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Abstract—The high computational complexity and a large
number of parameters of deep neural networks (DNNs) become
the most intensive burden of deep learning hardware design,
limiting efficient storage and deployment. With the advantage of
high-density storage, non-volatility, and low energy consumption,
resistive RAM (RRAM) crossbar based in-memory computing
(IMC) has emerged as a promising technique for DNN accelera-
tion. To fully exploit crossbar-based IMC efficiency, a systematic
compression design that considers both hardware and algorithm
is necessary. In this brief, we present a system-level design consid-
ering the low precision weight and activation, structured pruning,
and RRAM crossbar mapping. The proposed multi-group Lasso
algorithm and hardware implementations have been evaluated on
ResNet/VGG models for CIFAR-10/ImageNet datasets. With the
fully quantized 4-bit ResNet-18 for CIFAR-10, we achieve up to
65.4x compression compared to full-precision software baseline,
and 7x energy reduction compared to the 4-bit unpruned RRAM
IMC hardware with 1.1% accuracy loss. For the fully quantized
4-bit ResNet-18 model for ImageNet dataset, we achieve up to
10.9x structured compression with 1.9% accuracy degradation.

Index Terms—Convolutional neural networks, hardware accel-
erator, in-memory computing, structured pruning, resistive
RAM.

I. INTRODUCTION

EEP neural networks (DNNs), including convolutional
D neural networks (CNNs), have been very successful with
high accuracy for many computer vision applications [1].
However, the high requirement for hardware resources hin-
ders efficient deployment of DNNs on hardware devices.
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Fig. 1. For different pruning group sizes, trade-offs exist for IMC hardware
design on energy, area, and accuracy.

To achieve high energy-efficiency and density, many prior
works investigated DNN model pruning and compression.
Non-structured pruning [2] can achieve high element-wise
sparsity with the cost of a large amount of index memory
storage [3] and irregular memory access for hardware com-
putation. Alternatively, structured pruning can efficiently
eliminate the weights in a structured manner during train-
ing [4], [5] to improve the targeted hardware’s energy-
efficiency.

With the property of naturally supporting parallel dot-
product operations, non-volatile memory (NVM) crossbar
based in-memory computing (IMC) has emerged as a promis-
ing technique [6] for fast DNN computations. Among different
NVMs, RRAM devices can store multiple levels in one
cell [7]-[9], which provides dense storage for fast in-memory
parallel computations. However, it becomes very inefficient to
apply random sparsity patterns resulted from non-structured
pruning to a fixed RRAM crossbar structure (Fig. 1). If the
IMC operation happens on a column basis, it will be much
more efficient to prune out the entire/partial column in a struc-
tured manner. However, as shown in Fig. 1, smaller group
sizes achieve higher sparsity compared with the large-sized
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groups [10]. Correspondingly, small-sized group will restrict
the number of rows that can be activated simultaneously, which
requires more number of cycles to go through the same cross-
bar array but also affects the DNN accuracy achievable by a
given ADC precision at the periphery due to different dynamic
range of the IMC results.

There have been several prior works that studied crossbar-
based acceleration for DNNs. Crossbar-aware pruning [11]
presented pruning schemes that consider the crossbar struc-
ture, but requires a ~3X overhead for the number of RRAM
cells to support the proposed dataflow as well as a large num-
ber of non-compute crossbars for the data buffer. In [12], 8-bit
MobileNet and VGG models were deployed to the tiled-based
RRAM architecture, but DNN pruning was not investigated
with the RRAM-based accelerator design. RRAM crossbar
based quantization/pruning has been jointly investigated [13],
[14], but the high precision weight (e.g., 8-bit or 16-bit)
and high precision activation (e.g., 16-bit or full precision)
causes large storage and communication overhead. In a recent
crossbar-based pruning work [15], accuracy and energy have
been reported, but the hardware results did not provide detailed
resource consumption based on a specific type of IMC device.

In this work, we propose a hardware-friendly RRAM
crossbar based pruning technique using 2-bit-per-cell RRAM
devices, where only non-zero weights are stored. The algo-
rithm has been evaluated on various-sized CNN models with
CIFAR-10 and ImageNet datasets, showing a large compres-
sion rate compared to the full-precision software baseline.
We use the circuit-level simulator NeuroSim [16] to eval-
vate the hardware performance, including accuracy and the
detailed resource consumption. The main contributions of this
brief are:

« New DNN training algorithm that prunes weights in vari-
able column-group sizes considering crossbar hardware
mapping and memory storage efficiency, together with
low-precision quantization (e.g., 4-bit) of both activations
and weights.

« Hardware implementation that exploits group-wise
weight sparsity in newly compressed DNNs.

« We evaluated the accuracy, energy, and area character-
ization of the DNN inference accelerator design. We
achieve up to 7x energy reduction compared to the 4-bit
unpruned model with minimum accuracy loss.

II. HARDWARE-AWARE STRUCTURED PRUNING
ALGORITHM

A. Prior Works on Group Lasso Based Pruning

Wen et al. [4] applied group Lasso [17] as a regulariza-
tion term in the loss function to exploit the structured sparsity
during DNN training. Suppose the weight matrix of the DNN
model with layer L can be expressed as multiple of 4-D tensors
W; € RVixCixKixKi where Nj, Cy, K; represents the dimension-
ality of output channel, input channel and each single kernel,
respectively. The loss function can be constructed as:

L G
L=LEE W) ) +2) ) [IWigll2, 6]
=1 g=1
where £ represents the loss of the DNN model f regarding the

targeted output y, and G; represents the number of pre-defined
groups in layer [. The penalty level A can be tuned based on
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Fig. 2. For different group sizes, group sparsity vs accuracy of ResNet-20
CNN on CIFAR-10 dataset are shown.

the datasets and group sizes. Group Lasso generates structured
sparsity for the DNN based on flexibly defined group W .

B. Computation-Efficiency-Aware Deployment

Selecting a suitable group size is critical for both algorithm
and hardware design. Pruning out large-sized groups (e.g.,
filter-wise pruning) generates less sparsity compared to the
smaller one [10]. This is also observed in our experiments
shown in Fig. 2. It is also unrealistic to map the entire fil-
ter as a single RRAM column because various layer sizes
will lead to inconsistent sub-array sizes or utilization. On the
other hand, pruning and deploying small-sized groups to the
small sub-arrays will introduce higher sparsity and less analog
noise with IMC during inference. However, turning on the lim-
ited number of rows results in system-level latency increase,
and small-sized sub-arrays will cause complex circuits design,
leading to high power and area consumption. Thus, the ques-
tion arises: How to deploy group-wise sparsity on RRAM based
IMC hardware, while keeping a balance between hardware
efficiency and DNN accuracy?

In this work, the targeted group size was selected between
the filter-wise pruning and channel-wise pruning to ensure
uniform group size across all layers. To resolve the “group
size vs. performance” question, we mapped multiple same
size small groups to the single column. In our design, map-
ping 16, 8, and 4 input channels of single convolution filter
(with 3 x 3 kernel size) are equivalent to filling 100%, 50%,
and 25% of a 144 x 1 RRAM column, corresponding to
144 % 1,72 x 1, and 36 x 1 group sizes, respectively. Fig. 3
shows an example when the group size is 72x 1. The partial
sums will be computed separately by activating the part of
the rows during each clock cycle. With the less amount of
activated rows, the analog computing noise will be kept small
with the cost of the increased latency overhead (e.g., 2X for
a 72 x 1 group). The high sparsity generated by the small-
sized group pruning introduces larger resource reduction and
alleviates the latency overhead by removing a large amount of
computation.

C. Proposed Pruning Algorithm With Column Group
Matching

Fig. 3 shows an example where a RRAM array is divided
into two groups of partial columns. The conventional group
Lasso algorithm (Eq. (1)) penalizes all groups together without
considering this spatial separation, leading to memory waste
caused by the lopsided number of unpruned groups between
the top half and bottom half of the crossbar array (Fig. 5).
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Fig. 4. System-level design of the accelerator. Each layer’s weights are
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We propose a crossbar-aware structured pruning method
to resolve this issue. Motivated by the weight penalty clip-
ping method (WPC) proposed by Yang et al. [5], we penalize
the different groups of partial columns individually with its
penalty clipping threshold value 81. (Eq. (2)) and penalty
level A;.

Gi
sj=a- —lewlgllz 2)

!‘g—]

Equation (3) describes the loss function of the proposed
multi-group Lasso algorithm, in which N represents the num-
ber of partial column groups (e.g., N = 2 when group size is
72 x 1), and a controls the clipping intensity.

N L G

L=LEew).y+Y L0 min(Wigll. 8)) G)

i=1  I=1 g=1

With the carefully selected A;, we achieved significant mis-
match reduction, as shown in Fig. 5. More specifically, 5!.
determines whether the group Lasso should penalize the group
or not, so pruning does not shrink the weight distribution
exceedingly to distort the quantization.

III. CNN HARDWARE ACCELERATOR DESIGN

Fig. 4 shows the top-level block diagram of the CNN accel-
erator with compressed IMC RRAM crossbar tiles. Each tile
includes multiple RRAM sub-arrays to store the compressed
weights and compute parallel dot-product operations. The
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Fig. 5. For ResNet-20 CNN and 721 group size, the number of mismatched
columns (2-bit per cell) is reduced by applying multi-group Lasso algorithm.

CNN accelerator is performed on a layer-by-layer basis, with-
out aggressive pipelining between consecutive images, which
will put more overhead on the activation storage. The input
register loads the input data from the global buffer, while the
output register accumulates partial sums obtained from sub-
arrays then sends the results back to the global buffer. The
global buffer stores inputs and activations, and a global control
unit generates proper instructions to RRAM tiles. Besides the
MAC operations computed by the RRAM sub-arrays, activa-
tion, normalization, and pooling operations are performed by
separate computation modules.

To implement 4-bit quantized target CNNs, we use 2-bit
per cell HfO, 1T1IR RRAM devices, characterized from [18]
and projected to 32nm CMOS node. According to the bench-
mark results from the NeuroSim framework [16], adapting
small R,, (e.g., tens of k€2) while avoiding the large voltage
drop will introduce a large area overhead for the 1T1R device-
based design. In our design, we choose the resistance levels
to be 100k, 400k, 700k, and 1M with 2-bit per cell
RRAM devices and 0.5V read voltage. Table I summarizes the
detailed hardware characteristics modeled by NeuroSim [16].
4-bit activations are mapped across multiple cycles (depend-
ing on the group size) with digital input voltages onto the
word-line (WL) of the RRAM sub-array. We set the memory
size as 144 x 32 to avoid the memory waste in shallow
layers. This work focuses on hardware-based DNN compres-
sion, and we did not consider the conductance instability and
retention drifting of the filamentary analog synaptic device
in our current design. We assume that techniques such as
the refreshing mechanism [19], [20] will be applied to mit-
igate the accuracy degradation caused by the conductance
instability.

In each RRAM sub-array, we use a switch matrix to acti-
vate the WLs in parallel; each column is connected to a 5-bit
or 6-bit successive approximation register (SAR) analog-to-
digital converter (ADC). The shift-add modules are used to
shift and accumulate (1) the partial sums of the 4-bit sequential
input voltages during multiple cycles and (2) the partial sums
from two RRAM columns for 4-bit weights. Since the column
groups are compressed, we employ additional de-multiplexers
after the shift-add modules, which convey the compressed par-
tial sums from column groups to the corresponding peripheral
circuits for ensuing CNN operations. As shown in Table I, the
de-multiplexers consume a tiny portion of the total resources.
The accelerator also includes adder trees, and RelLU units, to
support various DNN structures and sizes. The global buffer
stores the largest feature map across the whole network to
reduce expensive off-chip memory access.
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TABLE I
HARDWARE SPECIFICATION SIMULATED BY NEUROSIM FOR 4-BIT
RESNET-20 WITH 72 x 1 GROUP

RRAM Sub-Array
Components Area (un”) | Latency (ns) Energy (pJ)
Memory Array (144 x 32) 75.5
Switch Matrix (WL and SL) 457.3 2 1.1
SAR ADC (5-bit) 8,400.3 12 104
Shift-Add-Input 14129 0.8 6.8
Shift-Add-Weight (2 col use 1) 8258 0.8 1.0
Total 11,180.8 15.6 49.3
Peripheral Circuits
DeMUX 1-to-4 79 0.001 0.01
DeMUX 1-to-8 57.2 0.001 0.1
DeMUX 1-to-16 111.0 0.001 0.2
T stage AdderTree (128 umits) 35103 03 EW
2 stage AdderTree (128 umits) 7,740.1 06 137
3 stage AdderTree (128 units) 18,408.8 1.0 32.6
Global Buffer (32 x 32 x 16 x 4) 173,266 0.9/bit /access | 0.003/bit/access
ReLU (128 units) 939.5 0.5 0.9
TABLE I

STRUCTURED PRUNING AND QUANTIZATION RESULTS OF RESNET-20,
VGG-8, AND RESNET-18 FOR CIFAR-10/IMAGENET DATASETS

Models Method & | Group | Inference | Group | Comp. | No. of
& Dataset | Precision Size Accuracy | Sparsity | Rate Params
FP32 - 91.95% - 1.00x 0.2T™M
R“b;ft'm This work | A X1 | 0124% | 3451% | 1222x | 0.18M
i T2x1 91.03% 51.56% 16.51x (.13M
CIERLY L) 36 x 1 90.887% 56.43% 18.36x 0.12M
FP32 - 94.75% - 1,005 11.17TM
Rt I e wory | 11| 9361% | BG14% | 57.72x | 175M
= f T2x1 93.517 87.767¢ 65.35x 1.52M
CIFARIE (4-bit) =1 93.56% 90.52% B4.38x 1.15M
FP32 - 907% = 1.00x | 12.97M
VG&?-S This work 144 % 1 92,947 65.79% B7.06x 1.82M
& T2x1 92.98% 74.24% T4.07% 1.41M
CIFARID | (&bit) 571 o0350% | 7340% | 7261x | 183M
ResN FP32 - 69.767 - 1.00x 11.69M
&etls This work 144 x 1 67.89% 19.24% 9.91x 9,50M
ImageNet (4-bit) 72 x1 67.50% 23.7T% | 10.49x | 0.08M
& 36 =1 67.827 26,417 10.87x &.7TAM

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of
our proposed algorithm and hardware design. The algorithm
was validated on the CIFAR-10 and ImageNet datasets. The
compression process was fine-tuned from the pre-trained
full precision model with the SGD optimizer. Note that
some prior works did not quantize the first, last, or resid-
ual layers [21], [22]. In our work, however, all DNN layers
are fully quantized to 4-bit activation and 4-bit weights with
the PACT quantizer [21] to achieve less statistical writing
error (inside the memory cell) with low precision weights [23].
‘We utilized the circuit-level simulator NeuroSim [16] to esti-
mate the area, latency, and energy of the proposed hardware
design.

A. Software Results

As shown in Table II, we investigated group sizes of 144 x 1,
72 x 1, and 36 x 1 with with compact residual networks
(e.g., ResNet-20 with 0.27 million parameters) and large size
DNN models (e.g., ResNet-18/VGG-8 with 11.17/12.97 mil-
lion parameters). The proposed algorithm compressed ResNet-
20 by 18.36x and ResNet-18/VGG-8 by 65.4 x /74.1x,
respectively, with around only 1% accuracy degradation. Since
VGG-8 has a large portion of the fully-connected weights,
so we also applied the channel-wise pruning on the first
fully-connected layer with the proposed method.
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Fig. 6. Hardware inference accuracy with pruned models: (a) ResNet-20,

(b) VGG-8, (c) ResNet-18 on CIFAR-10, and (d) ResNet-18 on ImageNet.

We also evaluated the fully quantized 4-bit ResNet-18 for
ImageNet dataset with different group sizes. The proposed
algorithm compressed the model by 10.9x with 1.94% accu-
racy degradation. Compared to the CIFAR-10 experiments,
the ImageNet classification task is much more complicated,
and the number of the redundant weights in DNNs is less.
Consequently, it becomes more difficult to exploit the spar-
sity [24], as shown in Table IL

B. Hardware Results

We mapped the pruned CNN models to the designed RRAM
based accelerator, and evaluated the hardware DNN accuracy
and energy/latency/area using NeuroSim [16]. Fig. 6 shows the
sparsity vs. hardware accuracy for different DNNs for CIFAR-
10/ImageNet datasets. 6-bit ADC provides only marginally
better accuracy than 5-bit ADC, but incurs larger area/power
overhead, thus we used 5-bit ADC for the remaining results.

Since the total number of operations reduced significantly
after pruning, we report the energy per image instead of
TOPS/W. We choose the hardware deployment of the un-
pruned 4-bit CNNs as the baseline for comparison. Fig. 7
shows the energy/latency/area for different DNNs for CIFAR-
10 dataset. With our proposed pruning scheme, compared to
each of the hardware baseline, we reduce energy consump-
tion by 37.0%, 80.3%, and 90.2%, and total area consumption
by 33.3%, 81.0%, and 82.0% with ResNet-20, VGG-8, and
ResNet-18 models, respectively. The IMC latency overhead
caused by computation with different sizes of groups can be
alleviated by high sparsity, and the high sparsity substantially
reduces the total energy and area of the accelerator.

For a similar sparsity level, 36 x 1 groups have the largest
latency/energy cost, while 144 x 1 groups have the largest area
consumption. The system achieved the best tradeoff between
energy efficiency and inference accuracy with the 72 x 1
group size (Fig. 7). With the selected group size, Table III
shows the comparison to relevant prior works. Crossbar-
aware pruning [11] and fine-grid pruning [14]. Compared
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TABLE III
COMPARISON WITH PRIOR WORKS BASED ON 72 x 1 GROUP SIZE

Models & Methods Structured | Inference Model
Dataset Sparsity Ace. Precision
VGG-8 Crossbar-Aware [11] 50.0% 93.8% 32-bit

CIFAR-10 This work 54.8% 93.8% 4-bit

ResNet-56 Fine-Grid [14] 23.5% 92.5% 16-bit

CIFAR-10 This work 33.4% 92.8% 4-bit
VGG-16 Fine-Grid [14] 34.9% 93.1% 16-bit

CIFAR~10 This work 55.8% 93.7% 4-bit

to the full-precision VGG-8 model, our compressed model
with 4-bit precision achieves similar inference accuracy with
4.8% structure sparsity improvements. Instead of introducing
a large amount of non-computed cells, our proposed map-
ping scheme deployed the compressed model densely and
efficiently. Therefore, the overall memory cost will be reduced.
For both VGG-16 and ResNet-56, the proposed method out-
performed the fine-grid pruning [14] with 20.9% and 9.9%
additional structural sparsity along with 4x precision reduc-
tion, while maintaining similar inference accuracy. With our
proposed method and selected group size, the resulting sparsity
and low precision model will eventually lead to the optimal
solution between the resource consumption and accuracy.

V. CONCLUSION

In this brief, we presented the multi-group Lasso algorithm
that efficiently maps pruned DNNs onto RRAM crossbars
and evaluated the RRAM-based hardware accelerator design.
Considering the rigid crossbars employed for IMC RRAM
hardware, we investigated the tradeoffs between the hard-
ware performance and software accuracy, and found the
optimal pruning group size. The proposed hardware accel-
erator achieved up to 7 x /6x energy/area reduction with
ResNet/VGG models for CIFAR-10 dataset with minimum
accuracy degradation. The algorithm was also verified via 4-bit
ResNet-18 on ImageNet dataset with >10x compression and
minimum accuracy degradation.
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