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ABSTRACT

To address the needs of emerging bandwidth-intensive applica-

tions in 5G and beyond era, the millimeter-wave (mmWave) band

with very large spectrum availability have been recognized as a

promising choice for future wireless communications. In particular,

IEEE 802.11ad/ay operating on 60 GHz carrier frequency is a highly

anticipated wireless local area network (WLAN) technology for

supporting ultra-high-rate data transmissions. In this paper, we

describe additions to the ns-3 802.11ad simulator that include 3-

D obstacle specifications, line-of-sight calculations, and a sparse

cluster-based channel model, which allow researchers to study com-

plex mmWave Wi-Fi network deployments under more realistic

conditions. We also study the performance accuracy and simulation

efficiency of the implemented statistical channel model as com-

pared to a deterministic ray-tracing based channel model. Through

extensive ns-3 simulations, the results show that the implemented

channel model has the potential to achieve good accuracy in perfor-

mance evaluation while improving simulation efficiency. We also

provide a detailed parametric analysis on the statistical channel

model, which yields insight on how to properly tune the model

parameters to further improve performance accuracy.
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1 INTRODUCTION

In 5G and 6G eras, the proliferation of mobile devices with data hun-

gry applications, such as virtual/augmented reality and real-time

high-definition video, is pushing communication to higher carrier

frequencies, e.g. the mmWave band, which has a very large amount

of bandwidth available. In recent years, several standardization ef-

forts such as IEEE 802.11ad/ay [7, 8] and Wireless Gigabit Alliance

(WiGig) are tailored to enable 60 GHz mmWave communication

for wireless local-area networks (WLANs) to support the emerging

bandwidth-intensive applications.

However, 60 GHz radios are extremely vulnerable to propaga-

tion loss and blockage effects [12], which makes the network per-

formance quite sensitive to environmental characteristics. In this

regard, an accurate and reliable performance evaluation of such

complex network becomes critical to identify which protocols and

network deployments can provide the best quality of experience to

the end user. Network simulation plays a significant role in testing

the next-generation network performance by allowing researchers

to better explore the space of networking solutions through exten-

sive variation of the network configuration parameters and envi-

ronment settings. In particular, ns-3 [16] is a powerful system-level

simulation tool for evaluating wireless networks, where a number

of advanced features have been developed and integrated, such as

mmWave and NR modules [19] for cellular networks, and extended

Wi-Fi modules to support IEEE 802.11ad/ax/ay [2, 9] for WLANs.

For end-to-end 802.11ad/ay WLAN simulations, an accurate

channel model, which takes into account important properties of 60

GHz electromagnetic waves propagation and environment features,

is of paramount importance to assess the system design and perfor-

mance. Different from the propagation characteristics at frequency

bands below 6 GHz, the diffraction ability of mmWave signal is

much weaker and less reliable due to its smaller wavelength. In

particular, obstacles blocking the line-of-sight transmission path

create a muchmore substantial problem for mmWave signals.While

objects in the environment can act as scatterers or reflectors to

create alternative links, the quality is highly dependent on the

environmental characteristics, e.g., geometrical layout and object

reflectivity.

In traditional WLANs operating on the carrier frequency of 2.4

or 5 GHz, the channel modeling approach generates separate mod-

els for path loss and channel impulse response (CIR) since most

of the channel paths contribute to the total received signal power.

Thus, the path loss function (e.g., in log-distance based channel

model) can well describe average power behavior of electromag-

netic field for different distances. However, in WLANs operating

in the mmWave band, the use of highly directional antennas and

its multi-path sparsity nature will filter out all but a few clusters of

Workshop on ns-3 – WNS3 2021 – ISBN: 978-1-4503-9034-7 
Virtual Event, USA – June 23-24, 2021

33



 
 
 

the propagation channel, where both the frequency selectivity and

propagation loss of the channel is defined by the characteristics

of the clusters. Thus, the path loss and CIR may be significantly

different depending on the characteristics of each cluster, and the

simple path-loss model is no longer able to accurately describe the

channel characteristics. Therefore, for the design and simulation of

mmWave WLANs, it is necessary to account for the space and time

of the multi-path components (MPCs) to accurately model the chan-

nel. To this end, statistical modeling and deterministic modeling

are the two most popular approaches. Statistical channel models

generate the MPCs from a set of random probabilistic distributions,

whose parameters are determined by a statistically fit from actual

channel measurement data. Deterministic channel models rely on

ray tracing to characterize the explicit propagation properties of

every path component using geometrical optics, which provides

an extremely precise channel characteristic when the environment

details are known.

In this paper, we conduct a comprehensive performance study

on a statistical channel model and a deterministic ray-tracing based

channel model in mmWave Wi-Fi networks using ns-3. We first

develop an obstacle-specific scenario module and a sparse cluster-

based channel module in ns-3, which accurately model obstacles

and build environment features into the propagation model. Then,

through extensive network simulations, we study the performance

accuracy and simulation efficiency of the implemented statistical

channel model by using a ray-tracing based channel model as the

comparison point. The main contributions of this work are as fol-

lows:

• Wedevelop an obstacle-specific scenariomodel in ns-3, which

allows the user to flexibly simulate various mmWave WLAN

scenarios with actual object deployment and accurate LoS

determination.

• We implement a sparse cluster-based (SC) wireless channel

model in ns-3 that statistically models multi-path compo-

nents in 802.11ad/ay enabled Wi-Fi networks.

• We perform a detailed comparison between the statistical

channel model and ray-tracing based channel model, where

the results show that the implemented SC channel model has

potential to achieve an acceptable accuracy in performance

evaluation while maintaining a good simulation efficiency.

• We conduct a parametric analysis on SC channel model,

which yields insight on how to properly tune the modeling

parameters to further improve the performance accuracy.

2 OVERVIEW OF CHANNEL MODELING FOR
MMWAVE NETWORKS

Channel modeling is critical to evaluate the performance of next-

generation wireless network, here we give an overview of different

channel models used in mmWave networks.

2.1 Log-distance Based Model

The log-distance-based propagation model is widely used in wire-

less networks, where the propagation loss between transmitter

and receiver is calculated based on a simple path loss model, i.e.

a closed-form formula that depends on the signal frequency and

separation distance. Then, based on the actual measurement in the

environment, some modeling parameters (e.g., path loss exponent

�훼) are tuned to make the path-loss calculation fit the actual mea-

surement data as much as possible. For example, [22] evaluated a

generic indoor path-loss model in the 60 GHz band for the LoS and

non-LoS (NLoS) cases in a laboratory scenario, where the path-loss

exponents were measured as 2.0 and 5.4, respectively. In the tech-

nical report of 3GPP [1], multiple path loss models are defined to

apply in different scenarios, including outdoor urban/rural scenario

and indoor scenario, where the specified expression and standard

deviation of multi-path fading distribution are also given for each

scenario. However, as communication moves to higher frequen-

cies, e.g., mmWaves, this kind of channel model becomes highly

inaccurate, especially in NLoS scenarios since it fails to capture the

explicit multi-path components (MPCs) of the signal.

2.2 Statistical Model

The statistical model describes the stochastic characteristic of ampli-

tudes of the resolvable MPCs and path time of arrival in a wireless

network. MPCs are clustered in both spatial and temporal domains,

where a cluster consists of a group of rays having similar delays

and directions of departure and arrival. Actual measurement data is

used to statistically characterize the inter-cluster and intra-cluster

properties in propagation channel. A popular and widely-used sta-

tistical model is the Saleh-Valenzuela (S-V) channel model [20],

where clusters and rays are modeled with specific probability dis-

tributions. In recent years, a number of works studied the use of

this cluster-based channel model in mmWave networks [21, 23, 24].

For example, [23] studied a 60 GHz channel model for indoor of-

fice environment based on the S-V model with spatio-temporal

clustering properties. [21] proposed a S-V model that is useful in

designing mmWave WPAN systems used in a conference room en-

vironment. The S-V model is an example of a sparse cluster-based

(SC) channel model, because it is tailored to the narrow-beam direc-

tional antennas and limited scattering nature of mmWave wireless

networks.

The statistical nature of these models makes them more easily

model common indoor office/lab scenarios and effectively repro-

duce the stochastic properties of mmWave channels in a given type

of environment, but may prevent researchers from evaluating the

impact of the channel dynamics in a specific environment or site.

2.3 Ray-tracing Based Model

Ray tracing techniques can be used to precisely model the propaga-

tion of mmWave signals in any specific scenario [5, 10]. Different

from statistical channel models, the cluster and ray found using

ray tracing technology is based on the geometry of scenario and

physical interaction with the environment, which can characterize

the explicit propagation properties of each MPC, including angle

of arrival at the receiver, angle of departure at the transmitter, time

delay, path gain, doppler shift, and phase offset, etc., thereby provid-

ing higher accuracy in a specific network scenario. Several related

works focused on developing ray-tracing based channel models

[6, 18, 25], such as in [11], the authors studied a Quasi-deterministic

(QD) channel model for mmWave networks using ray-tracing tech-

nique to generate deterministic components combined with sto-

chastic models for the generation of diffuse components. [2] also
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implemented the QD channel model for 802.11ad networks in ns-3

that can interface with the NIST ray tracer [3]. This QD method-

ology exploiting the deterministic description of the environment

has been proposed as a candidate channel modeling approach for

IEEE 802.11ay standard [14].

Compared to the statistical channel model, the ray-tracing based

model can provide an extremely precise simulation result, but it is

more computationally intensive than the statistical model for the

generation of a single channel instance, which may limit the usage

of large-scale simulations, especially when the density of deployed

objects (i.e., reflecting surfaces), client locations, and APs is fairly

high in the environment.

In what follows, we first introduce our implementation on a

WLAN scenario module and a statistical channel module in ns-3,

and then study the network performance provided by our imple-

mented channel and a QD channel with extensive ns-3 simulations.

3 NS-3 IMPLEMENTATION

In this section, we provide an overview of our implementations on

obstacle-specific scenario model and sparse cluster-channel model

in an 802.11ad ns-3. The source code can be found at [17].

3.1 Obstacle-specific Scenario Model

In the 802.11adWLAN, due to the susceptibility of 60 GHzmmWave

signals to blockages, small changes in the location of communicat-

ing devices can have a dramatic impact on link performance. For

example, at 60 GHz, when a LoS path between a transmitter and a

receiver is blocked by an obstacle, it may lead to 20–30 dB of addi-

tional received signal loss. Therefore, accurately modeling obstacles

in the environment is critical for mmWave network simulations.

On the other hand, with the knowledge of obstacle distribution

and tranceivers’ positions, LoS/NLoS condition of a mmWave path

should be determined based on the accurately geometric calcula-

tion instead of a simple probabilistic model, which will make the

estimation on channel quality more precise. In this regard, since

ns-3 lacks a general way to set up the specific scenario with ob-

stacles in WLAN, we develop a new class WiFiScenario under

the general wifimodule. As shown in Figure 1, WiFiScenario

mainly includes the following classes and functionalities:

Scenario configuration: We provide the room configuration

functionality SetRoomConf(), which can generate a single rect-

angular room with arbitrary length and width. Based on our pre-

vious work in [13], we also implement the functionality of LoS-

optimal ceiling-mounted AP placement for different numbers of

APs, such that ns-3 users can easily determine the best AP deploy-

ment in the specific scenario by calling AllocateOptAP().

Obstacle generation: We implement the Obstacle class that

can generate cuboid-based objects to model furniture items in the

network scenario. Generally, we provide two generation mode: 1)

random generation modes, where the center of each obstacle fol-

lows a Poisson point process with a specific density �휆, the widths,

lengths, and heights of furniture-type obstacles follow truncated

normal distributions with specific parameters, and each obstacle’s

orientation follows a uniform distribution from 0 to �휋 ; 2) determin-

istic generation mode, where obstacles are generated with specified

locations and dimensions that are provided within the simulation

script. The latter mode can be used to create a deterministic WLAN

scenario representing a specific office/lab environment having fur-

niture items at known locations.

Client allocation: We implement the ClientAllocation

class to generate the locations of the client devices. We provide

different client placement methods that allow ns-3 users to select

locations that follow: (1) the uniform distribution within the room,

(2) a truncated normal distribution within a specific area in the sce-

nario, or (3) an obstacle-dependent distribution, where an obstacle

is first randomly chosen as the base location, and then the client is

uniformly distributed on the top or sides of the selected obstacle.

LoS/NLoS analysis: With the knowledge of the scenario con-

figuration, obstacle sizes and locations, and client locations, a LoS-

Analysis class is implemented to enable an accurate LoS-determ-

ination function. This function checks whether the direct line be-

tween an AP and a client intersects any obstacle, and a LoS flag

is returned if no intersection exists after traversing all obstacles,

otherwise the client is NLoS to that AP.1

We also provide the interface SetScenarioChannel() to

enable the WifiChannel module to obtain the LoS/NLoS results

of established links from theWiFiScenariomodule, which helps

the channel modeling procedure as described in the next subsection.

WifiScenario

Scenario Configuration Obstacle Generation

Client Allocation LoS/NLoS Analysis

MacHigh/MacLow

WifiChannel

Log-distance based 
channel model

Sparse cluster-based 
channel model

Quasi-deterministic 
channel model

WifiPhy DirectionalAntenna

Figure 1: New Added Classes (Marked in Blue Color) in Wi-

Fi Module of 802.11ad ns-3

3.2 Sparse Cluster-based Channel Model

We implement the sparse cluster-based (SC) channel based on Saleh-

Valenzuela (S-V) model [23] to simulate 60 GHz indoor scenario

in ns-3, which characterizes the multipath components (MPCs)

arriving in clusters, formed by multiple reflections from the objects

in the vicinity of a transceiver. Figure 2 reports a diagram for the

procedures involved in the channel model implementation.

In specific, we provide the interface SwitchSCchannel() in

WifiScenariomodule to toggle between different channel mod-

els, such that ns-3 users can flexibly choose different appropriate

channel model when they set up the WLAN scenario, where the

enabler flag can be transferred to WifiChannel module with

1Note that the ns-3 Building module includes a crude LoS estimation, where two
nodes in the same building are considered LoS and nodes not in the same building are
considered NLoS, whereas our implemented function does a more accurate LoS deter-
mination when nodes are located in the same building/room with multiple obstacles
deployed. Integration of more accurate LoS determination into the ns-3 Building
module is future work.
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Set up 60GHz WLAN 
scenario and para-

meters of tranceivers

Generate the number of 
clusters between 

tranceiver

Generate rays within 
each cluster between 

tranceiver

Get the LoS/NLoS 
condition

Determine the arrival 
time of each cluster and 

ray 

Get the precursor, 
central, and postcursor 
rays within each cluster   

Set Ricean K-factors to 
fit the model

Calculate average tap 
weight of each ray

Calculate the channel 
gain according to 

LoS/NLoS condition

WifiScenarioModel

SparseClusteredChannelModel

Figure 2: Diagram of the SC Channel Realization Procedure

the interface SetScenarioModel(). In SC channel modeling,

the LoS component is modeled based on the free-space path loss,

and for NLoS components, we generate the clusters �푙 and rays �푘

within each cluster arriving according to Poisson processes with

different rates and having inter-arrival times that are exponentially

distributed, where the generalized impulse response is derived by

following equation as defined in [20]:

ℎ(�푡) =

�퐿−1
∑

�푙=0

�푁�푟−1
∑

�푘=0

�푎�푘,�푙 · exp( �푗�휙�푘,�푙 ) · �훿 (�푡 −�푇�푙 − �휏�푘,�푙 ), (1)

where the number of clusters �퐿 and the number of rays within

each cluster �푁�푟 are modeled as Poisson distributed with predefined

parameter �퐿 and �푁�푟 , respectively. The phases �휙�푘,�푙 are uniformly

distributed random variables, �푇�푙 is the cluster arrival time given by

a Poisson process with arrival rate Λ, and the ray arrival time �휏�푘,�푙
follows two-side exponential decay with mixture the ray arrival

rate �휆− and �휆+, i.e.,

{

�푃 (�휏�푘−1,�푙 |�휏�푘,�푙 ) = �휆−�푒
−�휆− (�휏�푘,�푙−�휏�푘−1,�푙 ) , �푘 < 0

�푃 (�휏�푘,�푙 |�휏�푘−1,�푙 ) = �휆+�푒
−�휆+ (�휏�푘,�푙−�휏�푘−1,�푙 ) , �푘 > 0.

(2)

Note that these distribution parameters are specified depending on

the LoS/NLoS condition between the transceiver, thus we should

first obtain the channel condition result from LoSAnalysis()

function in WiFiScenario module, and then generate the corre-

sponding modeling parameters of clusters and rays. After that, we

calculate the average tap weight (i.e., path power gain) of each ray,

where the tap weights �푎�푘,�푙 are random variables in Eq. (1), which

are distributed according to the small-scale fading distribution, i.e.

�퐸{|�푎�푘,�푙 |
2} =

{

Ω0�푒
−�푇�푙 /Γ�푒−�휏�푘,�푙 /�훾 , �푘 = 1

Ω0�푒
−�푇�푙 /Γ�푒−�휏�푘,�푙 /�훾 − �퐾, �푘 ≠ 1

(3)

where �훾 is the decay constant for the two-side exponential decay,

Ω0 is the initial amplitude that depends on the distance between the

nodes, and the Ricean factor�퐾 is introduced to improve the fit of the

model into the experimental data [4], where the relative strength of

specular component with respect to precursor or post-cursor com-

ponents is gauged through �퐾 . Next, the SC channel gain between

the transmitter and receiver is calculated as �퐺 = �휌 +
∑

�푙
∑

�푘 |�푎�푘,�푙 |
2,

where �휌 is computed based on Friis propagation loss model, i.e., a

function of directional antenna gains, the distances between nodes,

the signal wavelength, and the reflectivity of surrounding objects

[4, 21]. Specifically, when a LoS condition exists,�퐺 is determined by

the path gain �휌 of the dominant LoS component plus lower-order

reflection terms, whereas in NLoS conditions, the total path gain

is composed solely of the path gain of NLoS components with the

reflection coefficient �푅0, including several clusters and rays that fol-

low the specific distributions. Finally, the received power at RX side

is calculated as the sum of transmitted power txPowerDbm and�퐺

to estimate the received signal-to-noise power ratio performance.

By default, all predefined modeling parameters (e.g., cluster/ray

decay time, arrival rate, K-factor, and Ω0, etc.) are chosen from

[4, 23], which are derived based on measurements in real 60 GHz

office/lab network environments. Due to the use of narrow-beam

directional antennas in 60 GHz WLAN scenarios, the expected

number of clusters and rays at each receiver location are set as

2 and 6, respectively, which is in accordance with [15]. In addi-

tion, we provide three different reflective coefficient distributions

in the channel model, which are all normal distributions: N (0.35,

0.05) (Mode 1), N (0.6, 0.05) (Mode 2), and N (0.85, 0.05) (Mode

3). These are intended to model scenarios with objects having low,

medium, and high reflectivity, respectively.We provide the interface

SetReflectMode() for ns-3 users to select different reflective

modes in WiFiScenario module, and Mode 2 is set by default

in the simulator.

3.3 Quasi-deterministic Channel Model

To simulate the ray tracing-based channel model as a comparison

point, we adopt the Quasi-Deterministic (QD) channel model from

[2], which determines the geometry-based MPCs by modeling the

interaction of the mmWave signal with object surfaces. The MPCs

are obtained by ray-tracing techniques, and the channel impulse

response is defined in [2] as:

ℎ(�푡) =

�푁−1
∑

�푖=0

10−�푃�퐿�푖/20�푒 �푗�휙�푖 · (�푌�푟�푥�푖 · �푌�푡�푥�푖 ) · �푒
−�푗2�휋 �푓 �푡�푖

, (4)

where �푁 is the number of generated rays, �푃�퐿�푖 and �휙�푖 are the path

loss and phase shift of ray �푖 , and �푌�푡�푥�푖 and �푌�푟�푥�푖 are the radiation

pattern of the transmitter and receiver array at ray �푖 , respectively.

For the evaluation results of QD model in this paper, we directly

use the ns-3 802.11ad simulator with QD channel implementation

from [2], which is developed jointly by the U.S. National Institute

of Standards and Technology (NIST) and the IMDEA Networks

Institute. Specifically, we run ns-3 simulations using the QD channel

model with the following steps:

(1) AWLAN scenario is set up with multiple objects (i.e., cuboid

obstacles) in the room, and valid locations of APs and clients2.

2The valid node positions are constrained so that a node is not inside any objects or in
conflict with another node’s position.
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(d)

AP

client

Figure 3: Scenario and AP Deployments: (a) Scenario Example; (b)-(d) Deployments of 1–3 Ceiling-mounted APs

(2) For the given scenario, the QD channel is realized by using

NIST QD channel realization software [3], which uses ray

tracing within MATLABr to determine the strongest path

components. The software then generates a QD output file

that includes the delay, path gain, AoD, and AOA, etc, for

the strongest components.

(3) The QD output file is then directly used as input to ns-3

802.11ad QD model, which parses the file and uses Eq. (4) to

compute the channel gains.

Note that in our simulated scenarios, the traced MPCs are in-

teracting not only with the walls, ceiling, and floor, but also with

the objects deployed in the room, which provides high resolution

estimates based on the ray tracing technique.

4 EVALUATIONS AND RESULTS

4.1 Scenario Settings

We consider a room configuration of 12m×8m×3mwith the obstacle

model of Section 3.1 and the following specific features: 1) obstacles

are randomly placed on the floor; 2) the center of each obstacle

follows a Poisson point process with a specific density �휆 (number of

obstacles in unit area); 3) the widths, lengths, and heights of obsta-

cles follow the truncated normal distributions W∼ TN (0.56, 0.08,

0.25, 1.25), L∼ TN (1.08, 0.18, 0.5, 1.75), and H∼ TN (1.5, 0.35, 1.2,

2.0)), respectively; 4) each obstacle’s orientation follows a uniform

distribution Θ ∼ U(0, �휋 ). Each client is randomly deployed within

the room, and mmWave APs are placed according to the optimal

placement methods from [13] (see Figure 3 (b)–(d)). We employ a

flat-top directional antenna model with a constant high main lobe

gain within a narrow beamwidth and zero gain outside the main

beam. This is similar to the directional antenna model used in the

QD ray-tracing simulation. This setting is based on a real-life lab

environment as a guiding example. All evaluations are done at the

mmWave frequency of 60 GHz based on IEEE 802.11ad protocol

with single-carrier PHY mode, and all length units are in meters

throughout the paper.

In this setting, we evaluate the user throughput performance

over different Wi-Fi scenarios based on the SC and QD channel

models in ns-3. To perform a comprehensive comparison between

the two channel models, we set up various network scenarios with

different numbers of deployed APs (1–3 APs), obstacle densities

�휆 (low, medium, and high densities with �휆 = 0.1/�푚2, 0.2/�푚2, and

0.3/�푚2, respectively), and reflection coefficients (low, medium, and

high reflectivities with mean values of 0.35, 0.60, and 0.85, respec-

tively). For each combination of obstacle density, AP deployment,

and reflection coefficient, we randomly generate 5 different obstacle

configurations using the WiFiScenariomodule. Each data point

in our results is an average value over 100 simulation runs, where

there are 20 different randomly located clients simulated over the 5

different obstacle configurations for each set of parameters.

In one run, the randomly located client is allocated a specific

time slot for downlink transmission with its connected AP, and the

link throughput (�푇ℎ) under both SC and QD channels is evaluated.

We define a performance difference ratio (PDR) to measure the dif-

ference between the SC and QD channel models in a simulation run,

i.e., �푃�퐷�푅 = |�푇ℎ�푆�퐶 −�푇ℎ�푄�퐷 |/(�푇ℎmax −�푇ℎmin), where the denomi-

nator represents the difference between the maximum throughput

and minimum throughput observed across all simulation runs in a

data set.3 Since ns-3 is a packet-level simulator and most users are

interested in network-level measurements, we chose to compare

packet throughput results rather than PHY-layer metrics such as

signal-to-noise ratio.

In addition to comparing the SC andQD channelmodels’ through-

puts, we also tune the SC model parameters to better model the

different scenarios and we compare the computation times associ-

ated with the different calculations in the two models. Note that

spatial correlation is accounted for in LoS/NLoS calculations. How-

ever, any potential spatial correlation in nearby NLoS channels is

not accounted for due to the stochastic nature of the SC model.

4.2 Comparison Between SC and QD Channel
Models for Medium Reflectivities

We begin by investigating the PDR for varying numbers of APs and

obstacle densities with the reflectivity set to the middle value. First,

with the medium obstacle density, we vary the number of deployed

APs according to the placement methods shown in Figure 3 (b)-

(c). The cumulative distribution function (CDF) plot of PDRs over

all simulation instances is reported in Figure 4, and the results of

LoS and NLoS cases are shown separately. It is quite clear from

the figure that the two different models produce nearly identical

throughputs under LoS conditions. When an LoS path between the

client and an AP exists, the dominance of the LoS path term in

the channel gain produces very similar results for the two models.

There is some small variation in the predicted gain for the SC model

due to its stochastic nature. This shows up in the single AP case,

where a very small percentage of cases show a small but perceptible

throughput difference from the QD model. When there are multiple

APs, the gain is chosen as the maximum over the paths to the

3In ns-3’s 802.11ad module, the maximum data rate on a link is approximately 4.6
Gbps (corresponding to MCS 12). Since we simulate only a single link at a time to
compare the two channel models, we set the application data rate to 4.5 Gbps in order
to saturate the highest-quality link simulated. This resulted in a maximum achieved
throughput of around 4 Gbps, which is an upper bound on the PDR’s denominator.
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Figure 4: CDF of PDR for LoS and NLoS Links and a Varying

Number of APs

different APs, which results in a smaller variation than for a single

random channel gain.

From Figure 4, we see that the largest differences between the

two models occurs when no LoS path exists to any of the APs.

However, even for NLoS cases, 75% or more of the links have a PDR

of 0.1 or less. This corresponds to an absolute difference of at most

400 Mbps, which is very close to the average difference between

two consecutive MCS levels (data rates) in 802.11ad. Thus, in the

vast majority of NLoS cases, the SC model results in a throughput

that amounts to at most a difference of one MCS level, which is

quite good. We also observe that having multiple APs reduces

the difference between the two models substantially, again due to

choosing the maximum gain across the different APs.

In Figure 5, we investigate how the obstacle density impacts the

performance difference between SC and QD channels with 2 APs

deployed. This case shows very similar behavior to the varying APs

scenario in that LoS cases show very little difference between the

two models while NLoS cases have a larger PDR. We see from the

figure that for low and medium obstacle densities, the two models

throughputs’ are still fairly close for NLoS cases while larger differ-

ences occur at high obstacle densitites. This is because with more

objects deployed in the scenario, QD channel has more potential to

produce better-quality reflection paths that contribute to the link

performance, which makes the SC channel model underestimate

the channel gain with its fixed statistical modeling parameters.

4.3 Parametric Analysis of SC Channel Model
for Medium Reflectivities

By default in the simulator, the expected number of clusters �퐿 and

rays �푁�푟 within each cluster are set as 2 and 6, respectively, based on

the experimental investigations from [15]. Here, still considering

the medium reflectivity case, we increase these two parameters to 3

and 8 and evaluate the PDR across different scenario configurations

as shown in Figure 6 and Figure 7. Compared to the corresponding

results with default parameters in Figure 4 and Figure 5, the PDR is

further reduced; for all cases, the throughputs for the two channel

models on more than 90% of the NLoS links were within 10% of

each other. This result demonstrates that increasing the expected

number of clusters and rays in SC channel model can improve the

accuracy of the SC model for this medium reflectivity case.
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Figure 5: CDF of PDR for LoS and NLoS Links and Varying

Obstacle Density

So far, we have looked at comparisons on a per link basis. How-

ever, one also might be interested to evaluate performance that is

averaged over multiple client locations for a given scenario. For

example, considering the worst case with 1-AP and medium ob-

stacle density (see red-solid line in Figure 6), the PDR averaged

over 20 client locations for the NLoS links are 0.0432, 0.0355, 0.0265,

0.0146, and 0.0309, for the 5 different obstacle configurations . Thus,

the throughput calculated under the SC channel model is within

about 1.5–4% of the QD channel model’s throughput when aver-

aged over 20 client locations, even for the worst case scenario and

only considering the difficult NLoS cases.
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Next, we perform a detailed study on parametric tuning in SC

channel model. Here we choose two scenarios having larger PDRs

as reference cases, i.e., the 1-AP scenario in Figure 4 and the high-

OD scenario in Figure 5, which are referred to as Case 1 and Case

2 for simplicity. Then we tune the SC channel parameters �퐿 and

�푁�푟 within a larger range to evaluate the performance difference

between SC and QD channel.
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Figure 8: PDR for Different SC Channel Parameters and

NLoS Instances Only (Case 1)

Since SC and QD channels show a fairly good consistency under

LoS conditions, here we solely focus on the NLoS links. Figure 8

shows the box-plot of PDR under various parameter settings for

Case 1. It is clearly observed that the performance difference be-

tween two channels becomes smaller when increasing the expected

number of clusters and rays, but it is not always true that the larger

(�퐿, �푁�푟 ) the better PDR, since the optimal point is found at around

(3, 8) in the evaluated cases. The same result can be seen in the

Figure 9 for Case 2, and tuning �퐿 and �푁�푟 to (3, 8) or (4, 10) results in

a good performance agreement between the two channel models.

Thus, contrary to the results reported in [15], we find that the (2,

6) parameter choices for clusters and rays is not the best choice, at

least when considering agreement with the ray-tracing-based QD

channel model at medium obstacle reflectivity.
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Figure 9: PDR for Different SC Channel Parameters and

NLoS Instances Only (Case 2)

4.4 Comparison Between SC and QD Channel
Models for Different Reflectivities

In this section, we investigate how the reflectivity of objects im-

pacts the evaluated performance for the two channel models. As

discussed in Sec. 3.2, three different reflectivity modes are provided

in the SC channel model, which apply low, medium, and high re-

flection coefficients. Here we fix �퐿 and �푁�푟 at (3, 8), and then vary

the reflectivity mode in the evaluated network scenarios.

Figure 10 shows the results of the Case 1 scenario, which was

the most problematic for the SC model at medium reflectivity. We

can see that the performance difference becomes smaller between

the two channel models with the higher reflectivity mode. In that

situation, the PDR even for NLoS links is less than 0.08, which

is quite good. This is because with objects made of highly reflec-

tive materials, e.g. metal, NLoS reflection paths retain more signal

power resulting in link throughputs that are close to the maximum

achievable rate in 802.11ad WLANs, thereby narrowing the per-

formance gap for the two channel models. At low reflectivity, the

performance gap for NLoS links gets slighty larger than at medium

reflectivity for this problematic Case 1. In this situation, the QD

model consistently predicts very low rates for the NLoS links while

the stochastic nature of the SC model produces some higher rates

resulting in a somewhat larger PDR.
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Figure 10: CDF of PDR for Different Reflectivity Scenarios

4.5 Computation Time for SC and QD Channel
Models

In this section, we compare the simulation running times4 for the

SC and QD channel models. The SC channel running time is only

within ns-3, whereas the QD channel running time includes both

the MATLABr ray-tracer execution time and the ns-3 simulation

time. As an additional reference point, we show the running time

for the same simulations under the default log-distance-based path

loss model. We note that the simple log-distance-based model is

known to be highly inaccurate for mmWave channels due to the fact

that it ignores the sharp differences between LoS and NLoS links.

However, its running time provides a point of reference for the

simulation slowdown when using more complex channel models.

Each data point in the figures is the average running time over 5

obstacle configurations where, for each configuration, the cumu-

lative running time over 20 simulation runs with different client

locations is calculated. Each simulation run covered 0.5 seconds of

network execution, which at the very high application rate of 4.5

Gbps, corresponds to about 200,000 WiFi packets worth of data per

simulation run. Figure 11 shows the running times as the number of

APs is increased and Figure 12 shows the running time for different

4We evaluate the running times on an Intel(R) Core(TM) i3-2120 3.30GHz CPU work-
station with 2 cores and 3 logical processors.
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obstacle densities. As is expected, increasing the number of APs or

obstacles slows down the simulations, but the running time with

the SC channel model increases much more slowly as the number

of APs or the obstacle density increases, as compared to the QD

model. While the ns-3 times are fairly similar for the SC and QD

models, the MATLABr ray tracing time for the QDmodel increases

rapidly with the number of APs or obstacles. This is as expected

due to the number of rays that must be traced being substantially

greater when there are more APs or obstacles to consider.

Figure 11: Simulation Running Time vs. Number of APs for

Different Channel Models

Figure 12: SimulationRunningTime vs. ObstacleDensity for

Different Channel Models

When comparing the running time of the SC model simulations

to that of the highly inaccurate default model, we see that, in most

cases, there is roughly a 2x slowdown. However, for low obsta-

cle densities, the slowdown is very slight while for high obstacle

densities, it is closer to a 3x slowdown. Given its substantial in-

crease in accuracy, the SC model slowdown could be considered an

acceptable trade-off for all but the most time-sensitive simulations.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we reported on the accuracy and running time of

a sparse cluster-based (SC) channel model for mmWave WLAN

simulation. While these early results are fairly promising, there

are issues still to be addressed. The simulations reported herein

involved homogeneous environments where all obstacles (includ-

ing walls) had the same reflectivities. More study is required to

determine how to get the best accuracy from the SC model in het-

erogeneous environments. However, we believe that modeling only

the more highly reflective objects in the environment might still

yield fairly accurate results since those will be the dominant scat-

terers. A challenge on the computational efficiency aspect is how

to deal with the necessary LoS calculations when clients are mobile.

The simulation results reported herein were for stationary clients

so only one LoS calculation was needed per simulation run. We plan

to explore pre-calculated LoS maps and probabilistic LoS modeling

to target scenarios with mobile clients.
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