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Abstract

In the past few decades, mathematical models based on
dynamical systems theory have provided new insight into
diverse biological systems. In this review, we ask whether the
recent success of machine learning techniques for large-scale
biological data analysis provides a complementary or
competing approach to more traditional modeling approaches.
Recent applications of machine learning to the problem of
learning biological dynamics in diverse systems range from
neuroscience to animal behavior. We compare the underlying
mechanisms and limitations of traditional dynamical models
with those of machine learning models. We highlight the
unique role that traditional modeling has played in providing
predictive insights into biological systems, and we propose
several avenues for bridging traditional dynamical systems
theory with large-scale analysis enabled by machine learning.
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Introduction: the limitations of large
mathematical models

The most informative biological models unify observa-
tions across scales. For example, the celebrated Hodgkin—
Huxley model of neural excitation comprises a set of
differential equations describing the coupled dynamics of

1,3,4,5

current, potential, and polarization within a single neu-
ron’s lipid bilayer [38]. Hodgkin and Huxley derived these
equations from a first-principles analysis that combined
the theory of electrical circuits with detailed anatomical
study and measurements of squid giant axons. In their
model, detailed experiments determined the form and
parameters describing a single neuronal unit, and when
many such units are combined together, their collective
dynamics display the same emergent properties as large-
scale neural ensembles (Figure 1). But while the
Hodgkin—Huxley model was developed and validated in
this specific experimental system, its legacy stems from
its relevance to diverse neurobiological problems —
ranging from the beating of cardiac myocytes, to alpha
wave propagation in the human thalamus [15,21]. Similar
‘bottom-up’ models recur throughout systems biology —
for example, the Lotka—Volterra model of predator—prey
competition may be scaled up to simulate entire multi-
trophic food webs [17,33]; and the Goodwin model of
negative feedback in an enzymatic network may be
extended to describe large gene regulatory networks [19].
In these cases, the structure of the model (equations) was
determined directly from experimental observations.

However, the bottom-up approach has a significant limi-
tation: while the individual terms in each dynamical
equation are usually well-justified and mechanistic, precise
measurements are often unavailable for every parameter —
such as rate constants and saturation values describing
interactions. Modelers instead resort to imposing strong
assumptions on the parameters defining the model, such as
by choosing parameters that cause the model to exhibit the
correct large-scale collective behavior as observed in data.
In rare circumstances, mathematical analysis can be used
to show that the structure of the model yields properties
that can be tested experimentally. In general, the accuracy
of these parameter choices often remains untested.

Recent advances in machine learning challenge the
classical ‘bottom-up’ approach to biological modeling. In
the language of modern statistical learning, traditional
modeling consists of model selection (defining an equa-
tion via mechanistic studies), training (fitting rate con-
stants and other parameters), and validation (prediction
and confirmation of biologically realistic dynamics). In
machine learning, however, large-scale observations
often serve as a starting point for analysis — all of the
complexities and peculiarities of the observed data are

www.sciencedirect.com

Current Opinion in Systems Biology 2020, 22:1-7


mailto:forger@umich.edu
https://www.sciencedirect.com/journal/current-opinion-in-systems-biology/special-issue/10N0VVP2D44
https://doi.org/10.1016/j.coisb.2020.07.009
www.sciencedirect.com/science/journal/24523100
www.sciencedirect.com/science/journal/24523100

2 Mathematical modelling (2020)

Figure 1
a e T
- TN \\
e —
O RS 0
. —~
( |(ge-_ (R @ \
AN
\ — v/‘\ /
AN S /
Single unit model N e Simulate collective
o~ ~
e e
Couple units together
b
o ... ..
%
= A1l
° I I
: P
& o = Z
o'.“. I I
Observe collective Analyze trained model
Fit empirical model
Current Opinion in Systems Biology

Bottom-up versus top-down modeling. (a) In bottom-up models, experimental data are used to derive a model of single units (e.g. chemicals, neurons, and

species). Many units are coupled together, and the resulting collective dynam

ics are analyzed. (b) In top-down models, experimental measurements of

collective dynamics are measured directly and then fit to an empirical model (here, a time-evolving probability distribution). The parameters and properties
of the best-fit model (here, properties of the distribution) may then be analyzed and compared across timepoints or replicates.

visible to the model during training. Recently, ‘super-
vised’ learning has generated significant interest among
biologists due to remarkable advances in automating
laboratory tasks requiring manual annotation of data —
such as segmentation of cell images or classification of
mutations. From the perspective of understanding bio-
logical dynamics, however, we are particularly interested
in unsupervised learning, which seeks to identify structure
and patterns indirectly using unlabeled raw experimental
data (e.g. motif discovery).

Although many systems biology models blend aspects of
bottom-up and top-down modeling, we believe that this
dichotomy illustrates the potential power of modern
statistical and machine learning to generate fundamen-
tally new insights into systems biology. We argue that
these techniques have the potential to work in tandem
with traditional mathematical modeling techniques,

revealing emergent simplicity in seemingly complex
biological data sets.

Notions of time

Most classical models in systems biology are typically
expressed in terms of differential equations of time.
Given the initial state and input parameter values of a
system, these equations tell us how the state of the
system evolves over time. Machine learning models do
not have an inherent concept of time; therefore, an
auxiliary mapping between the model and time is
required for proper comparison between these ap-
proaches. There are several ways to account for this:

1) One can run classical models until they reach an
equilibrium state or end point and then compare
their input (initial conditions) and output (final

Current Opinion in Systems Biology 2020, 22:1-7

www.sciencedirect.com


www.sciencedirect.com/science/journal/24523100

state) to those achieved by machine learning
approaches.

2) Some machine learning techniques take the full-
time history of a system as an input for learning.
These can be used to identify and classify different
dynamical regimes within the time series, revealing
different persistent behaviors (such as attractors).

3) Recurrent neural networks are a type of artificial
neural network that explicitly include memory via an
internal state, making them well-suited to modeling
sequential data such as time series.

4) The individual layers of a deep neural network can be
considered as timepoints, in which case training the
network via backpropagation of gradients across
layers becomes equivalent to the classical adjoint
method for optimizing the parameters of an ordinary
differential equation — making it possible to define
networks with a continuous layer index [16].
Furthering this analogy, Pontryagin’s maximum prin-
ciple (a concept from control theory) can be used to
improve training of strongly constrained models
[3,5].

Many linear mathematical models, or nonlinear mathe-
matical models with small magnitude inputs, obey the
superposition property: the effect of an input at one
time is independent of the effect of an input at another
time. Such dynamics can readily be incorporated into a
machine learning model by introducing an appropriate
regularization, which is a constraint that guides learning
and deters overfitting. However, most mathematical
models of biological systems do not have this property,
and this distinction plays an important role in informa-
tion processing in biological systems. For example,
consider the processing of inputs by a single biological
neuron. For inputs that balance excitation and inhibi-
tion, the most effective signal to generate firing is often
a growing sinusoid with a period matched to the reso-
nant period of the neuron [19]. However, for primarily
inhibitory inputs, the most effective stimulus is a
postinhibitory rebound, or a sharp rise from inhibition.
Moreover, a single neuron can also show different stable
steady states (bistability) depending on its prior inputs.
For example, it can exhibit quiescence or repetitive
firing, and these states can persist until some other
signal is strong enough to perturb the system state.
Incorporating these properties into machine learning
models requires explicit constraints to be imposed
during training, whereas differential equation models
naturally and concisely capture these properties.

Reconstructing governing coordinates from
experimental data

Various techniques based on unsupervised dimension-
ality reduction and manifold learning offer a promising
application of machine learning to the problem of
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learning dynamics from experimental data. For example,
researchers frequently record the simultaneous activity
of thousands of neurons, under the implicit hypothesis
that the dynamical variables necessary to model cogni-
tion may be reconstructed from these measurements
alone [46,35]. These methods extract independent,
low-dimensional governing coordinates from high-
dimensional measurements using heuristics such as
principal component analysis, which minimizes the
covariance among extracted coordinates, or more so-
phisticated variants based on isolating timescales or
recurring dynamical motifs [9]. Unsupervised learning
of dynamics has broad application to not only neural
recordings [35] but also to microbial ecology ('Tikhonov
2017 [51]), organismal locomotion [23], and tracking
animal behavior [23, 27, 30]. When large amounts of
data are available, autoencoders (a type of neural
network) are a particularly flexible technique for unsu-
pervised learning (Figure 2). These networks seek to
learn an identity function that maps the data onto itself,
subject to constraints on how the data is stored and
represented within the network. Autoencoders typically
compress high-dimensional data into a low-dimensional
‘latent’ space, and additional constraints (e.g. orthogo-
nality, sparsity, continuity) may be introduced in order
to influence the representation of the data within the
latent space.

Similar techniques exist for classical biological models.
Even when models contain hundreds or thousands of
variables, a system may often be accurately reduced to a
low-dimensional system with variables that are
nonlinear combinations of the original system variables.
An example of this arises in mathematical models of
biological clocks, which contain many variables, but
which can often be reduced to a subsystem (manifold)
consisting of two variables [2]. However, such low-
dimensional characterizations of the original system
have variables and parameters that can be very compli-
cated combinations of the original system variables. If
one seeks biologically testable hypotheses about these
models (e.g. if protein X increases in concentration, will
protein Y increase as well?), the easiest path may be to
simulate the full original system, rather than to try to
determine this underlying smaller system.

Unsupervised learning can also be applied to the inverse
problem of dimensionality augmentation, for cases in
which the number of independent measurement chan-
nels is lower than that of a system’s underlying dy-
namics. For example, in an ecosystem comprising an
interacting predator and prey, it may be possible to trap
and measure only the predator’s dynamics — intro-
ducing the question of whether the dynamics of the
prey can be inferred from measurements of the predator
alone [44]. Similar ‘hidden variables’ occur in molecular
biology, in which time-resolved measurements of a
handful of fluorescent reporters are used to infer the
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Figure 2
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A schematic of an autoencoder, a type of neural network with two halves: an ‘encoder, which maps high-dimensional input data to a low-dimensional
‘latent’ space, and a ‘decoder, which maps the low-dimensional latent representation back to a high-dimensional reconstruction of the original input. The
two halves are connected and trained together, producing a network that effectively maps the input data onto itself, subject to constraints on the
dimensionality of the data’s representation within the latent space. After training, the decoder portion of the network may be set aside, and the encoder
portion may be used to map additional input data onto lower-dimensional latent variables.

properties of a many-component gene regulatory
network. In medical studies involving wearable sensors,
low-dimensional time series measurements of skin
conduction or accelerometer recordings are used to infer
a subject’s high-dimensional behavioral or physiological
state [48,49]. Classical techniques for learning addi-
tional measurements — collectively known as ‘empirical
dynamic modeling” or ‘state space reconstruction’ —
seek to use time series analysis to reconstruct the un-
derlying state space or attractor of a system, allowing
insights into laboratory or ecological systems for which
observations are sparse [34,44]. Recently, deep neural
networks have been applied to this problem [32],
allowing the time series’ full history to be mined in order
to produce robust and consistent proxies for unobserved
dynamical variables.

Merging machine learning with dynamical
modeling

Recent studies have sought to combine large-scale
analysis facilitated by unsupervised learning with the
interpretability of low-dimensional dynamical systems
models. For example, in a recent study of freely
behaving mice, an autoencoder was trained on 128 x 128
pixel videos of a mouse undergoing a range of free be-
haviors [7]. This autoencoder extracted ~10 latent
variables that were sufficient to describe the majority of
the mouse’s observed behavioral repertoire, and these
latent variables were then used as inputs for a model of
the mouse’s behavior as a stochastic dynamical system.
Another recent study builds upon previously developed

mathematical models of human circadian timekeeping
and combines this analysis with machine learning to
infer sleep stages based on recordings from wearable
devices [48].

Symbolic regression seeks to fit differential equations
directly to observed data by drawing upon a dictionary of
candidate basis functions (such as polynomials or trig-
onometric functions) [40,39,6,1]. This technique has
been used to analyze problems ranging from interactions
in biochemical networks [42] to the outbreak dynamics
of infectious diseases [37] and the heat stimulus
response of Caenorhabditis elegans [43]. The choice and
size of this function dictionary acts as a prior for the
problem, with most methods seeking a balance between
accuracy and parsimony. However, models found by
symbolic regression are most revealing when the func-
tions comprising the dictionary library have a mecha-
nistic interpretation for the system under study. For
example, in systems governed primarily by mechanical
and geometric constraints (such as biomechanical sys-
tems), a best-fit differential equation model expressed
in terms of trigonometric functions can reveal subtle
mechanical symmetries and constraints [40]. Likewise,
using a dictionary of Hill functions in a symbolic
regression model of a large gene regulatory network re-
veals the presence of specific governing interaction
pathways and their rate laws [39]. However, for data sets
such as neural recordings, a readily interpretable dic-
tionary of functions describing the problem may not
necessarily exist — limiting the applicability of symbolic
regression.
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For most biological systems, explicit but parsimonious
enumeration of the dynamics in terms of known basis
functions is likely impossible or computationally infea-
sible. These systems offer a promising platform for
recent efforts to construct numerical approximations of
time evolution operators, which computationally map an
observation at one timepoint to its values at later
timepoints [4,13,24,35]. These approaches have proven
particularly applicable to structural biology problems
such as protein folding, where they allow informative
coarse-grained models to be algorithmically extracted
from detailed molecular dynamics simulations [31,12].
These techniques are motivated by the general theo-
retical properties of nonlinear dynamical systems, which
are often difficult to analyze using traditional mathe-
matical tools.

After fitting, numerical time evolution operators repre-
sent an empirical analogue of a differential equation
conditioned on the training data. For example, a recent
study used dynamic mode decomposition (a method
originally developed for fluid dynamics) to identify
transient resting states in a large data set comprising
fMRI readings of the human brain [41]. Unlike principal
component analysis or other dimensionality reduction
techniques, these methods associate dynamical motifs
with scales in both space and time, providing more
insight into spatiotemporal patterns than traditional
decomposition techniques such as Fourier transforms
[22]. Other recent applications of this technique have
been for behavior and gait quantification [28] and for
optimization of reporter placements for cell-state mea-
surements [47]. While operator methods have not yet
become widespread within the synthetic and systems
biology communities, we anticipate that their strong
theoretical underpinnings and efficient numerical
implementations will facilitate their broad adoption.

Extrapolating predictions from limited data
A lingering question when applying unsupervised
learning to biological data is whether the appearance of
low-dimensional effective coordinates (and a dynamical
model defined on those coordinates) reveals any new
information about the system itself. Traditional first-
principle models posit a hypothesis in their formula-
tion: the choice of terms in the governing equation
represents a falsifiable theory of a system’s underlying
mechanism. But when low-dimensional coordinates are
discovered by unsupervised learning, the interpolative
nature of the resulting model represents a re-packaging
of the existing data, consistent with the constraints on
the particular learning algorithm.

Akey question in machine learning is whether the training
data are sufficient to construct an accurate representation
of the system for inputs that strongly differ from those
encountered during training. In control theory, this is

Learning dynamics from biology Gilpin etal. 5

called the identifiability of a mathematical model. Only in
select cases can this question be fully addressed. In a
recent development, certain types of mathematical
models can be shown to exhibit ‘completely determinable
dynamics,” meaning that one recording of the system
suffices to determine the behavior of a system for all other
cases over a range of system states [18,19]. Thus, the
behavior of the system over a finite time (a one-
dimensional observation) determines the behavior over
a range of system states (having the same dimension as
the original system). However, not all systems have this
property — for example, chaotic systems exhibit very
different behavior for small changes in their state.

In dynamical systems theory, differential equation
models are often analyzed by determining their equi-
librium points and then performing stability analysis of
the model at these fixed points. In machine learning, a
similar technique is saliency mapping, which calculates
the approximate derivative of a trained model’s outputs
with respect to its inputs [9]. This process identifies the
input features that most strongly determine the model’s
predictions. For example, in a recent study, a neural
network was trained to predict the crawling trajectories
of developing muscle cells (Kimmel et al., 2019 [50]).
Saliency maps were calculated for the trained model with
respect to the input time series, and the maps detected
unusual bouts of locomotion that distinguished different
cell types — thereby identifying qualitative traits that
microscopists could search for when observing cells.
Another common technique for analyzing differential
equation models is sensitivity analysis, which seeks to
determine how a model’s outputs change as the param-
eters describing individual terms in the model change.
For a machine learning model, a comparable technique is
ablation, in which single components are removed from a
trained model (such as architectural features of a neural
network) in order to identify which terms in the model
most strongly influence its accuracy [29].

Conclusion and outlook

We have shown diverse examples demonstrating the
ability of machine learning models to distill insights into
large-scale biological dynamics. Does the ability of un-
supervised learning to identify low-dimensional co-
ordinates in diverse biological systems suggest deeper
biological principles?

A counterintuitive result of the ever-larger-scale deploy-
ment of artificial neural networks is the observation that
many aspects of large models are surprisingly consistent
across different implementations and applications [45].
Despite having thousands, or even millions, of trainable
parameters, artificial neural networks often converge to
similar solutions across replicates, to the degree that their
training can sometimes be approximated by low-order
ordinary differential equations [10,11,36]. Such results
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mirror the phenomenology of large-scale biological regu-
latory networks, which, despite comprising many inter-
acting genes and proteins, often have a small set of
effective governing parameters — such as the kinetic
constants of a few rate-limiting reactions — that jointly
determine the system’s large-scale dynamics [8]. Similar
results are observed in large ecological communities, for
which isolated study of individual species — and thus
validated models of individual interactions — is difficult
to achieve [20]. In neuroscience, many theoretical and
experimental studies demonstrate cases in which thou-
sands of interacting neurons collectively produce low-
dimensional dynamics [15,19,14]. For example, by
applying an unsupervised learning algorithm based on
topological filtration, the spiking activity of thousands of
neurons in a mouse thalamus can be robustly mapped onto
a low-dimensional ‘attractor manifold’ encoding the
angular bearing of the animal’s head (Chaudhuri et al.,
2019 [52]). Intriguingly, direct comparison of neural ac-
tivity in the visual system to activation patterns in trained
convolutional neural networks (the current state-of-the-
art technique for image analysis) suggest that artificial
and biological neural networks may even share common
hierarchical representation and organization of image in-
formation [26,25].

Taken together, these results introduce the question of
whether universal mathematical constraints determine
certain aspects of large biological systems — that large,
overparameterized systems of weakly interacting units
spontaneously collapse onto a low-dimensional mani-
fold. Has evolution driven complex biological networks
toward these emergent motifs, and do they confer
adaptive benefits from the perspective of control or
stability — such as stabilizing an ecosystem against an
invasive predator, or suppressing unwanted fluctuations
in a large genetic circuit? We hope that further devel-
opment of models at the intersection of machine
learning and dynamical systems theory will provide
unified insight into this question.

Conflict of interest statement
DBFis the CSO of Arcascope, which did not sponsor this
work.

Acknowledgements

The authors thank the NSF-Simons Center for Mathematical and Statis-
tical Analysis of Biology at Harvard University, NSF Grant No. DMS-
1764269, NSF Grant No. DMS-1714094 and the Harvard FAS Quantitative
Biology Initiative.

References
Papers of particular interest, published within the period of review,
have been highlighted as:
* of special interest
** of outstanding interest

1. Udrescu Silviu-Marian, Tegmark Max: Al Feynman: a physics-
inspired method for symbolic regression. Science Advances
2020, 6. 16:eaay2631.

2. Forger Daniel B, Kronauer Richard E: Reconciling mathematical
models of biological clocks by averaging on approximate
manifolds. SIAM J Appl Math 2002, 62:1281—-1296.

3. Zhang Dinghuai, et al.: You only propagate once: accelerating
adversarial training via maximal principle. Adv Neural Inf
Process Syst 2019:227-238.

4. Lusch Bethany, Kutz JNathan, Brunton Steven L: Deep learning
for universal linear embeddings of nonlinear dynamics. Nat
Commun 2018, 9:1-10.

5. Weinan E: A proposal on machine learning via dynamical
systems. Communications in Mathematics and Statistics 2017, 5:
1-11.

6. Champion Kathleen, et al.: Data-driven discovery of co-
ordinates and governing equations. Proc Natl Acad Sci Unit
States Am 2019, 116:22445-22451.

Demonstrates a systematic machine learning technique for extracting
governing coordinates from spatiotemporal datasets, and then fitting
the resulting coordinates to differential equations using sparse sym-
bolic regression.

7. Batty Eleanor, et al.: BehaveNet: nonlinear embedding and
Bayesian neural decoding of behavioral videos. Adv Neural Inf
Process Syst 2019.

8. Gutenkunst Ryan N, et al.: Universally sloppy parameter sen-
sitivities in systems biology models. PLoS Comput Biol 2007,
3:10.

9. Hastie Trevor, Tibshirani Robert, Friedman Jerome: The elements
of statistical learning: data mining, inference, and prediction.
Springer Science & Business Media; 2009.

10. Jacot Arthur, Gabriel Franck, Hongler Clément: Neural tangent
kernel: convergence and generalization in neural networks.
Adv Neural Inf Process Syst 2018.

11. Bordelon Blake, Canatar Abdulkadir, Pehlevan Cengiz: Spec-
trum dependent learning curves in kernel regression and
wide neural networks. In International conference on machine
learning; 2020.

12. Ramsundar Bharath, Eastman Peter, Walters Patrick,
Pande Vijay: Deep learning for the life sciences: applying deep
learning to genomics, microscopy, drug discovery, and more.
O'Reilly Media, Inc.; 2019.

13. Gilpin William: Cellular automata as convolutional neural net-
works. Phys Rev 2019, 100, 032402.

14. Bick Christian, et al.: Understanding the dynamics of biological
and neural oscillator networks through mean-field re-
ductions: a review. J Math Neurosci 2020.

15. Lynn Christopher W, Bassett Danielle S: The physics of brain
network structure, function and control. Nature Reviews
Physics 2019, 1:318.

16. Chen Tian Qi, et al.: Neural ordinary differential equations. Adv
*  Neural Inf Process Syst 2018.

Identifies an equivalence between backpropagation of errors across
layers in deep neural networks, and the adjoint method used for opti-
mization of parameters in ODEs and PDEs.

17. Lafferty Kevin D, et al.: A general consumer-resource popula-
tion model. Science 2015, 349:854—-857.

18. Kim Jae K, Forger Daniel B: On the existence and uniqueness
of biological clock models matching experimental data. SIAM
J Appl Math 2012, 72:1842—1855.

19. Forger Daniel B: Biological clocks, rhythms, and oscillations: the
*  theory of biological timekeeping. MIT Press; 2017.
An in-depth study of modeling and analysis of biological rhythms.

20. Gross Thilo, et al.: Generalized models reveal stabilizing fac-
tors in food webs. Science 2009, 325:747-750.

21. Breakspear Michael: Dynamic models of large-scale brain ac-
tivity. Nat Neurosci 2017, 20:340.

22. Mezic¢ Igor: Analysis of fluid flows via spectral properties of
the Koopman operator. Annu Rev Fluid Mech 2013, 45:
357-378.

Current Opinion in Systems Biology 2020, 22:1-7

www.sciencedirect.com


http://refhub.elsevier.com/S2452-3100(20)30014-7/sref1
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref1
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref1
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref2
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref2
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref2
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref3
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref3
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref3
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref4
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref4
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref4
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref5
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref5
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref5
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref6
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref6
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref6
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref7
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref7
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref7
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref8
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref8
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref8
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref9
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref9
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref9
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref10
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref10
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref10
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref11
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref11
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref11
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref11
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref12
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref12
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref12
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref12
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref13
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref13
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref14
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref14
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref14
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref15
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref15
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref15
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref16
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref16
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref17
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref17
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref18
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref18
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref18
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref19
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref19
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref20
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref20
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref21
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref21
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref22
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref22
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref22
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref22
www.sciencedirect.com/science/journal/24523100

23.

24,

25.

Brown André EX, De Bivort Benjamin: Ethology as a physical
science. Nat Phys 2018, 14:653—-657.

Pathak Jaideep, et al.: Model-free prediction of large spatio-
temporally chaotic systems from data: a reservoir computing
approach. Phys Rev Lett 2018, 120, 024102.

Bashivan Pouya, Kar Kohitij, DiCarlo James J: Neural popula-
tion control via deep image synthesis. Science 2019, 364:
6439. eaav9436.

The authors design an artificial neural network to mimic the visual
system, and then use it to generate images that selectively activate
different neuron populations in the macaque visual cortex. Using
various metrics, the authors found that the artificial neural network
reproduced several key aspects of the animals’ neural activity patterns.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Jaegle Andrew, et al.: Population response magnitude varia-
tion in inferotemporal cortex predicts image memorability.
eLife 2019, 8.

Mathis Alexander, et al.: DeepLabCut: markerless pose esti-
mation of user-defined body parts with deep learning. Nat
Neurosci 2018, 21:1281.

Fujii Keisuke, et al.: Data-driven spectral analysis for coordi-
native structures in periodic human locomotion. Sci Rep
2019, 9:1-14.

Goodfellow lan, Bengio Yoshua, Courville Aaron: Deep learning.
MIT press; 2016.

Berman Gordon J: Measuring behavior across scales. BMC
Biol 2018, 16:23.

Mardt Andreas, et al.: VAMPnets for deep learning of molec-
ular kinetics. Nat Commun 2018, 9:1—11.

Gilpin William: Deep reconstruction of strange attractors from time
series. arXiv preprint arXiv:2002.05909. 2020.

Grilli Jacopo, et al.: Higher-order interactions stabilize dy-
namics in competitive network models. Nature 2017, 548:
210-213.

Clark TJ, Luis Angela D: Nonlinear population dynamics are
ubiquitous in animals. Nature Ecology & Evolution2020, 4:75—-81.

Pandarinath Chethan, et al.: Inferring single-trial neural popu-
lation dynamics using sequential auto-encoders. Nat Methods
2018, 15:805—-815.

Lee Jaehoon, et al.: Wide neural networks of any depth evolve
as linear models under gradient descent. Adv Neural Inf Pro-
cess Syst 2019.

Horrocks Jonathan, Bauch Chris T: Algorithmic discovery of
dynamic models from infectious disease data. Sci Rep 2020,
10:1-18.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Learning dynamics from biology Gilpin etal. 7

Hodgkin Alan L, Huxley Andrew F: A quantitative description of
membrane current and its application to conduction and
excitation in nerve. J Physiol 1952, 117:500—544.

Daniels Bryan C, llya Nemenman: Automated adaptive infer-
ence of phenomenological dynamical models. Nat Commun
2015, 6:1-8.

Schmidt Michael, Lipson Hod: Distilling free-form natural laws
from experimental data. Science 2009, 324:81-85.

Kunert-Graf James Michael, et al.: Extracting reproducible
time-resolved resting state networks using dynamic mode
decomposition. Front Comput Neurosci 2019, 13:75.

Casadiego Jose, et al.: Model-free inference of direct network
interactions from nonlinear collective dynamics. Nat Commun
2017, 8:1-10.

Daniels Bryan C, Ryu William S, Nemenman llya: Automated,
predictive, and interpretable inference of Caenorhabditis
elegans escape dynamics. Proc Natl Acad Sci Unit States Am
2019, 116:7226-7231.

Sugihara George, et al.: Detecting causality in complex eco-
systems. Science 2012, 338:496—-500.

Bahri Yasaman, et al.: Statistical mechanics of deep learning.
Annual Review Condensed Matter Physics 2020.

Marques Jodo C, et al.: Internal state dynamics shape brain-
wide activity and foraging behaviour. Nature 2020, 577:
239-243.

Hasnain Agib, Boddupalli Nibodh, Yeung Enoch: Optimal reporter
placement in sparsely measured genetic networks using the
Koopman operator. arXiv preprint arXiv:1906.00944. 2019.

Walch Olivia J, Huang Yitong, Forger Daniel B, Goldstein Cathy:
Sleep stage prediction with raw acceleration and photo-
plethysmography heart rate data derived from a consumer
wearable device. Sleep 2019, 42:zsz180.

Huang Yitong, et al.: Predicting circadian phase across popula-
tions: a comparison of mathematical models and wearable de-
vices. 2020. Under review.

Kimmel Jacob, Andrew Brack, Wallace Marshall: Deep convo-
lutional and recurrent neural networks for cell motility
discrimination and prediction. In /[EEE/ACM transactions on
computational biology and bioinformatics; 2019.

Tikhonov Mikhail: Theoretical microbial ecology without spe-
cies. Phys Rev E 2017, 96.3:032410.

Chaudhuri Rishidev, et al.: The intrinsic attractor manifold and
population dynamics of a canonical cognitive circuit across
waking and sleep. Nat Neurosci 2019, 22.9:1512—-1520.

www.sciencedirect.com

Current Opinion in Systems Biology 2020, 22:1-7


http://refhub.elsevier.com/S2452-3100(20)30014-7/sref23
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref23
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref24
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref24
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref24
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref25
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref25
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref25
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref26
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref26
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref26
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref27
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref27
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref27
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref28
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref28
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref28
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref29
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref29
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref30
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref30
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref31
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref31
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref32
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref32
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref33
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref33
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref33
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref34
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref34
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref35
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref35
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref35
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref36
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref36
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref36
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref37
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref37
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref37
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref38
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref38
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref38
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref39
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref39
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref39
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref40
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref40
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref41
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref41
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref41
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref42
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref42
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref42
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref43
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref43
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref43
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref43
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref44
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref44
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref45
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref45
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref46
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref46
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref46
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref47
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref47
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref47
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref48
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref48
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref48
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref48
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref49
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref49
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref49
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref50
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref50
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref50
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref50
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref51
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref51
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref52
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref52
http://refhub.elsevier.com/S2452-3100(20)30014-7/sref52
www.sciencedirect.com/science/journal/24523100

	Learning dynamics from large biological data sets: Machine learning meets systems biology
	Introduction: the limitations of large mathematical models
	Notions of time
	Reconstructing governing coordinates from experimental data
	Merging machine learning with dynamical modeling
	Extrapolating predictions from limited data
	Conclusion and outlook
	Conflict of interest statement
	Acknowledgements
	References


