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Abstract
1.	 Operational satellite remote sensing products are transforming rangeland  

management and science. Advancements in computation, data storage and pro-
cessing have removed barriers that previously blocked or hindered the develop-
ment and use of remote sensing products. When combined with local data and 
knowledge, remote sensing products can inform decision-making at multiple scales.

2.	 We used temporal convolutional networks to produce a fractional cover product 
that spans western United States rangelands. We trained the model with 52,012 
on-the-ground vegetation plots to simultaneously predict fractional cover for annual 
forbs and grasses, perennial forbs and grasses, shrubs, trees, litter and bare ground. 
To assist interpretation and to provide a measure of prediction confidence, we also 
produced spatiotemporal-explicit, pixel-level estimates of uncertainty. We evaluated 
the model with 5,780 on-the-ground vegetation plots removed from the training data.

3.	 Model evaluation averaged 6.3% mean absolute error and 9.6% root mean 
squared error. Evaluation with additional datasets that were not part of the train-
ing dataset, and that varied in geographic range, method of collection, scope and 
size, revealed similar metrics. Model performance increased across all functional 
groups compared to the previously produced fractional product.
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1  | INTRODUC TION

The ability to monitor rangeland vegetation and to quantify changes 
in cover with satellite remote sensing is revolutionary to the range-
land management discipline. Whereas on-the-ground data collection 
and monitoring is constrained logistically, satellite remote sensing 
scales easily, measuring the landscape across space and through time. 
Satellite measurements are modelled to predict rangeland indicators, 
providing key information for land managers and practitioners glob-
ally (Hill & Guerschman, 2020). Chief among these indicators is veg-
etation cover at species or functional group levels. Historically, cover 
was broadly categorical or thematic, and occurred at local, regional, 
or national levels (Homer et  al.,  2015). More recently, fractional 
cover is used to preserve the inherent complexity and heterogene-
ity of the landscape, estimating the proportion of an area covered 
by vegetation or land cover type (Xian et al., 2015). Fractional cover 
predictions, combined with local data and knowledge, can inform 
decision-making at multiple scales, providing land managers flexibil-
ity that is absent with categorical classifications and severely lacking 
with on-the-ground observations (Kennedy et al., 2014).

Fractional cover products are widely available for United States 
rangelands (Jones et al., 2018; Rigge et al., 2020; Zhang et al., 2019). 
To produce such products, on-the-ground data are correlated to re-
motely sensed measurements using regression tree approaches, with 
models developed and predictions performed individually for each 
desired component. Although robust, univariate regression trees 
do not capitalize on the ability to learn from shared representation 
among dependent variables. That is, relationships among functional 
groups are not learned and therefore may not be reflected in pre-
dictions. A learned multitask model, however, examines all output 
variables together and learns from inherent interactions and relation-
ships present in the data, improving learning efficiency and predic-
tion accuracy (Caruana, 1997). Variables that covary will be reflected 
in the model, for example, functional groups or species that are mutu-
ally exclusive or inversely related, such as tree and grass cover.

As these fractional cover products are the predictions of models, 
error and uncertainty are always present (Foody & Atkinson,  2003). 

Prediction error is most commonly calculated as the difference be-
tween a single on-the-ground measurement and its predicted value, a 
calculation that can be done with certainty. Multiple errors can then be 
averaged to produce a generalized accuracy of the model, for exam-
ple, root mean square error. Prediction uncertainty, however, differs 
from error in that it represents prediction confidence, or an expression 
of what is not known (Kendall & Gal, 2017). Consider the widely used 
example of a model that predicts whether an object in an image is a 
cat or dog, and is trained using only cat and dog data: if given cat or 
dog data, prediction confidence should be high; if given penguin data, 
prediction confidence should be low, as the model is unfamiliar with 
penguin data. While prediction error can only be calculated using in-
dividual on-the-ground measurements—and then averaged to obtain a 
generalized model accuracy—uncertainty can be calculated with every 
prediction, increasing its spatiotemporal utility. For the practitioner, 
uncertainty information can be used to assess prediction confidence, 
reliability, or use.

We describe a new rangeland fractional cover product that spans 
the western United States. We build upon previous advancements 
(Jones et al., 2018) by (a) utilizing a learned multitask approach to 
model the dynamic interactions of functional groups; and (b) gen-
erating pixel-level estimates of prediction uncertainty. We produce 
the fractional cover product annually from 1984 to 2019 at a mod-
erate resolution of 30 m. It is made available for analysis, download 
and visualization through the Rangeland Analysis Platform (https://
range​lands.app/) web application.

2  | MATERIAL S AND METHODS

2.1 | Data

2.1.1 | Rangeland analysis platform—Fractional 
cover datasets

Jones et  al.  (2018) (hereafter referred to as fractional cover ver-
sion 1.0) described the initial model and product released on the 

4.	 The advancements achieved with the new rangeland fractional cover product ex-
pand the management toolbox with improved predictions of fractional cover and 
pixel-level uncertainty. The new product is available on the Rangeland Analysis 
Platform (https://range​lands.app/), an interactive web application that tracks 
rangeland vegetation through time. This product is intended to be used alongside 
local on-the-ground data, expert knowledge, land use history, scientific literature 
and other sources of information when making interpretations. When being used 
to inform decision-making, remotely sensed products should be evaluated and uti-
lized according to the context of the decision and not be used in isolation.
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Rangeland Analysis Platform in 2018. The new model and subse-
quent product described in this paper (hereafter referred to as frac-
tional cover version 2.0) supersedes the initial version.

2.1.2 | Vegetation field data

We used 57,792 vegetation field data plots collected by the Bureau 
of Land Management Assessment, Inventory, and Monitoring and 
Landscape Monitoring Framework, and the Natural Resources 
Conservation Service National Resources Inventory programs (Nusser 
& Goebel, 1997; Toevs et al., 2011). Plots were collected from 2004 
to 2019 (Table  S1) across uncultivated, undeveloped, privately and 
publicly owned rangelands across 17 western US states. At each plot, 
vegetation was sampled using line point intercept methods on mul-
tiple transects. We followed methods outlined in Jones et al. (2018), 
using the ‘first hit’ to calculate cover and aggregating species into 
the following functional groups: annual forbs and grasses, perennial 
forbs and grasses, shrubs, trees, litter and bare ground. We randomly 
(stratified by state) divided the vegetation field data into training 
(90%, 52,012 field plots) and validation (10%, 5,780 field plots) data-
sets (Figure S1).

2.1.3 | Landsat imagery

We used Landsat 5 TM, 7 ETM+ and 8 OLI surface reflectance prod-
ucts for predictors of fractional cover. We masked pixels identified as 
clouds, cloud shadow, snow and saturated surface reflectance. We di-
vided the year into six, 64-day long timesteps (start dates occurring 
on day of year 001, 065, 129, 193, 257 and 321; the last timestep car-
ried over into the following year) and calculated the average surface 
reflectance for visible, near infrared and shortwave bands (bands 1-
5,7 for Landsat 5 TM and 7 ETM+; bands 2-7 for Landsat 8 OLI) in 
each timestep. We included both the six timesteps of the current year 
and the six timesteps of the previous year, resulting in 12 timesteps in 
total. To supplement surface reflectance measurements, we calculated 

normalized difference vegetation index (NDVI) and normalized burn 
ratio two (NBR2) for each 64-day period. These indices represent veg-
etation characteristics that have been successful in modelling range-
land fractional cover (Jones et al., 2018). We reprojected and bilinearly 
resampled all Landsat imagery to a geographic coordinate system of 
approximately 30-m resolution.

2.2 | Model

We used Landsat surface reflectance measurements, vegetation in-
dices and spatial location (XY coordinates) as covariates to predict 
rangeland fractional cover. The total number of covariates (10) was 
reduced significantly from fractional cover version 1.0. To gener-
ate a multivariate response, we used an artificial neural network to 
learn and predict cover for each functional group simultaneously. 
Artificial neural networks are mathematical algorithms that imitate 
the neurons found in mammalian brains and learn by considering 
examples (Goodfellow et al., 2016). For a review of artificial neural 
networks in ecology—specifically multilayered networks or deep 
learning—we refer the reader to Wäldchen and Mäder (2018) and 
Christin et  al.  (2019). We used a temporal convolutional network 
(i.e. one-dimensional convolution) as features associated with each 
vegetation field data plot varied sequentially through time, but not 
space. Temporal convolutions work well for satellite time-series clas-
sification (Pelletier et al., 2019; Zhong et al., 2019) and may also out-
perform standard recurrent neural networks such as long short-term 
memory (Bai et al., 2018).

We combined temporal convolutional layers with dropout, 
pooling and fully connected layers (Figure 1). Convolutional layers 
apply convolutions to the input; dropout layers randomly set input 
units to zero, a regularization technique to prevent overfitting; 
pooling layers reduce the size of representation, parameters and 
computation; and the fully connected layer connects to all units 
in the previous layer to produce the desired output. We used an 
Adam optimizer with a learning rate of 0.0001, a batch size of 32, 
a convolutional kernel width of three, and a dropout rate of 20% 

F I G U R E  1   Model architecture to 
predict cover of rangeland functional 
groups. Inputs include Landsat surface 
reflectances, Landsat vegetation indices 
and spatial location. Landsat surface 
reflectances and indices are temporal 
sequences across twelve 64-day 
timesteps. The final layer outputs percent 
cover of the six rangeland functional 
groups



844  |    Methods in Ecology and Evolu
on ALLRED et al.

(Srivastava et al., 2014); the number of filters increased from 32 to 
128 over three layers, and the dilation rate increased from one to 
four. We utilized average pooling with a pooling size of 12 to reduce 
temporal sequences to a single value. We performed convolutions 
on Landsat surface reflectances and vegetation indices separately 
due to the differing characteristics they represent, concatenating 
layers prior to a fully connected layer (Figure  1). The final layer 
contained six units, corresponding to the six functional groups. To 
produce uncertainty estimates, we implemented dropout during 
prediction (Gal & Ghahramani, 2015), utilizing a 10% dropout rate 
before the fully connected layer. We repeated predictions four 
times, averaged results to obtain the predictive output, and calcu-
lated variance to estimate uncertainty.

We evaluated model performance by calculating mean abso-
lute error (MAE), root mean square error (RMSE), residual stan-
dard error, (RSE) and the coefficient of determination (r2) of the 
validation dataset. We compare evaluation metrics to fractional 
cover version 1.0. In addition to evaluation with the validation 
dataset, we also evaluated the model with datasets that were not 
part of the training process and that varied in geographic range, 
method of collection, scope and size (Table 1). We developed the 
model using the Keras library within Tensorflow and performed all 
image processing and predictions in Google Earth Engine (Gorelick 
et  al.,  2017) and Google Cloud AI Platform (AI Platform,  2020), 
respectively.

3  | RESULTS

3.1 | Model evaluation

Model results and evaluation metrics suggest strong relationships 
between predicted and on-the-ground measurements (Table  2 
and Figure  2). Evaluation metrics of the validation dataset aver-
aged 6.3 and 9.6% (MAE and RMSE, respectively) across rangeland 
functional groups. Residual standard errors of predicted and on-
the-ground measurements varied from 4.6% to 12.7% among func-
tional groups (Table 2). Coefficient of determination values ranged 
from 0.57 to 0.77 for most functional groups (Table 2). Evaluation 
metrics calculated with additional datasets that were not part of 
the training dataset also revealed similar metrics (Table  3). Model 
performance increased compared to fractional cover version 1.0 
(Jones et al., 2018; Table 2), and is comparable to other US range-
land fractional products available over disparate geographies (Rigge 
et al., 2020; Zhang et al., 2019).

4  | DISCUSSION

We provide next generation predictions of annual, fractional 
cover of rangeland functional groups by implementing a multi-
task learning approach across the western US (Figures  3 and 4). 

TA B L E  1   Additional datasets used in evaluation. These datasets varied in geographic range, method of collection, scope and size

Name Location Years n Description

Restore New Mexico Collaborative 
Monitoring Program (RestoreNM)

southwest New 
Mexico

2007–2017 788 Plots contained paired parallel 50-m transects 20 m apart. Transect-
level cover used for evaluation

Sagebrush Steppe Treatment 
Evaluation Project (SageSTEP)

sagebrush 
steppe

2006–2014 227 Plots contained 15–24 subplots; five line transects in each subplot. 
Plot-level cover used for evaluation

Eastern Oregon Agricultural 
Research Center (EOARC)

eastern Oregon 2016 198 Plots contained three 20-m transects. Plot-level cover used for 
evaluation

USGS/NPS Colorado 
Plateau

2007–2019 3,405 Plots contained two to three 50 m transects. Plot-level cover used for 
evaluation. See Supporting Information for more information

University of Idaho (UI) central Idaho 2018–2019 60 Plots contained three 25-m transects. Plot-level cover used for evaluation

Annual forb 
and grass

Perennial 
forb and 
grass Shrub Tree Litter

Bare 
ground Average

Fractional cover version 2.0 (this paper)

MAE (%) 7.0 10.3 5.8 2.8 5.7 6.7 6.3

RMSE (%) 11.0 14.0 8.3 6.8 7.9 9.8 9.6

RSE (%) 8.8 12.7 6.6 5.9 4.6 7.9 —

r2 0.58 0.77 0.57 0.65 0.37 0.73 —

Fractional cover version 1.0 (Jones et al., 2018)

MAE (%) 7.8 11.1 6.9 4.7 — 7.3 7.56

RMSE (%) 11.8 14.9 9.9 8.5 — 10.6 11.14

RSE (%) — — — — — — —

r2 (%) 0.43 0.71 0.43 0.52 — 0.71 —

TA B L E  2   Model evaluation metrics 
(mean absolute error, MAE; root 
mean square error, RMSE; residual 
standard error, RSE; and coefficient of 
determination, r2) calculated using the 
respective validation dataset for fractional 
cover versions 1.0 and 2.0
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F I G U R E  2   Predictions of fractional 
cover relative to observed on-the-ground 
measurements (n = 5,780), separated 
by rangeland functional group. Diagonal 
dashed black line represents a 1:1 
relationship; solid blue line is the linear fit 
between predicted and observed values. 
Coefficient of determination (r2) and 
residual standard error (RSE) are reported 
in Table 2

Annual forb 
and grass

Perennial 
forb and 
grass Shrub Tree Litter

Bare 
ground

RestoreNM

MAE (%) 5.7 9.7 6.5 — — —

RMSE (%) 11.2 13.1 8.1 — — —

r2 0.29 0.22 0.08 — — —

SageSTEP

MAE (%) 9.0 13.2 8.3 — — 8.9

RMSE (%) 13.3 18.1 9.8 — — 11.8

r2 0.19 0.25 0.27 — — 0.49

EOARC

MAE (%) 6.6 9.5 5.8 — — —

RMSE (%) 9.6 11.8 7.6 — — —

r2 0.43 0.37 0.57 — — —

USGS/NPS

MAE (%) 4.2 8.5 7.6 5.3 7.41 8.1

RMSE (%) 7.8 11.7 10.32 9.6 11.2 11.1

r2 0.49 0.39 0.56 0.54 0.31 0.71

UI

MAE (%) 8.0 10.5 9.8 — — 3.2

RMSE (%) 10.6 13.3 12.1 — — 4.3

r2 0.56 0.28 0.30 — — 0.31

TA B L E  3   Model evaluation metrics 
(mean absolute error, MAE; root mean 
square error, RMSE; and coefficient 
of determination, r2) calculated using 
additional datasets described in Table 1
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F I G U R E  3   Fractional cover predictions of annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs, trees, litter and bare 
ground for 2019. White areas are non-rangeland as identified by Reeves and Mitchell (2011)

F I G U R E  4   Fractional cover uncertainty of annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs, trees, litter and bare 
ground for 2019. White areas are non-rangeland as identified by Reeves and Mitchell (2011). Uncertainty was relativized to the fractional 
cover prediction
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We improved upon our previous efforts (Jones et al., 2018) by (a) 
utilizing a neural network that models the dynamic interactions 
of functional groups; (b) reducing errors and improving model fit; 
and (c) providing spatiotemporal-explicit, pixel-level estimates of 
uncertainty alongside predictions. We deliver these data via the 
Rangeland Analysis Platform (https://range​lands.app/), an online 
and interactive web application that tracks rangeland vegetation 
through time.

The fractional cover of functional groups and cover types 
in rangelands reflect numerous ecosystem processes and eco-
system services. Changes in one functional group has pre-
dictable ecological impacts on other groups and the services 
they provide (Uden et  al.,  2019). For example, woody plant 
encroachment into grasslands constrains herbaceous grass 
cover and diminishes forage production and wildlife habitat 
(Archer et  al.,  2017), whereas annual grass invasion reduces 
perennial herbaceous plants and shrubs (Davies,  2008). While 
previous univariate modelling methods of fractional cover dis-
regard this inherent covariation, a multitask model exploits it 
(Caruana, 1997). The underlying relationships among rangeland 
functional groups are learned and incorporated into the model, 
increasing accuracy (Figure 5). Although univariate predictions 
can be constrained or restricted post hoc to correct for or re-
duce such errors (Henderson et  al.,  2019), the goal of multi-
task learning is to learn and predict variables simultaneously. 
Furthermore, the shared representation of multitask learning 

allows for covariance dynamics and interactions to be defined 
by the data, eliminating the need for predetermined conditions, 
rules, or thresholds.

When developing remotely sensed products, the goal is often 
to maximize model performance to increase accuracy. Error, 
however, is always present and should be understood and inte-
grated into the application of that product and the decision being 
informed. Common model error metrics measure the average 
difference between predicted model output and individual on-
the-ground measurements. This is generally calculated by with-
holding a portion (e.g. 5%–20%) of the model training dataset for 
validation (either entirely, or in a bootstrap aggregating approach). 
Error metrics therefore represent an average accuracy for the 
model given the validation dataset, but do not indicate any spatial 
or temporal variability of error. Attempts to visualize or aggregate 
errors across broad regions may appear helpful, but do little to 
characterize their spatial distribution or to help judge spatial ac-
curacy (Jones et al., 2018; Zhang et al., 2019). Moreover, error is 
commonly calculated with only a minuscule fraction (≪0.1%) of 
known measurements relative to total predictions, for example, 
the 5,780 known measurements used for validation (10% of the 
training dataset) in this exercise represents approximately 2e-8% 
of total predictions.

The advantage of uncertainty information over error is its spa-
tiotemporal utility: uncertainty is calculated with every prediction 
and therefore varies across space and time (Figure  6), while error 

F I G U R E  5   Univariate (top) and 
multivariate (bottom) predictions of 
perennial forb/grass and tree fractional 
cover for a single validation plot in an area 
with woody encroachment. Plot data were 
collected in 2014 and recorded 0% and 
96% cover (triangular points) for perennial 
forb/grass and tree, respectively. Due 
to shared representation, multitask 
models and predictions better represent 
functional group dynamics. Fractional 
cover version 1.0 produced by Jones 
et al. (2018). Shaded lines represent 
locally estimated scatterplot smoothing

https://rangelands.app/
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does not (see discussion above). Uncertainty provides a measure 
of prediction confidence, that is, how reasonable is this prediction 
given the data used to build the model? If the characteristics of a 
location are generally represented within the model training data, 
uncertainty may be low and the corresponding prediction reason-
able. If not as well represented within the model training data (e.g. 
areas such as high alpine, lava flows, arid playas), uncertainty may 
be high and the corresponding prediction unreasonable. Due to the 
fact that uncertainty is spatiotemporally explicit, it can be helpful in 
determining how to use model predictions on a case-by-case basis. 
For example, if uncertainty is high in a particular area or time period 
of interest, a practitioner can choose to gather additional local data 
or information, do a more detailed analysis, discuss with colleagues, 
etc. in order to expand decision inputs. Uncertainty can be inte-
grated into the context of the decision being made for a particular 
place or time.

Operationalizing uncertainty information into decision-making 
presents new opportunities to learn about this type of information. 
While users often simply want to know if a prediction is ‘right or 
wrong’ or ‘how far off it is’, it is important to note that uncertainty 
does not provide this. Rather, uncertainty is a measure of model 
confidence (more specifically prediction variance), and should be 
thought about, processed and utilized in the same way that other 
confidence-, odds- or probability-type information is consumed, for 
example, precipitation probabilities supplied with weather fore-
casts. As such, there are no defined rules, standardized practices, 
thresholds, etc., to immediately employ when using uncertainty 
information. Use of such methods will vary depending upon the 
context of the decision being made. We recognize that it may be 
difficult to immediately incorporate uncertainty information into 
decision-making frameworks and workflows. We are confident, 
however, that with increased education, experience and exposure 
to these types of information, such barriers will be lessened and 
removed.

5  | CONCLUSIONS

Innovations in remotely sensed mapping of rangeland cover continue 
to present new opportunities to improve assessment, management 
and monitoring. We provide the latest advancement to expand the 
land management toolbox with improved predictions of fractional 
cover at a moderate resolution of 30 m, along with spatiotemporal-
explicit uncertainty estimates, that can be used at such resolution or 
aggregated to broader scales. This product is intended to be used in 
combination with local on-the-ground data, expert knowledge, land 
use history, scientific literature and other sources of information 
when making interpretations. We emphasize that when being used to 
inform decision-making, remotely sensed products should be evalu-
ated and utilized according to the context of the decision and not 
be used in isolation. Learning how to think about and use remotely 
sensed data, and suitably integrate them into decision frameworks 
and workflows, are next steps for improving the field of rangeland 
monitoring.
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