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Abstract

The correction to the propagation velocity of point vortex equilibria caused by
allowing the vortices to have finite core size is calculated. A matched
asymptotic expansion in the small parameter €, given by the ratio of the core
size to the dimension of the equilibrium configuration, is carried out. The
resulting velocity correction is found to be of order €* and arises from the
interaction of second- and third-order terms in the inner expansion, which are
themselves forced by the strain and strain derivatives of the outer field.

1. Introduction

Point vortices have been extensively studied since the original work of Helmholtz (1858) and
Kirchhoff (1876), and many results are summarized in textbooks such as Lamb (1932) and
Saffman (1992). The evolution of systems of point vortices may be viewed as a problem in
the theory of dynamical systems, and hence the question of equilibrium states of point
vortices is a natural and important one. Here, equilibrium refers to configurations that
translate or rotate without change of shape. The simplest configurations of point vortices, the
translating and co-rotating pair, are equilibrium states. Other configurations have been found.
Many exploit symmetry, such as rotating polygonal arrays (Thomson 1883), as well as
infinite rectilinear arrays and vortex streets. Many more complicated configurations, with and
without symmetry, have also been obtained. A detailed discussion is given in Aref
et al (2003).

Point vortices are singular solutions of the Euler equations. The justification of the
dynamical equations governing their evolution is reviewed in Llewellyn Smith (2011). An
interesting related question is the desingularization of point vortex solutions: constructing less
singular solutions that reduce to point vortices in an appropriate limit. Two families of
vortices have received particular attention: vortex patches and hollow vortices. The evolution
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of vortex patches can be obtained using contour dynamics. Some of the earliest work on
vortex patches studied equilibrium configurations: Pierrehumbert (1980) found propagating
dipole solutions, Wu ef al (1984) found these and also co-rotating pairs, and Saffman and
Schatzman (1981) and other authors obtained vortex street solutions. Dhanak (1992) exam-
ined the stability of polygonal vortex arrays. Hollow dipoles were originally so named
because the fluid inside the vortex boundary is at rest. Pocklington (1895) found propagating
hollow vortex dipoles and this work was revisited by Crowdy et al (2013). Baker et al (1976)
found a linear array of hollow vortices and Crowdy and Green (2011) found streets of hollow
vortices. The above equilibrium configurations are families that depend on a non-dimensional
parameter measuring the size of the vortices, and there is a limit that approaches the point
vortex configuration.

One can hence ask the following question: What is the general correction to the velocity
of an equilibrium point vortex configuration and how does it depend on the desingularization
used? We study this problem via the method of matched asymptotic expansions, using a small
parameter e, the ratio of the core size to the size of the array. We obtain an asymptotic
expansion in this parameter and compute the resulting velocity. For simplicity we limit
ourselves to cases in which the configuration does not rotate, although the same approach
should work in the case of rotating configurations. Neither do we consider generalizations to
different geometries such as spheres or to domains with boundaries.

The plan of the paper is as follows. In section 2 we outline the mathematical problem. In
section 3 we give properties of the radial Rayleigh equation that governs the behavior of the
vortex cores. In section 4 we go through the matching procedure. This is a fairly lengthy
section since we give all the details, but the underlying structure is straightforward. Finally we
conclude in section 5.

2. Problem formulation

We consider the motion of an incompressible, inviscid fluid containing vortices in an equi-
librium configuration. In a frame moving with the vortices, vortex m is at rest at z = z,, and
there is a uniform flow at infinity. The vortex cores are all taken to have the same structure,
with compact vorticity support or exponentially decaying vorticity away from the core. Hence
far from the cores, a complex potential w = ¢ + iy exists. The complex potential corre-
sponding to the uniform flow at infinity is —Wz.

The solution for the equilibrium configuration of point vortices is

I,
wy = " log (z — zm) — Woz. 1
0= 2o log (2= zm) = W M
A sum without subscripts runs over all the vortices. We view this as the leading-order term in
an asymptotic expansion in €, w = wy + ew; + ---, and the full propagation velocity W will be
expanded in the same fashion. We will see that W; is obtained as part of the matching
procedure. The outer solution at O (e¢?) is

w, = ZZa;”,,f(z—zm)_q— W,z + C, 2)
q=1

where C is a constant.
We now consider regions close to each vortex: near vortex n we define a new variable Z
using z = z,, + €Z, with Z = Re!?. The governing equation for steady solutions is
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J(l//, V,%y/) =0, (3)

where y is the inner streamfunction, J is the Jacobian and

0? 1 0 1 0?
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The leading-order inner streamfunction is determined by the model taken for the vortex cores.

Any radially symmetric inner core structure y,, () with circulation 7}, is acceptable. Then, for
large R,

I,
=——"1ogR + O(R™™), 5
vo=—5logR + (R™) &)

where the order term denotes terms that vanish faster than any negative power of R.

3. The steady radial Rayleigh equation

At O (¢) and higher, the governing equation (3) becomes the steady version of the linear radial
Rayleigh equation. This equation has been used to study the linear stability of two-dimen-
sional inviscid vortices (Gent and McWilliams 1986). The homogeneous equation for azi-
muthal mode n of the streamfunction, f;, is (n > 0 without loss of generality)

" 1, n? o’
Jo * Rf” [R2 - RQ]J; 0 ©
where primes denote differentiation with respect to R, €2 is the background angular velocity
and Q is the background vorticity. The origin is a regular singular point, so we take the
solution that is bounded there with f, ~ R". In general, the solution does not then decay at
infinity, and one has f, ~ R" + §,R™", where f, usually has to be obtained numerically.

Mode 1 is special: there is a known steady solution due to Michalke and Timme (1967),
Ji = RQ. Llewellyn Smith (1995) and Llewellyn Smith (1997) discuss the approach to this
solution in the initial-value problem and its relation to matching problems, respectively. The
other, linearly independent, mode-1 solution is unbounded at the origin and infinity.

Some higher terms in the inner expansion will satisfy inhomogeneous equations. The
interaction of y, = ¢,f, (R)e? + c.c. and y, = ¢,f, (R)e'?’ + c.c. forces modes +p+q. The
corresponding vorticity is £, = c,g, (R)e? + c.c., where g, = f, + R™'f; — p?R™’f,. The
forcing terms are

—J(l//p, Cq) - J(y/q, ij) = _R—lcpC;ei(p—q)H
X [—iq(f;gq - g,’,/i,) + ip(fq’g,, - g;f,,)] + o )

where the dots refer to other modes. When p = g, mode 0 is not generated.

4. Expansion

The large-R expansion of the inner streamfunction is irrotational. For mode n of the inner
solution at O (¢) or higher, we have, for large R with n > 1,
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w=cuf,e" +cc. ~ Cn(R” + ﬁnR‘”)ei”g +c.c. = c,,[Z” + /;;(Z*)_"] + c.c. (8)

Since f, is real, this shows that in the matching region, y is the imaginary part of the

meromorphic function 2i(c,Z" + ¢, #,Z™"). We can hence carry out the matching using

complex potentials, which we denote @, in the far field. We will not bother matching constant

terms C or c in the potentials or streamfunctions, since they are dynamically irrelevant.
The outer solution w,, becomes, in terms of the inner variable

o0 , —-q
Wy = Z{a%(ezru D (2 = zm)-q(l - ) }

g=1 Zn — Zm
- Wy(zn + €Z) + C, ©)

where the prime indicates that the sum over m does not include the term in n. To carry out the
matching, we use van Dyke’s rule in the form @™ = w™ where the notation is as follows
(Crighton et al 1991): the first superscript indicates the order of truncation of the expansion
considered; then the inner and outer expansions are rewritten in terms of the outer and inner
variable, respectively, and truncated at the order given by the second superscript. When the
second superscript is absent, the solution is not truncated in the ‘wrong’ variable.

The O (1) matching is almost automatic. From (1) we find

I, S D (e2)!
w0 = 2 logeZ+ Y = Y (=D 1——22 W, Z + C. 10
2 OB ZF L n LD Kz =z (4o

From (5)
I
w(o") = —l. log (Z - Zn) +c, (11)
2ri

neglecting terms that decay faster than any power. There is also an O (log €) term in the inner
expansion, but it is dynamically irrelevant and hence suppressed. One finds @@ = w©0_ as
expected.

The outer solution to O (e) gives

W= ez s TS Bz 2
in — Zm

The O (¢) inner problem is homogeneous, so
I,

wl-) = —log(z—2z,) + ¢
2ri

b ' R
b(l)( n) pD (_n) 13
+€[z—2n+z{ . + by" B, - (13)

m=2

and

oD = o 4 ezby(nl)(ﬂ) i (14)
m=2 €

where the ellipsis corresponds to terms that have already been matched and constants have
been included in it. By the matching principle, w'!:" is equal to
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I, Z

WD = gl 32
271 2 — Zm

- Wo Z+ D al(ez)|. (15)
g=1
The matching gives a,;,ll) = 0 for g > O (this is true for vortex n and hence for all vortices m),
bV =0 for m > 1 and
Iy 1

—n ,
271 2, — I

Wo = (16)
the expected leading-order velocity of the point vortex limit. Note that b\ is unspecified at
this point. We take it to be zero for a number of reasons. First this gives the correct matching
subsequently. Second there is no outer term for it to match at this or higher orders; hence it
cannot be dynamically important and must be set to zero. Finally if one considers the
linearized stability problem for a general circular vortex, Llewellyn Smith (1995) shows that
the mode-1 response tends to the Q2 solution mentioned above with amplitude proportional to
the initial vorticity in mode 1. There is an arbitrary degree of freedom, so we take it to be zero
until O (e*) when the mode-1 problem is no longer homogeneous. As a result, y; is just a
constant and dynamically irrelevant.
At O (€?), the outer solution becomes

I, SEERS k
w@) = L IOg eZ + z_.Z(_l)k—l (€Z) -
2xi 2ri s k(z, — Zm)

The problem for the inner streamfunction is again homogeneous, so

+ C — €W, Z + €*w,. 17

r
@)= —log (z—z,) + ¢
271

+ ¢ i {b,g?(—z - Z")m + bﬁf)*ﬂm(—z — Z")_m}. (18)
€

m=2 €
Now truncate:
o 7 —1z m
w2 = . 1 2 Zb’("Z)(—n) , (19)
m=2 €
and match to
ST z? <
@2 — f _ydm &7 @) (7
w = +e€ - WMZ+) a,;’(eZ) 1| (20)
[ 271 2z, — 2p)? El "

This gives almost the same matching problem as before, with aﬁ) = 0 for ¢ > 0 and all m,
b» =0 form > 2, W, = 0 and
51, 1
b =ay= -y . @1)
2ri 2(Zn - Zm)2

This is the strain induced by the other vortices at the location of point vortex n. There is no
O (¢) correction to the propagation velocity since W, = 0. The inner solution is hence, up to a
constant,

w, = —%azfz (R)e?” + c.c. (22)
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The O(e?) matching will follow exactly the same pattern as before, since the inner
problem is homogeneous. The result is a“) =0 forg > 0 and all m, W, = 0,
1, 1
b may= Y L (23)
2”1 3(Zn - Zm)3

and b,,(f) = 0 otherwise. As above, we find
i 3i0
Y = —ang R)e + c.c. 24)

The difference at O (¢*) is that the inner problem is no longer homogeneous. It is forced
by the self-interaction of the O (¢?) solution. The interaction terms, which are quadratic, give
modes 0 and 4, but, as shown previously, the forcing terms for mode O vanish. For mode 4,
we generalize our earlier notation to allow S, to include the self-interaction term. The other

difference is the presence of the b3”Z~2 term. We have
(2t
k( in — Zm)k

for the outer problem. For the inner problem

W) = +C—e'Ws Z + e*wy (25)

I,
o) =—""log(z —z,) + ¢
2mi

c Z— 2n p } Z— Zn P
P *
+ 26 [ap( - ) +a, p( - ) ]

p=2
ret Y {b;;)(ﬂ) + br(n4)*ﬂ4(ﬁ) } (26)
m=2 € €
Hence
o = oy €4la;ﬂ2(z — ) Zbﬁ)(ﬁ) ] 7)
m=2 €
Match to
/ Fm Z4 hd
whd =gt Y2 Wz Y aPe2) | (28)
2rxi 4(Zn - Zm)4 g=1

This gives aq(,‘:,) =0forg=1,¢g> 2 and all m, W3 =0,
I, 1

L N S— 29
2ri 4(Zn - Zm)4 ( )

aZ(n) = aZ*ﬂ2? b4 =da4 = —
and b = 0 otherwise.

At O(¢e”) the inner problem is not homogeneous and is forced by interactions between
modes 2 and 3. We care about the resulting mode-1 response. The coefficient 4, will contain
contributions from the inhomogeneous term, leading in particular to a f; term which did not
exist for previous orders. As usual

L ST o (€2)
wl) = LlogeZ+ Y —= Y (- ——2— 4 C - W, Z + dws. 30
PR Yo E( U T—— ) ’ o
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For the inner problem

@®) =—"log(z -2z, + ¢
2
4 _
Z—=2zn\ ol 2—2nY7?
+Z€p[ap( - ") +a, p( p l) ]
p=2

0 _ m _ —-m
+e Y {bn@(—z Z”) + b;?*ﬂm(—z Z") } 31)
€ €

Hence
PLCI) I Zblgf) ( ﬂ)m (32)
€
m=1
which, by matching, is equal to
/ Fm Z5 e
wo = S| Y W Z+ Y al(e2)7. (33)
271 5(z, — z)° ot
The matching gives aq(,sn) = 0 for ¢ > 1 for all m,
L
b =as= ! W, = b (34)

2_”1 S(Zn - Zm)s ’

and b = 0 otherwise.

We have completed the matching. If W, is not the same for all vortices, we have not
found an equilibrium correction and this approach fails. To compute the correction to the
propagation velocity, we calculate wy, a, and az from the equilibrium configuration. The first
term gives the propagation velocity of the point vortex equilibrium. We then solve the
homogeneous inner radial Rayleigh problem for modes 2 and 3, giving f, (R) and f; (R). The

inner solution at these orders is y, = —%iazﬁ (R)e*? + c.c. and yy = —%ia3\f3 R} + c.c.

We then solve the mode-1 inner problem at O (¢”), for which the forcing term F is, from (7)
with p =3 and ¢ = 2,

4 1 ! Ql 1 — ia3a; M ! ! : ! !
vt Ell/l - [RQ + F]W] = 4RQ_[_2l(f3 &~ gsfz) + 31(f2g3 - ngS)]' 35)
The solution to this equation that is bounded at the origin can be found in closed form. The
operator on the left-hand side has the solution f, = R€2 that is bounded at 0 and oo, as
mentioned before, and also the unbounded solution

du R
=RQf7~— as R — oo. 36)
51 WBQw? T (
We can find a Green’s function bounded at the origin in the form
a(©)f; (R) for R < &,
GR, ¢ = i (37
b(&)fi(R) + c(§)g(R) forR > ¢.

The continuity and jump conditions on G give

afi (&) = bf1 () + g (©), bf{ (&) + g/ (&) — af,"(§) =1, (38)
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leading to c(&) = [EOWE™ = &, (&) = £22(8), where W) =£©g )
1 (§)g () = £71 is the Wronskian. The solution is

) R
fR) = [T a@F @+ [T[b@RR) +c@n®]FE . (39)

where F () is the right-hand side of (35). The coefficient of Z in the far field is then

2ri

w, = -2
¢ r

/0 “ R2Q(R)F (R) dR. (40)

5. Conclusions

We have found the correction to the velocity of steadily translating vortex arrays. It enters at
O (e*), where ¢ is the ratio of vortex core size to array dimension. The correction is pro-
portional to the second and third derivatives of the regularized complex potential at the vortex
cores. The case of configurations that rotate as well as (or instead of) translating should be
amenable to the same approach, although one will no longer have the luxury of working in an
inertial frame moving with the array. If the vortices have different interior core structures or
sizes, each will feel a different strain and strain derivative from the others. These must be
related in just such a way as to give the same correction W, for all vortices, yielding a steadily
propagating array.

The analysis given here is reminiscent of that of Ting and Klein (1991), who showed that
the motion of a point vortex can be found by ignoring the divergent part of the velocity field
that it induces, by matching the evolution of a Rankine vortex core to a far field. In our
notation, this corresponds to obtaining W, in the time-dependent case, while our goal was to
compute the higher-order corrections to the velocity of steadily propagating equilibria for
arbitrary core profiles. The results here also show that the MAE approach works for arbitrary
core structures for obtaining the steady propagation velocity at O (1), and that the details of
the core structure do not matter, as one might have expected.

More work remains to be done, in particular relating the results to numerical solutions
and investigating rotating cases, starting with the co-rotating vortex pair for which vortex
patch solutions have previously been obtained but for which no hollow vortices have been
found.
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