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Abstract

We construct a (gl,, B(Q,)) and Hecke-equivariant cup product pairing between overconvergent
modular forms and the local cohomology at 0 of a sheaf on P!, landing in the compactly supported
completed C,-cohomology of the modular curve. The local cohomology group is a highest-weight
Verma module, and the cup product is non-trivial on a highest weight vector for any overconvergent
modular form of infinitesimal weight not equal to 1. For classical weight k > 2, the Verma has an
algebraic quotient H' (P!, O(=k)), and on classical forms the pairing factors through this quotient,
giving a geometric description of “half” of the locally algebraic vectors in completed cohomology;
the other half is described by a pairing with the roles of H' and H° reversed between the modular
curve and P'. Under minor assumptions, we deduce a conjecture of Gouvea on the Hodge-Tate-
Sen weights of Galois representations attached to overconvergent modular forms. Our main results
are essentially a strict subset of those obtained independently by Lue Pan, but the perspective here
is different and the proofs are short and use simple tools: a Mayer-Vietoris cover, a cup product,
and a boundary map in group cohomology.

2020 Mathematics Subject Classification: 11F77, 11F33

1. Introduction

In this work, we show that cuspidal overconvergent modular forms of infinitesi-
mal weight # 1 give rise via an explicit construction to highest weight vectors in
the compactly supported completed cohomology of the modular curve (Theorem

© The Author(s) 2021. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(<http://creativecommons.org/licenses/by/3.0/>), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited.




Sean Howe 2

A below). Using this result, we compute the Hodge-Tate-Sen weights of the Ga-
lois representation attached to an overconvergent eigenform (possibly of infinite
slope!) outside of weight 1 and assuming the residual representation is absolutely
irreducible (Corollary B below). This verifies a conjecture of Gouvea [9, Con-
jecture 4] in most cases. Our result mirrors the classical picture, where complex
cuspidal modular forms are naturally identified with highest weight vectors in
the corresponding automorphic representation of GL;(RR).

In fact, just as in the complex case, what one obtains more canonically is a
map from the associated Verma module: Our maps are most naturally formulated
as cup products between overconvergent modular forms and local cohomology
groups on P!, giving a direct connection between the structure of completed
cohomology and classical geometric representation theory.

After preparing an earlier draft, we learned of a preprint by Lue Pan [14]
giving a complete description of the Hodge-Tate-Sen decomposition of the
highest weight vectors in the locally analytic part of completed cohomology. In
particular, [14, Theorem 5.4.2] essentially subsumes our Theorem A, and goes
much further. There are two advantages of the approach we present here:

1. Our proof is brief and relatively straightforward; a reader interested in the
results of [14] might stop here first to get a quick geometric perspective
on why overconvergent modular forms should relate to locally analytic
vectors in completed cohomology in the first place.

2. By swapping the role of H and H'! between the modular curve and P!, it
is easy to see that there is a dual geometric picture connecting to work of
Boxer-Pilloni [3] on higher Hida theory (cf. Remark 1.2.12 below for an
explanation of how this may fit into the Shimura isomorphism of [14]).

1.1. Summary of construction and results. The idea of our construction can
be stated very naively using the geometry of the Hodge-Tate period map. We fix
a prime-to-p level K? (a compact open subgroup of GLz(A(f’ ))) and write:

1. X/C,, for the perfectoid compactified modular curve of prime-to-p level
K? and infinite level at p,

I for the ideal sheaf of the boundary (cusps) on X,
mgt : X — P! for the Hodge-Tate period map,

0=1[0:1]€P'(@Q,),

A

B c GL, 7, for the upper triangular Borel stabilizing 0 € IP’I(Q,,) = IP’I(Z,,),
N C B for its unipotent radical and No = N(Z),),
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6. and z = x/y for the canonical coordinate on P! at 0.

The topological closure of the canonical component of the ordinary locus in
X is the fiber Xjg), and any cuspidal overconvergent modular form can naturally
be identified with a function in H°(Xj,<., I) for some € depending on the radius
of overconvergence (as in [4, 10]).

On the other hand, a result of Scholze [18] implies that the compactly
supported C,-completed cohomology I:IE’CF of the tower of modular curves can

be computed as the analytic cohomology H'(X,I). If we consider the cover
of X by X< and X5, then both of these and their intersection Xj- are
affinoid perfectoids, and thus the analytic cohomology H' (X, I') is computed by
the éech/Mayer—Vietoris complex for this covering. As a consequence, we find
classes in H'(X, I) are represented by functions in H*(X=¢, 1).

To obtain the class attached to an overconvergent modular form we do the
simplest possible thing that is not obviously trivial: we send the function f in
H'(X|<¢, T) attached to an overconvergent modular form of weight « to the class
[%]. A simple computation verifies that this is a highest weight vector of weight
Lie(x) —2; the key point then is to verify that it is not zero! This is accomplished
by composing with a certain restriction map to functions on the generic fiber of
the Tgusa tower X;j /Ny — this composition can computed explicitly and identified
with multiplication by 1 — Lie(x) (which explains why weight one is excluded
from our results!).

When the modular form is defined over a finite extension of Q,, then the
whole construction can be carried out over that extension, and we find that
the resulting vector lands in the Hodge-Tate weight zero part of completed
cohomology. From this we deduce that the Galois representation attached to
any' overconvergent modular form of weight not equal to 1 defined over Q,
admits zero as a Hodge-Tate-Sen weight (Corollary B), proving a conjecture
of Gouvea previously known only for classical modular forms and finite slope
overconvergent modular forms.

Restricting from overconvergent to classical modular forms, we find our
construction gives a geometric realization of the Hodge-Tate weight zero part
of the locally algebraic vectors in completed cohomology via a simple cup
product between classical modular forms and the Borel-Weil-Bott realizations
of algebraic representations in the first cohomology of line bundles on the flag
variety P'. In fact, comparing with work of Faltings and Emerton, we find that
this describes “half” of the locally algebraic vectors; the other half come from
swapping the role of H' and H® between the modular curve and P'.

! Under the assumption that the residual representation is absolutely irreducible.
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1.2. Interpolation of cup products and the main result. The explicit descrip-
tion in terms of functions summarized above is useful for computations but at
first glance appears rather ad hoc. To understand the situation more clearly, we
identify our map with a cup product.

The modular sheaf w on X is naturally identified with 7, O(1), thus we
obtain cup product maps

H'X,o* @ I) @ H'(P',0(-k)) —» H'(X, I). (1.2.0.1)

The right-hand term in the pairing is an algebraic representation of GL»(Q))
which is non-zero for k > 2. If we pass to smooth vectors for the GL,(Q,)-action
on the left we obtain the space of classical weight k cusp forms § Zl. Pairing
a classical form with a distinguished highest weight vector in the algebraic
representation gives exactly the class [f/z] described in the summary above:
indeed, this highest weight vector is represented by the meromorphic section
y*/z on P!, and the section y of O(1) pulls back to the canonical trivialization
of w via myr. Theorem A below will show this pairing is injective.

The group H'(P',O(—k)) admits a natural surjection from the algebraic lo-
cal cohomology of O(—k) at 0, H! alg (P!, O(—k)) — representation-theoretically
this can be identified with the surjectlon from the corresponding highest weight
Verma module to the algebraic representation. These local cohomology classes
can be paired with overconvergent modular forms, giving an extension of (1.2.0.1):
When we pair with a classical modular form, the map factors through the alge-
braic representation, but in general it does not. Moreover, while the algebraic
representations cannot be interpolated outside of classical weights, the local co-
homology Verma modules can be interpolated geometrically along with the cup
product pairing with overconvergent modular forms. We explain this now.

1.2.1. Overconvergent and classical modular forms. For k a continuous C,,-
valued character of Zj, we define a B(Q))-equivariant sheaf O(x) on the germ

of 0 =[0: 1] € P We write w* = JrgllTO(K) When « is the classical character
z - 75, O(k) extends to the standard GL,(Q »)-equivariant sheaf O(k) on P!.
We consider the space of overconvergent sections

H* (X0), 0* ® T) = colim_oH’(Xyj<e, 0* ® T).

It admits an action of B(QQ,). Moreover, because each neighborhood [z] < €
is stabilized by some I'o(p"), the action of B(Z,) on any section extends, and it
makes sense to define the subspace of smooth vectors, denoted with a superscript
sm, as those stabilized by some compact open subgroup of GL,(Q),). We write

S,T( = HO’T(X{O}, Ww'® I)Sm.

We consider SI as a (glp, B(Q,))-module with trivial gl-action. For k € Z,
restriction gives a natural (gl,, B(Q,))-equivariant injection

St st (1.2.1.1)
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Remark 1.2.2. The traditional definition of overconvergent cusp forms of weight
k coincides with the invariants (SZ)B(ZF). We prefer the larger space SZ here as it
is better suited for representation-theoretic arguments. In particular, it is conve-
nient to have the map (1.2.1.1) available rather than twisting the weight to see all
classical forms. In that vein, we note that if y is a finite order character of Z; then

we have a canonical identification of (gl,, B(Q,)) representations § ;,( =S I(X‘l ),
where the notation (y~!) on the right denotes a twist by

[3 fl] )

In particular, when Liek = k € Z, we usually just consider k = z*.

1.2.3. The pairing. To compute H! . = H'(X,I), we take the colimit over €
sp
of the Mayer-Vietoris sequences” for the covers of X by Xj;<. and Xj;o:

HOF .
0— e;HO((X}ig(fI)) — colimeH*(Xo<ee, I) — H' (X, T) - 0. (1.2.3.1)

Remark 1.2.4. Merging two terms gives the local cohomology sequence

0 = H'(Xigo0.1) = Hy, (X.1) > H'(X,I) - 0.

We write H{lo}(Pl,O(K_l)) for the analytic local cohomology of O(x™!) at

0 € P!; its elements are represented by sections in a punctured neighborhood
of 0 (see 2.3). There is a natural identification O(k)* = O(x™'), thus we obtain a
pairing

SteHp P, ow") —» H' (X, I) = Hf-,cp (1.2.4.1)
by pairing an overconvergent modular form with a section on a punctured
neighborhood to obtain an element in colim¢H’(Xy..<c, 7), then mapping to
H'(X, T) where the result becomes well-defined.

We show that (1.2.4.1) factors through a map of (gl,, B(Q,))-modules to
the locally-analytic vectors I:ICI”(ICO:_“”. The space Hj,(P',O(k™")) contains a
canonical Verma module V,-1 of highest weight Liex — 2 spanned by germs of
sections meromorphic at 0, and to describe (1.2.4.1) further it is convenient to
consider the restriction to V,-1,

SI@Ver - AN ™ (1.2.4.2)

S—p

2We verify the necessary vanishing in Lemma 3.2.1 so that one can compute the cohomology of
T using these covers by quasi-Stein perfectoids rather than affinoid perfectoids, though one could
also arrange the entire argument using only covers by affinoid perfectoids.
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By the equivariance properties of myr, the prime-to-p action on V-1 is trivial
and thus the prime-to-p action on the left is concentrated in § I In particular, for
any prime-to-p Hecke eigensystem p we obtain an induced map on eigenspaces

SIPI® Ver — Hi [p].

V1 is irreducible unless Liex = k > 2, when V-1 admits an algebraic

quotient. We write the kernel as V'_,, a Verma module of highest weight —k.

Theorem A. IfLiex ¢ Zs,, then (1.2.4.2) is a (sl,, B(Q),)) and prime-to-p Hecke
equivariant injection. For k = Z¥, k > 2, the kernel is S f{l ® V’,, and the pairing

St H'(P',0(=k)) — H ™"

induced by passing to the quotient is identified with the restriction of the global
GL»(Q,) and prime-to-p Hecke equivariant cup product

H'(X, w* ® T)® H'(P',0(=k)) —» H'(X, I).

Remark 1.2.5. If Liex = 1, then pairing with a classical form is easily seen to
give zero (see the second part of Lemma 4.2.1). For non-classical weight one
forms, we expect that the pairing can be non-zero, e.g. for a non-classical weight
one specialization of a Hida family.

Remark 1.2.6. If we fix an eigensystem corresponding to a finite slope form,
then, comparing with [5], we find that our maps® witness in most cases the full
locally analytic Jacquet module of the corresponding representation of GL,(Q)).

1.2.7. A simple proof. The main point in Theorem A is the injectivity on the
generating highest weight vectors, and it admits a remarkably simple proof: we
take the long-exact sequence in continuous group cohomology for the Ny-action
on the short exact sequence (1.2.3.1), from which we extract a map

H'(X, )N — H'(No, H*' (X0}, I)). (1.2.7.1)

To verify a class is non-trivial, we can apply (1.2.7.1) then restrict to a neighbor-
hood of either a cusp or an ordinary point, where the action of Ny is explicit. By
the construction of (1.2.4.2), we have a function representing the cohomology
class of the image of a highest weight vector in H'(X, 7) and a precise formula
for the action of Ny on it; thus we can compute exactly a representing cocycle
for the restriction of its image under (1.2.7.1) to verify the class is nonzero.

3In the ordinary split case, one must invoke the existence of an overconvergent pre-image under
¢! for the evil twin and then also apply (1.2.4.2) in weight 2 — k, just as in [5, Remark 7.6.3]
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Remark 1.2.8. The majority of this material was worked out several years ago,
but the author was unable to prove this injectivity at the time. The idea to use
(1.2.7.1) was inspired by Ana Caraiani’s talk in the Recent Advances in Modern
p-adic Geometry (RAMpAGe) seminar on August 6, 2020 on her joint work with
Elena Mantovan and James Newton. They use the restriction map on O*/p"-
cohomology from the diamond X /N, to the Igusa variety X{"O] /Ny to compare the
ordinary part of completed cohomology with ordinary p-adic modular forms a la
Hida. Our map in continuous group cohomology is a pedestrian reinterpretation
of this restriction map that is well-adapted to our setup.

1.2.9. A Galois corollary. We say a weight « is defined over @p if Liex € (QTP
(equivalently, « is valued in @). Any such « is valued in a finite extension of Q,,,
thus it makes sense to discuss overconvergent modular forms of weight « defined
over @ (any one of which is defined over some finite extension of Q,,).

In particular, if we fix an overconvergent modular form f defined over @,
then all of the spaces and maps involved in pairing with f via (1.2.4.2) are defined
already over a finite extension of Q,, and we deduce that the image lies in the
Hodge-Tate weight zero part of H'. Using this observation we establish the
following result, which was conjectured by Gouvea [9, Conjecture 4] for weights
k € Z without the hypothesis on the residual representation, and was previously
known for finite slope and classical forms.

Corollary B. If f is an overconvergent eigenform defined over (QTI, of weight
k with Liex # 1, and the attached Galois representation p is such that p is
absolutely irreducible, then py has Hodge-Tate-Sen weights (0, Liex — 1).

Remark 1.2.10. This result without the restriction Liex # 1 and under the
weaker hypothesis that p be irreducible is shown in [14, Theorem 1.0.7], along
with a converse (under some minor hypotheses).

1.2.11. The Hodge-Tate weight zero part of locally algebraic vectors. In the
following, K, € GLy(Z)) is a compact open subgroup, and V is the Q,-local
system on the (open) modular curve Yk, attached to the Tate module of the
universal elliptic curve. By a computation of Faltings [8],

* vip lst *
Hj, (Y, Sym'V))®@C, = S;," (1 - k) @ (M,,")

where M/il+2 is the space of classical modular forms, the superscript K, denotes
invariants, and the parentheses denote Tate twists. Using the identification

detV = Q,(1) and applying Emerton’s [5, Theorem 7.4.2] computation of locally
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algebraic vectors in H!, we conclude that the Hodge-Tate weight zero part of
(A}*c~e @ C), is identified with

Psi.e(sym'vy e detV)] ® [@(M,iz)v ®Sym'V|.  (1.2.111)

k>0 k>0
If V = T(P',0(1)), then Serre duality identifies
(Sym*V)* @ detV = H' (P!, O(=k) ® Qpi) ® detV = H' (P!, O(—k — 2)),

where here we have used the equivariant identification O(-2) = Qp Q detV.
Thus, we may rewrite the first summand in (1.2.11.1) as

P si' e H' @', 0(-k)).

k2
This is exactly the part recovered by our cup product map as in Theorem A. On
the other hand, the second half can be rewritten as

P colimg, H' (Xk,, w™ & 1) @ H(P', O(K)). (1.2.11.2)
k=0
This can realized similarly as a cup product at infinite level where the roles of
H' and H° are reversed between the infinite level modular curve and P!,

Remark 1.2.12. One can also interpolate the cup products giving (1.2.11.2) by
pairing the local cohomology of w* ® 7 on the ordinary locus of finite level
modular curves with overconvergent sections on P!. Using a method similar to
the proof of Theorem A we can prove a non-degeneracy for these pairings, but
unfortunately only in integral weight*.

Moreover, in integral weight any element in the kernel of the surjection from
local cohomology to global cohomology is represented by a modular form on
the complement, and after applying the non-trivial Weyl element we obtain an
overconvergent modular form inducing the same map via the pairing considered
in Theorem A — thus, outside of classical eigensystems, we see nothing new in
classical weight, so we have not included the details.

We note that these local cohomology groups on the modular curve side are
essentially those studied by Boxer-Pilloni [3]. Moreover, they are Serre-dual
to overconvergent modular forms, and we expect that this pairing or a variant
may fill in the missing geometric description of the space M,,; for non-integral
weights appearing in the Shimura isomorphism described in [14, Theorem 5.4.2]
(cf. also the paragraph following [14, Theorem 1.0.1]), completing the analogy
with the classical Eichler-Shimura theory described there.

4Our method here hinges on having a section representing the local cohomology class that is
defined on (some part of) the opposite ordinary locus — in particular, to obtain such a representative,
the sheaf itself must extend across the supersingular locus
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1.2.13. Variant in classical weight. For classical weights, it is perhaps more
natural to replace O with all of Pl(@p) so that we obtain GL,(Q,)-equivariant
cup products

H* (Xpig,), 0" ® 1) @ Hpy g, \(P',O(=k)) — H ¢ .

l(@p)

These are related to our previous considerations in the following way: the
obvious restriction map realizes H'(Xpiq,), @* ® I)*™ as the smooth induction

of § 1 Moreover, there is a natural inclusion
Hy)(B',0(=k)) = Hy o (P, O(=k),

and restricting to H {10}(IP>1, O(=k)) factors through the map to S 1 on the left.

One can furthermore define dual pairings as in Remark 1.2.12 in this set-
ting, and the spaces of overconvergent sections on P! appearing in these dual
pairings are related by an analytic local duality to the local cohomology groups

H[%DI(Q )(IF’I, O(=k)), essentially as in work of Morita [13, Section 5].

1.3. Organization. In §2 we setup basic notation, introduce the overconver-
gent sheaves O(x) on P!, and study their local cohomology. In §3 we recall some
facts about overconvergent modular forms and establish the fundamental exact
sequence (1.2.3.1). In §4 we construct the cup product pairings and prove most
of Theorem A. Finally, in §5 we discuss the comparison between completed
cohomology and the cohomology of I and verify that certain operations in rep-
resentation theory commute with passage to the Hodge-Tate weight zero part,
allowing us to complete the proof of Theorem A and prove Corollary B.

1.4. Acknowledgements. We thank Ana Caraiani, Matt Emerton, and Kiran
Kedlaya for helpful conversations and correspondence. We thank Lue Pan for
sharing his preprint [14] and correspondence about the relation with the present
work. We thank an anonymous referee for their careful reading and helpful
suggestions.

2. Constructions on P!
2.1. Conventions.

2.1.1. Groups and representations. We write GL, for the algebraic group of
invertible 2 X 2 matrices and B C GL, for the subgroup of invertible upper-
triangular matrices. Let

No = [(1) Zi”} c B(Q,).
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We write gl (resp. b) for the Lie algebra of GL, (resp. B) over Q,, and

10 1 100
=0 o "T[1 o
for the raising and lowering operators, respectively, in gl,. A (gl,, B(Q,))-module

is a barreled locally-convex Hausdorff Q,-vector space® V equipped with an
action of gl, and a locally analytic representation of B(Q,) such that

1. the two induced actions of b on V agree, and
2. forany X € gly, b € B(Q,), and v € V, b - X(v) = (bXb™')(b - v).

We refer the reader to [16] for the notion of a locally analytic representation;
however, the representations we consider are so explicit that no general theory is
really necessary to make sense of the computations.

2.1.2. Geometry. In the following, E is a complete extension of QQ, and P!
denotes the projective line over E, viewed as an adic space over Spa(E, Og). We
take the dual action on P!, so that GL; acts via the standard representation on
O(1) in the basis x, y:

fory:[ccZ Z}, v-x=ax+cyandy-y=bx+dy.

Writing z = x/y for the standard local coordinate at 0 = [0 : 1] € P!, we have

az+c
-z = . 2.1.2.1
YT bt d ( )
We will denote subspaces of P! defined using |z| with subscripts, e.g. ]Pllzl <1/p for

the affinoid ball of radius 1/p around 0. Note that when we write |z] < 1/p”" what
we really mean is |z] < |p”|; that is, 1/p" should be interpreted as lying in IQ;I.

2.2. Overconvergent line bundles.

3 For our purposes, we will only need Banach spaces, Fréchet spaces, and colimits thereof. We
will often be working with representations on vector spaces over a complete extension £/Q,, but,
e.g., arepresentation on an E-Banach space is in particular a representation on a Q,-Banach space!
In particular, even though E will often be C,, we will never perform any operations that require
caution over the fact that C,, is not spherically complete.
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2.2.1. Reduction of structure group. The geometric torsor of bases for O(—1)
on P! is the projection map

A2\{(0,0)} — P". (2.2.1.1)

We will consider the following reductions of structure group: for € = 1/p”",
n > 1, we write Z,, . for the affinoid e-neighborhood of Z,, in A'. In other words,
Z, ¢ is the disjoint union of affinoid disks |z — k| < |p"| of radius 1/p" as k varies
over a set of representatives for the residue classes Z,/p".

‘We write Z;’E for the units in Z,, ¢, or, equivalently, the affinoid e-neighborhood
of Z;. The restriction of (2.2.1.1) to Z ¢ X Z;,E c A%\{0} is a geometric Zf,’e-
torsor

T, — P!

|zl<e.

Ly Ly
Py Z;
corresponding sheaf of sections 7. C O(-1) is a sheaf-theoretic reduction of
structure group for O(—1) from G,, to Z;,E. We fix a canonical trivializing section

1.
over P__:

It is equivariant for the action of I'g(p") = ] C GLy(Zp). The

e:lz:11 (z,1).
These trivializations are compatible along the natural inclusions for €’ < ¢,

TEI — Tgl]pl .
z<€’

2.2.2. Overconvergent sheaves. Fix « a continuous character of Z7 valued in

E. Any such character extends uniquely to Zj  for € sufficiently small. For such

an €, we obtain a line bundle on P!

1 Ll<e by pushing out via the reciprocal character

K
O(k) :==T- XZ,XWK'] o

(independent of the choice of € up to canonical isomorphism). The canonical

trivialization e of 7 gives a canonical trivialization e, = (e, 1) of O(x). When «

is the character z — z¥, we have a canonical identification O(x) = O(k)hp)ll. o and

the section e, of O(x) is identified with y*. In general,

[‘CZ Z] -e, = k(bz + d)e,. 2.2.2.1)

We note that O(x) has an obvious action of I'y(p") for n sufficiently large. In
Q Q

0 Z;
of O(k) at 0: if we fix € sufficiently small to define w* via the torsor T, then one
can check that for any vy in this group, there is an €, < € such that the action of y
on A2\{0} restricts to a map Tel;<e, = Te. We extend this to an action of B(Q,)
by letting diag(p, p) act trivially.

fact, the B(Z,)-action extends naturally to an action of } on the germ
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Remark 2.2.3. This essentially arbitrary choice for the action of diag(p, p) will
not matter in any of our final results, though it is desirable to make a choice that
assigns inverse values for the action of diag(p, p) on O(k) and O(k~!) so that the
canonical identification O(x)* = O(k™") is B(Qp)-equivariant. Indeed, the choice
is cancelled out in all of our main results because the representations appearing
(cf. e.g., (1.2.4.1)), are always a tensor of one space of sections constructed from
O(x) and another from O(k)* = O(x~!) — thus, no matter what choice we make
here, diag(p, p) will act trivially on the resulting representation.

For k = 7, it would be more natural in some ways to let diag(p, p) act by
p* because then this would agree via restriction with the standard GL1(Q))-
equivariant structure on O(k). However, there is no natural way to interpolate
this choice for other «, and in the end it is perhaps more useful to have uniform
formulas by always taking the action to be trivial.

It will be useful to have an explicit formula for this action: in a sufficiently
small neighborhood of 0, if we write

O(k) = Op:1 - e,
then from (2.1.2.1), (2.2.2.1), and the fact that diag(p, p) acts trivially, we find
a b _{la b|{ldl 0O
[C d} (f(R)e) = ([C d} [O |d|D - (f(2)ex) (2.2.3.1)
az+c
- f( — d)K(b|d|z+dId|)eK (2.232)

whenever the final equation “makes sense,” that is, when f and the locally
analytic function « are defined on their inputs — in particular, by inspection of
the formula we find that for any fixed matrix in B(Q,) and f defined on a fixed
ball around 0, the result is defined on some fixed (potentially smaller) ball around
0, just as we knew already from the above conceptual interpretation of the action!

2.3. Local cohomology representations.

2.3.1. Recollections on local cohomology. For Z < P' a closed set and F
a sheaf defined on an open neighborhood U > Z, we consider the local
cohomology® group HL(U, ) (for the analytic topology on P'). It fits into a
functorial exact sequence

0 — H'(U,7)/H"(U\Z, ¥) —» HL(U,F) — H'(U\Z,F). (2.3.1.1)

6 or relative cohomology, or cohomology with supports, depending on your tastes!
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For Z c U’ c U there is a natural restriction map
Hy(U,F) — Hy(U', %)

and by the excision property it is an isomorphism (this will be obvious by direct
computation in all cases we consider). Moreover, (2.3.1.1) is compatible with the
restriction maps on all terms, and restriction satisfies the natural compatibilities
with respectto Z ¢ U” c U’ c U. In particular, we can unambigulously write

HY(P', F) = HY(U,F)

for any choice of U as above, and this abuse of notation makes sense even though
¥ may not be defined on all of P! (in particular, we will apply this to the sheaves
O(k) of the previous section).

We note further that for Z’ C Z, there is a corestriction map

cores : H},(IP’I,T) — H}(]P’l,?')

and these corestrictions satisfy the obvious compatibility for Z” c Z' c Z.
Moreover, for any choice of U the exact sequence (2.3.1.1) is functorial for
Z' ¢ Z c U via corestriction in the middle and the natural restriction maps
on the other terms that appear.

2.3.2. Representations on local cohomology. We now consider the local co-
homology groups of the sheaves O(k) along the closed subsets S = {0} and
S = |z| < € for € = 1/p”" sufficiently small. Here |z| < € must be read in the
language of adic spaces — it is then the complement of the open affinoid |z| > €,
thus closed. Its interior is the adification of the rigid analytic ball defined by
the same inequality, and the boundary is a single rank two point where |z] is
infinitesimally smaller than |p"|.

We state the main properties of these groups as a lemma; in the proof we will
use (2.3.1.1) to make the groups themselves completely explicit.

Lemma 2.3.3.

1. For e = 1/p" sufficiently small, H\lz\<5

malizeable E-Banach space with a locally analytic action of T'o(p

(P!, O(x)) is canonically an orthonor-
n+1
).

2. Fore =1/p" <€ =1/p", the corestriction map

H}\..(P',0)) - H\_ (P',0())

lzl<e

is injective, completely continuous (i.e. a compact operator) and To(p™*!)-

equivariant. In particular, it is a map of (gly, B(Z,,))-modules.
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3. The corestriction maps

Hy,(P',0(k) - H,_ (P',0x))

lzl<e

are injective and induce an isomorphism

Hy,(P',0(x)) = lim H}, _(P', O(x)). (2.3.3.1)
In particular, H{lo}(IP’l, O(x)) is a nuclear Fréchet space with the structure
of a (alp, B(Z,))-module. Moreover, the action of B(Q,) on the germ of
O(k) at 0 extends this to the structure of a (gl,, B(Q,)) module.

Remark 2.3.4. The dual of the nuclear Fréchet space H, {IOJ(PI,O(K)) is canoni-
cally identified with the space of compact type H*"({0}, O(x™")) via the residue

pairing (cup to Hy, (P!, 0) then pass to H'(P',0) = E).
Proof. For ¢ sufficiently small and € < €, (2.3.1.1) with U = P! _gives

|zI<ey

H),_(P',0) = H'PL . OK)/H P, . OK)). (2.3.4.1)

e<lzl<e |zl<ey

Indeed, O(x) is a line bundle, so its H' vanishes on the affinoid P;slzl o
Using that O(k) = Op: - e,, we see that

0/l _ k . _ : k _
H (PSSIZISEO9O(K)) = {(}(EZZ iz )ek | k—»lgor,rlleo |ak|€(]; =0and k—>11<>£1:1k<0 |ak|€ = 0} .

This is an orthonormalizeable Banach space with norm given by the sup over
the terms appearing in the two limits. The subspace HO(IP’"Z‘ <e’ O(x)) is closed;
indeed, it is given by those power series with ¢; = 0 for k < 0. The quotient
HllZI <e(IP’I,O(K)) is thus also a Banach space, and the induced norm can be
computed on any representative

(> a2])-

keZ

as sup; lax|€*. In particular, this norm is independent of the choice of &), and
we also immediately obtain that the corestriction maps for €’ < € are compact.

The T'y(p™*!) action for € = 1/p" exists because I'o(p"*!) preserves the ball
|lz| < €, and it is an immediate computation from (2.2.3.2) that it is locally analytic
(using the local analyticity of «). The equivariance for corestriction is immediate,
so we have now established points /. and 2. in the statement of the lemma.

To prove 3., we again apply (2.3.1.1) with U = Pllzl <, tO sCE

Hy,(P',0() = H'(By_,.,. . O)/H (P, . OK)).

0<lzl<e lzl<e€o
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1
0<lzl<en”

The limit formula (2.3.3.1) is then immediate by comparing with (2.3.4.1)
and using the trivial identity

Indeed, O(x) is a line bundle, so its H' vanishes on the quasi-Stein [P

H(Py e OW)) = im HO(Peyy . OK).
It remains only to check that the B(Q,) action induced by the action on the germ
satisfies the correct compatibility with the gl,-action under the adjoint action,
and this can be verified, e.g., with the explicit formula (2.2.3.2). O

2.3.5. The Verma module. The computations in the proof of Lemma 2.3.3 show
that H)(P', O(x)) can be unambiguously identified with the the set of tails

{[Z akzk] e |Vt >0, klim |ak|zk = ()} )

k<0

In this presentation, the Fréchet topology is given by the norms for ¢ > 0

[ (Z akzk] el = sup lagl*.

k<0

The actions of gl, and B(Q),) are then obtained by applying (2.2.3.2) to compute
naively and then truncating the resulting Laurent series back to its tail. In
particular, short computations show

1. n_ acts as di,
74
2. 77 'e, is a highest weight vector of weight (-1, Liex + 1), and
3. the action of B(Q),) preserves the set of tails truncated at any finite power.

It follows that the subspace V. of meromorphic tails is a (gl,, B(Q,))-module
(topologized with the colimit topology over the finite truncations) whose under-
lying gl,-representation is the Verma module of highest weight (-1, Liex + 1). In
particular, when Liex = k € Z._,, it admits an algebraic quotient and the kernel
V! has highest weight vector z¥e, of weight (k,0). For x = zX, k < =2, V, is the
algebraic local cohomology group, the quotient is H'(P', O(k)), and the kernel

V! is Hglg(]P“ \{0}, O(k)) with Z¥e, = x*.
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3. Constructions on modular curves

Recall from §1.1 that X is the perfectoid infinite level compactified modular
curve of prime-to-p level K? of [18]. It admits a Hodge-Tate period map

aur: X — P!
such that over the open perfectoid modular curve Y, the pullback of
0-0(-1)®det > T(O(1)®0 —0(1) -0

is GL,(Qp)-equivariantly identified with the Hodge-Tate sequence for the Tate
module of the universal elliptic curve,

0-w!ll)»0* > w-0. (3.0.0.1)

Here we use the canonical trivialization of the Tate module at infinite level, so
that the GL,(Q,)-action on the middle term is via the standard representation.

Remark 3.0.1. The notation O(k) on P' refers to the standard line bundles,
whereas w~!(i) on X denotes a Tate twist of the sheaf w~! on X. This should
not cause any confusion in what follows, as we will never use Tate twists on
P!. Instead, Tate twists can be replaced on P! by twisting the GL,(Q))-action
via the determinant because, on X, Q,(1) has a trivialization transforming via
the determinant under GL,(Q,) — indeed, Q,(1) is the determinant of the Tate
module of the universal elliptic curve.

3.1. Overconvergent modular forms. As in the introduction, we define
w* = 10K) and S| = H*"(X0), w* ® )™,

The action of B(Q,) on the germ of O(k) at 0 equips S l with a natural (gl,, B(Q,))-
module structure, with gl, acting trivially.

We briefly recall (cf. [4, 10, 2]) why the B(Z))-invariants in § I agree with
the classical definition of overconvergent modular forms of weight «: to show
the line bundles w* descend to finite level, one first observes that the torsor
of bases T¢|x,.. has a Kj-invariant section for K, c T'o(p") sufficiently small,
which follows from the density of Ox(X|;<¢)™™ in O(X|;<¢) established in [18,
Theorem 3.1.2-(iii)]. This allows one to descend 7~ to an étale’ torsor away
from a neighborhood of the boundary in the image of X, <. in the modular curve
of finite level ['o(p")K”. One argues by hand to extend to the cusps, as over
the canonical component of the ordinary locus e, agrees with the standard Katz

7it is only étale because the K, » with an invariant section may not equal ['o(p")
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trivialization. The resulting torsor at finite level can now be pushed out to give
a descent of «*, and the overconvergent sections along the canonical ordinary
locus will be exactly the B(Z,)-invariants in S Z; the choice of the specific n in
[o(p") is irrelevant here as passing to a sufficiently small € allows one to move
between n (classically via overconvergence of the canonical subgroup, or from
this perspective just using that the orbit of |z| < € under any I'o(p") is a disjoint
union of translates of the ball).

At this point, one can, e.g., compare with the construction of Pilloni [15],
which carries out the same idea at finite level to reduce the structure group mod
p" for the Hodge-Tate integral structure.

3.2. The fundamental Mayer-Vietoris sequence. Recall that 7 denotes the
ideal sheaf of the boundary (cusps) X of X. To obtain the quasi-Stein version of
the Mayer-Vietoris exact sequence (1.2.3.1) we first establish a vanishing lemma:

Lemma 3.2.1. Foranyi>1andanydé = 1/p" > 0,
H'(Xjy20, 1) = 0 and H'(Xs31550, 1) = 0

Proof. Arguing as in [18, Theorem 3.1.2-(iii)], we find that X5, is affinoid
perfectoid for any e = 1/pY > 0. Indeed: there is some neighborhood U
of oo such that X, is affinoid perfectoid, and we can spread out to obtain an
affinoid perfectoid containing X|». using the action of diag(p, 1)%; then X|;s is
affinoid perfectoid as a rational subdomain. Similarly, we find Xs»>¢ is affinoid
perfectoid for 6 > € as it is again a rational subdomain.

With this established, the arguments for the two statements are essentially the
same, so we just show that H'(X|;»0,7) = 0. Write U, = Xg1/,», an affinoid
perfectoid. Because X is strongly Zariski closed®, we have an exact sequence

057 >50x—>0s5xx—0

which is moreover exact after evaluation on an affinoid perfectoid. Because Oy
and Ogx both have vanishing higher cohomology on affinoid perfectoids (the
intersection of an affinoid perfectoid in X with 0X is affinoid perfectoid in the
perfectoid space 9X), the long exact sequence of cohomology gives

H(U,,I)=0fori> 1.

We now carry out the standard argument to bootstrap up to vanishing on the
quasi-Stein space Xi50 = Uy, Ui (cf. e.g. [12, Theorem 2.6.5]°). Because

8 This is shown in [18], but can also be verified by explicit computation for the modular curve, or
as a general consequence of [1, Remark 7.5], which shows Zariski closed always implies strongly
Zariski closed.

9 Unfortunately, we cannot just invoke this result, as the ideal sheaf is not pseudocoherent.
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the higher cohomology vanishes on U,, we can compute H'(X|;-0, 1) using the
Cech complex for the cover {U;};>;. This Cech complex is the limit of the
Cech complexes for {U;} <i<,. Moreover, the transition maps from n + 1 to n
are surjective in each degree, so the derived limit of this sequence of complexes
is the limit (cf. [19, Tag 091D]). The Cech complex for {U;},<;<, has vanishing
higher cohomology (because it computes the cohomology of 7 on U,), thus,
applying [19, Tag 0CQE], we conclude that H'(X|;»0,Z) = 0 for i > 2 and

H' (X450, 1) = R" lim H(U,,, T).

It remains to show this R'lim is zero. We write I, = H°(U,,I), I] =
H(U,,I"), A, = H(U,,0), and A, = H°(U,,0"%). Then A, is a C,-Banach
space with unit ball A}, and I, is a closed subspace, thus a Banach space with
unit ball I (which is equal to I, N A}). Because U, is a Weierstrass subdomain
of U,.1, the image of A, in A,, is dense. It follows from [18, Lemma 2.2.9-(ii)]
that the map 7,,; — I, also has dense image. We write || - ||,, for the Banach norm
on I, with unit ball I}. We note that for f € L1 C Ly, ||flln < I flln+1-

As usual, the first derived limit is computed as the cokernel of the map

v | [l= [ |50 Gon e (= faim
nx1 nx1
so we must show that i is surjective. Thus, suppose (y,), € [,>1 I»- By density
of I,,.1 in I,,, we can inductively choose x| = 0, then x, such that |[y; —x;||; < 1/p,
then x3 such that ||y, + x> — x3, < 1/p?, etc., so that

W(Cen) = Guln € [ | Bum (L)

n>1
where By, (I,) denotes the ball ||f||, < 1/p" in I,. Thus it suffices to show this

product is in the image of . But, given
o e [ | Bupn)
n>1

one can construct an explicit inverse (x,) by setting

Xn =YntYn+1 t Yns2 + ...

which clearly converges since for any m > n, ||yull, < [Villw < 1/p™.
O

Remark 3.2.2. The proof of Lemma 3.2.1 applies to the ideal sheaf of any
Zariski closed subset of a perfectoid space which can be written as an increasing
union of affinoid perfectoids U, with U, a Weierstrass localization of U, .

Applying Lemma 3.2.1, we find that for any € = 1/p" > 0, we can compute
H'(X, T) using the Cech sequence for the cover by X, <. and X;~o. This is simply
a Mayer-Vietoris sequence, and, taking the colimit over € — 0 gives

0 @Iﬁégji’;?) — colimeoHXoapee, I) = H'(X, 1) > 0. (3.2.2.1)



Overconvergent modular forms are highest weight vectors in completed cohomology 19

4. Pairings
4.1. Global cup products. For any «, there is an obvious pairing
O Wehew —I.

When « = Z¥, then combining this with the identification w* = Jr;IIT(O(k))
and pullback of sections, we obtain global GL>(Q,) and prime-to-p Hecke-
equivariant cup product maps

H'X,o* @ Iy™ @ H'(P',0(-k)) - H'(X, 1) (4.1.0.1)

and
H'(X,w* ® I ® H'(P',0(-k)) - H'(X, I). (4.1.0.2)

The GL,(Q,)-representations on the domains of (4.1.0.1) and (4.1.0.2) are
locally algebraic by construction, thus both maps factor through the locally
algebraic vectors for the GL,(Q,)-action on H (X, I).

4.2, Local cup product and compatibility. We define a pairing
SteHp,P',ow™") - H' (X, I) (4.2.0.1)
by sending f ® ¢ to [{f, &), where g is any representative of the class ¢ in

colimeoH° (P} O(k™")) — Hpp,(P', 0 ™)), (4.2.0.2)

0<lzl<e’
and the square brackets indicate application of the map
colimeoH(Xo<p<e» 1) — H' (X, T)

appearing in (3.2.2.1).
This is well-defined because for

h e H*'({0},0(c™")) = colimeoH'(P,, O ")),

the kernel of (4.2.0.2), the section (f, ;1) extends to an element of H (X0, 1)
and thus maps to zero in H'(X, I) (cf. (3.2.2.1)).

Recall that we defined in 2.3.5 a Verma module V,-1 C H{lo}(IPl, O(k™")), and,
when x = k > 2, a submodule V', C V_;.

Lemma 4.2.1.
1. For k € Zs), the restriction of (4.2.0.1) to Si' ® V', is zero.

2. For k =1, the restriction of (4.2.0.1) to S,il ® V_y is zero.
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Proof. In both cases the highest weight vector is z*y™ = x™*. Thus, for s € ¢,

(s, 77578y = (5,27F)

extends to a section on HO(X|Z|>0,I ) (because s is a global section and x* has a
pole only at 0), and thus [(s, x¥)] vanishes. ]

In particular, the lemma implies that for k£ > 2 we obtain an induced pairing
S8 e H'(P',0(-k)) - H'(X, ).

It is immediate from the explicit description of cup products in terms of Cech
classes that this agrees with the global pairing (4.1.0.1).

4.3. Local analyticity, continuity, and equivariance. We now show

Lemma 4.3.1. The map (4.2.0.1) is continuous and factors through a map of
(aly, B(Qp))-modules

SZ ® H{IO}(P],O(K_I)) N HI(X, I)loc—an‘
Here the domain S| ® H{lo,(Pl, O(k™")) is topologized as the colimit of
W ® Hy,(P',0™")) for W ¢ S{,dim W < oo,

and the codomain H'(X, I') is considered as a Banach space with unit ball the
image of H'(X, I*). The map (4.2.0.1) is B(Qp)-equivariant by construction, so
Lemma 4.3.1 is reduced to showing that for any fixed f € S Z the map induced by
pairing with f is continuous as a map H‘IO’(]P)I,O(K_I)) — H'(X, T) and factors
through a gl,-equivariant map

H{IO}GP)I7 O(K—l)) N HI(X, J-)loc—an.

We will show this by extending our pairing for any fixed radius of overcon-
vergence € to a pairing with the local cohomology of |z| < € in P'; these same
groups were also used to define the gl,-action on H{lo}(IF’l,O(K‘l)) in 2.3. The
key point is that the gl,-action on these larger groups is induced by a locally
analytic I'g(p")-action and the extended pairings will be I'g(p")-equivariant by
construction; thus we will obtain the desired statement as soon as we also have
continuity. We now carry out this strategy:

If we fix e = 1/p" > 0, then we can also compute H'(X,7) using the
Mayer- Vietoris sequence for the covering by X<, and X|;».. The Mayer-Vietoris
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sequence for the covering by X}, <. and X0 maps to it naturally via restriction,
and thus we obtain a commutative diagram

H' Xy, 1)

T

HO(X0<‘Z|SE’ I) H] (X7 [)

COlimEr>0HO(X()<|Z|S€r . I)

Imitating the steps of the previous section for € sufficiently small and using the
top right arrow in place of (4.2.0.2), we obtain a pairing

H(Xyee, * @ D™ @ HYy (P, O(™")) — H' (X, I). (4.3.1.1)

By Lemma 2.3.3, Hlil - (P',0(x™")) has a locally analytic action of Io(p"*") that
induces the gl,-action on H {'0,(IP>' ,O(x™")). By construction, (4.3.1.1) is To(p™*!)-
equivariant.

Also by construction, the diagram

H'(Xjee, 0 ® D™ © HY,_ (P, 0G™)

(4.3.1.1)
Idxcores

HO(Xijee 0 ® I ® Hly (PO ") —= H'(X. 1)

resxId
\L 4.2.0.1)

Si®Hj,(P',0K™)
comparing the two pairings commutes. Thus, at the price of shrinking our
space of overconvergent modular forms by enforcing a radius of convergence,
we enlarge the local cohomology group that we are allowed to pair with.

Now, any f € S Z extends to a smooth section over some X<, € = 1/p", so
the pairing with f extends to H',__(P',O(k™!)). We may choose a compact open

lzl<e

subgroup K, C [o(p™") fixing f, and the resulting map
H._(P',0K™") - H'(X,T) (4.3.1.2)

is then K ,-equivariant. In particular, since the action of K, on the left is locally
analytic, (4.3.1.2) will factor as a gl,-equivariant map through H'(X, 7)°¢=2" ag
soon as we know that it is a bounded (equivalently, continuous) map of Banach
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spaces — the point here is that the convergent power series describing the orbit
maps on the left will then remain convergent after applying the map!

This boundedness is straightforward after unraveling the definitions: we can
write f =a-e, fora € HO(X|Z|§E,I). Because X<, is affinoid, there exists N > 0
such that

b= pa € H'Xygee, ) = H' Xigee, 1) N H'(Xge, O7).
On the other hand, it is immediate from the description of the Banach norm in
2.3 that the elements in the unit ball of the Banach space H‘ | X O(k™)) are all
represented by elements ¢ - e, for ¢ € HO(P|L|=E’ O™). Pairing gives

1
[(fic eV =[a-enc e = ﬁ[bc]'

Now, bc € HO(X|Z|=5, I*), thus [bc] is in the image of Hl(X, I7), the unit ball in
H'(X, T). We conclude that the map (4.3.1.2) is bounded.

This completes the proof of Lemma 4.3.1. In particular, we find the restric-
tion of (4.2.0.1) to SI ® V-1 is a map of (gl,, B(Q,))-modules.

4.4. Proof of Theorem A. We now prove Theorem A, assuming the identifi-
cation H'(X,7) = H! ¢, This identification will be explained in Lemma 5.2.2
(there is a bit to say here because only the torsion comparison is given in [18]).

We begin by verlfymg that the map is injective on the subspace of generating
highest weight vectors, S ®z 'e;!. It suffices to verify it on the Np-invariants,

SHM ez e !,

since anything in S| can be moved into (S| )N

Lemma 4.4.1. For Liex # 1, the restriction of (4.2.0.1) to (SZ)NO ® 7 e, is
injective .

using the action of diag(p, 1)%.

Proof. Taking continuous Ny-group cohomology in (3.2.2.1), we obtain as part
of the boundary a map

& : H'(X, )™ — H'(No, H*(X(0), I)).

We describe it explicitly: For any class [g] € H'(X,7)™ and y € Ny, we can
express y - g — g uniquely as a, — b, fora, € H%"(X,0), 7) and b, € H(X 350, 7).
Then 6([g]) is the class represented by the cocycle y = a,.

For f € SI’N“, we will show that 8([(f,z 'e,1)]) # 0. We can compute a
representing cocycle explicitly by the above recipe: Using (2.2.3.2), we find

[é ﬂ (fz ey = (f (0 + k(1 + 1) ) 4.1

= (7" +u(l — Liek) + .. ){f, ec1) (4.4.1.2)
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where ... is divisible by z. Subtracting off (f,z™!

(u(1 — Liek) + .. )(f, e,1)-

This is an element of H*'(X,q;, I), so

e1), we are left with

a = (u(1 - Liex) + .. ){f, 1) and b =0.

1 u
0 1

1 u
0 1

Thus, 6([(f,z e, 1)]) € H' (N, HO’T(X{O}, 1)) is represented by the cocycle

[(1) blt]  (u(1 — Liek) + ... ){f, ec1).

To verify this cocycle represents a non-zero class, we are free to restrict to
any locus inside the canonical ordinary locus X;,. We will thus check that it is
non-zero after restriction to a rational open in a standard perfectoid torus inside
the ordinary locus, where it will follow from a classical computation in p-adic
Hodge theory. Because z = 0 here, we note that the cocycle simplifies to

[(1) ﬂ > u(1 — Liek)(f, e,1). (4.4.1.3)

Fix an ordinary elliptic curve E /E, then choose a trivialization of the étale
part of the Tate module of E in order to obtain a Serre-Tate coordinate g on the
formal deformation space. The generic fiber of the formal deformation space is
the open rigid analytic disk D : |g — 1| < 1, and, after choosing a trivialization
of Z,(1), we obtain canonical Ny level structure on the universal deformation
E.niv/D — that is, we have

0—-2Z,— T,Ewiv—>7Z,—0

where the first Z, spans the canonical subgroup. By a standard argument (cf.,
e.g., [11, 7.2] for the same construction on the Igusa formal scheme), splitting
this extension can be accomplished by passing to the open perfectoid disk

~ . q—q” q—q”
D~limD««——D«+——D....

Indeed, already at the level of formal schemes the map ¢ +— ¢” sends an
extension of p-divisible groups

l = pp = G—Q,/Z, -1

to
L= ppe [ = ppe = Glup = Qp/Zp — 1,
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and this factors through an isomorphism with the degree p” cover of D parame-
terizing splittings of the p"-torsion extension

1
1 = uy = Glp"l =» =Zy/Z, = 1
pn

because
Glp"/, = (Glup)lp"]

projects isomorphically onto #Z »/Zp. This space of splittings is a torsor
for p, = Hom(#Zp /Zy, 1) and, under the identification of this cover with
g+ ¢”", the covering action is just by multiplication of the coordinate g.

We thus obtain a map D — X. Now, we can hit any component of X by
changing our trivialization of Z,(1), and because the overconvergent modular
form f comes from finite level, we can choose this trivialization so that the
pullback of f does not vanish on D (otherwise there would be a finite level
modular curve where f vanished on an open subset of each connected component
of the canonical ordinary locus, thus f would be zero). Moreover, one finds that
the action of Ny on X is identified with the natural action of Z,(1) on D — this is
the infinite level consequence of the interpretation of the covering action at finite
level in terms of splittings discussed above.

Now, by (2.2.2.1), the restriction to Xy of (f,e,-1) is Np-invariant (because
z = 0 here). We further restrict to the affinoid perfectoid Dy,_i <y, with ring of
functions A, and write g € A for the non-zero and Z,(1)-invariant restriction of
(f, e1). Our restricted cocycle is then

1 u .
[O 1} — u(l — Liex)g.

In particular, the class it represents in group cohomology is the image of
(1 — Liek)g under the composition

ABO 5 1 (Z,(1), A% D) - H\(Z,(1),A),

where the first isomorphism is given by evaluating at our choice of generator for
Z,(1). It is a standard result that the second arrow is also an isomorphism (cf.
[17, Lemmas 5.5 and 6.18]), thus, because Liex # 1 and g # 0, we conclude the
cohomology class is non-zero.

O

Remark 4.4.2. More canonically, the cocycle after restriction to D in the proof
above is identified with the differential form (f, erl>%. In fact, it should be
possible to make this identification over the generic fiber of the entire Igusa
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formal scheme (with %q replaced by the differential form identified with e, via
Kodaira-Spencer). One runs into a delicacy here because the generic fiber of the
Igusa formal scheme does not fit directly into the framework of [17]; however,
it should be possible to directly compute with the Faltings extension on the
perfectoid Igusa tower (as opposed to standard torus coordinates) to obtain this
identification.

This concludes the proof of Theorem A when Liex ¢ Zs,, as in this case
V.1 is irreducible. For x = 2 k > 2, we can only conclude that the kernel is
of the form W ® V’, for some subspace W c § z: Indeed, any gl,-submodule

McsS ,Tc ® V_; will be generated by its highest weight vectors, but if we write
U for the one-dimensional highest weight space generating V_; and U’ for the
one dimensional highest weight space generating V', then the highest weight
vectors in M are given by

MnES eU)yeMn (S eU),

and for M the kernel we have just shown the first summand is zero, thus the
second gives the subspace W.
We obtain an induced injection on

WeV,/V, =WeH (P',O0(-k)).

In §4.2 we saw that S ;1 c W, and that the induced map on § ;1 ® H' (P!, O(=k))
is identified with the global cup product. Thus, it remains only to show that W is
no larger than S¢'.

To show this, we observe that the cup product is already defined over Q,,, and
thus the image lands in the locally algebraic vectors in the Hodge-Tate weight
zero part of H!. On the other hand, Lemma 5.2.3 below implies that taking
locally algebraic vectors commutes with passage to the Hodge-Tate weight zero
part, thus the computation in 1.2.11 shows that the locally algebraic vectors of
type H'(P', O(—k)) in the Hodge-Tate weight zero part are abstractly isomorphic
to S,‘zl ® H'(P', O(-k)). Since the map on W ® H'(P', O(~k)) is an injection and
S¢! ¢ W, admissibility of ¢! implies that W must in fact be equal to S¢'.

Remark 4.4.3. Using a K,-equivariant Mayer-Vietoris sequence to compute
H'(X,Sym‘O3 ® I) = H'(X, 1) ® Sym"C;,
then taking K,-invariants, one naturally recovers the Hodge-Tate filtration

K,

0 — H'(X/K,, 0™ ® I)(k) = Homy, (Sym‘C})", ! ) = S, 1,

(H—-0

essentially by Falting’s [8] method (the key point is that if we pass to sheaves of
smooth vectors in (3.0.0.1) then the induced boundary map is naturally identified
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with the Kodaira-Spencer isomorphism). It follows from a result of Emerton (see
Theorem 5.2.1 below) that the natural map

H.(Yg gr, Sym‘Q2) — Homg, ((Sym*‘Q>)", H,)

is an isomorphism, and we recover Falting’s Hodge-Tate decomposition. Using
this interpretation, one can compute that our global cup product is identified with
(k — 1) times the canonical splitting of the Hodge-Tate filtration composed with
Emerton’s isomorphism. The dual cup product (1.2.11.2) is identified on the
nose with the inclusion in the Hodge-Tate filtration composed with Emerton’s
isomorphism.

5. The Hodge-Tate weight zero part of completed cohomology

In this section we recall more carefully the relation between completed co-
homology and H'(X, I'), and prove Corollary B. The main point is to verify that
passing to the Hodge-Tate weight zero subspace commutes with natural rep-
resentation theoretic operations (locally algebraic vectors, Hecke eigenspaces).
This is carried out in a few simple lemmas, and then Corollary B is a straightfor-
ward consequence of a weak form of local-global compatibility for completed
cohomology and the Galois equivariance of our cup-product constructions.

5.1. First lemmas.

Definition 5.1.1. If E c C, is a finite extension of Q, and V is a unitary E-
Banach representation of Gg, we write

HT{ (V) = (V&rC,)°.

where here we take the semilinear action on V@E(Cp. When E is apparent from
the context, we will drop the superscript.

Recall that any (continuous) finite dimensional representation of Gg on an E-
vector space can be equipped with the structure of a unitary representation (i.e.
fixes an Og-lattice). Any two lattices induce equivalent norms, thus we can work
with finite dimensional representations without fixing any extra information.

If V is finite dimensional, then the Hodge-Tate weight zero part of V in the
classical sense is HTOE (V)®rC, c V®g C,,. For our purposes we will work only
with the invariants HT; (V), however.

Lemma 5.1.2. Suppose V and W are unitary E-Banach representations of Gg
and S is a collection of bounded Gg-equivariant operators V.— W. We write
Vs for their simultaneous kernel, a closed subspace of V. Then

HT} (Vs) = HT; (V)s.
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Proof. After possibly replacing the norm on V with an equivalent norm, we may
choose an orthonormal basis for Vg, then extend it to an orthonormal basis for
V. Using this basis, it is clear that V5§Cp = (V@(Cp)s. Taking Gg-invariants
commutes with passage to the kernel of the operators in S, so we obtain
(VsBC,)% = ((V&C))%),

and we conclude. O

Lemma 5.1.3. IfV is an E-Banach space with the trivial Gg-action and W is an
E-banach space with a unitary Gg-action then

HT, (VeW) = VRHT§(W).
In particular, if one of V or W is finite dimensional
HT{(V® W) = V@ HT; (W).

Proof. After passing to an equivalent norm on V we may choose an orthonormal
E-basis {e,-};gl. Then
V@W = éie[ (e;®@ W)

is an orthonormal decomposition. Thus, any element of (V®W)®C » has a unique
expression as (e; ® w;); for {w;};c; a collection of vectors in W@(Cp such that for
any € > 0 there is a finite set J C [ such that ||w;|| < € for all i € I\J. The
Gg-invariants are then precisely those vectors with

w; € (WRC,)“* = HT5(W) for all i € I
and this is exactly V@HTS: W). O

5.2. Compactly supported completed cohomology. Recall from [6] that the
(degree one) compactly supported completed cohomology of the modular curve
with Q,-coeflicients is defined as

A .= (li’rln colimg, H.(Yk, k», Z/ p")) [1/p),

where the Yk k» are finite level (open) modular curves. Completed cohomol-

ogy with C,-coefficients H Cl(c is obtained by replacing Z/p" with Oc,/p" in
.C,

the definition. Both are equipped with their obvious Banach topologies, and

I:Icl,c,, = ﬁcl@(:p. Before explaining the identification of Hcl,tc,, with the analytic

cohomology H "X, I ), we recall a result of Emerton that we will need later on:
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Theorem 5.2.1 (Emerton). For W an an algebraic representation of GL,/Q,
and K, C GL12(Q,) a compact open subgroup, there is a canonical identification

Homg, x,)(W, H}) = Homg, x| (W, H"'*™*) = H'(Yk, kr, Vi)

where V- denotes the natural Q, local system on 'Y k,k» constructed from the
dual representation W*. In particular, it is a finite dimensional Q,-vector space.

Proof. The identity of the first two terms is immediate because K),-algebraic
vectors are locally analytic. The second identity follows from taking K-
invariants in equation (4.3.7) on p.63 in [6] (note that FICI = I:IC1 in this case,
as explained at the top of p.58 of loc. cit.). O

Lemma 5.2.2. There is a natural G, -equivariant isomorphism H "X, I)=H Cl c
s—p
where the right-hand side is equipped with the semilinear action.

Proof. In [18, Theorem 4.2.1], it is shown that the map j,Z/p" — I*/p" (for j
the immersion of the open modular curve into the compactified modular curve)
induces an almost isomorphism

H'(X,I*/p") =, H(Z/p") ® Oc,/p". (5.2.2.1)

It remains to show this passes to the limit: We write X for the boundary.
Because 0X is strongly Zariski closed, we have for each n an (almost) exact
sequence

0—I%/p" - Ox/p" — O}y/p" — 0.

By the almost version of [17, Lemma 3.18], using a basis of affinoid perfectoids
we find that the second two terms have almost vanishing R’ lim for i > 1. Thus,
taking the long-exact sequence and using almost surjectivity of Oy — O3, we
conclude that so does the system J*/p", so that

RlimZ*/p" =, limZI*/p" =T1". (5.2.2.2)
By [19, OD6K], we have an exact sequence
0 — R'limH(X, I*/p") —» H'(X,RlimI*/p") - limH'(I*/p") — 0.

But by the i = 0 case of (5.2.2.1) and vanishing of compactly supported h{o, the
first term is almost zero, and by the i = 1 case the right is almost equal to Hj 0c

P
By (5.2.2.2), the middle term is almost H'(X, I*), and finally, inverting p, we
obtain the desired isomorphism. It is Galois-equivariant because it comes from
the map jiZ/p" — I*/p". O

We now verify that taking locally algebraic vectors commutes with passing
to the Hodge-Tate weight zero part, which was used in the proof of Theorem A.
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Lemma 5.2.3. The natural inclusion

~ — g foe-l
(Hcl,loc alg ® (CP)GQ” N (HT?F(HLI‘)) oc—alg

is an isomorphism.

Proof. Tt suffices to show that for any choice of an irreducible algebraic represen-
tation W of GL,/Q, and a compact open subgroup K ¢ GL,(Q,), the statement
holds after replacing locally algebraic vectors everywhere with the W-isotypic
part for the K-action. Expressing these vectors via the standard evaluation maps,
this means we need to show that

~ G ~
(W ® Homg,x)(W, H})) ® C,) " = W ® Homg, x)(W, HTo(H,)).

To see this, we first apply Lemma 5.1.2 to Homg, (W, H.) with S the set of
operators (k — Id) for k € K to obtain

HTo (Homg, x)(W; A)) = HT, ((Homg, (W, A})). )
= (HTo(Homg, (W, H)))g
= (HTo(W" ® AY)),
= (W* ® HTo(A)),
= (Homg, (W, HTo(A,)))
= Homg, (W, HTo(A))).

Here to pass from the third line to the fourth we have used Lemma 5.1.3.
Tensoring with W and applying Lemma 5.1.3 again we obtain

HT, (W ® Homg, (x(W, gg)) = W @ Homg, (x| (W, HTo(H})).

By Theorem 5.2.1, Homg,x)(W, H!) is finite dimensional, so the completed
tensor product in the formation of HT( on the left is just a tensor product, and
thus the left-hand side is equal to

((W ® HOITIQP[KJ(VV, I:]L] )) ® (CP)GQP .
O

5.3. Proof of Corollary B. As always we have fixed a prime-to-p level K?.
For X a finite set of primes containing p and those ramified in K?, let T = Ty
be the tame Hecke algebra generated by the spherical Hecke operators at primes
t ¢ X. Let E c C, be a finite extension of Q, and f a p-adic modular form of
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level K? defined over E. If f is a T-eigenform, there is an associated maximal
ideal p of T[1/p] and, after possibly enlarging E, a semisimple 2-dimensional
representation p = p(f) of Gg over E.

Assume that p is absolutely irreducible. As a consequence of [7, Lemma
5.5.3], there is an E-Banach space V on which G, acts trivially such that

A} lp] = Hplp] = Vep. (5.3.0.1)

Here for the first equality we use that the kernel of the surjective map H! , — H,
comes from the zero dimensional cohomology of the boundary — this cohomol-
ogy is Eisenstein, so, by the condition on p, we can localize away from it.

Suppose now in addition that f is cuspidal overconvergent and of weight «
with Liex # 1. Applying Lemmas 5.1.2 and 5.1.3, we deduce that

HTG (A )[p] = V®HT (o).

Because the pairing of Theorem A can be constructed already over E, f gives
rise to non-zero elements in the left-hand side. Thus, HTg () # 0, 500 is
a Hodge-Tate-Sen weight of p. The determinant of the Galois representation
attached to any p-adic modular form of weight « is a character with infinitesimal
weight Liex — 1, thus we conclude that the Hodge-Tate-Sen weights of p are 0
and Liex — 1.

Remark 5.3.1. Here we are taking the o-Hodge-Tate-Sen weights with respect
to o our fixed embedding of E in C,, but it follows from this result that for
any embedding o : E — C, the o-Hodge-Tate-Sen weights of p are 0 and
o(Liex) — 1.
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