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ABSTRACT. We prove geometric and cohomological stabilization results for the
universal smooth degree d hypersurface section of a fixed smooth projective
variety as d goes to infinity. We show that relative configuration spaces of the
universal smooth hypersurface section stabilize in the completed Grothendieck
ring of varieties, and deduce from this the stabilization of the Hodge Euler char-
acteristic of natural families of local systems constructed from the vanishing
cohomology. We prove explicit formulas for the stable values using a proba-
bilistic interpretation, along with the natural analogs in point counting over
finite fields. We explain how these results provide new geometric examples
of a weak version of representation stability for symmetric, symplectic, and
orthogonal groups. This interpretation of representation stability was studied
in the prequel [20] for configuration spaces.

1. INTRODUCTION

In this work, we prove geometric and cohomological stabilization results for the
universal smooth degree d hypersurface section of a fixed smooth projective variety
as d goes to infinity, bringing together three important ideas in the field of cohomo-
logical stability: motivic stabilization as introduced by Vakil-Wood [31], represen-
tation stability as introduced by Church [10] and Church-Farb [12], and connections
with arithmetic statistics as discussed, e.g., in [11]. Indeed, our stabilization results
in the prequel [20] can be thought of as a motivic version of representation stability
for configuration spaces, with explicit stable values provided by a probabilistic in-
terpretation motivated by arithmetic statistics over finite fields. Our results in this
work go further, giving a motivic version of representation stability for symplectic
and orthogonal groups (as well as new instances for symmetric groups) in a setting
where there are no other known representation stability results. A key aspect of our
theory is the introduction of motivic random variables, which provide a useful way
of organizing and understanding the stable values by using probability theory and
transporting intuition from characteristic p, where point counting methods apply,
to characteristic zero.

1.1. Cohomological stabilization. Let Y be a polarized smooth projective va-
riety — i.e. a smooth projective variety equipped with a very ample line bundle
L giving a closed embedding Y — P(I'(Y, £)*). Let Uy be the space of smooth
hypersurface sections of degree d of Y (with respect to this embedding). The non-
constant part of the cohomology of the universal smooth hypersurface section Z;/Uy
gives rise to a local system, the vanishing cohomology Vyan,g on Ug(C). The corre-
sponding monodromy representation is to a symmetric, orthogonal, or symplectic
group, depending on whether dimY — 1 is zero, even and positive, or odd — we will
refer to this group as the algebraic monodromy group.

If 7 is a representation of the algebraic monodromy group, then by composing the
monodromy representation with 7 we obtain a new local system V7, o on Ug(C).
In any of these situations, a partition o gives rise to a family of irreducible repre-
sentations 7, 4 of the algebraic monodromy groups for Uy (by the theory of Young
tableaux for symmetric groups, as in the theory of representation stability [12], and
by highest weight theory for symplectic and orthogonal groups — cf. Section 3).

Each of the local systems

VYo
n,Q

va;
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is equipped with a natural variation of Hodge structure, and thus its cohomology
is equipped with a mixed Hodge structure'. In particular, denoting the weight
filtration by W,

Griwy H(U4(C), Vyan,0)
is a direct sum of polarizable Hodge structures.

We define Ky(HS) to be the Grothendieck ring of polarizable Hodge structures,
which is the quotient of the free Z—module with basis given by isomorphism classes
[V] of polarizable Q—Hodge structures V' by the relations [V; @ Vo] = [V1] + [Va].
It is a ring with [V1] - [V2] = [V1 ® V2].

We denote by

Q(_l) = HCQ(Al)v
the Tate Hodge structure of weight 2, and Q(n) = Q(—1)® ™.

By the above considerations, we obtain for each d a compactly supported Euler

characteristic

xus(HE (Ua(C), Vi) = D 5(= 1) [Grw H{(Ua(C), Vizi')] € Ko(HS)
Our first main theorem states that this class stabilizes as d — oo in the completion

—

Ko(HS) of Ko(HS) for the weight filtration.

Theorem A. IfY/C is a polarized smooth projective variety of dimension n = 1,
then for any partition o,

. xus(H: (Ua(C), Vi)
d—x [(@(— dim Ud)]

—

exists in Ko(HS). Moreover, it can be expressed by an explicit universal formula as
a limit of elements in the subring of Ko(HS) generated by symmetric powers of the
cohomology groups of Y and Q(1).

The formula is universal in the sense that for each n and o there is a power
series in a single variable ¢ with coefficients given by polynomials in the symbols
[Sym'H’(e,Q)], i = 0, 0 < j < 2n, such that the limit is obtained for any Y of
dimension n by substituting Q(1) for ¢ and [Sym'H’(Y,Q)] for [Sym'H’(s,Q)].
This power series is even a rational function, and can be made explicit: Both
Theorem A and its point-counting analog, Theorem B below, are deduced from
corresponding geometric stabilization results (Theorems D and C below), and the
universal formulas are more natural in the geometric setting where they have a
probabilistic interpretation. We give the geometric universal formulas below in
Theorems D and C, and in Appendix A we extract from the proofs an algorithm
to obtain the cohomological universal formulas of Theorems A and B for a given o
and n.

Example 1.1.1. If Y = P”, then Vyan g is the local system of primitive cohomol-
ogy coming from the universal smooth hypersurface. In this case, we deduce (cf.
Example A.0.2 in Appendix A) that

lim XHS (Hc (Ud ((C) ) Vvan,Q))

d— [Q(—dim Uy)] =0.

1To simplify some arguments we use the theory of Arapura [2] rather than that of Saito [28,29]
to produce this mixed Hodge structure — cf. Subsection 2.2.
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We also obtain the point counting analog. One could view this as evidence that
the individual cohomology groups H*(U4(C), Vyan @) are themselves stably trivial,
though it is also possible, e.g., that the cohomology groups stabilize with cancella-
tion between weights in different degrees (in upcoming work [19] we make a general
cohomological stabilization conjecture compatible with Theorems A, B, D and C).
We note that in this case H' is known to be stably trivial by Nori’s connectivity
theorem [26, Corollary 4.4]°.

Remark 1.1.2.

1. Theorem A is new except for the trivial local system (i.e. the cohomology of
Uq4(C) itself), corresponding to o = &, where it is due to Vakil and Wood [31]. The
methods of [31] will play an important role in our proof.

2. Because the U, are smooth but not proper, the Hodge Euler characteristic
can potentially contain less information than the cohomology groups (with mixed
Hodge structures) themselves. Nevertheless, in practice it seems a large amount
of information is retained: for example, for Y = P™ and the trivial local system,
Tommasi [30] has shown the individual cohomology groups also stabilize and from
her computation one finds that there is no cancellation between degrees. We refer
the reader to [31, 1.2] for more on this Occam’s razor principle for Hodge structures.

The local systems V o d@ also have [-adic incarnations V)7 o @ in étale cohomol-
ogy, and we study these over finite fields. We obtain the point-counting analog

Theorem B. If Y /F, is a polarized smooth projective variety of dimension n > 1
and o 1s a partition, then
—dim U, . Mo,
lim ¢~ dZ( 1)'TrFrob, G H (U, Vana,)
(]

exists in Q (here the limit is of elements of Q in the archimedean topology). Further-
more, for a fived o and dimension n, the limit is given by an explicit, computable
universal formula. The universal formula is a rational function of ¢ and symmetric
functions of the eigenvalues of Frobenius acting on the cohomology of Y .

Remark 1.1.3. For the trivial local system, Theorem B is due to Poonen [27].
Furthermore, one of the main technical inputs in our proof of Theorem B is Poonen’s
sieving Bertini theorem with Taylor conditions [27, Theorem 1.2] (cf. Remark 1.3.1
below).

1.2. Motivic stabilization. Returning to the case of Y /C, our goal now is to
systematically understand the stabilization of natural varieties over U produced
from the universal family Z; (e.g., relative configuration spaces).

To study this, we will use the notion of a relative Grothendieck ring of varieties.
For S/C a variety, we denote by K((Var/S) the ring spanned by isomorphism classes
[X/S] of varieties X /S (i.e. maps of varieties f : X — S) modulo the relations

[X/S] = [X\2/5] +[2/5]
for any closed subvariety Z < X. It is a ring with
[X1/5]- [X2/S] = [X1 xs X5/S].
We will write Ky(Var) for Ko(Var/C).

2We thank Bhargav Bhatt for pointing out the connection between our results and Nori’s
connectivity theorem.
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For any S/C there is a natural pre-A structure on the Grothendieck ring Ky(Var/.S)
which gives an efficient way to work with constructions such as relative symmet-
ric powers and relative configuration spaces (cf. [20, Subsection 3.1]). This pre-A
structure can be interpreted as a set-theoretic pairing

(,): A x Ko(Var/S) - Ky(Var/S)
where
A = Z[h1, ha, hs, ...]
is the ring of symmetric functions [24] (the h; are the complete symmetric func-
tions). If we fix the second variable, the pairing gives a ring homomorphism
A — Ky(Var/S)
characterized by
(b, [T/S]) = [Sym§T/S]
where the subscript on the symmetric power denotes that it is taken relative to .S.
Our geometric stabilization will take place in
My = Ko(Var)[L ]

where L. = [A!] and the completion is with respect to the dimension filtration

(cf. [31]). For z € Ko(Var/S), we will denote by x4z the element of My obtained

by forgetting the structure morphism to S (i.e. by applying the map [T/S] — [T7]).
As a first approximation, our motivic stability result says

Theorem (first version of Theorem D). If Y/C is a polarized smooth projective
variety of dimension n = 1, then, for any symmetric function f € A,

(f,[Za/Ua)) 5t
et Ldim Ua
exists in /T/l\]L.
We will refine this statement with explicit formulas in Theorem D below. To

motivate these, it is helpful to first consider the point-counting analog, which we
do below. First, however, we give some examples and remarks:

Remark 1.2.1. For f = 1, this result is due to Vakil-Wood [31], who compute

lim [Ua]

doy LdimUs — Cr(n+1)h

Here ¢y (n + 1) is obtained by substituting ¢ = L~("*1 in the Kapranov zeta
function

Zy(t) =1+ [Y] -t +[Sym?Y]-t* + ... € 1 + tKo(Var)[[t]].

Example 1.2.2 (Relative generalized configuration spaces stabilize). For any gen-
eralized partition 7 = a!! - ... - al» we denote by Conf5T/S the relative generalized
configuration space which parameterizes collections of Y] I; distinct points lying in
a fiber of T — S, of which [; are labeled by a; for each 1 < i < m. There is a

unique ¢; € A such that for all S and all T/S,
(¢r,[T/S]) = [ConfgT/S].
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Indeed, [31, 3.19] gives an explicit formula for the class of a generalized configuration

space in terms of the classes of symmetric powers and shows that this formula is

unique; this translates to a formula for ¢, in terms of complete symmetric functions.
In particular, applied to ¢, our theorem shows
[Conf7; Z4]

d—>o0 Ldll’n Uy

exists in /T/l\]L. (In fact, we will prove Theorem D below by showing this statement
and using that the ¢, form a basis for A).

Example 1.2.3. For Y = P" and f = hj, so that we are considering Z; the
universal family of smooth hypersurfaces in P", we obtain (using Remark 1.2.1 and
Example 1.3.6 below)

(2 . i
s ]Lc[limle =[P" ] Gr(n+1)7}

where Cpn(n + 1) is the Kapranov zeta function of P" evaluated at L=("+1).

Remark 1.2.4. The cohomological Theorem A is deduced from the geometric
Theorem D below by taking f to be a (symmetric, symplectic, or orthogonal)
Schur polynomial s, then carefully modifying the result to remove the contribution
of the constant part of the cohomology of Z; (which can be described explicitly in
terms of the cohomology of Y)). The key tool that makes this extraction possible
is the fact that the Adams operations on a pre-A ring, given by pairing with power
sum symmetric functions, are additive.

1.3. Probabilistic interpretation. In Theorem C below we give a point-counting
geometric stabilization theorem with explicit formulas for the limit stated using
probabilistic language. Motivated by the explicit formulas in the point-counting
setting, we then state our full motivic stabilization result as Theorem D below.

For Y /F, a polarized smooth projective variety, we consider the subring Ky(Locg,Uqg)’
of the Grothendieck ring of lisse l-adic sheaves consisting of virtual sheaves with
integral characteristic series of Frobenius at every closed point. It is a pre-\ ring,
and it admits an algebraic probability measure p4 (in the sense of [20, Section 4])
with values in Q where the expectation E,, is given by averaging the traces of
Frobenius over Fg-rational points (or, equivalently by the Grothendieck-Lefschetz
formula, by computing the alternating sum of traces on the compactly supported
cohomology then dividing by #Uy(F,)).

In Ko(Locg,Uy)', there is a class [Z4/Uy] given by the alternating sum of the
cohomology local systems of Z;. We can view Ky(Locg,Uy) as a ring of mo-
tivic random variables lifting the ring of classical random variables on the discrete
probability space Ugy(F,) with uniform distribution, and from this perspective the
random variable [Z4/Uy] lifts the classical random variable assigning to a smooth
hypersurface section u € Uy(F,) the number of F, points on Zg,,.

Let .

=g > uld/k)pr € Ag
dlk
be the Mobius inverted power sum polynomials. We can view (p},,[Z4/U4]) as a
motivic lift of the classical random variable assigning to a smooth hypersurface
section u € Uy(F,) the number of degree k closed points on Zg,,.
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Theorem C. LetY /F, be a polarized smooth projective variety of dimensionn > 1.
Then, for a formal variable t,

nk _ # closed points of degree k on'Y
———

+Dk _ 1
q(n

dlim E,, [(1 +t)(P?€;[Zd/Ud])] _ (1 + q
—> L

and the (p,, [Z4/Uaq)) are asymptotically independent for distinct k, i.e. for formal
variables t1,to, ..., tm,

H(l + tk)(p/kv[zd/Ud]] = lim E,, [(1 + tk)(ka[Zd/Ud])] .

A d—oC

Here exponentiation is interpreted in terms of the standard power series

(1+)" = exp(log(1 +1) -a) = > (a> i,

2

lim E
d—oo pd

i
and E,,, and limits are applied individually to each coefficient of a power series.
In particular, for any symmetric function f € A,

i B, (07 [20/0)

exists in Q, and can be computed explicitly by expressing f as a polynomial in the
pj. and applying asymptotic independence plus the explicit distributions above.

Remark 1.3.1. The probabilities in Theorem C have a simple geometric origin:
Each closed point y of degree k in Y defines an indicator Bernoulli random vari-
able on Uy(F,) that is 1 at uw € Uy(F,) if y is contained in the fiber Z;, and 0
otherwise. These random variables are asymptotically independent each with as-
ymptotic probability of being 1 determined by the proportion of the number of
smooth first order Taylor expansions vanishing at y, ¢"* — 1, to the total number
of smooth first order Taylor expansions at y, ¢ *Y% — 1. The asymptotic inde-
pendence of these Bernoulli random variables is a simple consequence of a result of
Poonen [27, Theorem 1.2], and using this it is straightforward to prove Theorem C.

Example 1.3.2 (The average smooth hypersurface in P", point counting version).
Taking Y = P" and f = p; in Theorem C, we find

. ZuEUd(]F ) #Zd,u(Fq)
lim - = L
d—0 #Ud(Fq) Ao M

[Za/Ud] = #P"(F,)- qq—‘_l

1
= #]Pmil(ﬂi‘q)

Thus, in this sense the average smooth hypersurface in P" is P71,

Remark 1.3.3. Explicit formulas in Theorem B can be deduced from Theorem C
as in Remark 1.2.4. We carefully describe an algorithm for this in Appendix A.
We now return to Y /C. Because Uy is an open in affine space, [Uy] is invertible
in Mp®. Thus we obtain an algebraic probability measure on Koy(Var/Uy) with
values in My, characterized by the expectation function
x/\
M
E, [z] = L,
Md[ ] [Ud]
The motivic stabilization stated in subsection 1.2 can then be refined to give explicit
formulas, analogous to Theorem C:

3We thank Jesse Wolfson for pointing out this fact to us.
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Theorem D. Let Y /C be a polarized smooth projective variety of dimensionn > 1.
For t a formal variable,

( ) [Z /U ]) ]Lnk _ 1 (plk’[y])
3 Pgsl4da/Vad —
i By, [(140)% | <1 LR — 1t)

in ML ®Q and the Pk, [Z4/Uq)) are asymptotically independent for distinct k, i.e.
for formal variables t1,ts, ..., tm,

. ' [Z4/U. _ . [ Za/U,
lim B, lll[(lﬁk)(pk[ af d]>1 — EL}L%EM [(Htk)(pk[ a u)],

Here exponentiation is interpreted in terms of the standard power series
a .
(1+1)" =exp(log(l +t)-a) = > ()t

p 2
A

and E,,, and limits are applied individually to each coefficient of a power series.
Furthermore, for any symmetric function f € A,

Jim B,,,[(f, [Za/Ua))]

erists in ./T/l\]L. It can be computed explicitly in /\//1\1[‘®Q by expressing f as a polyno-
mial in the p), and applying asymptotic independence plus the explicit distributions
above.

Remark 1.3.4. As in [20], the significance of the terms (p},, ®) appearing in Theo-
rem D are that they give the exponents in the naive Euler product for the Kapranov
zeta function. It is in this sense that they are natural motivic avatars for the num-
ber of closed points of a fixed degree on a variety over a finite field. We note that
the pj, are in Ag, and typically not in A, which explains the need to tensor with Q.

Example 1.3.5. We denote by PConf]f, ,Za4/Ua the relative configuration space of
k distinct ordered points in Z4. In the notation of Example 1.2.2,

PConf]f]dZd = Conf”UZ""'“k Zg.
We have the identity

[PCont},, Za/U4] ([Za/U)) - ([Za/Ua] = 1) - ...([Za/Ua] - k + 1)

((p1)(pr = 1)-oo(pr =k + 1), [Za/Ud]) -

Thus, from Theorem D, we obtain
_ [PContf; Z,] . L —1\*
By T PetY (g

in -/T/l\IL ® Q (in fact, adapting the proof one finds this holds already in /T/l\]L) Using
Theorem C, we also obtain the corresponding point-counting result.

Example 1.3.6 (The average smooth hypersurface in P™, motivic version.). Taking
Y =P" and k£ =1 in Example 1.3.5, we obtain

124 o Lr—1
}Lﬂﬁ = [P (L"+1 — 1)
[P
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Thus, in this sense the average smooth hypersurface in P" is P*"~! (cf. Example
1.3.2 for the point counting version).

We prove Theorem D by extending the methods of Vakil-Wood [31] to show that
the limit exists and is equal to a more complicated explicit formula in terms of
configuration spaces of Y, then comparing with a generating function constructed
via the power structure on the Grothendieck ring of varieties. In our study of
configuration spaces [20], we also used a generating function constructed via the
power structure, however, the present case is more complicated — the form of the
probabilities which appear means that the series which we exponentiate cannot have
effective coefficients. In order to compute with such a series, we use the motivic
Euler products of Bilu [3,4].

Remark 1.3.7. We note that in an earlier version of this article which was circu-
lated and appeared on arXiv, the explicit stable values of Theorem D were stated
as a conjecture and proven only in the special case of Example 1.3.5; while the gen-
erating function strategy was outlined, we could not prove the necessary formula
for a power of a non-effective series. We arrived at a full proof only after discussions
of [1] with Bilu. In joint work in progress [5], we use motivic Euler products to
give a simultaneous generalization of Theorem D and the results on hypersurface
sections of [31] that is closer in spirit to the proofs of the point-counting analogs.

1.4. Connections with representation stability and the prequel. As noted
in the introduction to the prequel [20], one consequence of representation stability
for configuration spaces (as studied in [10, 12]) is cohomological stabilization for
certain families of local systems factoring through the monodromy representation.
Our results give an analog of this for the spaces Uy, at least at the level of the Hodge
Euler characteristic: Generically the image of the monodromy representation is
a lattice in the algebraic monodromy group, and thus, by superrigidity, when we
consider algebraic representations we are really considering all natural local systems
which factor through the monodromy representation. We view Theorems A and
B together as strong evidence that the individual cohomology groups of the local
systems V:,r;fQ themselves stabilize, and that the unstable cohomology has sub-
exponential growth (this kind of relation between point-counting and cohomological
stability is studied in [17]).

As with the analogous results of the prequel [20] for configurations spaces, the
form of Theorems C and D suggests that the stabilization is of modules over the
(conjectural) stable cohomology of Uy. In [19] we make an explicit conjecture to this
effect motivated by these results and an analogy with moduli of curves. Note that
hypersurface sections are more difficult to analyze using ideas from representation
stability than configuration spaces because there are no obvious stabilizing maps,
however, it is natural to hope that with a more sophisticated approach one might
find a richer structure explaining and strengthening our results.

1.5. Related work. Besides the works of Poonen [27] and Vakil and Wood [31]
discussed above, we highlight some other related threads in the literature:

1.5.1. Plane curves. Bucur, David, Feigon, and Lalin [6] use Poonen’s sieve with
refined control over the error term to show that the distribution of the number of
degree 1 points on a random smooth plane curve over I, is asymptotically Gaussian
(letting both ¢ and d go to infinity in a controlled way). They use the same
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probabilistic interpretation of Poonen’s results that we adopt here, and in particular
Theorem 1.1 of [(] is a refined version of the statement that the number of degree
1 points on a smooth curve of degree d over F, is asymptotically distributed as a
sum of #P?(F,) independent Bernoulli random variables as d — co.

1.5.2. Moduli of curves. Achter, Erman, Kedlaya, Wood, and Zurieck-Brown [1] use
results on the stable cohomology of moduli of genus g curves with n marked points
My 5, to make conjectures about the asymptotic distribution of degree 1 points on
curves over [, as the genus g — 0. They give a heuristic explanation of why the
unstable cohomology should not contribute and deduce an asymptotic distribution
from the stable cohomology under this assumption. Their main observation about
the stable cohomology can be rephrased by saying that for C,/M, the universal
genus g curve, [Cy/M,] is asymptotically a Poisson random variable with respect to
the Hodge measure. In [19], we generalize this by showing that the natural motivic
random variables (pj,[Cy/M,]) converge to asymptotically independent Poisson
random variables with respect to the Hodge measure, and explain a connection
with the random matrix equidistribution results of Katz-Sarnak [22] in this setting
as well as the settings of smooth hypersurface sections and configuration spaces.

1.5.3. Complete intersections. Bucur and Kedlaya [7] have generalized Poonen’s
sieve results to complete intersections and used them to study the number of de-
gree 1 points on a random complete intersection over a finite field. Using their re-
sults, one finds point-counting stabilization results analogous to Theorems B and C
for the vanishing cohomology and relative configuration spaces of the universal
smooth complete intersection. We expect that the techniques of Vakil and Wood,
as extended in this paper to prove Theorems A and D, can also be applied to
complete intersections, but we do not carry this out in the present work.

1.5.4. Branched covers. There has been some interesting related work on cyclic
branched covers of P". The monodromy representations coming from these covers
are studied by Carlson and Toledo [8] in their work on fundamental groups of dis-
criminant complements. In the case n = 1, Chen [9] has recently proved a stability
result for the cohomology with coefficients in the local system corresponding to the
first cohomology of the universal family of cyclic branched covers. From this he
deduces the corresponding point counting result, which he phrases using probabil-
ity. It would be interesting to extend this computation to the natural local systems
constructed out of the first cohomology via the A-ring structure, and to extend the
probabilistic interpretation to a motivic setting.

For n = 1, it would also be interesting to study these problems for Hurwitz
spaces, where cohomological stabilization with trivial coefficients is shown in [16].

1.6. Outline. In Section 2 we introduce the algebraic probability measures (in
the sense of [20]) used in our proofs. In Section 3 we describe some aspects of
the representation theory of symmetric, symplectic, and orthogonal groups. In
Section 4 we recall the construction of vanishing cohomology and explain in more
detail the construction of the local systems corresponding to a representation 7. In
Section 5 we prove our point counting Theorems B and C. Finally, in Section 6 we
prove our stabilization results over C, Theorems A and D.
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1.7. Notation. For partitions and configuration spaces we follows the conventions
of Vakil and Wood [31], except that where they would write w,, we write Conf”.
Also, we tend to avoid the use of A to signify a partition to avoid conflicts with the
theory of pre-\ rings.

A variety over a field K is a finite-type scheme over K. It is quasi-projective if
it can be embedded as a locally closed subvariety of Pg.

Our notation for pre-A rings and power structures is described in [20, Section 2].
We highlight the following point here: if f € 1 + (¢, to,...)R[[t1, t2,..]], then f" will
always denote the naive exponential power series

exp (T‘ - IOg f) el+ (t17t27 ...)RQ[[tl,tg, ]]
If R is a pre-A ring and we want to denote an exponential taken in the associated
power structure, then we write it as

fPOWT~

Our notation for Grothendieck rings of varieties and motivic measures is ex-
plained in [20, Section 3].

1.8. Acknowledgements. We thank Margaret Bilu, Bhargav Bhatt, Weiyan Chen,
Matt Emerton, Benson Farb, Melanie Matchett Wood and Jesse Wolfson for helpful
conversations. We thank Matt Emerton, Benson Farb, Melanie Matchett Wood,
and an anonymous referee for helpful comments on earlier drafts of this paper. We
thank the organizers, speakers, assistants, and participants of the 2014 and 2015
Arizona Winter Schools, where we first picked up many of the pieces of this puz-
zle — in particular, we thank Jordan Ellenberg, Bjorn Poonen, and Ravi Vakil for
their courses, and Margaret Bilu for first pointing out to us the notion of a motivic
Euler product.

This paper and its prequel [20] grew out of an effort to systematically understand
the explicit predictions for the cohomology of local systems on Uy(C) that can be
obtained from Poonen’s sieving results [27] (as in Theorem B). In particular, the
results in the complex setting began as conjectures motivated by the finite field
case, and it was only after reading Vakil and Wood’s paper [31] that we realized
some predictions could be proved by working in the Grothendieck ring of varieties.
We would like to acknowledge the intellectual debt this article owes to both [27]
and [31], which will be obvious to the reader familiar with these works.

2. SOME PROBABILITY SPACES

In this section we define the algebraic probability spaces we use in the rest of the
paper. For basic results on algebraic probability theory, we refer to [20, Section 4].
For convenience, here we recall that for a ring R, an R-probability measure g on
an R-algebra A with values in an R-algebra A’ is given by an expectation map

E,:A— A
which is a map of R-modules sending 14 to 14/. Here we think of A as being an
algebra of random variables.

In Subsection 2.1, we discuss the spaces used in Section 5 to prove our finite field
Theorems B and C. The main point is to work in a setting rich enough to handle
cohomology groups of algebraic varieties, but small enough so that we can discuss
convergence in the archimedean topology on Q without too many gymnastics. We
reach this middle ground by using the subring of the Grothendieck ring of lisse
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l-adic sheaves consisting of virtual sheaves with everywhere integral characteristic
power series of Frobenius.

In Subsection 2.1, we discuss the spaces used to prove Theorem A on the sta-
bilization of the Hodge structures in the cohomology of the variations of Hodge
structure V\T,r;;l'i@. We note that the standard approach for producing the mixed
Hodge structure on these cohomology groups is via Saito’s [28,29] theory of mixed
Hodge modules, however, for our purposes it is simpler to use the geometric theory
of Arapura [2]. Besides introducing less technical overhead, the main advantage
of Arapura’s theory for us is that compatibility with Deligne’s [13] mixed Hodge
structures and the Leray spectral sequence is built-in from the start. We use this
compatibility when we deduce the cohomological stabilization in Theorem A from
the geometric stabilization in Theorem D (cf. Lemma 2.2.2 for the precise state-
ment used). As indicated in the introduction of [2], the mixed Hodge structures
obtained via Saito’s theory should agree with those used here.

In Subsection 2.3 we discuss the motivic random variables used in our motivic
stabilization result, Theorem D (cf. also [20, Section 3]).

2.1. Lisse l-adic sheaves. For a variety S/F,, denote by Locg, S the category of
lisse Q;-sheaves on S. The Grothendieck ring

Ky(Locg,)

is a A-ring with

a([V]) = [Sym"V].
Trace of Frobenius at a closed point u € S gives a map of rings

Ko(LOCQl) - Ql
K +— TrFrob, C Kz
which sends
ot(K) =1+ 01 (K)t+oa(K)t* + ...
to the characteristic power series of Frobenius acting on K. We denote by
Ky(Locg, S)’
the sub-A-ring consisting of elements K such that this character power series is in
Z[[t]] for all closed points. By [14, Theorem 1.6] and smooth proper base change,
if f:T — S is smooth and proper, then for any 1,
[R'f+Qi] € Ko(Locg, S)".

For any smooth proper f: T — S, we will denote

[T]:= [Rf:Qi] = ), (~1)'[R'f«Qi] € Ko(Locg, S)"

(3

Pullback via § — SpecF, induces a map of A-rings
Ko(Locg,Fy) — Ko(Locg, S)'

with image the constant sheaves.
In the other direction, there is a map of K¢(Locg,Fy)’-modules

Ko(Locg, ) =5 Ko(Locg,Fy)’
VI~ D(=D[HASE V)]

i
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By the Grothendieck-Lefschetz fixed point formula, the composition of yg with
TrFrob, to Z is given by

K > TiFrob, C Ky
ueS(Fq)

(in particular, this verifies that the image of xg is actually in Ky(Locg,F,)’). The
image of Q; under this composed map is #S(F,).

In particular, if we consider Q as an algebra over Ky(Locg,F,)" via TrFrob,, we
obtain a Q-valued probability measure p on Ky(Locg,/S) via

TrFrob, C xs(K)
#S(Fy)

If we fix a K € Ky(Locg,S)’, then we obtain a map of Ky(Locg,F,)" algebras

E,: K~

AKO(LOCQZFQ)' —  Ko(Locg,S)’
g — (9,K)

and, by composition with E,,, a Q-valued K(Locg,F,)’ measure on AKO(LOCQqu),.

2.2. Variations of Hodge structure. Let S/C be a smooth variety. Following
Arapura [2], we denote by GVSH(S) the category of geometric polarizable vari-
ations of Q-Hodge structure on S(C) — it is the full subcategory of variations of
Hodge structures consisting of those isomorphic to a direct summand of R’ f,Q for
a smooth projective f: T — S.

By [2], Theorem 5.1, for V € GVSH(S), H'(S,V) is equipped with a natural
mixed Hodge structure. It is compatible with Leray spectral sequences for smooth
proper maps and the Deligne [13] mixed Hodge structures on the cohomology of
smooth varieties. Indeed, the results of [2] show that the Leray filtration is a
filtration by mixed Hodge structures, and the mixed Hodge structure on H'(S, V)
is defined to be the induced mixed Hodge structure for any smooth proper f such
that V is a direct summand of R’ f,Q.

For V € GVSH(S) of weight w, we define the Hodge structure on compactly
supported cohomology using Poincaré duality

H{(S(C),V) := H>" (S, V)*(~w — dim S).

We denote by Ko(GVSH(S)) the corresponding Grothendieck ring, which is a
A-ring with

orx([V]) = [Sym*V].

That Sym®V is also geometric for V geometric follows by finding it as a direct
summand of the relative cohomology of a product, as in the proof of Corollary 5.5
of [2].

For S = C, this is the Grothendieck ring of geometric polarizable Q-Hodge
structures Ko(GHS). It is a subring of the Grothendieck ring of polarizable Hodge
structures Ko(HS), as defined in 1.1.

For any T/S smooth and projective, R'f,T is naturally a variation of Hodge
structure, and thus gives a class

[R f.T] € Ko(GVSH(S)).
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In this setting, we denote
[T/S)avsn := Y (=1)'[R’ f+T] € Ko(GVSH(S))
(here the subscript is to distinguish from the class [T'/S] in Ko(VarsS)).
Pullback via S — SpecC gives a map of A-rings
Ky(GHS) — Ky(GVSH(S))

with image the constant geometric variations of Hodge structure on S.
In the other direction, there is a map of Ko(GHS)-modules

Ko(GVSHgS) X% Ko(HS)
V] = D (=D)[HLS(C), V)]

Remark 2.2.1. The map xg factors through Ky(GHS) c Ky(HS), but we will not
make use of this fact.

Given a smooth projective T'/S, we will later want to deduce stabilization results
for the variations of Hodge structures constructed from 7" from motivic stabilization
results for 7. To do so, we need a lemma that says certain pre-A ring structures
are compatible:

Lemma 2.2.2. For T/S smooth and projective, the following diagram commutes.

forget

Ky(Var/S) ——— Ky(Var)

fH(f,[TV XHS

A Ko(HS)

Xs
f=(f,[T/Slavsn)

Ko(GVSH(S))

Proof. Tt suffices to verify that for any Iy, ...,1,,, the two maps from A to Ky(HS)
agree on hy, - ...- hy,,. We denote n = > l;, and S; = 5;, x ... x Sy, .
Via the top arrows, we obtain the cohomology of the quotient
T>s" /Sy

Here the superscript on 7" denotes the n-fold fiber product over S.
This is equal to the S;-invariants of the cohomology of T$", which is computed
by the Si-invariants of the Leray spectral sequence for

Tyt TXS™ — S,
From the Fy page we obtain
xus (T /8p) = (1) [HI(S, (R'mn.Q)%)] = x5 <Z(—1)i[(Ri7rn*Q)Sl]> :
i.j i
It suffices then to show

DD (R Q)] = (B, - oo P, , [T/S]vsn)-

i
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We can compute Ri7,,Q explicitly as an S;-equivariant variation of Hodge struc-

ture using the relative Kunneth formula: Let
Vn,odd = @ RZWTL*Q
i odd
and

Vn,even = (‘D Rz’ﬂ'n*Q

i even
Similarly, for
m:T — 85,
let
Vodd = @ RZW*Q
i odd
and
Vveven = @ Rzﬂ-*@-
Then,
m Sy . ks
Vn,odd = @ IndS’j:,. XSl —k. ((Vok(id ® Sgn) @ V:el\glenkj) ?
k;j<l;, Y k; odd j=1 o
and

m S, k; .
= @ B (o) o).

k;j<l;,> kj even j=1

Applying Frobenius reciprocity, we find

V:de = EB ® (/\kj %dd ® Symljikj %ven) )

kj<lj, X kjodd j=1
and
St = k 1. —k.
Vn,leven = @ ® (/\ Jvodd ® Sym ’ J%vcn) .
kjﬁlj,Zk’jeven j=1
Thus

)

(2.2.2.1) Z(—l)i[(Riﬂn*Q)Sﬂ = [Vniven] - [Vns,z)dd]

i

= H Z (_1)kj [/\kj ‘/Odd] ) [Symlj_kj Vveven]'
J=1k;<l;

We claim that
D1 (=D AM Voaal - [Sym™ ™" Viven] = (B, [T/Slavsn)-

ki<l
Given this claim, (2.2.2.1) finishes the proof. To see this claim, we observe
(hi;, [T/S]avsn) = (b1, [Veven] = [Voaal)
= Z (=1)" (hy;— ;s [Veven]) * (€n; s [Voda])

kjSlj

= Z (_1)kj [Symlj_kj ‘/even] ° [/\kj Vodd]~
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Here the second line comes from identifying (A, , [Veven] —[Voda]) with the coefficient
of t% in

Ut([‘/even] - [‘/odd]) = Ut([‘/even])o't([vodd])717
and computing the term o4 ([Voaa]) ! using the symmetric function identity

(1 + hit + h2t2 + h3t3 + ..)71 =1—et+ €2t2 — €3t3 + ...
to identify the coefficient of t* with (—1)*(ex, [Voaa]) = (=1)*[A*Voaa]- O

Finally, since

[STus = xs([S/Slavsn) = xs(Q)

—

is invertible in Ky(HS), we obtain a Ky(GHS)-probability measure on Ko(GVSH(S))
with values in Ky(HS) by

E, : Ko(GVSH(S)) — Ky(HS)
xs(K)
[STas
2.3. Motivic random variables. If S/K is a variety, we consider the relative
Grothendieck ring of varieties Ko(Var/S), which we view as the ring of motivic

random variables on S. It is an algebra over Ky(Var), the Grothendieck ring of
varieties over K. If

K

¢ : Ko(Var) > R
is a motivic measure such that [S]s is invertible in R, we obtain an R-valued
Ky (Var)-probability measure on Ky(Var/S) by

E,[[Y/S]] = E;]]j

In this article, the most important example of ¢ will be the natural map
Ky(Var) — M.

When K is of characteristic zero, the relative Kapranov zeta function gives Ky(Var/S)
the structure of a pre-A ring, and given Y'/S, we can pull back E, via

[ (LIY/S])
to obtain an R-valued Z-probability measure on A.
For more details on the relative Grothendieck ring Ko(Var/S) and the pre-A
structure, cf. [20, Section 3].

3. SOME REPRESENTATION THEORY

In this section we explain how to parameterize irreducible representations of
symmetric, orthogonal, and symplectic groups by partitions ¢ in order to produce
the representations 7, 4 described in Subsection 1.1. The key point in common
between these groups is that each such group G admits a standard representation
Vita inducing via the pre-A structure a surjection

A -  Ky(RepG)
fo= (5 Vaal)-

In other words, the representation ring is spanned by products of symmetric powers
of the standard representation. Through these surjections, families of irreducible
representations are naturally parameterized by certain Schur polynomials. For
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orthogonal and symplectic groups, the results in this section follow from work of
Koike and Terada [23], and for symmetric groups from work of Marin [25].

Let GG be a linear algebraic group over a field F' of characteristic zero, and consider
the category RepG of algebraic representations of G on finite dimensional vector
spaces over F'. For us, the most important examples are F' = Q or Q; and
(3.0.0.1)

SN, a symmetric group
G = { Sp(V,{, ), automorphisms of a non-degenerate symplectic form

O(V,{, ), automorphisms of a non-degenerate symmetric form

In the latter two cases we will also consider the corresponding group of homoth-
eties G.

In each of the cases o = {5, Sp, O} of Equation (3.0.0.1), we have a way to assign
to a partition ¢ = (071, ...,04) a family of irreducible representations Vg , of the
groups in e of sufficient size depending on o (here size means N for symmetric
groups and the dimension of V' for symplectic and orthogonal groups):

(1) For symmetric groups, we use the method of [12, Section 2.1]. The irre-
ducible representation of Sy attached to o is obtained via the theory of
Young tableaux from the partition

(N —|o|,01, ..., 0k).

In particular, it is defined only for |N| > |o| + o7.

(2) For symplectic groups (all of which are split over F'), we use highest weight
theory as in [23, Section 1] (see also [12, Section 2.2]). The partition o
defines a dominant integral weight of Sp;_,, by padding with m zeros at
the end, and from this we obtain an irreducible representation.

(3) For orthogonal groups, there are two complications: first, the group is
not connected (the components correspond to det = +1), and second, we
will typically be discussing orthogonal groups which are not split over F'.
Nevertheless, after padding the right by zeroes, the partition o will give
rise as in [23, Section 1] to a representation of SO(V4) obtained as the
restriction of an irreducible representation of O(V%), and we will see below
in Remark 3.0.2 that there is a natural way to choose a representation of
O(V) (and even the group of homotheties) restricting to this representation
and defined over F.

For G as in Equation (3.0.0.1), we denote by Vitq the standard representation —
when G = Sy it is the space of functions on {1, ..., N} summing to zero® and when
G is the automorphism group of a pairing on V' it is given by V itself.

The Grothendieck ring K(RepG) is equipped with a pre-A ring structure by

ar([V]) = [Sym"V].

It has the following useful interpretation: if we identify a virtual representation K
with its trace in F[G]“ (action by conjugation), then for f € A, (f,[V]) is identified
with the function which sends an element g € G(F) to the symmetric function f
evaluated on the eigenvalues of g acting on V.

41t is sometimes more natural to take the full permutation representation on {1,..., N} as the
standard representation in this case.
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Proposition 3.0.1. For G as in Equation (3.0.0.1), the map

A — Ky(RepG)
f iand (fa [‘/;td])

is surjective. Furthermore, if we fiz one of the three cases o € {S,Sp, O} of Equa-
tion (3.0.0.1), then for any partition o, there is a Schur polynomial s, , such that

(80,07 [‘/std]) = Va
for any G (of sufficient size) of the form e.

Remark 3.0.2. In the case of orthogonal groups, we had only defined V, up to
restriction to SO(V4). The orthogonal Schur polynomials of Proposition 3.0.1 pick
out a lift to O(V), defined over F.

Furthermore, for both symplectic and orthogonal groups, Viiq is naturally a
representation of the larger homothety group G’ (i.e., the group preserving the
pairing up to a scalar multiple instead of on the nose), and thus Proposition 3.0.1
picks out a natural lift of V,, to a representation of G’ by

Vo] = (So,m [Vatal) € Ko(RepG/).

Proof. We may assume F = F, as for any reductive group G/F, the base extension

map Ko(RepG) — Ko(RepGx) is an injection®.

We first handle the symplectic and orthogonal cases. The surjectivity in the

symplectic case then follows from [23, Proposition 1.2.6], noting that the generator
p; there corresponds to [Sym'Viia] = (hi,[Vsta]) in our notation. In the orthog-
onal case, we caution the reader that the ring R(O(m)) of [23] is the image of

Ko(Rep(O(m))) in Ko(RepSO(m)). Surjectivity onto this ring follows from the
same proposition, noting that the generator e; there corresponds to

[A"Vata] = (€4, [Vira])

in our notation. To obtain surjectivity onto Ko(Rep(O(m)), we observe that two
irreducible representations of O(m) with equal restriction to SO(m) differ by tensor-
ing with det, and thus if one is in the image of A, we obtain the other via multipli-
cation by e,,. We define the Schur polynomials using the formulas of [23, Theorems
1.3.2 and 1.3.3], together with the observation of [23, Remark 1.3.4] that for the
dimension large relative to o, the formulas are independent of the group.

For symmetric groups, surjectivity and the existence of Schur polynomials follows

from the proof of [25, Proposition 4.1], which proves surjectivity essentially by
inductively constructing such Schur polynomials from the elementary symmetric
polynomials eg. [

5We remind the reader of why this holds: the Grothendieck ring is the free abelian group on
the isomorphism classes of irreducible representations, so it suffices to show that any two distinct
irreducible representations of G over F' do not share any irreducible summands after base extension
to F. This is true because, for Vi and V5 any two representations of G,

HOI?[’IGT(V'LF7 Vz,?) = HOI‘ﬂG(Vl7 VQ) RF F.
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Remark 3.0.3. For symmetric groups, we observe that if X; is the function count-
ing cycles of length i, then the character of A*(Viq @1) is given by

ot S e (T)

(T15e,m1) st D imi=k

(5)-11C)

Combining this with [24, Section 1.7, Example 14], one can obtain an explicit
formula for the Schur polynomials as polynomials in the X; (which correspond, as
in [20], to Mobius inverted power sum polynomials p; in Ag).

It would be interesting to compare further the two integral structures on char-
acter polynomials occurring naturally here — the first coming from A, the second
coming from the span of the

X
()

which give rise to integer valued class functions.

where

4. VANISHING COHOMOLOGY

In this section we recall the construction of the local systems Vyan,@ and Vyan,q,
of vanishing cohomology and establish some of the related notation used in the rest
of this paper.

Let Y be a polarized smooth projective variety of dimension n over a field K,
with polarization denoted by L. For any d € Zx1, we consider the affine space
of global sections of £4, A(T(Y,£®?)), and inside of it the Zariski open space of
sections with smooth vanishing locus,

Uy < AT(Y, £BY)).

There is a universal smooth projective hypersurface section

f:1Zq4—Ug
fitting into a commutative diagram

Zg —— Y x Uy

\Ul

Zd,u —Y

such that for u € Uy(K), the fiber

is the smooth closed subvariety of Yz corresponding to u.

Definition 4.0.1. Let [ be coprime to the characteristic of K. The étale vanishing
cohomology Vyan g, is the lisse Q;-sheaf on Uy

Vean,q, := ker "7 f,,Q — H" " (Y, Qy)(1)

where the underline denotes the constant sheaf and the map is the relative Gysin
map. If K = C, the Betti vanising cohomology Vyan,g is the Q-local system on
Ua(C)

Vvan,g = ket B! fan Q@ — H"1(Y(C), Q) (1)
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where f,, denotes the analytification of f.

Remark 4.0.2. Geometrically, the Gysin map is given fiberwise by the natural
map of homology

anl(Zu) i nfl(Y)
after writing homology as dual to cohomology and then using Poincaré duality.
The kernel is generated by the classes of vanishing spheres in a Lefschetz pencil
through Z,, thus the name vanishing cohomology. For more on this geometric
interpretation, cf. e.g. [32, Section 2.3.3].

Example 4.0.3. If Y = P", then U, parameterizes smooth hypersurfaces of degree
d, and Vyan g, (resp Vyan,g) is the primitive part; in particular, if n = dimY is odd
then the vanishing cohomology is equal to R"7'f,Q; (resp. R"!fun+Q). The
latter holds also for any Y of odd dimension that is a complete intersection in P".

The local system R"~! f,Q; (resp R" ! f.,4+Q) is equipped with a non-degenerate
pairing to Q;(—(n—1)) (resp Q(—(n—1))) whose restriction to Vyan,q, (resp Vvan,0)
is also non-degenerate; we denote this restricted pairing by (, . It is symmetric if
n — 1 is even and anti-symmetric if n — 1 is odd.

By [15, Corollaire 4.3.9 ] (resp. by the hard Lefschetz theorem over C), we have

Vea ~ H" ' (Yg, Q)

van,Q;

(resp.
V\im,@ = Hnil(Y(C)v Q))a

and there is a direct sum decomposition

(4.0.3.1) R Q= Veang @ H" ' (Y, Q1)
(resp.
(4.0.3.2) R fansQ = Voang @ H' ' (Y(C),Q)).

If we fix a base point ug € U(K) and a trivialization of Q;(1)].,, the local system
Vyan, 0, (resp. Vyan,q) is determined by the monodromy representation

pr: ﬁl,ét(UtbuO) - Autl(VVaﬂ,Ql7uoa< ) >)

(resp.
p:m(Ua(C),u0) = Aut(Vvan,Q.uo: <5 )))-
where by Aut’ we denote the group of homotheties of the pairing.

The local system Vyan g, (resp. Vyan,g) or, equivalently, the corresponding mon-
odromy representation p; (resp. p) is absolutely irreducible. In fact, we can say
much more: by Deligne [15, Théorémes 4.4.1 and 4.4.9], the image of m1 (U, %)
under p; is either open or finite and equal to the Weyl reflection group of a root
system of type A, D, or E embedded in

(Vvan,Qz,u07< ) >)

(the vanishing cycles). The latter can occur only when n — 1 is even, so that the
pairing is symmetric, and, by a result of Katz [21], only for small d. Open image
comes as a consequence of Zariski density, and the argument that the image is
either Zariski dense or a reflection group as above given in [15] is valid also in the
topological setting for p (c.f., e.g., [32, Section 3.2], for the vanishing cycles input).
For the symmetric group case, [21, 2.4.4], e.g., shows the monodromy is surjective.
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Let Gg, denote the algebraic group over Q; (resp. over Q)

GQL = AUt(VvaH7QL,u0’< ’ >)
(resp.
G := AutWVvan,0,u0, <5 )))-
Denote by Gg, (resp. G”) the corresponding group of homotheties.
Let RepGg, (resp. RepG) denote the category of algebraic representations of G,
on Q;-vector spaces (resp. Q-vector spaces) and by Locg,Uqg (resp. LocgUy(C)) the

category of lisse ;-local systems on Uy (resp. Q-local systems on Uy(C)). We
obtain a functor

RepGq, — LocqU,%
™

™ = Vanalv,«)

where (Vyan g, |u, )™ is the local system corresponding to the representation

™o pr |7T1,ét(Ud,fﬂTo) :

If K does not contain the [-power roots of unity, then in general the image of
the monodromy representation is contained in Gf, but not in Gg, (unless n = 0).
Thus we obtain a functor

RepGy, — Locg,Uqg

/ ’
™ — V

van,Q;
fitting into a commutative diagram
ﬂ'»—)Vfale
RepG, ———— Locg, Uy
ﬂlHﬂl‘GQll lVHV\Ud =

”’_’(Vvan,@l |Ud K)W
RepGly, ————=5 Locg, Uy .

Similarly, if K = C, then Vyan,@ is equipped with a natural polarized variation
of Q-Hodge structure. The map from RepG to local systems is enriched to a map

RepGl - VHSUd (C)

where the right-hand side denotes the category of polarizable variations of Hodge
structure on Uy(C). Tt fits into a commutative diagram

’

™ >—>V",In 0
RepG’ —_— VHS@Ud(C)

| Gl lforgct Hodge filtration
™

RepG ——=% LocgUqy(C).

5. POINT COUNTING RESULTS

In this section we prove Theorems B and C. As noted in Remark 1.3.1, after
setting up the necessary language Theorem C is a simple consequence of results
of Poonen [27]. Our main contributions here are the reinterpretation of Poonen’s
results in the language of asymptotic independence and the pre-A ring structure,
and from this the deduction of Theorem B.

We use the setup of Section 4 with K = F,,.
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5.1. Geometric stabilization. In this subsection we prove Theorem C.
We consider the classical discrete uniform probability measures

Map(Ua(F,),Q) —4 Q
1

- #T(Fq) ueémq) f(u)

Denote by A(Y") the free polynomial ring over Q with generators X, for y running
over the closed points of Y.
For each d, we obtain a map

A(Y) - Map(Uy(F,), Q)

given by sending a closed point X, to the indicator random variable X, on Uy(F,)

defined by
1if y € Zd,u
Xy(u) = .
0ify ¢ Zg,.
By composition, we can think of ug as a sequence of Q-probability measures on
A(Y).
Theorem 5.1.1 (Poonen). The random variables in A(Y)

{Xy}er a closed point
are asymptotically independent with asymptotic Bernoulli distributions
qn~degy -1

X1 N
E,.. [(1+8)*] =1+ g(nt1)degy — 1 b

In particular, because the X, generate A(Y") as a Q-algebra, the asymptotic mea-
sure p. is defined on A(Y) and, for any given a € A(Y), E,,, [a] can be computed
explicitly by writing it as a sum of monomials in the X,,.

There are also natural point counting random variables in Map(Uy(F,), Q) com-
ing from the universal family:

Xk (u) = # closed points of degree k on Zg,,.

This is the sum of the indicator variables over all of the closed points of a fixed
degree, and thus we can consider X}, as an element of A(Y):

Xy = > X,
y€Y closed of degree k

The random variables in Q[ X7, Xo, ...] are, in a precise sense, the random vari-
ables coming from the universal family Z;: there is a map

Ky(Locg, Ud)l - Map(Ud(Fq)a Q)
K +— wuw trFrob, C Ky

and the random variable X is the image of [Rf,Q;] under this map. From the
A-ring structure on Ko(Locg,Ug)’ we obtain

(5.1.1.1) Ag — Map(Ua(F,), Q)

sending hyj to
u — #Sym* Z,.,(F,).
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It is a standard computation that pj maps to the random variable attached to Xj.
Because the pj, form a polynomial basis for Ag, this lifts to a map

Ag — A(Y)
P = Xk
which induces an isomorphism between Ag and Q[ X1, X, ...].

From Theorem 5.1.1, we deduce that the the X, = (p},,[Z4/Uq]) are asymptoti-
cally independent with asymptotic binomial distributions, the sum over the closed
points of degree k of Bernoulli random variables that are 1 with probability

q(n+ 1)k _ 1 .
By abuse of notation, if we write also ug for the pullback of u4 to Ag via (5.1.1.1),
then the asymptotic binomial distribution can be written as
an -1

; (P),[Z2a/Ua]) | —
i B | (1400 | (1 AT

b

)# closed points of degree k on Y’

and the asymptotic independence implies

dhf} E,, ln(l + tk)(p;cv[zd/Ud]] - HCIILH; E,, [(1 + tk)(p;cv[zd/Ud])iI .
. k k

Thus, we have proven Theorem C.

5.2. Cohomological stabilization. In this subsection we prove Theorem B.
By Poonen [27],
Jim #Ua(F,)/q"™ U = Gy (n+1)7,
— 0

and thus we may normalize by #U4(F,) instead of ¢¥™ Y4, Applying the Grothendieck-

Lefschetz fixed point theorem to the numerator, we are then studying

1
lim ———— TrFrob, & Vi =
d—x #Ud(]Fq) ueUZd;]Fq) ! van.Qua

where % is the E point obtained by composition of u with F; — E
In particular, if we consider the random variable X, in

Map(Uq(Fy), Q)
given by
X, (u) = TrFrobq C V:;ra:r’l(,i@z,ﬂ

then we are studying the asymptotic behavior of
]EHd (X‘f') .

Our goal now is to deduce the stabilization of this quantity from Theorem C.
The Q-probability measure on Ag given by

9= B, [(9,[Za/Ua))]

is the same as the measure of the previous section. It naturally extends to a
Ko(Locg,Fy)-probability measure on A Ko(Locg,F,) With values in Q and by Theo-
rem C the measures g on A Ko(Locg, F,) CONVErge to a measure fiy,.
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Our strategy now is clear: we will construct an element s,y of A Ko (Locg, Fy) such
that for all d,
(sr.v,[Za/Ual) = Voo, )
which implies
E,,[sry] = E[X:].
We denote

i 3 (1) ([ (Ve Q) + [ (Y, @) (1)])

i<n—1
+ (=) HH (Y, Q)] € Ko(Locg, Fy).

By Equation 4.0.3.1 and the weak Lefschetz theorem, it is the constant part of the
cohomology of Zg: in Ky(Locg,Uy), we have the identity

[Za/Ual = [Y "] + Vean,01]-
Recall that [VW;;I?QZ] = (57, [Vvan,q,]) for an appropriate Schur polynomial s, € A

A%
as in Proposition 3.0.1.

We observe that (p},,_) is additive, so that

(p;cv [Vvam@z]) = (p,lk’ [Zd]) - (p;w [YOld])
and thus
(P> Dvan,u]) = (0 — (0, YD), [Za)).
In particular, if we let s;y be the element in A Ko (Locg, Fy) given by expressing
s, as a polynomial (with Q-coefficients) in pj, and then substituting

Py =P — (0, [Y1])
for pj., we obtain

1 m
Eulsry] = =~ Z TrFrob & Vi &

#Ud (Fq) ueUq(Fy) van

This stabilizes to E,, [s,y] as d — 0. Moreover, since the (p},[Y°]) are
constants and the p) are independent for fi., so are the pjgjy. The asymptotic
falling moment generating function for pjgjy is given by multiplying the asymptotic
function for p), in Theorem C by the moment generating function for the constant

random variable (p}, [Y°'4]) which is
(1+ t)fTrFrobG(p;C,[YOld]) = (1+1) Zan p(k/d) TrFrob® Cy ]

In particular, the moments of pjay are, for fixed dimension n, given by universal
formulas that are rational functions of ¢ and symmetric functions of the eigenvalues
of Frobenius acting on the cohomology of Y.

Thus we obtain Theorem B (where 7 here plays the role of ¢ in the statement
of Theorem B):

: —dim U, ) . Tr,

Jim g~ dZ(—l)lTrFrobq C H(Uyss Vin'e)
2

stabilizes to (y(n + 1)7'E,, [s;,y], which, for fixed 7 and n, is given by an ex-

plicit universal formula that is a rational function in ¢ and symmetric functions

of the eigenvalues of Frobenius acting on the cohomology of Y (this comes from

expressing s,y as a polynomial in p%’y and then using independence to compute
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its expectation in terms of the moments of pj y-, which are functions of this form —
cf. Appendix A for more details and an example).

6. HODGE THEORETIC RESULTS

In this section we prove Theorem A and Theorem D. We start by generalizing the
proof of [31, Proposition 3.5] to obtain a weak version of Theorem D, Proposition
6.2.1 below, which implies the limits in question exist but gives a more complicated
formula for their values. To obtain the explicit formulas of Theorem D, we con-
struct a generating function for these coefficients using the power structure on the
Grothendieck ring of varieties, mirroring the strategy used for configuration spaces
in [20]. The situation is more complicated in this case because in order to make the
motivic probabilities % appear after evaluation at a power of L, we are forced
to consider a power series with non-effective coefficients. However, the geometric
description of the power structure given in [18] only applies when the series has
effective coeflicients. Recent work of Bilu [3,4] on motivic Euler products gives a
systematic way to compute powers of non-effective series, and combining this with
a combinatorial lemma we are able to obtain the desired identity.

We use the setup of Section 4 with K = C.

6.1. Partitions and a combinatorial lemma. Following Vakil-Wood [31], we
let Q denote the set of ordered partitions, i.e. of tuples of integers (mq,ma,...)
such that for some k € N, m; = 0 for all i > k and m; > 0 for all i < k. For
mi,...,mg > 0, we will denote by (mq,ma,...,my) or 1™12™2  k™k the tuple
(my,ma,...,mg,0,0,...). The tuple (0,0,0,...) is in Q, and we will sometimes
write it as .

Let Qg := @®yen Z0, the set of ordered partitions allowing zero, i.e. of tuples of
integers (mjy,mo,...) such that m; is zero for ¢ sufficiently large. We use similar
notation for elements of Q.

For p = (m1,ma,...) € Qp, we define |u| = > m; and ||u|| = #{i | m; > 0}.
We will sometimes write p(i) for the ith component m;, and t* for the monomial
I1; tf(z) in indeterminates t1,to, .. ..

Example 6.1.1. For
p=1%2'3"=(2,1,5) = (2,1,5,0,0...) € Q, and
r=2"=(0,1)=(0,1,0,0...) € Qy — Q,
we have
Il = 8, 7] = L [l = 3, 1I7ll = 1, 6(3) = 5, 7(1) = 0, £ = itat}, and ¢” = ta

There is a natural retraction map ¢ : Qy — Q which restricts to the identity on

Q given by removing intermediate zeroes.
Example 6.1.2.
c(1?3%) = ¢((2,0,5)) = 1725 = (2,5).

Remark 6.1.3. A helpful visualization is to consider an element p € Qg as a
pile of blocks with columns indexed by N, and with the ith column containing m;
blocks. The elements of Q are piles with no gaps between non-empty columns, ||
is the total number of blocks in the pile, and ||y|| is the total number of non-empty
columns. The contraction ¢(u) is given by sliding all of the non-empty columns as
far to the left as possible to close the gaps.
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We will consider the decomposition sets

Q0™ == {(u1, - n) € Q4 [ 1+ + pin € Q)
There is a summation map Qy'* — Q, (U1,..., ) = H1 + ... + fin, and a con-
traction map ¢, : Q4" — Q", (U1, -+ fn) = (c(p1),- -+, c(pn))-

Remark 6.1.4. In this remark we give a visual description of the pre-image
e (s phyy . ) and it’s behavior under the summation map; it may be help-
ful to keep this interpretation in mind for Lemma 6.1.5 below.

Given (uf, ph, ... ul) € Q" we can build new partitions in Q by starting with
the pile p}, then, for each column in p}, either slipping it between two columns
or putting it on top of an already existing column, always moving from left to
right. After inserting all of the columns from pf, we obtain a new element of Q,
and we may repeat the process to add the columns from uj, etc.; we will end up
with a pile p € Q. The process used to build p from uf,...,u!, will determine
(and is determined by) a unique decomposition p = 1 + ..., with u; € Qg and
c(pi) = pf, and thus describes an element of ¢, (uf, pt, . . . ;) mapping to p under
summation.

We will use the following lemma in our proof of Theorem D below.
Lemma 6.1.5. Given (uf,...,u,) € Q",
2 (=)llttpnll = ()il

(115 eobn YECT (1] oo thy)

Proof. The case n = 1 is evident as ¢ *((¢})) = (11}). We will show the case n = 2
directly, and then proceed by induction for larger n.
We now consider the case n = 2. To give an element (1, ut2) in ¢y (1}, p1h) is
the same as to give:
(1) j < min(|[p]], [[u3]])
(2) A subdivision of {1,...,||u]| + ||h]] — 7} into a subset of size j, a subset
of size ||p}|| — 7, and a subset of size ||ub|| — j.

Here j corresponds to the number of & such that pq (k) and uo(k) are both non-zero;
given this information, to determine p; and po from p) and ph, it suffices to pick
Jj spots for both to be non-zero, ||u}|| —j for only 1 to be non-zero, and ||ub|| — j
for only us to be non-zero. Furthermore, for the resulting (u1, u2), we have

ey N A R A (PAIES AP

Writing ||p1]| = a, [|p2|| = b, and assuming a < b, the desired identity reduces to

SO e

This identity is established by plugging in X = b, Y = —b — 1 into the Chu-

val ldermonde lden‘l S/ :
7=0 ] a .] a

6We thank an anonymous referee for suggesting this application of the Chu-Vandermonde
identity, which gives a shorter proof of the n = 2 case than the direct combinatorial argument
based on Remark 6.1.4 that appeared in an earlier draft.
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and simplifying with the identities
(—b—l) (=b=1)(=b—-2)...(=b—a+j) (_1)a_j<a+b—j>
a—j (@ —j)! a—j )’

wa () - CUEDC0) e

a al

We now assume n > 3, and that the identity is known for m < n. We can rewrite

the sum as
Z Z (_1)\|V+un|\_

(115 tim—1)ECT L (i esttly _y) (Wsim)EC (1 ot 1,101,

Applying the induction hypothesis to the interior sum we find that this is equal to
(6.1.5.1) Z (— 1)l eIl | =

(15 pim—1)EC, (et 1)

(_1)Hu’n\| Z (_1)”/‘«1""“/1%71”,

i 7

—1
(115 tim—1)€C), ~ 1 (B seenspt?, 1)

and we conclude by applying the induction hypothesis to the remaining sum. [

6.2. A first stabilization formula for configuration spaces. The proof of
the following proposition follows the same strategy as [31, Proposition 3.5], which
corresponds to 7 = (.

Proposition 6.2.1. For 7 € Qy, the following identity holds in /\//I\L:

(6.2.1.1) J%% -
D=1yl > LIml=lul (D [Confmem ey ],
HeQ T2 =T, X pitu =p,
lwil=72(i), 71,7210 €Q0
Proof. Let

Va = A(L(Y, 0(d))).
Given partitions 7 and p we denote by WZ , the closed subvariety of

V; x Conf™Y x Conf"Y

consisting of (s,c,,c,) such that s vanishes at the points in ¢, and such that s
is singular at the points in c¢,. We denote by W the constructible subset such
that s vanishes at the points in ¢, and is singular at ezactly the points in c,. In
particular, we have
Wé = COHfEdZd.
We claim that, for any k € Z>1,

(6.2.1.2) W2, 1=+ Wi+ Wil + .+ W] + [(W2,)k]

where (W2 #)k denotes the image of W;#. w0 WZ  under the natural map

T W, e = W2,
Equation 6.2.1.2 holds because for any k, we have an equality in the Ky(Var/C)

(W] = [me (W01
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Here m; (W ,+) is the constructible subset of WZ , where the section is singular at
exactly k points outside of those marked by pu.

We may decompose Conf”Y x Conf"Y’, and thus, WZ 4> nto locally closed sets
determined by the overlap of the configurations ¢, and c,. We enumerate the
possibilities for the overlap: first we must choose an ordered decomposition 7 =
T1 + T2; the partition 71 marks the points which are in ¢, — c,, and the partition
T2 marks the points which are in ¢, n ¢,,. Then, writing 7o = (k1, ..., k;), we must
choose an ordered decomposition

o=+ g
where |p;| = ki; the partition y; corresponds to the points in ¢, nc,, and where the
marking from 7 is with label a;, and the partition p’ corresponds to the points in
¢, — ¢;. We denote the corresponding subvariety of Conf”Y x Conf"Y by w;, ..,

and its preimage in W;“ by W;u 4. The natural map

(6.2.1.3) Conf™ #1#2 1y _, Conf”Y x Conf"Y

induces an isomorphism between Conf7t #1#2"# 'Y and its scheme theoretic image
Wry,pre-
Example 6.2.2. If 7 = a'b!, and p = 13, then, we might choose

m=a" 1 =b" =G, =14 =12
For this choice, W;u .. consists of hypersurface sections with a non-singular point
marked by the label a, a singular point marked by the labels a (from 7) and 1 (from
1), and a pair of singular points marked only by the label 1 from p.

We denote by Fil® the decreasing dimension filtration on Ko(Var)[L.7!], so that
Fil* is spanned by classes of “dimension —k”, i.e. of the form [X]/L™ where

dim X < m — k. We also denote by Fil* the induced filtration on M.
Using the decomposition of W7, above, we obtain:

Lemma 6.2.3. Fiz a partition 7, and a positive integer m. Then, there exists an
N > 0 such that for alld > N, and |u| < m,
WZ,]

(6231) b, = > Lo Iml=lul et D) confrsasz 1wy

TitTa=T, it =p,
lpsl=72(3), 71,7210 €Q0

in Ko(Var)[L=], and for all p,k such that |u| + k = m,
[( ;u)k]/LdimUd =0 mod Fil~(»~Dlrl+m

Proof of lemma. As above, we can write

- 5
Zp Z st

TiTe=T, Ypitu'=p,
lpil=72(i), T1,72,01,1'€ Qo
Arguing as in [31, Lemma 3.2], we find that for d sufficiently large, WZs, , is
a vector bundle of rank dim Vg — || — |u|(n + 1) over w., ,,: here the quantity
|71]+ |p|(n+ 1) being subtracted comes from the fact that marking a point as being
on a hypersurface section imposes one linear condition on Vy; and marking a point
as singular imposes n + 1 linear conditions on Vj.
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Thus, using the isomorphism induced by (6.2.1.3) between Conf™#1 /2 #Y
and w,, ,,, we find

[WT.

Z s fe

sHe
1= LAm Va—=|mi[=[pl|(n+1) [Confﬁ'ul'uz'uvﬂly]_

Since dim Uy = dim Vj, we obtain the equality (6.2.3.1) by summing these expres-
sions for [WZs, . ] and dividing by L™ Vs,

To prove the final statement of the lemma, we note that for any choice of 7, and
Lte as above

’

— || = |p|(n + 1) + dim Conf™ #t#2" 1Y =
—|nul = lpl(n + 1) + (I7] + [u))(n) = |72 |(n = 1) — |ul

and thus dim WZ , —dim Uy < |7|(n — 1) — |u|. We conclude the final statement by

replacing p with p-#* and using the corresponding dimension bound on 7, (W2

>u~*k)'

We can now conclude the proof of Proposition 6.2.1. Fix a m, and let N be large
enough such that Lemma 6.2.3 holds for our fixed 7 and m. Let d > N.

Using Equation 6.2.1.2 iteratively to replace terms of the form [WW]] with terms
of the form [WZ ], we find that,

(6.2.3.2)

Conf7, .

(GO 20l _ g m i (2 = (W] = . = [WEes] = (W20
LW — (WE] — W]~ o~ W aca] = [OVZ, )]
(W] = W] = o= W] = [WZy)m 2 — o — (W)

o= LU S )l ((WZ,] = [, )

neQ,|ul<m
The second part of Lemma 6.2.3 implies that

[(W;u)m—ht\]

Ldim Ug =0 mod Fil~(»~Vlrl+m,

Thus, (6.2.3.2) gives

[Conf@d Zd/Ud]

Tamr, - =Lt S0 ()l W, ] mod Fil (T

HEQ, |pl<m

We obtain the formula (6.2.1.1) for the limit by plugging in the first part of
Lemma 6.2.3 for each term of the sum and then taking m — oo (and thus, also
d — o0, as the identity holds only for d sufficiently large, depending on m).

d

6.3. A generating function and the proof of Theorem D. Recall from [1§]
(cf. also [20]) that there is a power structure on the Grothendieck ring of varieties,
which gives a way to make sense of expressions of the form f¢ for f a generalized
power series with constant term 1 and a € Ky(Var/C) (or more generally Ky(Var/X)
for a variety X/C) that satisfies many of the formal properties one would expect
from the notation. The power structure gives a useful way to organize computations
in the Grothendieck ring with generalized configuration spaces, as demonstrated,
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e.g., in the prequel [20], and we will use it again here in a similar way. To avoid
confusion with the naive exponential, we use the notation of [20] and write frev®
to denote exponentials in the power structure. In the next section, we will show:

Proposition 6.3.1. For any variety X /C
(6.3.1.1) (1—s-(1+ty+ta+..)+2-(t +to+..))r~ X =

Z Z (_1)\\#“ Z [Confn'“l""'”’”'“,X]SlmZ‘Tllf

TEQo HEQ TiH+Te=T, S puit+u =p,
|wil=T2(4), T1,72,p4,14"€Q0

Assuming this proposition, we prove Theorem D:

Proof of Theorem D. The elements ¢, € A described in Example 1.2.2 form a basis
for A as a Z-module (cf. [20, Subsection 3.1]). Thus, to show that for any f € A,

Jim E,,,[(f,[Za/Ud])]
exists in /T/l\L, it suffices to verify that for any 7,

Jim By, [(cr, [Z4/U])]
exists in /\//I\L. Because

(¢r,[Za/Ua]) = [Conty;, Za/Ual,

we must verify

(6.3.1.2) e —

exists in My. We recall (cf. Remark 1.2.1) that, by [31],

. Uq —(n -1 —
(6.3.1.3) dlini Lgimld =Ty (]L ( +1)) € M.

Thus, combining with Proposition 6.2.1 we see the limit exists and moreover we
obtain the formula

(6.3.1.4) CIILI&E#(I[(CT, [Z4/Ud])] = Zy (]Lf(nJrl)) _

Z (_1)||M|| Z ]L*|"'1|*|N\(n+1)[Confﬁ'#l'#?m'#'y].

peQ T +Te=T, S pit+u =u,
lpi|=72(i), T1,72,pi,1'€Q0

Now, since the ¢, form a basis for Ag, to verify the asymptotic independence and
asymptotic distribution of the random variables (p}.,[Z4/Uq4]), it suffices to show
that for each T,

dhﬁnglC E,.[(¢cr,[Za/Ua])]

is equal to the value predicted by the asymptotic independence and distribution
(cf. [20, Section 5.3]). Concretely, we have

37 Jim B [(er, [Za/Ual)] = Jim By, [(14 1 4t 4+ o 20004

TEQo

= lim E,, ln(l +th k4 ')(p;,[zd/Ud])] ’

d—w
- k
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where the second equality follows from [20, Lemma 2.7], and thus it suffices to show
that

]Lnk: _ 1 A . (pk’[Y])
Tezgjot Jim By, [(er, [Za/Ua])] = 1;[ (1 + m(ﬁ +ip + )> :

We will arrive at this identity by manipulating the equation of Proposition 6.3.1.
First, we may divide both sides of the equation in Proposition 6.3.1 by (1 —s)Pev[¥]
to obtain

z— S Pow[Y]
(6.3.1.5) (1 + 1—_5(151 +ty + )) =(1- S)powf[Y].

PN EINE 3 [Comf ™ tm sty gl il

T€EQ HEQ riATa=T, Y gt =p,
lpil=72(3), T1,72,pi,1'€Q0

We have (1 — s)Pov~[Y] = Zy(s). Thus, plugging in
s=L"*D ;=11

and comparing with Equations (6.2.1.1) and (6.3.1.3), we find that after evaluation
the coefficient of ¢™ on the right-hand side of (6.3.1.5) is equal to

Jim B, [(er, [Za/Udl)]

On the other hand, using [20, Lemma 2.7], the left-hand side of (6.3.1.5) has a naive
Euler product expansion as

O (Pk:[YD)
H<1+1_sk(t1 +t2+...)) .

k
Thus, plugging in

and simplifying we conclude

nk _q (P, [YD
Z 7 hm ]Eud[(c‘f7 Zd/Ud H < W(tlf + t; + )>
TEQo k

in /T/l\]L ® Q, as desired.
O

6.4. Powers of non-effective series. In this section we explain how the results of
Bilu [3,4] on motivic Euler products can be used to compute powers of non-effective
series, and in particular obtain Proposition 6.3.1.

Given a variety X /C and elements a, € Ko(Var/X) for 7 € Qo\{0}, the theory
of motivic Euler products defines a power series with constant term 1

I <1 + > aTtT> € Ko(Var/C)[[t1,t2, .. ]].

zeX TEQQ
As with power structures, the infinite product notation gives an indication of which
manipulations are valid with these products — cf. [3, 3.8-3.10] for a precise descrip-
tion of the properties satisfied. Most importantly for us, motivic Euler products
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are compatible with the power structure: if the classes a, € Ko(Var/X) are given
by pulling back classes b, in Ky(Var/C) (i.e., the a, are constant), then

POW[X]
(6.4.0.1) [T+ D) at”|=(14+ > bt

zeX T€Qo\{0} T€Qo\{0}

Indeed, when the b, are effective, both sides are immediately seen to agree by com-
paring the geometric description given in [18] of the coefficients of the power on
the right-hand side in terms of generalized configuration spaces with the definition
of the motivic Euler product [3, 3.8.1] (which is also in terms of generalized con-
figuration spaces when the coefficients are effective). As an arbitrary series can
be multiplied by an effective series to obtain another effective series, we conclude
using multiplicativity of motivic Euler products” and multiplicativity of the power
structure that both sides always agree.

We will make use of (6.4.0.1) and the definition of motivic Euler products to give
a general expression for motivic powers in Theorem 6.4.2 below, which we will then
use to establish Proposition 6.3.1. Before stating Theorem 6.4.2, we recall some
notation from [3,4] used in the definition of motivic Euler products.

Given X /C, we consider the complete graded algebra

Ko(Var/Sym* X) := H Ko(Var/Sym" X)
k=0

with termwise addition, and multiplication induced on graded components by com-
position of the exterior multiplications

x : Ko(Var/Sym™ X)) x Ko(Var/Sym*?) — Ky(Var/Sym™ X x Sym"2X)
with the forgetful maps
Ko(Var/Sym* X x Sym*2 X) — Ky(Var/Sym* T2 X).

Denote by Ko(Var/Sym*X)! ¢ Ky(Var/Sym® X) the subgroup of the multiplicative
units whose constant (k = 0) term is 1 € Ko(Var/C).

Lemma 6.4.1 (Lemma 3.5.1.2 of [3]). There is a unique group homomorphism
S : Ko(Var/X) — Ko(Var/Sym*®X)*
such that for a variety Y /X,
S([Y/X]) = (1,[Y/X],[Sym?Y/Sym?X], ...).

We introduce some related notation: given a € Ky(Var/X), we write S™a €
Ko(Var/Sym"X) for the nth component of S(a). Given an indexing set I and, for
each i € I, n; € Z>o and a; € Ko(Var/X) such that n; = 0 for all but finitely many
1, we write

H S™ia; € Ko(Var/Sym>™ X)
for the image of the obvious exterior product under the forgetful map

Ko(Var/H Sym™ X;) — Ko(Var/Sym=" X;).

"In [4], multiplicativity is shown only for effective power series, but the general case appears
in the updated version [3].
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Finally, given a € Ky(Var/Sym"X), we write a* for the image of ¢ under the
composition of the restriction map

Ky(Var/Sym" X) — Ky(Var/Conf" X)
and the forgetful map
Ky(Var/Conf" X) — Ky(Var/C).
The definition of the motivic Euler product [3, 3.8.1], combined with the identity
(6.4.0.1) then gives:

Theorem 6.4.2. Ifb, € Ko(Var/C), T € Qy is a collection of classes with by =1,
and a, is the pullback of by to Ko(Var/X), then

(Z thT)pow[x] s 5 (1_[ S”T’a71>*f.

T€Qo T€Q0  T=XnT
7'€Q0, n,1€Zs0

Theorem 6.4.2 provides a systematic way to compute powers even when the base
series is not effective. Using it, we prove Proposition 6.3.1:
Proof of Proposition 6.5.1. We first observe that, for any X,
(6.4.2.1) SY=[x/XD = > (=DHI[Sym* X /Sym" X].
,LLEQ,‘,U,l:TL
This follows from writing
m=S([X]) - 1= (0,[X/X], [Sym*X/X],...)
so that
SIXD'=0+m)t=1—a4+m?—7m3+....

Now, applying Theorem 6.4.2 (which is stated with variables ¢1, to, .. ., but which
we use with variables s, z,t1,12,...), we find that

(1—s- (L4t 4+ta+..)+2-(t +to+..))r X =

T€Qo T=Ts+7>, n=0 i i
Ts,T=€Q0

Substituting in (6.4.2.1), we obtain

Yoy Y 3 STl () I s sl ot b= ).

€Q T=Ts+7, n=0|,/ |= =74 (i),
TeRe T heor " 'l ;Z,Lie‘g:r (1)
Organizing the sum by p = p' + > 15, and noting that the constraints on 4; imply
|| + |7s| = |p|, we obtain

Z 1 Z Z Z SWIZITZ\(_DHM’HJrZiHm\l[Confu’~u1~uz~---~TzX]_
T€Qo  T=TsHTe peQ pu=p'43 u4,
Ts,T2€Q0 i 10
Note that the configuration space appearing in this sum does not change if we
replace the p; and p', which are elements of @, with partitions in Qg that lie in
their preimage under the contraction operator ¢ introduced in 6.1. Thus, we can
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apply Lemma 6.1.5 to replace the summation over p',p; € @ with a summation
over i, i € Qp to obtain

Zf Z 2(_1)M| Z sl 21T [Conf -t 7= X ]

TEQY T=Ts+T: peQ p=p'+3 pi,
TasT2€Q0 wpi€Q0

Substituting 71 for 7, and 75 for 74, and combining and reordering the sums, we

obtain the right-hand side of (6.3.1.1), as desired. O

6.5. Cohomological stabilization. In this section we prove Theorem A. The
proof mirrors the deduction of Theorem B from Theorem C given in Subsection
5.2. As in the point counting case, our method also gives an algorithm to compute
an explicit formula for the limit (cf. Appendix A for a description of this algorithm).

Proof of Theorem A. We use the notation developed in Subsection 2.2 and Sec-
tion 4. We denote

[Yoens == ) (=)' ([H(Y(C), Q)] + [H*"(Y(C),Q)(1)])

i<n—1

+(=1)"'[H'(Y(C), Q)] € Ko(GHS).

We can view [Y°'4]gus as a constant virtual variation of Hodge structure on Uy.
By Equation (4.0.3.2) and the weak Lefschetz theorem,

[Youalanus + [Vvan,ol = [Za/Udlavsh,
and thus, using the additivity of (p}, ),

(Pk — Pk [Yorl)s [Za/Udlavsn) = (0ks [Za/Udlavsu) — (P, [Yoral)
= (p;w [Vvan,Q])-

Denote by s,y the polynomial in A (gug) obtained by expressing s, € A as a
polynomial in p},, then substituting pj, — (p}., [Yoa]) for pj,. By the above, we have

(s7,vs[Za/Udlavsn) = (57, [Vvanal) = Vo'l
Thus,

xus(H: (Ua(C), Vo)) . xus([(s~y,[Za/Udlcvsn)]

lim = lim

d—0 [Q(— dim Ud)] d—x [Q(— dim Ud)]

It suffices to verify that the limit on the right exists for any f € A, since by
linearity we can then extend the scalars on A to Ko(GHS) to obtain the result for
SrY -

For f e A, by Lemma 2.2.2,

i s [Za/Udlavsw)] _ ((f,[Za/Ual) 5z )ms

d—o0 [Q(— dim Ud)] d—w ]Lﬁlén Ud

Applying the Hodge realization to Theorem D, we see the limit on the right
exists (and has a universal formula of the form claimed).
O
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APPENDIX A. ALGORITHMS AND EXPLICIT COMPUTATIONS.

In this appendix we give an algorithm for computing the explicit universal for-
mulas in Theorem B, extracted from the proof in Subsection 5.2. With minor
modifications, this also computes the analogous limits in Theorem D.

Algorithm.
Input: A partition ¢ and dimension n.

Output: A universal formula computing

: —dim U, 3 . o,
(}Lniq m Uy Z(—l)lTrFl"Obq C H (Ud7ﬁ,vvan(f@l)
2
for polarized smooth projective varieties Y /F, of dimension n in terms of symmetric
functions of the eigenvalues of Frobenius acting on the cohomology of Y.

Step 1: As n—1 = 0, is even positive, or odd, compute the appropriate Schur
polynomial s, of Proposition 3.0.1 as a binomial polynomial in the pj,.

Step 2: For each “binomial monomial”

(1) -11(%)

appearing in this expression, substitute the coefficient of [ téj appearing in

nk @ ¥]
"t -1 —(ph [y
H<<1+q<n+1>k_1tk> (14 )L D)

k

Step 3: Multiply the resulting expression by (y(n +1)~1. (Here we use that this
is the alternating product of the characteristic series of Frobenius acting on the
cohomology of Y, evaluated at q_(”H)).

Remark A.0.1. Usually it is more convenient to omit Step 3, which corresponds
to normalizing by #Uy(F,) instead of g~ 4mUa,

Example A.0.2. For the standard representation, corresponding in all cases to
the partition (1), we obtain

B, [sry] = ., [ph — (0, [Y°4)]
" -1
= oY (Fg) — TrFrob, & [Y°].

For example, if Y = P™ this gives,
q"—1

Eu, [srpn] = m#ﬁbn(ﬂrq)—#ﬂm_l(ﬁq)

= 0.

By Theorem D, we obtain a similar result for Hodge structures (cf. Example 1.1.1).

We note that for the standard representation, H'! is known to stabilize by Nori’s
connectivity theorem [26, Corollary 4.4], and our results are compatible with the
stable values that appear.
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