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Abstract 
Motivation: Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) provides new 
opportunities to dissect epigenomic heterogeneity and elucidate transcriptional regulatory mechanisms. However, 
computational modelling of scATAC-seq data is challenging due to its high dimension, extreme sparsity, complex 
dependencies, and high sensitivity to confounding factors from various sources.  

Results: Here we propose a new deep generative model framework, named SAILER, for analysing scATAC-seq data. 
SAILER aims to learn a low-dimensional nonlinear latent representation of each cell that defines its intrinsic chromatin 
state, invariant to extrinsic confounding factors like read depth and batch effects. SAILER adopts the conventional 
encoder-decoder framework to learn the latent representation but imposes additional constraints to ensure the 
independence of the learned representations from the confounding factors. Experimental results on both simulated and 
real scATAC-seq datasets demonstrate that SAILER learns better and biologically more meaningful representations of 
cells than other methods. Its noise-free cell embeddings bring in significant benefits in downstream analyses: Clustering 
and imputation based on SAILER result in 6.9% and 18.5% improvements over existing methods, respectively. Moreover, 
because no matrix factorization is involved, SAILER can easily scale to process millions of cells. We implemented SAILER 
into a software package, freely available to all for large-scale scATAC-seq data analysis. 
Availability: The software is publicly available at https://github.com/uci-cbcl/SAILER 
Contact: jingz31@uci.edu and xhx@uci.edu 

 
 

1 Introduction  
Accessible chromatin regions host a network of complex interplays among 
numerous cis-regulatory elements (CREs, such as enhancers and 
promoters), transcription factors (TFs), cofactors, and chromatin 
remodelers in the three-dimensional genome for precise spatiotemporal 
gene expression control (Klemm et al., 2019; Tsompana and Buck, 2014; 
Boyle et al., 2008). Assay for transposase-accessible chromatin using 
sequencing (ATAC-seq) is an efficient method to probe accessible DNA 
regions in the genome, by tagging them with sequencing adapters using 
the Tn5 transposase (Buenrostro, Wu, Chang, et al., 2015). More recently, 
researchers have developed single-cell ATAC-seq (scATAC-seq) 

technology to massively probe accessible chromatin regions in individual 
cells (Buenrostro, Wu, Litzenburger, et al., 2015; Cusanovich et al., 2015; 
Chen et al., 2018; Satpathy et al., 2019). These methods make it possible 
to comprehensively dissect the epigenetic heterogeneity across diverse 
cell states at an unprecedented resolution. Due to its easy protocols and 
high-throughput capacities, many labs and big consortia (e.g., the Human 
Cell Atlas, Human BioMolecular Atlas Program) have employed 
scATAC-seq for single-cell epigenetic profiling (Regev et al., 2017; 
Consortium and others, 2019). Furthermore, the scientific community and 
funding agencies have initiated essential data-sharing policies for 
expedited translational research. Thus, there is an urgent and essential 
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need to develop robust, accurate, and scalable computational methods for 
scATAC-seq data analysis and integration at a large scale.  

   Unfortunately, computational modeling of scATAC-seq data has faced 
several challenges. First, scATAC-seq data tends to have very low 
coverage, usually with a few thousand distinct reads representing 
hundreds of thousands to even millions of accessible regions. Second, 
scATAC-seq contains a high degree of dependencies because numerous 
cell-type-specific CREs in accessible chromatin regions work in concert 
to jointly decide cell fate. Lastly, scATAC-seq analysis is highly sensitive 
to numerous confounding factors arising within and across samples (e.g., 
read depth variation and dataset-specific conditions).   
   Researchers have developed many computational approaches to tackle 
high-dimensional and sparse scATAC-seq data (Schep et al., 2017; Fang 
et al., 2019; González-Blas et al., 2019; Xiong et al., 2019; Fu et al., 
2020), but each has its limitations. For instance, ChromVAR ignores the 
impacts of individual peaks and only groups cells by the TF motif 
enrichment scores from all peaks, resulting in non-optimal clustering 
performance (Schep et al., 2017). SnapATAC uses Jaccard distance to 
calculate cell-to-cell similarities for dimension reduction with a hidden 
assumption that peaks are independent of each other and contribute 
equally to the similarity measure, which is incorrect in most cases. More 
recently, researchers developed the latent semantic index (LSI) for 
learning the lower-dimensional cell representations (Pliner et al., 2018; 
Granja et al., 2020; Stuart et al., 2020). Despite their scalability, such 
linear techniques may not fully capture the complex dependencies of 
peaks. Moreover, these approaches correct for read depth effects by 
removing components that highly correlate with the read depth, which is 
heuristic and may lose the true cell-state-related information. Other 
nonlinear approaches, such as cisTopic and SCALE, were then developed 
to learn better cell representations (González-Blas et al., 2019; Xiong et 
al., 2019). However, these methods assume constant read depths across 
different cells and ignore potential batch effects from multiple samples, 
which compromises model performance in real applications. 
   Here, we aimed to overcome the limitations of existing methods by 
designing an invariant representation learning scheme with a 
straightforward intuition – the true epigenetic variations from a specific 

cell state should remain the same across cells and samples, while 
variations arising from confounding factors may change substantially, 
even for cells within similar biological groups. In other words, we can 
dissect the scATAC-seq cell-to-cell variations into an invariant 
component representing its hidden cell states and a varying component 
due to non-biological factors, such as the number of fragments in a cell 
and batch effects in the multi-sample analyses (Fig. 1). To this end, we 
developed a scalable and accurate invariant representation learning 
scheme (SAILER) via a deep generative model to learn a robust cell 
representation 𝒛 that is only related to intrinsic cell states but is invariant 
to changes in the confounding factor 𝒄 (Fig. 1). Specifically, we remove 
the variations related to confounding factors from the learned latent 
representation by minimizing their mutual information 𝐼(𝒛, 𝒄). Compared 
with previous methods, SAILER has three major advantages: i) it is 
easily scalable to millions of cells in large-scale analyses via accelerated 
computation on graphic processing units (GPUs); ii) it captures the 
nonlinear dependencies among peaks via the expressiveness of deep 
generative modeling and robustly removes confounding factors from 
various sources, both within and across samples, to faithfully extract 
biologically relevant information; iii) it provides a unified strategy for 
scATAC-seq denoising, clustering, and imputation. 
   We implemented SAILER into a Python package that is freely available 
to the community. To prove its effectiveness, we first benchmarked the 
clustering performance of SAILER with state-of-the-art methods. We 
utilized three simulated scATAC-seq datasets with ground-truth labels, 
representing different application scenarios with single- and multi-sample 
inputs. SAILER significantly outperformed the existing methods, 
providing improved cell clustering results and successfully identifying 
rare cell types. We also applied SAILER on real atlas-level and multi-
sample scATAC-seq datasets and showed that it could efficiently learn 
better biologically relevant cell latent representations, which will facilitate 
various downstream analyses such as cell clustering and imputations.     

2 Methods 
In this section, we provide the mathematical details on our SAILER model 
and describe methods for benchmarking with existing methods using both 
simulated and real datasets. 

Fig. 1 The overall design of the SAILER method. SAILER takes scATAC-seq data from multiple batches as input. Raw data is pushed through the 
encoder network to obtain a latent representation. Confounding factors for each single cell are concatenated and fed to the decoder along with the 
latent representation. Batch information is indicated by a one-hot embedding, and read depth is subject to log transform and standard normalization. 
To learn a latent representation invariant to changes in confounding factors, mutual information between the latent variables and confounding factors 
are minimized during training. 
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2.1   Effective invariant representation learning via a deep 
generative model 

Let 𝒙 ∈ {0,1}௡ (with 𝑛 peaks or bins) denote the genome-wide chromatin 
profile of a cell, with 𝑥௜ indicating the presence or absence of a peak in 
bin i. 𝒙  depends on both the intrinsic properties of the cell and 
experimental confounding factors. Our goal is to derive a latent 
representation of 𝒙 (also called embedding) for each cell that reflects only 
its intrinsic properties. Let 𝒛 ∈ 𝑅ௗ  be such a latent representation. 
Suppose 𝒄 is the confounding variable that has statistical dependence on 
𝒙, and is observable together with 𝒙. We denote 𝑞 ஘(𝒛|𝒙) as the encoder 
probability, 𝑝ம (𝒙|𝒛, 𝒄) as the decoder probability. The decoder part of our 
model aims to model the conditional probability of 𝒙 on 𝒄 through a latent 
variable 𝒛,  

 ~ ( )( | ) [ ( | , )]pp p z zx c x z c  (1) 

where 𝑝(𝒛) is the prior distribution for a generative model set to be a 
(0, )dI (factorized Gaussian) in our case. 𝑞(𝒙, 𝒄)  is the empirical 

distribution of the data point and confounding variable, ϕ  denote the 
parameters of the decoder network.  

   Following the variational autoencoder (VAE) model (Kingma and 

Welling, 2014), we performed parameter inference by maximizing an 

evidence lower bound of the log likelihood, corresponding to minimizing 

the following loss function, 

 VAE , ~ ( , ) ~ ( | ) KL[log ( | , )] ( ( | ) ( ))q qL p D q p
      x c x c z z x x z c z x z   (2) 

where 𝑞 ஘(𝒛|𝒙) is the posterior distribution modeled with a neural net with 
parameters θ. 

   The distribution of the latent representation 𝒛 induced by empirical data 
distribution ~ ( ) ( , )q q cx x x c  and the posterior probability 𝑞 ஘(𝒛|𝒙) 
potentially can depend on 𝒄 , as 𝒄  is involved in the data generation 
process. To derive a latent representation 𝒛  independent of the 
confounding variable 𝒄, we added an additional term to the loss function 
to minimize the mutual information between the two variables (Moyer et 
al., 2018), 

 VAE ( , )L I z c  (3) 

where 𝐼(𝒛, 𝒄) is the mutual information between latent representation 𝒛 
and 𝒄,  with their joint distribution represented by 𝑞஘(𝒛, 𝒙, 𝒄) =

𝑞(𝒙, 𝒄)𝑞஘(𝒛|𝒙) . Based on the properties of mutual information and 
variational inequality, 𝐼(𝒛, 𝒄) is upper bounded by 

 , ~ ( , ) KL ~ ( | )
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where the conditional entropy 𝐻(𝒙|𝒄) is a constant and can be removed 
from the loss function. 

   The final loss function we aimed to minimize is 
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Here KL ( ( | ) ( ))D q p z x z  is the KL-divergence between the encoder 

𝑞 ஘(𝒛|𝒙) and prior 𝑝(𝒛). ~ ( | )[log ( | , )]q p
 z z x x z c is the reconstruction loss.

KL ( ( | ) ( ))D q q z x z  is the KL-divergence between 𝑞 ஘(𝒛|𝒙)  and 

empirical marginal distribution 𝑞 ஘(𝒛). Because 𝑞 ஘(𝒛)  depends on the 
distribution of both x and c, minimizing the above KL-divergence will 
reduce the effect of c on z.  In the implementation, this extra term is 
approximated by pairwise KL-divergences between all data points in a 

training batch, KL
'

( ( | ) || ( | '))D q q 
x

z x z x . Since latent variable 𝒛  is 

parameterized by an isotropic Gaussian, the pairwise KL has a nice 

analytical form, and can be efficiently computed with matrix algebra.  

2.2   Model architecture and training 

   Considering the close to binary nature of scATAC-seq data, we use 
binomial likelihood to parameterize the reconstruction loss. To tackle the 
extreme sparsity issue, we add a positive weight ω to non-zero entries of 
binary cross-entropy loss ˆ ˆlog (1 ) log(1 )l       x x x x  with  ω 
determined by the empirical 0/1 ratio of the input data. 

   The encoder and decoder are parameterized by two symmetric fully 
connected feedforward neural networks (with 1000-100-10 units). A 
sigmoid activation is used for the final output layer. For confounding 
factors, we use one-hot batch embedding and normalized log-transformed 
sequencing depth for each cell. During training, input data is pushed 
through the encoder network to generate the latent variable. Confounding 
factors are then concatenated together with latent variables and fed into 
the conditional decoder for reconstruction. As suggested in (Fu et al., 
2019), when training our model, we adopt a deterministic warmup and 
cyclical annealing schedule to tackle the KL vanishing problem. Adam 
optimizer (Kingma and Ba, 2017) with weight decay 5e-4 and minibatch 
training are used to optimize the model. The model is built with PyTorch 
library (Paszke et al., 2019). 

2.3   Dimension reduction and clustering 

We project the raw high-dimensional sparse scATAC-seq data to a low-
dimensional space that reflects the hidden cell states rather than noise in 
the sequencing experiment. Specifically, we used the raw scATAC-seq 
matrix 𝒙 as the input to our SAILER encoder and extracted the mean of 
the invariant component 𝒛 as the cell representation. We set the default 
dimension 𝑑  for 𝒛  to 10 in our analysis. We then acquired 2D 
visualizations by running t-distributed stochastic neighbor embedding (t-
SNE) (Maaten and Hinton, 2008) or uniform manifold approximation and 
projection (UMAP) (McInnes et al., 2018) on the latent mean. We further 
constructed a k-nearest neighbor (KNN) graph from the lower-
dimensional representations, and then applied the Louvain algorithm 
(Blondel et al., 2008) to assign cells to different clusters. 

2.4   scATAC-seq imputation 

We generated the imputation data via a reconstruction conditioned on the 
invariant representation z and fixed confounding factor c. Specifically, we 
first pushed the raw data through the encoder network, and obtained the 
mean parameters for z. Unlike the training process, where we calculated 
the depth of the raw data and loaded the one-hot embedding according to 
the real batch information, here we fixed the depth and batch indicator as 
the mean depth and the indicator of the batch with the highest data quality. 
Finally, we concatenated the fixed confounding values with the latent 
representation z and fed them into the conditional decoder to obtain the 
imputed data. As a result, we used only the invariant component 𝒛 to 
reconstruct the chromatin landscape during the imputation process, while 
keeping the other confounding factors at a fixed level. 

2.5   Performance benchmarking using multiple simulated 
datasets 

We applied SAILER on three simulated scATAC-seq datasets with known 
cell type labels generated by SCAN-ATAC-Sim (Chen et al., 2020) to 
represent three major application scenarios. We used the peripheral blood 
mononuclear cell bulk ATAC-seq dataset provided on the SCAN-ATAC-
Sim website using all default parameter settings. Each simulation includes 
three major parameters: 𝜌 represents the signal-to-noise ratio (percentage 
of reads in the true peak regions); 𝜇 and 𝜎 denote the mean and standard 
deviation of the fragment count per cell, respectively. SCAN-ATAC-Sim 
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randomly selects read counts for each cell from a log-normal distribution, 
and then samples reads from both peak and background regions 
accordingly. We first simulated a deeply sequenced scATAC-seq dataset 
(Sim1) with 5,000 fragments per cell (𝜇 = 5,000, 𝜎 = 1.5, and 𝜌 = 0.4), 
representing a scenario in which we are looking for rare cell types. 
Specifically, we generated 10,000 cells from five cell types, with 100 cells 
from a rare cell type accounting for 1% of the total population. Then, we 
generated one shallowly sequenced sample with nine cell types, with 𝜇 =

3,000, 𝜎 = 1.5, and 𝜌 = 0.4 (Sim2). Lastly, we simulated a two-sample 
dataset with slightly mismatched cell types to represent scATAC-seq data 
integration applications with noticeable batch effects – one shallowly 
sequenced sample ( 𝜇 = 2,500 ) along with another deep-sequenced 
sample (𝜇 = 5,000) with different signal-to-noise ratios (𝜌 = 0.4 and 0.5, 
respectively) (Sim3). In addition, we introduced one sample-specific rare 
cell type in Sim3 to mimic a situation in which rare cell types (e.g., tumor 
cells) may only exist in some samples. We benchmarked SAILER’s 
clustering performance with the linear dimension reduction method LSI 
and another deep learning method, SCALE, on all three simulated 
datasets. Specifically, we projected the raw input matrix 𝑥  to a ten-
dimensional latent space, and further used UMAP to reduce the dimension 
to 2 for 2D visualization of the cell state landscape. We plotted colored 
labels according to the ground-truth cell type for visual inspection of 
clustering performance. 

   We also used the mutual information to quantify the impacts of 
confounding factors on the lower-dimensional representations learned by 
different methods. Specifically, we used a non-parametric mutual 
information estimation approach (Kraskov et al., 2004) to estimate the 
mutual information between the confounding factors and each dimension 
of the latent representation, and calculated their mean values for 
comparison. 

2.6 Imputation performance on simulated datasets 

We also benchmarked the imputation performance of SAILER against 
SCALE (Xiong et al., 2019) and MAGIC (van Dijk et al., 2018) on the 
Sim3 dataset. SCALE is the only current method designated for imputing 
scATAC-seq data, and MAGIC, originally designed to impute scRNA-seq 
data, has been incorporated into many scATAC-seq computational 

pipelines (Fang et al., 2019; Granja et al., 2020) for imputation purposes.  

   For SCALE, we directly used the binary imputation output generated by 
thresholding at mean values of each row and column. For MAGIC, we 
followed the standard pipeline by applying the recommended 𝑙1 
normalization and square root transformation before imputing the data. 
Due to the extreme dimension, we used an approximate solver for 
efficiency. For SAILER, we performed imputation as described in 2.3.  

   To evaluate the result quantitatively, we calculated the Dice similarity 
coefficient (DSC) of imputed data 𝒙ෝ  generated by the three methods 
against the bulk ATAC-seq data 𝒙௕௨௟௞ of the corresponding cell type used 
to generate the simulated data. We calculated the DSC of the raw input 
against the bulk data to provide a baseline. 

 
ˆ 2
ˆ| | | | 2

2 bulk

bulk

TP

TP FP FN
DSC






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x x

x x
 (6) 

   We also generated a 2D visualization to evaluate the landscape of the 
imputed data. We directly applied a randomized principal component 
analysis (PCA) (Halko et al., 2011) to the imputed data, and used UMAP 
to visualize the top ten principal components. We also provided the raw 
input as a baseline. 

2.7   Performance benchmarking on the mouse atlas dataset 

We then demonstrated the performance of our method on a mouse atlas 
dataset containing 81,173 adult mouse cells from 13 tissues and 40 cell 
types (Cusanovich et al., 2018). Each cell type is annotated by borrowing 
label information, inferred by marker genes, from the RNA-seq data. A 
previous effort applied the mouse atlas dataset to benchmark multiple 
computational methods on scATAC-seq data (Chen et al., 2019). The 
leading method in that study, SnapATAC, was the only method that could 
process the entire mouse atlas dataset within a reasonable time (~12 h). 
Given that both SAILER and SCALE are deep learning methods that can 
train and evaluate data in mini batches, they are capable of handling the 
scale of the mouse atlas dataset. Thus, we benchmarked SAILER against 
SnapATAC and SCALE on this dataset.  

   For SCALE and SAILER, we added a filtering process before loading 
the data. The filtering involved reducing the bin numbers according to the 
procedure for filtering peaks used in SCALE. For each cell, we removed 
bins with read counts of over 90% cells and less than 1% cells. 
   We used normalized mutual information (NMI) and the adjusted Rand 
index (ARI) to compare each method’s clustering results with the given 
labels. 
   For clustering, we constructed a KNN graph and applied the Louvain 
algorithm (Blondel et al., 2008) to assign clusters to each cell. We 
compared the clustering results with ground-truth labels to generate the 
ARI and NMI metrics. We also calculated mutual information between 
latent representation and confounding factors for comparison. 

2.8   Performance benchmarking on multi-sample scATAC-
seq datasets for mouse brain  

To evaluate the ability of SAILER to deal with batch effects, we combined 
two mouse brain datasets: a mouse brain dataset from the 10X Genomics 
website and a mouse secondary motor cortex dataset (i.e., the MOs-M1 
dataset) (Fang et al., 2019). We first selected cells based on barcodes from 
the 10X mouse brain dataset. Then, we set a threshold and selected 
scATAC-seq profiles with a promoter ratio between 0.2 and 0.6 and a 
log10-transformed unique molecular identifier count [log10(UMI)] 
between 3 and 5. This process resulted in 4,100 cells selected from the 
10X mouse brain dataset and 15,136 cells selected from the MOs-M1 
dataset. Using the same filtering criteria to remove low-quality cells, we 

Fig. 2 Visualization of confounding factors. (A) Scatter plots of a 10X 
mouse brain dataset (10X) and a mouse secondary cortex MOs-M1 
dataset (MOs-M1). For all the cells in each dataset, we kept those with 
log10(UMI) between 0.3 and 0.5 and promoter ratio between 0.2 and 
0.6. (B) Boxplots of read depth and promoter ratio comparison between 
selected cells from each dataset.    
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selected 9,646 cells from the MOs-M1 dataset for further analysis.  

   We then performed clustering on the lower-dimension representation 
learned by SAILER with a Louvain algorithm on a KNN graph. We 
applied t-SNE to generate a 2D visualization of the landscape. As cell 
labels are not available, we next visualized the activity scores of several 
marker genes to justify the clustering results. We selected several marker 
genes from the gene annotation file to obtain gene read counts within each 
cell. To avoid extreme sparsity and discontinued values, we adopted 
MAGIC to smooth the gene-cell matrix to obtain the final gene-level 
expression matrix. For each cell and each marker gene of interest, we 
applied gene expression values corresponding to each cell and denoted 
them by color in the t-SNE plot. 

3 Results 
We applied SAILER on both simulated and real datasets and carried out 
comprehensive performance benchmarking with existing methods, as 
discussed in the following sections below. 

3.1   Extensive cell-to-cell variations in scATAC-seq data arise 
from confounding factors rather than biological heterogeneity  

We found that, in addition to the underlying cell states, confounding 
factors from various sources significantly contribute to the cellular 
heterogeneity in scATAC-seq experiments. For instance, we extracted two 
mouse brain scATAC-seq datasets – one from the 10X genomics website 
(10X) and one from the SnapATAC website (MOs-M1) (see details in the 
Methods section). We uniformly processed these two datasets and found 
that the number of fragments within the same dataset varied significantly. 
For example, the uniquely mapped read counts per cell ranged from 1,500 

to 6,000 for the MOs-M1 dataset (Fig. 2). Moreover, datasets generated 
from different labs showed distinct signatures. Specifically, the MOs-M1 
dataset sample had fewer reads per cell but was highly enriched in 
promoter regions (median read count 3.506 vs. 4.236, promoter ratio 0.337 
vs. 0.290). Most existing methods ignore such confounding factors, 
resulting in biased latent cell representations in dimensional reduction.  

3.2   SAILER learns robust latent cell representations 
invariant to various confounding factors in simulated data 

Here, we extensively benchmarked SAILER with existing methods using 
simulated data representing various application scenarios.  

   First, we simulated a deeply sequenced scATAC-seq dataset from five 
cell types, with varying mapping reads per cell. We learned the latent cell 
representations using SAILER, SCALE, and LSI as the input for the same 
clustering process. As shown in Fig. 3A, linear methods like LSI could 
not capture the complex dependencies among the peaks and hence failed 
to distinguish the rare cell type from the major cell types (red dots in the 
gray cluster). In contrast, both SAILER and SCALE used a nonlinear 
dimension reduction via fully connected neural networks and were able to 
report five clearly separable clusters. Furthermore, LSI and SCALE have 
a limited or no explicit module for correcting read depth effects. As a 
result, their L-shaped cell clusters are severely confounded by fragment 
counts, as reflected by the smooth transition from shallowly sequenced 
cells to densely sequenced ones within each cluster (the yellow to red 
pattern in Fig. 3A, Sim1). Such artifacts would be further amplified in the 
downstream imputation analysis, because cells with more mapped reads 
will exhibit even larger read counts after incorporating information from 
their similarly deeply sequenced neighbors. On the contrary, SAILER 

Fig. 3 Results on simulation datasets. (A) 2D visualization of learned latent representations of LSI (top), SCALE (middle), and SAILER (bottom) on 
the Sim1 dataset. The left column shows the distribution of cell types. The right column shows the distribution of read depth indicated by color depth. 
(B) 2D visualization of learned latent representations of LSI (top), SCALE (middle), and SAILER (bottom) on the Sim2 dataset. The left column shows 
the distribution of cell types. The right column shows the distribution of read depth indicated by color depth. (C) 2D visualization of learned latent 
representations of LSI (top), SCALE (middle), and SAILER (bottom) on the Sim3 dataset. The left column shows the distribution of cell types. The 
right column shows the distribution of cells from different batches. 
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penalizes such depth effects by introducing an extra penalty term to force 
the latent cell representations to be as independent as possible to fragment 
counts per cell, resulting in compact round-shaped clusters with almost 
random read count distributions (Fig. 3A, Sim1). This observation is 
consistent with the quantitative measure of the mutual information 𝑰(𝒛, 𝒄) 
between read counts and cell embeddings, where SAILER reported the 
lowest 𝑰(𝒛, 𝒄) at 0.107 among all three methods (0.290 and 0.610 for 
SCALE  and LSI, respectively, Table 1, Sim1). Thus, SAILER effectively 
removes confounding factors and learns robust cell representations. 

    We further simulated another shallowly sequenced dataset with fewer 
fragments per cell but more cell types, in order to conduct clustering 
performance benchmarking under more complicated (and realistic) 
scenarios. As shown in Fig. 3B, SCALE and LSI failed to separate two 
major cell types by reporting completely overlapped clusters (yellow and 
purple dots in Fig. 3B). Similar to the previous simulation, we observed 
clear low-to-high read count transitions within their reported clustering, 
indicating severe read depth artifacts. By contrast, SAILER distinguished 
cell types from distinct cell states into clear groups and demonstrated 
homogeneous read counts within each cluster (bottom row, Fig. 3B), 
indicating effective read depth bias removal. As expected, SAILER also 
showed the smallest amount of mutual information between fragment 
counts and latent cell representations (0.100 vs. 0.224 for SCALE and 
0.500 for LSI, Table 1, Sim2), confirming the efficacy of its invariant 
representation learning scheme.    

   Lastly, we designed a third simulation dataset to mimic the scATAC-
seq integration scenario with obvious batch effects for all three methods. 
We used latent representations to generate 2D visualizations with UMAP, 
as shown in Fig. 3C. We applied both batch information (right column) 
and cell-type information (left column) to annotate the plots. As shown in 
the right column, even though LSI and SCALE can marginally cluster the 
same type of cells, there are still clear boundaries between these batches. 
However, SAILER merges different batches very well, indicating that this 

method can remove batch information and retrieve the true distribution of 
cell biological states via the invariant latent representations. In order to 
quantitively measure how well these two batches are merged using 
different methods, we also calculated the mutual information between the 
batch information and each dimension of the latent representations (i.e., 
𝐼(𝒛, 𝒄)), as shown in Table 1. SAILER still had the lowest value of mutual 
information (0.005, compared to 0.130 and 0.087). Note this dataset 
contains two sample-specific rare cell types (red and green dots, Fig. 3C), 
representing a potentially common situation in which certain rare cell 
types only appear in a few batches. LSI and SCALE completely merged 
the rare cell types together; however, SAILER was able to distinguish 
these two cell types after removing depth variation and batch effects from 
the latent representation.  

Table 1  Mutual Information between the latent representation and 

confounding factors on simulation datasets. 

I(z,c) 

Method 

Sim1 Sim2 Sim3 

LSI 0.610 0.500 0.130 

SCALE 0.290 0.224 0.087 

SAILER 0.107 0.100 0.005 

 

3.3   SAILER outperforms existing methods in atlas-scale data 
analysis by reporting clearly separable clusters  
To test the efficiency and accuracy of SAILER in a large-scale analysis, 
we benchmarked our method on a mouse atlas scATAC-seq dataset with 
~80k cells from 40 cell types with substantial read depth variations, as 
shown in Fig. 4. We benchmarked SAILER with the GMM VAE in 
SCALE, and SnapATAC, the leading and only algorithm that was able to 
perform large-scale scATAC-seq analysis in a previous benchmarking 
study (Chen et al., 2019). As shown in Fig. 4, SAILER can learn robust 
cell representations that generate tight and clearly separable clusters, as 
compared to other methods.  

   Besides, due to the lack of effective read depth removal, clustering 
results from SCALE are significantly confounded by the total number of 
fragments per cell. Specifically, the direct neighbors of deeply sequenced 
cells in SCALE’s reports are mostly those with higher read counts in each 
cluster (light dots in the bottom line, Fig. 4). This read depth effect will 
severely impact the subsequent imputation analysis, as depth imbalance 
among cells will be amplified when considering the neighbors. 
SnapATAC tends to remove such depth effects by regressing out fragment 
counts per cell in the cell-to-cell similarity calculation. As a result, its 
identified clusters are less affected by read depth. However, several 
internal groups were mixed together without clear separation, probably 
due to its independence and the equal contribution assumption among 
various genomic regions in the Jaccard distance calculations. Unlike 
SnapATAC, which requires a separate process for depth variation 
removal, SAILER integrates depth removal into the learning process – the 
fully connected neural network layers in SAILER allow nonlinear 
interactions among different genomic regions to better separate cells from 
different biological states, while the extra mutual information penalty term 
effectively removes read depth effects. This unified framework of 
SAILER makes each task aware of the other tasks, resulting in noticeably 
improved clustering results. This noticeable improvement can also be seen 
in the resulting NMI and ARI scores (Table 2). For instance, SCALE and 
SnapATAC reported NMI scores of 0.557 and 0.748, respectively, using 
known cell type-level labels, whereas SAILER showed a significantly 

Fig. 4 Results on the mouse atlas dataset. t-SNE visualization of lower-
dimensional representation generated by SAILER (left), Snap-ATAC 
(middle), and SCALE (right). The first row shows the distribution of cell 
types. The second row shows the distribution of read depth indicated by 
color depth.  
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higher NMI of 0.799. Moreover, SAILER reported lower mutual 
information (0.04), compared with 0.127 in SnapATAC and 0.279 in 
SCALE, suggesting successful depth effect removal for this method.  
   It is worth mentioning that the complexity of the batch-based training 
process increases linearly with the size of the input dataset, resulting in 
better scalability of SAILER to efficiently process millions of cells in 
multi-sample analyses. However, the polynomial regression approach 
used in SnapATAC increases quadratically as the number of cells 
increases. Chen et al. reported that Snap-ATAC takes nearly 12 hours to 
process the entire mouse atlas dataset (Chen et al., 2019), while SAILER 
can complete this process within 6 hours trained for 400 epochs. This 
further demonstrates the advantage of the deep learning method when 
scaling to very large datasets.  
   Moreover, we also followed the preprocessing procedures for 
subsampling by 10k cells for performance benchmarking with 17 other 
methods, as most methods cannot handle an atlas-scale dataset. Instead of 
cell-type labels, we used the same tissue-level cell labels for 
comprehensive clustering benchmarking. When applied to the subsampled 
dataset, SAILER still achieved the highest ARI (0.397) among all methods 
(with the 17 other methods ranging from 0.009 to 0.363). This further 
demonstrates the effectiveness of our method. 

Table 2  Evaluation results on the mouse atlas dataset 
Method ARI NMI 𝐼(𝒛, 𝒄) 

SAILER 0.575 0.799 0.040 

SnapATAC 0.538 0.748 0.127 

SCALE 0.315 0.557 0.279 

3.4   SAILER can effectively remove batch effects in multi-
sample scATAC-seq integration 

Another common source of confounding factors are batch effects in multi-
sample scATAC-seq analysis, where samples may be processed and 
sequenced from different labs or even sequencing platforms with distinct 
sample-specific signatures. To evaluate the performance of our method in 
such scenarios, we applied SAILER on two mouse brain scATAC-seq 

samples from two sources – one mouse brain dataset from the 10x 
Genomics website (10X) and one generated from mouse secondary cortex 
brains (Fang et al., 2019).  

   For fair performance benchmarking, we uniformly processed these two 
datasets to identify cells from random barcodes using the default 
parameters in SnapATAC (Fang et al., 2019). Specifically, after removing 
barcodes with less than 1,000 fragments and keeping the remaining ones 
with promoter ratios between 0.2 and 0.6, we identified 4,100 and 9,646 
cells from these two samples (see details in the Methods section). Starting 
from the same tissue, we found that these two samples generated from 
different labs showed distinct fragment signatures. For instance, the 
dataset from the 10X Genomics website demonstrated a higher mean read 
coverage per cell (log(UMI) = 4.149 vs. 3.547, P-value = 10e-15 using the 
two-sided Wilcoxon test) and a lower mean promoter ratio (0.320 vs. 
0.367, P-value = 2.48e-87 using the two-sided Wilcoxon test). After pre-
processing, we projected the remaining cells into a ten-dimensional space 
using SAILER and SCALE, and then generated a KNN graph (k=16) and 
performed clustering via the Louvain algorithm. We also used t-SNE to 
map the ten-dimensional cell representations onto a 2D space for 
visualization and labeled the sample IDs using different colors in Fig. 5. 
In the ideal case, a good computational method should overcome batch 
effects by reporting cell clusters with homogenous sample ID 
distributions. However, due to the lack of an appropriate batch effect 
removal module, we found that clusters reported by SCALE were 
predominantly driven by sample effects rather than the true biological 
states of the cells (Fig. 5A). In contrast, SAILER effectively removed 
batch effects by introducing an additional penalty to reduce the mutual 
information 𝐼(𝒛, 𝒄)  between the variant component and the batch 
component in the objective function. As a result, the different samples 
were homogeneously mingled in the clearly separated clusters reported by 
SAILER (yellow and grey dots in Fig. 5A). 
   To test whether these SAILER-reported clusters represent distinct 
biological cell states, we calculated the overall chromatin accessibility 
scores of well-known marker genes (Fang et al., 2019) and labeled cells 
using the activity scores of the marker genes. As shown in Fig. 5B, 
SAILER identified clearly separable cell clusters that correspond well 
with the activities of the marker genes (sst, pvalb, gad2, and plp1). For 
instance, sst is a well-known marker gene widely expressed in inhibitory 
neurons. SAILER homogeneously grouped together sst-enriched cells 
from different batches, demonstrating its ability to appropriately remove 
batch effects while retaining the true cell-cell variability.  

3.5 SAILER can precisely reconstruct a chromatin 
accessibility landscape free of various confounding factors 

Despite high throughput in revealing epigenetic heterogeneity, scATAC-
seq experiments suffer from severe missingness by reporting only a few 
thousand fragments in the entire genome. Therefore, accurate chromatin 
landscape reconstruction and imputation are essential to uncovering the 
full regulatory potential within a cell. However, very few computational 
methods are designed explicitly for chromatin accessibility imputation. 

   Here, we took advantage of the deep generative model and its invariant 
representation to reconstruct a full chromatin accessibility landscape that 
is independent of sequencing depth and batch effects. During imputation, 
we fixed the values of the confounding variables, such that the variations 
of the reconstructed scATAC-seq data only depend on the invariant 
representation 𝒛, which reflects the intrinsic variation of biological states. 
   To further demonstrate this, we performed imputation on the third 
simulation dataset (Sim3) with two simulated samples. SCALE is 
currently the only available method designated for imputing scATAC-seq 

Fig. 5 Results on mixed mouse brain datasets. (A) Clustering result 
comparison of SCALE and SAILER on two batches of mouse brain cell 
samples. Clustering result (a) using SCALE, (b) using SAILER, and (c) 
using SAILER but colored and labeled with numbers calculated using 
the Louvain method based on the KNN graph. (B) Clustering result of 
SAILER on two batches of datasets but colored with four marker gene 
scores, namely sst, pvalb, gad2, and plp1. The brighter the color, the 
higher the gene score shown for those cells.    
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data. LSI has no direct imputation module, we added MAGIC as suggested 
for benchmarking (Granja et al., 2020). First, SAILER, MAGIC, and 
SCALE generated the imputed data. These data, along with the raw data, 
were then processed by PCA and visualized with UMAP in 2D. From the 
PCA embeddings shown in Fig. 6, we found that the imputation data of 
SCALE were severely affected by depth variation and batch effects. We 
observed similar results with MAGIC, where after imputation, the same 
types of cells from different batches were divided into separate clusters in 
the PCA embedding. However, the imputed data by SAILER did not show 
separate clusters from different batches. Moreover, the rare cell types 
(shown in green and red, Fig. 6) were separable in the PCA embedding, 
which was not the case for SCALE or MAGIC. The results indicate that, 
without proper removal of confounding factors during imputation, the 
imputed data show clear variations that correlate with confounding factors. 
In addition, the data diffusion strategy used in MAGIC is not friendly to 
rare cell types, as the rare cells can be easily overwhelmed by the major 
cell types. Thus, compared with SCALE and MAGIC, SAILER is the only 
method capable of removing confounding factors from imputation data, 
while preserving unique information from rare cell types. 

   As the bulk ATAC-seq data used to simulate the single-cell data is 
available, we used the bulk data as the ground truth and calculated the 
DSC for each imputation method. The DSC (also known as the F1 Score) 
is a harmonic mean of the precision and recall. Because scATAC-seq is 
imbalanced in 0/1 entries, we used DSC as a balanced metric to evaluate 
the imputation performance. We generated a violin plot to show the DSC 
distributions of raw single-cell data, SAILER, and SCALE. As shown in 
Fig. 6, SAILER and SCALE both achieved higher DSC scores compared 
to the raw data, indicating that both methods generate reasonable 
imputation results. SAILER achieved a higher mean DSC compared with 
SCALE (0.64 vs. 0.54), further demonstrating the effectiveness of 
invariant representation learning. 

4 Discussion 
In this work, we developed a scalable and accurate single-cell ATAC-seq 
processing and integration method called SAILER via efficient invariant 
representation learning. As compared with previous methods, SAILER 
has three distinct characteristics designed explicitly for single-cell data 
analysis – 1) it utilizes nonlinear dimension reduction via fully connected 
neural networks in a deep generative framework to handle complex 
dependencies among various peaks; 2) it dissociates cell-state-related 
biological variations from those arising from confounding factors (e.g., 

read depth and batch effects) to faithfully embed the cells into a low-
dimensional latent space to facilitate various downstream analyses, such 
as cell clustering and imputation; 3) it is easily scalable to large-scale 
single-cell data analysis accelerated using GPU parallelism.  
   We applied SAILER to various simulated and real scATAC-seq datasets 
and comprehensively compared its performance with state-of-the-art 
analysis pipelines. We showed that SAILER’s robust cell embeddings can 
effectively remove noise impacts from different sources and improve 
clustering and imputation results on all of the benchmark datasets. We 
should note that the invariant representation learning framework presented 
here is general and can be applied to other types of high-throughput 
genomic data like scRNA-seq and single-cell DNA methylation, or to joint 
analysis of multi-modality single-cell genomics data. Specifically, several 
single-cell multi-omics technologies have recently emerged for measuring 
multiple types of molecules in the same cell (Jin et al., 2020). To achieve 
this, we could apply a multi-modal VAE to encode a variational posterior 
jointly from single-cell multimodal omics inputs using deep neural 
networks, where the resultant latent space factors into a shared subspace 
to profile cell states or functions for individual cells and private subspaces 
could be used to solve specific technical issues for each modality. 
   In summary, we developed a deep generative model, SAILER, for 
learning robust latent cell representations invariant to changes in various 
noise factors, which has not been possible with most current scATAC-seq 
analysis tools. Given the fast-expanding collection of publicly available 
single-cell sequencing data, we envision that the SAILER framework can 
serve as a powerful tool to remove impacts from confounding factors and 
uncover cellular heterogeneity across diverse cell states and conditions in 
large-scale single-cell omics data analysis.  
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