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ABSTRACT

To address the needs of emerging bandwidth-intensive applica-
tions in 5G and beyond era, the millimeter-wave (mmWave) band
with very large spectrum availability have been recognized as a
promising choice for future wireless communications. In particular,
IEEE 802.11ad/ay operating on 60 GHz carrier frequency is a highly
anticipated wireless local area network (WLAN) technology for
supporting ultra-high-rate data transmissions. In this paper, we
describe additions to the ns-3 802.11ad simulator that include 3-
D obstacle specifications, line-of-sight calculations, and a sparse
cluster-based channel model, which allow researchers to study com-
plex mmWave Wi-Fi network deployments under more realistic
conditions. We also study the performance accuracy and simulation
efficiency of the implemented statistical channel model as com-
pared to a deterministic ray-tracing based channel model. Through
extensive ns-3 simulations, the results show that the implemented
channel model has the potential to achieve good accuracy in perfor-
mance evaluation while improving simulation efficiency. We also
provide a detailed parametric analysis on the statistical channel
model, which yields insight on how to properly tune the model
parameters to further improve performance accuracy.
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1 INTRODUCTION

In 5G and 6G eras, the proliferation of mobile devices with data hun-
gry applications, such as virtual/augmented reality and real-time
high-definition video, is pushing communication to higher carrier
frequencies, e.g. the mmWave band, which has a very large amount
of bandwidth available. In recent years, several standardization ef-
forts such as IEEE 802.11ad/ay [7, 8] and Wireless Gigabit Alliance
(WiGig) are tailored to enable 60 GHz mmWave communication
for wireless local-area networks (WLANS) to support the emerging
bandwidth-intensive applications.

However, 60 GHz radios are extremely vulnerable to propaga-
tion loss and blockage effects [12], which makes the network per-
formance quite sensitive to environmental characteristics. In this
regard, an accurate and reliable performance evaluation of such
complex network becomes critical to identify which protocols and
network deployments can provide the best quality of experience to
the end user. Network simulation plays a significant role in testing
the next-generation network performance by allowing researchers
to better explore the space of networking solutions through exten-
sive variation of the network configuration parameters and envi-
ronment settings. In particular, ns-3 [16] is a powerful system-level
simulation tool for evaluating wireless networks, where a number
of advanced features have been developed and integrated, such as
mmWave and NR modules [19] for cellular networks, and extended
Wi-Fi modules to support IEEE 802.11ad/ax/ay [2, 9] for WLANS.

For end-to-end 802.11ad/ay WLAN simulations, an accurate
channel model, which takes into account important properties of 60
GHz electromagnetic waves propagation and environment features,
is of paramount importance to assess the system design and perfor-
mance. Different from the propagation characteristics at frequency
bands below 6 GHz, the diffraction ability of mmWave signal is
much weaker and less reliable due to its smaller wavelength. In
particular, obstacles blocking the line-of-sight transmission path
create a much more substantial problem for mmWave signals. While
objects in the environment can act as scatterers or reflectors to
create alternative links, the quality is highly dependent on the
environmental characteristics, e.g., geometrical layout and object
reflectivity.

In traditional WLANS operating on the carrier frequency of 2.4
or 5 GHz, the channel modeling approach generates separate mod-
els for path loss and channel impulse response (CIR) since most
of the channel paths contribute to the total received signal power.
Thus, the path loss function (e.g., in log-distance based channel
model) can well describe average power behavior of electromag-
netic field for different distances. However, in WLANSs operating
in the mmWave band, the use of highly directional antennas and
its multi-path sparsity nature will filter out all but a few clusters of
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the propagation channel, where both the frequency selectivity and
propagation loss of the channel is defined by the characteristics
of the clusters. Thus, the path loss and CIR may be significantly
different depending on the characteristics of each cluster, and the
simple path-loss model is no longer able to accurately describe the
channel characteristics. Therefore, for the design and simulation of
mmWave WLAN:S, it is necessary to account for the space and time
of the multi-path components (MPCs) to accurately model the chan-
nel. To this end, statistical modeling and deterministic modeling
are the two most popular approaches. Statistical channel models
generate the MPCs from a set of random probabilistic distributions,
whose parameters are determined by a statistically fit from actual
channel measurement data. Deterministic channel models rely on
ray tracing to characterize the explicit propagation properties of
every path component using geometrical optics, which provides
an extremely precise channel characteristic when the environment
details are known.

In this paper, we conduct a comprehensive performance study
on a statistical channel model and a deterministic ray-tracing based
channel model in mmWave Wi-Fi networks using ns-3. We first
develop an obstacle-specific scenario module and a sparse cluster-
based channel module in ns-3, which accurately model obstacles
and build environment features into the propagation model. Then,
through extensive network simulations, we study the performance
accuracy and simulation efficiency of the implemented statistical
channel model by using a ray-tracing based channel model as the
comparison point. The main contributions of this work are as fol-
lows:

e We develop an obstacle-specific scenario model in ns-3, which
allows the user to flexibly simulate various mmWave WLAN
scenarios with actual object deployment and accurate LoS
determination.

e We implement a sparse cluster-based (SC) wireless channel
model in ns-3 that statistically models multi-path compo-
nents in 802.11ad/ay enabled Wi-Fi networks.

e We perform a detailed comparison between the statistical
channel model and ray-tracing based channel model, where
the results show that the implemented SC channel model has
potential to achieve an acceptable accuracy in performance
evaluation while maintaining a good simulation efficiency.

e We conduct a parametric analysis on SC channel model,
which yields insight on how to properly tune the modeling
parameters to further improve the performance accuracy.

2 OVERVIEW OF CHANNEL MODELING FOR
MMWAVE NETWORKS

Channel modeling is critical to evaluate the performance of next-
generation wireless network, here we give an overview of different
channel models used in mmWave networks.

2.1 Log-distance Based Model

The log-distance-based propagation model is widely used in wire-
less networks, where the propagation loss between transmitter
and receiver is calculated based on a simple path loss model, i.e.
a closed-form formula that depends on the signal frequency and
separation distance. Then, based on the actual measurement in the

environment, some modeling parameters (e.g., path loss exponent
«) are tuned to make the path-loss calculation fit the actual mea-
surement data as much as possible. For example, [22] evaluated a
generic indoor path-loss model in the 60 GHz band for the LoS and
non-LoS (NLoS) cases in a laboratory scenario, where the path-loss
exponents were measured as 2.0 and 5.4, respectively. In the tech-
nical report of 3GPP [1], multiple path loss models are defined to
apply in different scenarios, including outdoor urban/rural scenario
and indoor scenario, where the specified expression and standard
deviation of multi-path fading distribution are also given for each
scenario. However, as communication moves to higher frequen-
cies, e.g., mmWaves, this kind of channel model becomes highly
inaccurate, especially in NLoS scenarios since it fails to capture the
explicit multi-path components (MPCs) of the signal.

2.2 Statistical Model

The statistical model describes the stochastic characteristic of ampli-
tudes of the resolvable MPCs and path time of arrival in a wireless
network. MPCs are clustered in both spatial and temporal domains,
where a cluster consists of a group of rays having similar delays
and directions of departure and arrival. Actual measurement data is
used to statistically characterize the inter-cluster and intra-cluster
properties in propagation channel. A popular and widely-used sta-
tistical model is the Saleh-Valenzuela (S-V) channel model [20],
where clusters and rays are modeled with specific probability dis-
tributions. In recent years, a number of works studied the use of
this cluster-based channel model in mmWave networks [21, 23, 24].
For example, [23] studied a 60 GHz channel model for indoor of-
fice environment based on the S-V model with spatio-temporal
clustering properties. [21] proposed a S-V model that is useful in
designing mmWave WPAN systems used in a conference room en-
vironment. The S-V model is an example of a sparse cluster-based
(SC) channel model, because it is tailored to the narrow-beam direc-
tional antennas and limited scattering nature of mmWave wireless
networks.

The statistical nature of these models makes them more easily
model common indoor office/lab scenarios and effectively repro-
duce the stochastic properties of mmWave channels in a given type
of environment, but may prevent researchers from evaluating the
impact of the channel dynamics in a specific environment or site.

2.3 Ray-tracing Based Model

Ray tracing techniques can be used to precisely model the propaga-
tion of mmWave signals in any specific scenario [5, 10]. Different
from statistical channel models, the cluster and ray found using
ray tracing technology is based on the geometry of scenario and
physical interaction with the environment, which can characterize
the explicit propagation properties of each MPC, including angle
of arrival at the receiver, angle of departure at the transmitter, time
delay, path gain, doppler shift, and phase offset, etc., thereby provid-
ing higher accuracy in a specific network scenario. Several related
works focused on developing ray-tracing based channel models
[6, 18, 25], such as in [11], the authors studied a Quasi-deterministic
(QD) channel model for mmWave networks using ray-tracing tech-
nique to generate deterministic components combined with sto-
chastic models for the generation of diffuse components. [2] also
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implemented the QD channel model for 802.11ad networks in ns-3
that can interface with the NIST ray tracer [3]. This QD method-
ology exploiting the deterministic description of the environment
has been proposed as a candidate channel modeling approach for
IEEE 802.11ay standard [14].

Compared to the statistical channel model, the ray-tracing based
model can provide an extremely precise simulation result, but it is
more computationally intensive than the statistical model for the
generation of a single channel instance, which may limit the usage
of large-scale simulations, especially when the density of deployed
objects (i.e., reflecting surfaces), client locations, and APs is fairly
high in the environment.

In what follows, we first introduce our implementation on a
WLAN scenario module and a statistical channel module in ns-3,
and then study the network performance provided by our imple-
mented channel and a QD channel with extensive ns-3 simulations.

3 NS-3 IMPLEMENTATION

In this section, we provide an overview of our implementations on
obstacle-specific scenario model and sparse cluster-channel model
in an 802.11ad ns-3. The source code can be found at [17].

3.1 Obstacle-specific Scenario Model

In the 802.11ad WLAN, due to the susceptibility of 60 GHz mmWave
signals to blockages, small changes in the location of communicat-
ing devices can have a dramatic impact on link performance. For
example, at 60 GHz, when a LoS path between a transmitter and a
receiver is blocked by an obstacle, it may lead to 20-30 dB of addi-
tional received signal loss. Therefore, accurately modeling obstacles
in the environment is critical for mmWave network simulations.
On the other hand, with the knowledge of obstacle distribution
and tranceivers’ positions, LoS/NLoS condition of a mmWave path
should be determined based on the accurately geometric calcula-
tion instead of a simple probabilistic model, which will make the
estimation on channel quality more precise. In this regard, since
ns-3 lacks a general way to set up the specific scenario with ob-
stacles in WLAN, we develop a new class WiFiScenario under
the general wifi module. As shown in Figure 1, WiFiScenario
mainly includes the following classes and functionalities:
Scenario configuration: We provide the room configuration
functionality SetRoomConf (), which can generate a single rect-
angular room with arbitrary length and width. Based on our pre-
vious work in [13], we also implement the functionality of LoS-
optimal ceiling-mounted AP placement for different numbers of
APs, such that ns-3 users can easily determine the best AP deploy-
ment in the specific scenario by calling A1locateOptAP ().
Obstacle generation: We implement the Obstacle class that
can generate cuboid-based objects to model furniture items in the
network scenario. Generally, we provide two generation mode: 1)
random generation modes, where the center of each obstacle fol-
lows a Poisson point process with a specific density A, the widths,
lengths, and heights of furniture-type obstacles follow truncated
normal distributions with specific parameters, and each obstacle’s
orientation follows a uniform distribution from 0 to r; 2) determin-
istic generation mode, where obstacles are generated with specified
locations and dimensions that are provided within the simulation

script. The latter mode can be used to create a deterministic WLAN
scenario representing a specific office/lab environment having fur-
niture items at known locations.

Client allocation: We implement the ClientAllocation
class to generate the locations of the client devices. We provide
different client placement methods that allow ns-3 users to select
locations that follow: (1) the uniform distribution within the room,
(2) a truncated normal distribution within a specific area in the sce-
nario, or (3) an obstacle-dependent distribution, where an obstacle
is first randomly chosen as the base location, and then the client is
uniformly distributed on the top or sides of the selected obstacle.

LoS/NLoS analysis: With the knowledge of the scenario con-
figuration, obstacle sizes and locations, and client locations, a LoS—
Analysis class is implemented to enable an accurate LoS-determ-
ination function. This function checks whether the direct line be-
tween an AP and a client intersects any obstacle, and a LoS flag
is returned if no intersection exists after traversing all obstacles,
otherwise the client is NLoS to that AP.!

We also provide the interface Set ScenarioChannel () to
enable the WifiChannel module to obtain the LoS/NLoS results
of established links from the WiFiScenario module, which helps
the channel modeling procedure as described in the next subsection.

WifiScenario

(Scenario Conﬁguration) C Obstacle Generation )

C Client Allocation ) C LoS/NLoS Analysis )

WifiPhy

1

WifiChannel

Log-distance based Sparse cluster-based
channel model channel model

H DirectionalAntenna

‘ MacHigh/MacLow H

channel model

Quasbdeterministic)

Figure 1: New Added Classes (Marked in Blue Color) in Wi-
Fi Module of 802.11ad ns-3

3.2 Sparse Cluster-based Channel Model

We implement the sparse cluster-based (SC) channel based on Saleh-
Valenzuela (S-V) model [23] to simulate 60 GHz indoor scenario
in ns-3, which characterizes the multipath components (MPCs)
arriving in clusters, formed by multiple reflections from the objects
in the vicinity of a transceiver. Figure 2 reports a diagram for the
procedures involved in the channel model implementation.

In specific, we provide the interface SwitchSCchannel () in
WifiScenario module to toggle between different channel mod-
els, such that ns-3 users can flexibly choose different appropriate
channel model when they set up the WLAN scenario, where the
enabler flag can be transferred to WifiChannel module with

INote that the ns-3 Bui 1ding module includes a crude LoS estimation, where two
nodes in the same building are considered LoS and nodes not in the same building are
considered NLoS, whereas our implemented function does a more accurate LoS deter-
mination when nodes are located in the same building/room with multiple obstacles
deployed. Integration of more accurate LoS determination into the ns-3 Building
module is future work.
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Figure 2: Diagram of the SC Channel Realization Procedure

the interface Set ScenarioModel (). In SC channel modeling,
the LoS component is modeled based on the free-space path loss,
and for NLoS components, we generate the clusters [ and rays k
within each cluster arriving according to Poisson processes with
different rates and having inter-arrival times that are exponentially
distributed, where the generalized impulse response is derived by
following equation as defined in [20]:

L-1Ny-1
h(t) = Z Z ag,1 - exp(jdr,r) - 6(t = Tj — 1),
1=0 k=0
where the number of clusters L and the number of rays within
each cluster N, are modeled as Poisson distributed with predefined
parameter L and Ny, respectively. The phases ¢ ; are uniformly
distributed random variables, T; is the cluster arrival time given by
a Poisson process with arrival rate A, and the ray arrival time 7. ;
follows two-side exponential decay with mixture the ray arrival
rate A_ and A4, ie.,

1)

Pty l1iep) = Ae™ (=m0 e < 0

{ Pt gltiorg) = Ape M (T =To1d) e > 0, @

Note that these distribution parameters are specified depending on
the LoS/NLoS condition between the transceiver, thus we should
first obtain the channel condition result from LoSAnalysis ()
function in WiFiScenario module, and then generate the corre-
sponding modeling parameters of clusters and rays. After that, we
calculate the average tap weight (i.e., path power gain) of each ray,
where the tap weights aj; are random variables in Eq. (1), which
are distributed according to the small-scale fading distribution, i.e.

Qe Ti/Te=trtly,
Qe Ti/Te=kily — K,

2\ _ k =1
E{lag| }—{ 1 (3)
where y is the decay constant for the two-side exponential decay,
Qo is the initial amplitude that depends on the distance between the
nodes, and the Ricean factor K is introduced to improve the fit of the
model into the experimental data [4], where the relative strength of
specular component with respect to precursor or post-cursor com-
ponents is gauged through K. Next, the SC channel gain between
the transmitter and receiver is calculated as G = p + 3}; X |ag 2,
where p is computed based on Friis propagation loss model, i.e., a
function of directional antenna gains, the distances between nodes,
the signal wavelength, and the reflectivity of surrounding objects
[4, 21]. Specifically, when a LoS condition exists, G is determined by
the path gain p of the dominant LoS component plus lower-order
reflection terms, whereas in NLoS conditions, the total path gain

is composed solely of the path gain of NLoS components with the
reflection coeficient Ry, including several clusters and rays that fol-
low the specific distributions. Finally, the received power at RX side
is calculated as the sum of transmitted power t xPowerDbm and G
to estimate the received signal-to-noise power ratio performance.

By default, all predefined modeling parameters (e.g., cluster/ray
decay time, arrival rate, K-factor, and Qo, etc.) are chosen from
[4, 23], which are derived based on measurements in real 60 GHz
office/lab network environments. Due to the use of narrow-beam
directional antennas in 60 GHz WLAN scenarios, the expected
number of clusters and rays at each receiver location are set as
2 and 6, respectively, which is in accordance with [15]. In addi-
tion, we provide three different reflective coefficient distributions
in the channel model, which are all normal distributions: N (0.35,
0.05) (Mode 1), N(0.6, 0.05) (Mode 2), and N(0.85, 0.05) (Mode
3). These are intended to model scenarios with objects having low,
medium, and high reflectivity, respectively. We provide the interface
SetReflectMode () for ns-3 users to select different reflective
modes in WiFiScenario module, and Mode 2 is set by default
in the simulator.

3.3 Quasi-deterministic Channel Model

To simulate the ray tracing-based channel model as a comparison
point, we adopt the Quasi-Deterministic (QD) channel model from
[2], which determines the geometry-based MPCs by modeling the
interaction of the mmWave signal with object surfaces. The MPCs
are obtained by ray-tracing techniques, and the channel impulse
response is defined in [2] as:
N-1 )
h(t) = 3 107PHR9 . (Y Vi) - I
i=0
where N is the number of generated rays, PL; and ¢; are the path
loss and phase shift of ray i, and Y;y, and Yy, are the radiation
pattern of the transmitter and receiver array at ray i, respectively.
For the evaluation results of QD model in this paper, we directly
use the ns-3 802.11ad simulator with QD channel implementation
from [2], which is developed jointly by the U.S. National Institute
of Standards and Technology (NIST) and the IMDEA Networks
Institute. Specifically, we run ns-3 simulations using the QD channel
model with the following steps:

4)

(1) A WLAN scenario is set up with multiple objects (i.e., cuboid
obstacles) in the room, and valid locations of APs and clients?.

2The valid node positions are constrained so that a node is not inside any objects or in
conflict with another node’s position.
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Figure 3: Scenario and AP Deployments: (a) Scenario Example; (b)-(d) Deployments of 1-3 Ceiling-mounted APs
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(2) For the given scenario, the QD channel is realized by using
NIST QD channel realization software [3], which uses ray
tracing within MATLAB® to determine the strongest path
components. The software then generates a QD output file
that includes the delay, path gain, AoD, and AOA, etc, for
the strongest components.

(3) The QD output file is then directly used as input to ns-3
802.11ad QD model, which parses the file and uses Eq. (4) to
compute the channel gains.

Note that in our simulated scenarios, the traced MPCs are in-
teracting not only with the walls, ceiling, and floor, but also with
the objects deployed in the room, which provides high resolution
estimates based on the ray tracing technique.

4 EVALUATIONS AND RESULTS

4.1 Scenario Settings

We consider a room configuration of 12mx8mx3m with the obstacle
model of Section 3.1 and the following specific features: 1) obstacles
are randomly placed on the floor; 2) the center of each obstacle
follows a Poisson point process with a specific density A (number of
obstacles in unit area); 3) the widths, lengths, and heights of obsta-
cles follow the truncated normal distributions W~ 7°N(0.56, 0.08,
0.25, 1.25), L~ 7N(1.08, 0.18, 0.5, 1.75), and H~ 7 N(1.5, 0.35, 1.2,
2.0)), respectively; 4) each obstacle’s orientation follows a uniform
distribution © ~ U(0, ). Each client is randomly deployed within
the room, and mmWave APs are placed according to the optimal
placement methods from [13] (see Figure 3 (b)-(d)). We employ a
flat-top directional antenna model with a constant high main lobe
gain within a narrow beamwidth and zero gain outside the main
beam. This is similar to the directional antenna model used in the
QD ray-tracing simulation. This setting is based on a real-life lab
environment as a guiding example. All evaluations are done at the
mmWave frequency of 60 GHz based on IEEE 802.11ad protocol
with single-carrier PHY mode, and all length units are in meters
throughout the paper.

In this setting, we evaluate the user throughput performance
over different Wi-Fi scenarios based on the SC and QD channel
models in ns-3. To perform a comprehensive comparison between
the two channel models, we set up various network scenarios with
different numbers of deployed APs (1-3 APs), obstacle densities
A (low, medium, and high densities with 4 = 0.1/m?%, 0.2/m?, and
0.3/m?, respectively), and reflection coefficients (low, medium, and
high reflectivities with mean values of 0.35, 0.60, and 0.85, respec-
tively). For each combination of obstacle density, AP deployment,
and reflection coefficient, we randomly generate 5 different obstacle
configurations using the WiFiScenario module. Each data point

0 2 4 6 8 10 12 0 2 4 6 8 10 12
(©) (d)

in our results is an average value over 100 simulation runs, where
there are 20 different randomly located clients simulated over the 5
different obstacle configurations for each set of parameters.

In one run, the randomly located client is allocated a specific
time slot for downlink transmission with its connected AP, and the
link throughput (Th) under both SC and QD channels is evaluated.
We define a performance difference ratio (PDR) to measure the dif-
ference between the SC and QD channel models in a simulation run,
i.e., PDR = |Thsc — Thop|/(Thmax — Thmin), where the denomi-
nator represents the difference between the maximum throughput
and minimum throughput observed across all simulation runs in a
data set.? Since ns-3 is a packet-level simulator and most users are
interested in network-level measurements, we chose to compare
packet throughput results rather than PHY-layer metrics such as
signal-to-noise ratio.

In addition to comparing the SC and QD channel models’ through-
puts, we also tune the SC model parameters to better model the
different scenarios and we compare the computation times associ-
ated with the different calculations in the two models. Note that
spatial correlation is accounted for in LoS/NLoS calculations. How-
ever, any potential spatial correlation in nearby NLoS channels is
not accounted for due to the stochastic nature of the SC model.

4.2 Comparison Between SC and QD Channel
Models for Medium Reflectivities

We begin by investigating the PDR for varying numbers of APs and
obstacle densities with the reflectivity set to the middle value. First,
with the medium obstacle density, we vary the number of deployed
APs according to the placement methods shown in Figure 3 (b)-
(c). The cumulative distribution function (CDF) plot of PDRs over
all simulation instances is reported in Figure 4, and the results of
LoS and NLoS cases are shown separately. It is quite clear from
the figure that the two different models produce nearly identical
throughputs under LoS conditions. When an LoS path between the
client and an AP exists, the dominance of the LoS path term in
the channel gain produces very similar results for the two models.
There is some small variation in the predicted gain for the SC model
due to its stochastic nature. This shows up in the single AP case,
where a very small percentage of cases show a small but perceptible
throughput difference from the QD model. When there are multiple
APs, the gain is chosen as the maximum over the paths to the

3In ns-3’s 802.11ad module, the maximum data rate on a link is approximately 4.6
Gbps (corresponding to MCS 12). Since we simulate only a single link at a time to
compare the two channel models, we set the application data rate to 4.5 Gbps in order
to saturate the highest-quality link simulated. This resulted in a maximum achieved
throughput of around 4 Gbps, which is an upper bound on the PDR’s denominator.
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Figure 4: CDF of PDR for LoS and NLoS Links and a Varying
Number of APs

different APs, which results in a smaller variation than for a single
random channel gain.

From Figure 4, we see that the largest differences between the
two models occurs when no LoS path exists to any of the APs.
However, even for NLoS cases, 75% or more of the links have a PDR
of 0.1 or less. This corresponds to an absolute difference of at most
400 Mbps, which is very close to the average difference between
two consecutive MCS levels (data rates) in 802.11ad. Thus, in the
vast majority of NLoS cases, the SC model results in a throughput
that amounts to at most a difference of one MCS level, which is
quite good. We also observe that having multiple APs reduces
the difference between the two models substantially, again due to
choosing the maximum gain across the different APs.

In Figure 5, we investigate how the obstacle density impacts the
performance difference between SC and QD channels with 2 APs
deployed. This case shows very similar behavior to the varying APs
scenario in that LoS cases show very little difference between the
two models while NLoS cases have a larger PDR. We see from the
figure that for low and medium obstacle densities, the two models
throughputs’ are still fairly close for NLoS cases while larger differ-
ences occur at high obstacle densitites. This is because with more
objects deployed in the scenario, QD channel has more potential to
produce better-quality reflection paths that contribute to the link
performance, which makes the SC channel model underestimate
the channel gain with its fixed statistical modeling parameters.

4.3 Parametric Analysis of SC Channel Model
for Medium Reflectivities

By default in the simulator, the expected number of clusters L and
rays N, within each cluster are set as 2 and 6, respectively, based on
the experimental investigations from [15]. Here, still considering
the medium reflectivity case, we increase these two parameters to 3
and 8 and evaluate the PDR across different scenario configurations
as shown in Figure 6 and Figure 7. Compared to the corresponding
results with default parameters in Figure 4 and Figure 5, the PDR is
further reduced; for all cases, the throughputs for the two channel
models on more than 90% of the NLoS links were within 10% of
each other. This result demonstrates that increasing the expected
number of clusters and rays in SC channel model can improve the
accuracy of the SC model for this medium reflectivity case.
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Figure 5: CDF of PDR for LoS and NLoS Links and Varying
Obstacle Density

So far, we have looked at comparisons on a per link basis. How-
ever, one also might be interested to evaluate performance that is
averaged over multiple client locations for a given scenario. For
example, considering the worst case with 1-AP and medium ob-
stacle density (see red-solid line in Figure 6), the PDR averaged
over 20 client locations for the NLoS links are 0.0432, 0.0355, 0.0265,
0.0146, and 0.0309, for the 5 different obstacle configurations . Thus,
the throughput calculated under the SC channel model is within
about 1.5-4% of the QD channel model’s throughput when aver-
aged over 20 client locations, even for the worst case scenario and
only considering the difficult NLoS cases.
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Figure 6: CDF of PDR for Varying Number of APs with
Tuned Channel Parameters
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Next, we perform a detailed study on parametric tuning in SC
channel model. Here we choose two scenarios having larger PDRs
as reference cases, i.e., the 1-AP scenario in Figure 4 and the high-
OD scenario in Figure 5, which are referred to as Case 1 and Case
2 for simplicity. Then we tune the SC channel parameters L and
N, within a larger range to evaluate the performance difference
between SC and QD channel.
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Figure 8: PDR for Different SC Channel Parameters and
NLoS Instances Only (Case 1)

Since SC and QD channels show a fairly good consistency under
LoS conditions, here we solely focus on the NLoS links. Figure 8
shows the box-plot of PDR under various parameter settings for
Case 1. It is clearly observed that the performance difference be-
tween two channels becomes smaller when increasing the expected
number of clusters and rays, but it is not always true that the larger
(L, Ny) the better PDR, since the optimal point is found at around
(3, 8) in the evaluated cases. The same result can be seen in the
Figure 9 for Case 2, and tuning L and N; to (3, 8) or (4, 10) results in
a good performance agreement between the two channel models.
Thus, contrary to the results reported in [15], we find that the (2,
6) parameter choices for clusters and rays is not the best choice, at
least when considering agreement with the ray-tracing-based QD
channel model at medium obstacle reflectivity.
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Figure 9: PDR for Different SC Channel Parameters and
NLoS Instances Only (Case 2)

(4,10)

4.4 Comparison Between SC and QD Channel
Models for Different Reflectivities
In this section, we investigate how the reflectivity of objects im-

pacts the evaluated performance for the two channel models. As
discussed in Sec. 3.2, three different reflectivity modes are provided

in the SC channel model, which apply low, medium, and high re-
flection coefficients. Here we fix L and N; at (3, 8), and then vary
the reflectivity mode in the evaluated network scenarios.

Figure 10 shows the results of the Case 1 scenario, which was
the most problematic for the SC model at medium reflectivity. We
can see that the performance difference becomes smaller between
the two channel models with the higher reflectivity mode. In that
situation, the PDR even for NLoS links is less than 0.08, which
is quite good. This is because with objects made of highly reflec-
tive materials, e.g. metal, NLoS reflection paths retain more signal
power resulting in link throughputs that are close to the maximum
achievable rate in 802.11ad WLANSs, thereby narrowing the per-
formance gap for the two channel models. At low reflectivity, the
performance gap for NLoS links gets slighty larger than at medium
reflectivity for this problematic Case 1. In this situation, the QD
model consistently predicts very low rates for the NLoS links while
the stochastic nature of the SC model produces some higher rates
resulting in a somewhat larger PDR.
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Figure 10: CDF of PDR for Different Reflectivity Scenarios

4.5 Computation Time for SC and QD Channel
Models

In this section, we compare the simulation running times* for the
SC and QD channel models. The SC channel running time is only
within ns-3, whereas the QD channel running time includes both
the MATLAB® ray-tracer execution time and the ns-3 simulation
time. As an additional reference point, we show the running time
for the same simulations under the default log-distance-based path
loss model. We note that the simple log-distance-based model is
known to be highly inaccurate for mmWave channels due to the fact
that it ignores the sharp differences between LoS and NLoS links.
However, its running time provides a point of reference for the
simulation slowdown when using more complex channel models.

Each data point in the figures is the average running time over 5
obstacle configurations where, for each configuration, the cumu-
lative running time over 20 simulation runs with different client
locations is calculated. Each simulation run covered 0.5 seconds of
network execution, which at the very high application rate of 4.5
Gbps, corresponds to about 200,000 WiFi packets worth of data per
simulation run. Figure 11 shows the running times as the number of
APs is increased and Figure 12 shows the running time for different

4We evaluate the running times on an Intel(R) Core(TM) i3-2120 3.30GHz CPU work-
station with 2 cores and 3 logical processors.
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obstacle densities. As is expected, increasing the number of APs or
obstacles slows down the simulations, but the running time with
the SC channel model increases much more slowly as the number
of APs or the obstacle density increases, as compared to the QD
model. While the ns-3 times are fairly similar for the SC and QD
models, the MATLAB® ray tracing time for the QD model increases
rapidly with the number of APs or obstacles. This is as expected
due to the number of rays that must be traced being substantially
greater when there are more APs or obstacles to consider.
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Figure 11: Simulation Running Time vs. Number of APs for
Different Channel Models
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Different Channel Models

When comparing the running time of the SC model simulations
to that of the highly inaccurate default model, we see that, in most
cases, there is roughly a 2x slowdown. However, for low obsta-
cle densities, the slowdown is very slight while for high obstacle
densities, it is closer to a 3x slowdown. Given its substantial in-
crease in accuracy, the SC model slowdown could be considered an
acceptable trade-off for all but the most time-sensitive simulations.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we reported on the accuracy and running time of
a sparse cluster-based (SC) channel model for mmWave WLAN
simulation. While these early results are fairly promising, there
are issues still to be addressed. The simulations reported herein
involved homogeneous environments where all obstacles (includ-
ing walls) had the same reflectivities. More study is required to
determine how to get the best accuracy from the SC model in het-
erogeneous environments. However, we believe that modeling only
the more highly reflective objects in the environment might still
yield fairly accurate results since those will be the dominant scat-
terers. A challenge on the computational efficiency aspect is how
to deal with the necessary LoS calculations when clients are mobile.
The simulation results reported herein were for stationary clients

so only one LoS calculation was needed per simulation run. We plan
to explore pre-calculated LoS maps and probabilistic LoS modeling
to target scenarios with mobile clients.
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