers, L., Ahmed, W., Li, Y. & Toze, S. 2014 Prevalence of *Enterococcus* species and their virulence genes in fresh water prior to and after storm events. *Environmental Science & Technology* **48** (5), 2979–2988.

Silvius, K., Moravcik, P. & James, M. 2005 *Hilo Bay Watershed-Based Restoration Plan. Submitted to HDOH, Polluted Runoff Control*.

Sinigalliano, C. D., Gidley, M., Shibata, T., Whitman, D., Dixon, T. H., Laws, E., Hou, A., Bachoon, D., Brand, L. & Amaral-Zettler, L. 2007 Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area. *Proceedings of the National Academy of Sciences* **104** (21), 9029–9034.

Tejedor Junco, M. T., Gonzalez Martin, M., Pita Toledo, M. L., Lupiola Gomez, P. & Martin Barrasa, J. L. 2001 Identification and antibiotic resistance of faecal enterococci isolated from water samples. *International Journal of Hygiene and Environmental Health* **203** (4), 363–368.

Torres, C., Reguera, J., Sanmartin, M., Pérez-Díaz, M. & Baquero, F. 1994 Van A-mediated vancomycin-resistant *Enterococcus* spp. in sewage. *Journal of Antimicrobial Chemotherapy* **33** (3), 553–561.

USEPA 2006 Method 1600: *Enterococci in Water by Membrane Filtration Using Membrane-Enterococcus Indoxyl-Beta-D-Glucoside Agar (mEI)*. U.S. Environmental Protection Agency, Washington, DC.

USEPA 2012 *Recreational Water Quality Criteria*. U.S. Environmental Protection Agency, Washington, DC.

Vankerckhoven, V., Van Autgaerden, T., Vael, C., Lammens, C., Chapelle, S., Rossi, R., Jubes, D. & Goossens, H. 2004 Development of a multiplex PCR for the detection of *asa1*, *gelE*, *cylA*, *esp*, and *hyl* genes in enterococci and survey for virulence determinants among European hospital isolates of *Enterococcus faecium*. *Journal of Clinical Microbiology* **42** (10), 4473–4479.

Varela, A. R., Ferro, G., Vredenburg, J., Yanik, M., Vieira, L., Rizzo, L., Lameiras, C. & Manaia, C. M. 2013 Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. *Science of the Total Environment* **450–451**, 155–161.

Waters, C. M., Hirt, H., McCormick, J. K., Schlievert, P. M., Wells, C. L. & Dunny, G. M. 2004 An amino-terminal domain of *Enterococcus faecalis* aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. *Molecular Microbiology* **52** (4), 1159–1171.

Willem, R. J., Homan, W., Top, J., van Santen-Verheuvel, M., Tribe, D., Manzoros, X., Gaillard, C., Vandenbroucke-Grauls, C. M., Mascini, E. M. & van Kregten, E. 2001 Variant *esp* gene as a marker of a distinct genetic lineage of vancomycin resistant *Enterococcus faecium* spreading in hospitals. *The Lancet* **357** (9259), 853–855.

First received 24 August 2021; accepted in revised form 9 October 2021. Available online 21 October 2021