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Brady W. Allred Abstract
Email: brady.allred@umeontana.edu 1. Operational satellite remote sensing products are transforming rangeland

Handling Editor: Robert Freckleton management and science. Advancements in computation, data storage and pro-
cessing have removed barriers that previously blocked or hindered the develop-
ment and use of remote sensing products. When combined with local data and
knowledge, remote sensing products can inform decision-making at multiple scales.

2. We used temporal convolutional networks to produce a fractional cover product
that spans western United States rangelands. We trained the model with 52,012
on-the-ground vegetation plots to simultaneously predict fractional cover for annual
forbs and grasses, perennial forbs and grasses, shrubs, trees, litter and bare ground.
To assist interpretation and to provide a measure of prediction confidence, we also
produced spatiotemporal-explicit, pixel-level estimates of uncertainty. We evaluated
the model with 5,780 on-the-ground vegetation plots removed from the training data.

3. Model evaluation averaged 6.3% mean absolute error and 9.6% root mean
squared error. Evaluation with additional datasets that were not part of the train-
ing dataset, and that varied in geographic range, method of collection, scope and
size, revealed similar metrics. Model performance increased across all functional

groups compared to the previously produced fractional product.
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1 | INTRODUCTION

The ability to monitor rangeland vegetation and to quantify changes
in cover with satellite remote sensing is revolutionary to the range-
land management discipline. Whereas on-the-ground data collection
and monitoring is constrained logistically, satellite remote sensing
scales easily, measuring the landscape across space and through time.
Satellite measurements are modelled to predict rangeland indicators,
providing key information for land managers and practitioners glob-
ally (Hill & Guerschman, 2020). Chief among these indicators is veg-
etation cover at species or functional group levels. Historically, cover
was broadly categorical or thematic, and occurred at local, regional,
or national levels (Homer et al., 2015). More recently, fractional
cover is used to preserve the inherent complexity and heterogene-
ity of the landscape, estimating the proportion of an area covered
by vegetation or land cover type (Xian et al., 2015). Fractional cover
predictions, combined with local data and knowledge, can inform
decision-making at multiple scales, providing land managers flexibil-
ity that is absent with categorical classifications and severely lacking
with on-the-ground observations (Kennedy et al., 2014).

Fractional cover products are widely available for United States
rangelands (Jones et al., 2018; Rigge et al., 2020; Zhang et al., 2019).
To produce such products, on-the-ground data are correlated to re-
motely sensed measurements using regression tree approaches, with
models developed and predictions performed individually for each
desired component. Although robust, univariate regression trees
do not capitalize on the ability to learn from shared representation
among dependent variables. That is, relationships among functional
groups are not learned and therefore may not be reflected in pre-
dictions. A learned multitask model, however, examines all output
variables together and learns from inherent interactions and relation-
ships present in the data, improving learning efficiency and predic-
tion accuracy (Caruana, 1997). Variables that covary will be reflected
in the model, for example, functional groups or species that are mutu-
ally exclusive or inversely related, such as tree and grass cover.

As these fractional cover products are the predictions of models,

error and uncertainty are always present (Foody & Atkinson, 2003).

4. The advancements achieved with the new rangeland fractional cover product ex-
pand the management toolbox with improved predictions of fractional cover and
pixel-level uncertainty. The new product is available on the Rangeland Analysis
Platform (https://rangelands.app/), an interactive web application that tracks
rangeland vegetation through time. This product is intended to be used alongside
local on-the-ground data, expert knowledge, land use history, scientific literature
and other sources of information when making interpretations. When being used
to inform decision-making, remotely sensed products should be evaluated and uti-

lized according to the context of the decision and not be used in isolation.

conservation, convolutional neural network, grassland, machine learning, monitoring,

rangeland management, remote sensing, temporal convolutional network

Prediction error is most commonly calculated as the difference be-
tween a single on-the-ground measurement and its predicted value, a
calculation that can be done with certainty. Multiple errors can then be
averaged to produce a generalized accuracy of the model, for exam-
ple, root mean square error. Prediction uncertainty, however, differs
from error in that it represents prediction confidence, or an expression
of what is not known (Kendall & Gal, 2017). Consider the widely used
example of a model that predicts whether an object in an image is a
cat or dog, and is trained using only cat and dog data: if given cat or
dog data, prediction confidence should be high; if given penguin data,
prediction confidence should be low, as the model is unfamiliar with
penguin data. While prediction error can only be calculated using in-
dividual on-the-ground measurements—and then averaged to obtain a
generalized model accuracy—uncertainty can be calculated with every
prediction, increasing its spatiotemporal utility. For the practitioner,
uncertainty information can be used to assess prediction confidence,
reliability, or use.

We describe a new rangeland fractional cover product that spans
the western United States. We build upon previous advancements
(Jones et al., 2018) by (a) utilizing a learned multitask approach to
model the dynamic interactions of functional groups; and (b) gen-
erating pixel-level estimates of prediction uncertainty. We produce
the fractional cover product annually from 1984 to 2019 at a mod-
erate resolution of 30 m. It is made available for analysis, download
and visualization through the Rangeland Analysis Platform (https://
rangelands.app/) web application.

2 | MATERIALS AND METHODS
2.1 | Data

2.1.1 | Rangeland analysis platform—Fractional
cover datasets

Jones et al. (2018) (hereafter referred to as fractional cover ver-

sion 1.0) described the initial model and product released on the
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Rangeland Analysis Platform in 2018. The new model and subse-
quent product described in this paper (hereafter referred to as frac-

tional cover version 2.0) supersedes the initial version.

2.1.2 | Vegetation field data

We used 57,792 vegetation field data plots collected by the Bureau
of Land Management Assessment, Inventory, and Monitoring and
Landscape Monitoring Framework, and the Natural Resources
Conservation Service National Resources Inventory programs (Nusser
& Goebel, 1997; Toevs et al., 2011). Plots were collected from 2004
to 2019 (Table S1) across uncultivated, undeveloped, privately and
publicly owned rangelands across 17 western US states. At each plot,
vegetation was sampled using line point intercept methods on mul-
tiple transects. We followed methods outlined in Jones et al. (2018),
using the ‘first hit’ to calculate cover and aggregating species into
the following functional groups: annual forbs and grasses, perennial
forbs and grasses, shrubs, trees, litter and bare ground. We randomly
(stratified by state) divided the vegetation field data into training
(90%, 52,012 field plots) and validation (10%, 5,780 field plots) data-
sets (Figure S1).

2.1.3 | Landsatimagery

We used Landsat 5 TM, 7 ETM+ and 8 OLI surface reflectance prod-
ucts for predictors of fractional cover. We masked pixels identified as
clouds, cloud shadow, snow and saturated surface reflectance. We di-
vided the year into six, 64-day long timesteps (start dates occurring
on day of year 001, 065, 129, 193, 257 and 321, the last timestep car-
ried over into the following year) and calculated the average surface
reflectance for visible, near infrared and shortwave bands (bands 1-
5,7 for Landsat 5 TM and 7 ETM+; bands 2-7 for Landsat 8 OLI) in
each timestep. We included both the six timesteps of the current year
and the six timesteps of the previous year, resulting in 12 timesteps in
total. To supplement surface reflectance measurements, we calculated

normalized difference vegetation index (NDVI) and normalized burn
ratio two (NBR2) for each 64-day period. These indices represent veg-
etation characteristics that have been successful in modelling range-
land fractional cover (Jones et al., 2018). We reprojected and bilinearly
resampled all Landsat imagery to a geographic coordinate system of

approximately 30-m resolution.

2.2 | Model

We used Landsat surface reflectance measurements, vegetation in-
dices and spatial location (XY coordinates) as covariates to predict
rangeland fractional cover. The total number of covariates (10) was
reduced significantly from fractional cover version 1.0. To gener-
ate a multivariate response, we used an artificial neural network to
learn and predict cover for each functional group simultaneously.
Artificial neural networks are mathematical algorithms that imitate
the neurons found in mammalian brains and learn by considering
examples (Goodfellow et al., 2016). For a review of artificial neural
networks in ecology—specifically multilayered networks or deep
learning—we refer the reader to Waldchen and Mader (2018) and
Christin et al. (2019). We used a temporal convolutional network
(i.e. one-dimensional convolution) as features associated with each
vegetation field data plot varied sequentially through time, but not
space. Temporal convolutions work well for satellite time-series clas-
sification (Pelletier et al., 2019; Zhong et al., 2019) and may also out-
perform standard recurrent neural networks such as long short-term
memory (Bai et al., 2018).

We combined temporal convolutional layers with dropout,
pooling and fully connected layers (Figure 1). Convolutional layers
apply convolutions to the input; dropout layers randomly set input
units to zero, a regularization technique to prevent overfitting;
pooling layers reduce the size of representation, parameters and
computation; and the fully connected layer connects to all units
in the previous layer to produce the desired output. We used an
Adam optimizer with a learning rate of 0.0001, a batch size of 32,
a convolutional kernel width of three, and a dropout rate of 20%

Landsat
surface e B
reflectances
12%x32 12x64 12x128

FIGURE 1 Model architecture to Landsat N N
predict cover of rangeland functional indices
groups. Inputs include Landsat surface SN I I O I R R
reflectances, Landsat vegetation indices 12x32 12x64 12x128 1x264 512 6
and spatial location. Landsat surface -
reflectances and indices are temporal |:| ConviD + RelLU D Dropout
s.equences acros.s twelve 64-day Spat_lal |:| Fully connected + ReLU |:| Average pooling
timesteps. The final layer outputs percent location |:| il e D o -
cover of the six rangeland functional L L Hily:cennecte Inear oncatenale
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(Srivastava et al., 2014); the number of filters increased from 32 to
128 over three layers, and the dilation rate increased from one to
four. We utilized average pooling with a pooling size of 12 to reduce
temporal sequences to a single value. We performed convolutions
on Landsat surface reflectances and vegetation indices separately
due to the differing characteristics they represent, concatenating
layers prior to a fully connected layer (Figure 1). The final layer
contained six units, corresponding to the six functional groups. To
produce uncertainty estimates, we implemented dropout during
prediction (Gal & Ghahramani, 2015), utilizing a 10% dropout rate
before the fully connected layer. We repeated predictions four
times, averaged results to obtain the predictive output, and calcu-
lated variance to estimate uncertainty.

We evaluated model performance by calculating mean abso-
lute error (MAE), root mean square error (RMSE), residual stan-
dard error, (RSE) and the coefficient of determination (r?) of the
validation dataset. We compare evaluation metrics to fractional
cover version 1.0. In addition to evaluation with the validation
dataset, we also evaluated the model with datasets that were not
part of the training process and that varied in geographic range,
method of collection, scope and size (Table 1). We developed the
model using the Keras library within Tensorflow and performed all
image processing and predictions in Google Earth Engine (Gorelick
et al., 2017) and Google Cloud Al Platform (Al Platform, 2020),
respectively.

3 | RESULTS

3.1 | Model evaluation

Model results and evaluation metrics suggest strong relationships
between predicted and on-the-ground measurements (Table 2
and Figure 2). Evaluation metrics of the validation dataset aver-
aged 6.3 and 9.6% (MAE and RMSE, respectively) across rangeland
functional groups. Residual standard errors of predicted and on-
the-ground measurements varied from 4.6% to 12.7% among func-
tional groups (Table 2). Coefficient of determination values ranged
from 0.57 to 0.77 for most functional groups (Table 2). Evaluation
metrics calculated with additional datasets that were not part of
the training dataset also revealed similar metrics (Table 3). Model
performance increased compared to fractional cover version 1.0
(Jones et al., 2018; Table 2), and is comparable to other US range-
land fractional products available over disparate geographies (Rigge
et al., 2020; Zhang et al., 2019).

4 | DISCUSSION

We provide next generation predictions of annual, fractional
cover of rangeland functional groups by implementing a multi-
task learning approach across the western US (Figures 3 and 4).

TABLE 1 Additional datasets used in evaluation. These datasets varied in geographic range, method of collection, scope and size

Name Location Years n

Restore New Mexico Collaborative southwest New 2007-2017 788

Monitoring Program (RestoreNM) Mexico
Sagebrush Steppe Treatment sagebrush 2006-2014 227
Evaluation Project (SageSTEP) steppe

Eastern Oregon Agricultural 2016 198

Research Center (EOARC)
USGS/NPS

eastern Oregon

Colorado
Plateau

University of Idaho (Ul) central Idaho 2018-2019 60

Perennial
Annual forb  forb and
and grass grass Shrub  Tree Litter
Fractional cover version 2.0 (this paper)
MAE (%) 7.0 10.3 5.8 2.8 5.7
RMSE (%)  11.0 14.0 8.3 6.8 7.9
RSE (%) 8.8 12.7 6.6 5.9 4.6
r? 0.58 0.77 0.57 0.65 0.37
Fractional cover version 1.0 (Jones et al., 2018)
MAE (%) 7.8 111 6.9 4.7 —
RMSE (%) 11.8 14.9 9.9 8.5 =
RSE (%) — — — — —
r? (%) 0.43 0.71 0.43 0.52 -

2007-2019 3,405

Description
Plots contained paired parallel 50-m transects 20 m apart. Transect-
level cover used for evaluation

Plots contained 15-24 subplots; five line transects in each subplot.
Plot-level cover used for evaluation

Plots contained three 20-m transects. Plot-level cover used for
evaluation

Plots contained two to three 50 m transects. Plot-level cover used for
evaluation. See Supporting Information for more information

Plots contained three 25-m transects. Plot-level cover used for evaluation

TABLE 2 Model evaluation metrics
(mean absolute error, MAE; root

Bare R

s N mean square error, RMSE; residual
standard error, RSE; and coefficient of
determination, r) calculated using the

6.7 6.3 respective validation dataset for fractional

08 96 cover versions 1.0 and 2.0

79 -

0.73 -

7.3 7.56

10.6 11.14

0.71 -
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FIGURE 2 Predictions of fractional
cover relative to observed on-the-ground
measurements (n = 5,780), separated

by rangeland functional group. Diagonal
dashed black line represents a 1:1
relationship; solid blue line is the linear fit
between predicted and observed values.
Coefficient of determination (r?) and
residual standard error (RSE) are reported
in Table 2

TABLE 3 Model evaluation metrics
(mean absolute error, MAE; root mean
square error, RMSE; and coefficient

of determination, rz) calculated using
additional datasets described in Table 1

Annual forb & grass

Perennial forb & grass

1004

Predicted (%)

o i 100

754

50

254

Predicted (%)

Litter

100+

Predicted (%)

- 1004 [} -

RestoreNM
MAE (%)
RMSE (%)
2

SageSTEP
MAE (%)
RMSE (%)
2

EOARC
MAE (%)
RMSE (%)
2

USGS/NPS
MAE (%)
RMSE (%)
2

Ul
MAE (%)
RMSE (%)

r2

Observed (%)

Annual forb
and grass

5.7
11.2
0.29

9.0
13.3
0.19

6.6
9.6
0.43

4.2
7.8
0.49

8.0
10.6
0.56

Observed (%)

Perennial
forb and Bare
grass Shrub Tree Litter ground
9.7 6.5 - - -
13.1 8.1 - - -
0.22 0.08 - — —
13.2 8.3 — - 8.9
18.1 9.8 — — 11.8
0.25 0.27 - - 0.49
9.5 5.8 - - -
11.8 7.6 - - -
0.37 0.57 - - -
8.5 7.6 5.3 7.41 8.1
11.7 10.32 9.6 11.2 111
0.39 0.56 0.54 0.31 0.71
10.5 9.8 - - 3.2
13.3 121 - — 4.3

0.28 0.30 - - 0.31
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Bare ground

. >50

-0

FIGURE 3 Fractional cover predictions of annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs, trees, litter and bare
ground for 2019. White areas are non-rangeland as identified by Reeves and Mitchell (2011)

Bare ground

I

0%

FIGURE 4 Fractional cover uncertainty of annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs, trees, litter and bare
ground for 2019. White areas are non-rangeland as identified by Reeves and Mitchell (2011). Uncertainty was relativized to the fractional
cover prediction
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We improved upon our previous efforts (Jones et al., 2018) by (a)
utilizing a neural network that models the dynamic interactions
of functional groups; (b) reducing errors and improving model fit;
and (c) providing spatiotemporal-explicit, pixel-level estimates of
uncertainty alongside predictions. We deliver these data via the
Rangeland Analysis Platform (https://rangelands.app/), an online
and interactive web application that tracks rangeland vegetation
through time.

The fractional cover of functional groups and cover types
in rangelands reflect numerous ecosystem processes and eco-
system services. Changes in one functional group has pre-
dictable ecological impacts on other groups and the services
they provide (Uden et al., 2019). For example, woody plant
encroachment into grasslands constrains herbaceous grass
cover and diminishes forage production and wildlife habitat
(Archer et al., 2017), whereas annual grass invasion reduces
perennial herbaceous plants and shrubs (Davies, 2008). While
previous univariate modelling methods of fractional cover dis-
regard this inherent covariation, a multitask model exploits it
(Caruana, 1997). The underlying relationships among rangeland
functional groups are learned and incorporated into the model,
increasing accuracy (Figure 5). Although univariate predictions
can be constrained or restricted post hoc to correct for or re-
duce such errors (Henderson et al., 2019), the goal of multi-
task learning is to learn and predict variables simultaneously.
Furthermore, the shared representation of multitask learning

allows for covariance dynamics and interactions to be defined
by the data, eliminating the need for predetermined conditions,
rules, or thresholds.

When developing remotely sensed products, the goal is often
to maximize model performance to increase accuracy. Error,
however, is always present and should be understood and inte-
grated into the application of that product and the decision being
informed. Common model error metrics measure the average
difference between predicted model output and individual on-
the-ground measurements. This is generally calculated by with-
holding a portion (e.g. 5%-20%) of the model training dataset for
validation (either entirely, or in a bootstrap aggregating approach).
Error metrics therefore represent an average accuracy for the
model given the validation dataset, but do not indicate any spatial
or temporal variability of error. Attempts to visualize or aggregate
errors across broad regions may appear helpful, but do little to
characterize their spatial distribution or to help judge spatial ac-
curacy (Jones et al., 2018; Zhang et al., 2019). Moreover, error is
commonly calculated with only a minuscule fraction («0.1%) of
known measurements relative to total predictions, for example,
the 5,780 known measurements used for validation (10% of the
training dataset) in this exercise represents approximately 2e-8%
of total predictions.

The advantage of uncertainty information over error is its spa-
tiotemporal utility: uncertainty is calculated with every prediction
and therefore varies across space and time (Figure 6), while error

Univariate —fractional cover version 1.0

754

501

Cover (%)

/\ Observed

it

AR -

251 ,./5\
N 20
oA /\Observed
1986 1990 1994 1998 2002 2006 2010 2014 2018
Multivariate—fractional cover version 2.0
FIGURE 5 Univariate (top) and 1001 n /:\\7A\97 ol
multivariate (bottom) predictions of / k Observed
perennial forb/grass and tree fractional 754 d
cover for a single validation plot in an area
with woody encroachment. Plot data were § 504
collected in 2014 and recorded 0% and §
96% cover (triangular points) for perennial 25 |
forb/grass and tree, respectively. Due - /2}_‘/
to shared representation, multitask AObser"ed
models and predictions better represent °
functional group dynamics. Fractional ! ! ! ! | ! | I !
1986 1990 1994 1998 2002 2006 2010 2014 2018

cover version 1.0 produced by Jones
et al. (2018). Shaded lines represent
locally estimated scatterplot smoothing

Year

=o= Perennial forb & grass -~ Tree
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does not (see discussion above). Uncertainty provides a measure

of prediction confidence, that is, how reasonable is this prediction
given the data used to build the model? If the characteristics of a
location are generally represented within the model training data,
uncertainty may be low and the corresponding prediction reason-
able. If not as well represented within the model training data (e.g.
areas such as high alpine, lava flows, arid playas), uncertainty may
be high and the corresponding prediction unreasonable. Due to the
fact that uncertainty is spatiotemporally explicit, it can be helpful in
determining how to use model predictions on a case-by-case basis.
For example, if uncertainty is high in a particular area or time period
of interest, a practitioner can choose to gather additional local data
or information, do a more detailed analysis, discuss with colleagues,
etc. in order to expand decision inputs. Uncertainty can be inte-
grated into the context of the decision being made for a particular
place or time.

Operationalizing uncertainty information into decision-making
presents new opportunities to learn about this type of information.
While users often simply want to know if a prediction is ‘right or
wrong’ or ‘how far off it is, it is important to note that uncertainty
does not provide this. Rather, uncertainty is a measure of model
confidence (more specifically prediction variance), and should be
thought about, processed and utilized in the same way that other
confidence-, odds- or probability-type information is consumed, for
example, precipitation probabilities supplied with weather fore-
casts. As such, there are no defined rules, standardized practices,
thresholds, etc., to immediately employ when using uncertainty
information. Use of such methods will vary depending upon the
context of the decision being made. We recognize that it may be
difficult to immediately incorporate uncertainty information into
decision-making frameworks and workflows. We are confident,
however, that with increased education, experience and exposure
to these types of information, such barriers will be lessened and

removed.

FIGURE 6 Aerial imagery (left),
cover estimates (middle) and uncertainty
estimates (right) for 2019 perennial

forb and grass (top) and tree (bottom)
functional group cover for a small region
in the southern Great Plains. Light-to-
dark values represent lower-to-higher
values of cover and uncertainty. Greater
uncertainty for perennial forb and grass
estimates are present in areas dominated
by trees and vice versa

5 | CONCLUSIONS

Innovations in remotely sensed mapping of rangeland cover continue
to present new opportunities to improve assessment, management
and monitoring. We provide the latest advancement to expand the
land management toolbox with improved predictions of fractional
cover at a moderate resolution of 30 m, along with spatiotemporal-
explicit uncertainty estimates, that can be used at such resolution or
aggregated to broader scales. This product is intended to be used in
combination with local on-the-ground data, expert knowledge, land
use history, scientific literature and other sources of information
when making interpretations. We emphasize that when being used to
inform decision-making, remotely sensed products should be evalu-
ated and utilized according to the context of the decision and not
be used in isolation. Learning how to think about and use remotely
sensed data, and suitably integrate them into decision frameworks
and workflows, are next steps for improving the field of rangeland

monitoring.
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