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ABSTRACT
This paper presents a policy-driven sequential image augmentation
approach for image-related tasks. Our approach applies a sequence
of image transformations (e.g., translation, rotation) over a training
image, one transformation at a time, with the augmented image
from the previous time step treated as the input for the next transfor-
mation. This sequential data augmentation substantially improves
sample diversity, leading to improved test performance, especially
for data-hungry models (e.g., deep neural networks). However, the
search for the optimal transformation of each image at each time
step of the sequence has high complexity due to its combination
nature. To address this challenge, we formulate the search task as a
sequential decision process and introduce a deep policy network
that learns to produce transformations based on image content. We
also develop an iterative algorithm to jointly train a classifier and
the policy network in the reinforcement learning setting. The imme-
diate reward of a potential transformation is defined to encourage
transformations producing hard samples for the current classifier.
At each iteration, we employ the policy network to augment the
training dataset, train a classifier with the augmented data, and train
the policy net with the aid of the classifier. We apply the above ap-
proach to both public image classification benchmarks and a newly
collected image dataset for material recognition. Comparisons to
alternative augmentation approaches show that our policy-driven
approach achieves comparable or improved classification perfor-
mance while using significantly fewer augmented images. The code
is available at https://github.com/Paul-LiPu/rl_autoaug.
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1 INTRODUCTION

Figure 1: Policy-based sequential image augmentation. Left:
original images; Right: transformed images by a trained pol-
icy net.

Image augmentation has been proved to be an effective technique
for boosting supervised models in a wide variety of multimedia
applications, including image classification[16, 18, 22], video classi-
fication [20], image labeling[28], image segmentation[33], object
detection[27], etc. A typical augmentation method is to apply image
transformations, e.g., translation, over training images and use the
transformed image together with the original image labels to train
image models. Advanced image transformations include Cutout[8],
Cutmix[49], and GAN-based methods[1, 35]. Image augmentation
can bring data variances to the existing training set, mitigate over-
fitting, and eventually improve model generalization capabilities
without extra human annotation efforts. However, the enlarged
training set may lead to high computational cost, depending on the
number of augmented images added, which limits the use of this
approach in large-scale multimedia applications. In this work, we
propose an effective augmentation approach that can outperform
existing methods while using fewer augmented images.

In the past literature, a classical augmentation approach is to
manually apply multiple image transformations to each training
image to obtain an enlarged training dataset. Researchers recently
proposed to search for the optimal augmentation policy for a given
training set. Cubuk et al.[5], for example, define a policy as a set of
sub-policies, and each sub-policy includes two consecutive image
transformations. A candidate policy’s performance is evaluated by
how this policy can boost a proxy task, e.g., classification of a hold-
out dataset [25]. The optimal policy is obtained through searching
the feasible hyper-parameter space, including image transforma-
tion types, operation magnitudes, and the possibility of transfor-
mations. This search-based augmentation method has been suc-
cessfully applied in multiple image relevant tasks, including image
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Figure 2: Sketch of the proposed policy-based data augmentation approach. There are three major stages, which are alterna-
tively performed over iterations. 𝑎𝑡 , 𝑞𝑡 , 𝑟𝑡 represents the actions, Q-value and reward respectively at step t. See texts for more
details.

classification[16, 18, 22], and object detection[12, 27]. Studies over
multiple datasets also suggested that one dataset’s optimal policies
might still be effective for a separate dataset.

The above search-basedmethods aim to find the optimal augmen-
tation policy for the whole dataset and then apply it to each training
image. While the policy works well for a majority of the training
images, it is expected that the optimal augmentation policies for in-
dividual images might be different. Moreover, some transformations
(e.g., shifting 10 pixels to the right) might lead to invalid training
sample-label pairs. For example, in Fig.1, the image of an elephant
remains recognizable when translated to the left. In contrast, the
image of fish might lose critical information (the fish’s head) if
the same transformation is applied. The optimal transformation
or transformation combinations are sample-specific and should be
optimized separately and independently.

There are also works exploring augmentation strategies based on
image content[10, 31]. [10] searches perspective transformations
maximizing the classification loss, but the algorithm operates on
perspective transformation matrix, and it may not easily extend
to other types of transformations. [31] uses generative adversar-
ial training to generate a sequence of transformations for each
sample. However, the length of the sequence is fixed, making it im-
possible to apply different numbers of transformations to samples.
Besides, the objective of generative adversarial training encour-
ages the transformed image follow the distribution of original data,
which excludes severe transformations and difficult samples for the
classifier.

In this work, we develop a learning-based sequential approach to
fully exploit the potential of data augmentation. Our approach aims
to seek a sequence of image transformations for a training image.
The optimal transformation at each step of the sequence, including
both types and magnitudes, is determined by the visual content
of the input image, and different images might end up with differ-
ent image transformations. This sequential image augmentation is
thus sample-specific, in contrast to the dataset-wide augmentation
strategies. For a given image, the search space for finding the opti-
mal sequence is of high complexity due to the combination nature.

For the same reason, Cubuk et al.[5] employ only two consecutive
transformations in each sub-policy. To address this challenge, we
introduce a deep policy network to map the current input image
to its optimal transformation or action. The transformation at a
time step is selected to maximize both immediate reward and accu-
mulated future reward. In this way, we cast the sequential image
transformation task as a sequential decision process and train the
policy network in the reinforcement settings.

We apply the proposed image augmentation approach for the
image classification task to demonstrate its effectiveness. A joint
scheme is introduced to alternatively train a classifier and the deep
policy network. At each iteration, for each training image, the
immediate reward of a candidate transformation is defined to en-
courage the generation of more difficult samples w.r.t. the current
classifier. A stop condition is also introduced to prevent invalid
augmented images. We empirically find that, with the proposed
reward and stop condition, the policy network tends to select a
few transformations from the candidate pool, and the join training
scheme could largely diversify the augmented dataset.

We implement the proposed policy-driven augmentation ap-
proach for two settings: using only one type of image transfor-
mation, i.e., translation, or using a group of image transformation.
Two public datasets for image classification and a newly collected
dataset for material recognition are used for evaluation purposes.
Experiments with comparisons to alternative augmentation meth-
ods suggested that (i) our approach with only one transformation
type is more effective than other methods using a single transfor-
mation (e.g., Cutout[8]). Figure 1 showed a sequence of translated
images where the translation magnitudes are determined by the
policy network. (ii) While using multiple transformations, our ap-
proach achieved the state-of-the-art performance while using a
much less number of augmented samples. The proposed approach
can be easily extended to other image or video tasks.

The three contributions of this work are: (i) a novel policy-driven
approach for sequential image augmentation; (ii) an iterative ap-
proach for jointly training the policy net and classifiers; (ii) im-
proved performance and augmentation efficiency overexisting aug-
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mentation approaches on both public image datasets and a newly
collected image dataset.

2 RELATIONSHIPS TO PREVIOUS WORKS
This work is closely relevant to four streams of research in the areas
of visual content analysis and machine learning.

Manual Image Augmentation As aforementioned, a classi-
cal image augmentation approach is to apply one or multiple im-
age transformations over each training image. Common transfor-
mations [18] [14, 16, 18] include translation, reflection, scaling,
cropping, and color adjustment. Each transformation also comes
with different hyper-parameters, e.g., magnitudes for translation.
These transformations have achieved encouraging improvement
for multiple image relevant tasks, including image classification
[4, 14, 16, 18, 22, 34] and object detection[12, 27]. In the recent
literature, there are also multiple novel transformations proposed
for various image tasks. Elastic distortion is used on digit recog-
nition dataset MNIST[38, 45]. Patches could be randomly selected
and replaced with constant value[8], random noise[52], or mixed
patches[49]. In image classification tasks, images from the same
class could be mixed by assigned weights[19, 40, 51]. In object detec-
tion or instance segmentation tasks, objects and their labels could
be cut and pasted to other images[9, 11]. Furthermore, there are
studies applying augmentation in image feature space[7, 30, 43, 44].
The above works often manually select a set of transformations
empirically and apply them over all training images. The trans-
formation parameters (e.g., magnitudes in translation) are usually
fixed for all images. This manual augmentation policy might not
be the optimal one in terms of boosting system performance. It is
possible to employ as many transformations over a single dataset,
which, however, might suffer from the exponentially grown training
complexity.

Search-based Augmentation In the recent literature, there are
multiple search-based augmentation approaches proposed to boost
both system performance and augmentation efficiency. They aim
to search for the optimal augmentation strategy for a given dataset
in order to avoid manual or random augmentation strategies. In
the pioneer work [5], Cubuk et al. employ a hold-out set to assist in
the search for optimal transformation pairs where each pair com-
prises two consecutive transformations and their parameters (e.g.,
magnitudes). Zoph el al. [53] implement this methods to object
detection task. Following AutoAug, new methodologies are pro-
posed to reduce the policy searching complexity. Lim et al. [25] and
Hataya et al. [15] remove classifier training from policy searching
and directly use the performance of the classifier on transformed
validation set as a reward. Ho et al. [17] and Lin et al. [26] jointly
train classifier with policy searching, which leads to the non-fixed
policy during classifier training. Recently, Cubuk et al. [6] propose
to reduce the searching space and directly find the optimal classifier
by grid search.

The above approaches could discover the optimal transforma-
tions or transformation combinations which are effective dataset-
wide. These transformations might be suboptimal for individual
training images. Transformations with fixed magnitudes (e.g., trans-
lation) might even lead to invalid training samples.

The proposed research is aligned with the so-called sample-
specific augmentation methods [10, 31], which aim to find the opti-
mal transformation or transformation sequence for each image. For
example, Ratner et al. [31] employ the generative adversarial train-
ing framework to generate a fixed-length sequence of transforma-
tion for each image. The discriminator predicts if the transformed
image becomes an outlier in the natural image distribution. Then
the generator could predict a transformation sequence that does not
change the information regarding to image classification. However,
this method forces a fixed length of transformation sequence and
may encourage generating easily recognized samples. [10] searches
the augmentation strategies for each sample in a restricted per-
spective transformation space. While they select transformation
within a trust region to avoid data corruption, the transformation
which causes the highest classification loss for the image is the best
for augmentation. But this method might be limited to perspective
transformation.

GAN based Augmentation With the mature of GAN tech-
niques, there are multiple efforts integrating GAN models to aug-
ment the training dataset. Previous works [1, 23, 35, 39, 41] tried
to generate new images from estimated distributions, which are
used to enlarge the training dataset. Generative Adversarial Net-
works could learn the image distribution and sample data from
random latent variables[1], synthetic images[35, 39], and natural
images[23]. [41] models the data distribution by a Bayesian ap-
proach and learns a generator network by a generalized Monte
Carlo EM algorithm. Those sampling-based methods are affected
by the quality of generated images, and there might be artifacts
affecting classifier feature learning. In particular, similar to adver-
sarial samples[46], we empirically find that GAN-generated images
and natural images bear different underlying distribution, and the
mixture use of both would, in general, lead to depressed classifier
performance.

Reinforcement learning The proposed method is motivated
by the success of deep reinforcement learning in multiple areas, in-
cluding robotic control[13, 24], game agents[29, 36, 37], network ar-
chitecture search[2, 54], image restoration[47], face hallucination[3],
object tracking[48], image captioning[32], and image restoring [47].
In this work, we formulate the search for sequential image transfor-
mation as a sequential decision process and employ the deep policy
network to parameterize the mapping between input images and
the optimal transformation (and its hyper-parameters). In this way,
the agent is guided by the policy network to select a transformation
based on the visual content of the input image. The agent is trained
in the reinforcement settings to maximize both immediate rewards
and cumulative future rewards. The proposed method is the first
of its kind in learning image-specific policies for sequential image
augmentation.

3 OUR APPROACH
The objective of this work is to develop a policy-based augmentation
approach for classification purposes. Our approach aims to jointly
learn a classifier and a policy network in a reinforcement learning
setting. The developed techniques can be potentially used for other
image tasks, e.g., object detection, video classification, etc.
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Fig.2 sketches the proposed augmentation approach which in-
cludes three major stages. In stage 1, a deep policy net is trained to
produce the optimal transformation for each training image or its
transformed version. A classifier is used to define the immediate
reward of a candidate transformation, as introduced later, and thus
regularize the training of the policy net. In stage 2, the policy net
is applied over each training image to transform training images
and generate an augmented dataset. In stage 3, both the original
images and transformed images are used to update the classifier.
We alternatively perform the above three stages to jointly train the
deep policy model and classifier.

3.1 Formula: Sequential Image Augmentation
Consider image classification tasks where a set of training images
are annotated for training the classifier. Traditional image augmen-
tation methods either manually select a set of image transforma-
tions or employ various optimization methods to search for the
optimal transformations or transformation combinations. In this
work, we aim to apply a sequence of basic image transformations
over each training image, including flipping, translating, rotating,
blurring, and others as reviewed in Section 2. By denoting the se-
quence of transformation functions as 𝑓1, 𝑓2, ..., 𝑓𝑡 , the training
image 𝐼0 could be transformed to 𝐼𝑡 at step t as follows:

𝐼𝑡 = 𝑓𝑡 ◦ 𝑓𝑡−1 . . . ◦ 𝐼0 . (1)

where 𝑡 is the length of the sequence and ◦ denotes the operator
of transformation. Each transformation 𝑓𝑖 is specified by its trans-
formation type and magnitude. The transformed image at a step of
the sequence is used as the input image to the next transformation.

The sequential image augmentation is characterized by two folds
compared to other augmentation strategies. Firstly, it embraces the
idea of composition. For example, a translation by 15 pixels is
equivalent to applying three translations by 5 pixels in a row. This
composition principle can largely reduce the feasible space while
searching for transformation magnitudes. Secondly, a sequence
of augmentation transformation might involve multiple types of
transformations and thus enhance the diversity of the augmented
dataset.

The proposed sequential image augmentation approach, how-
ever, brings two major challenges. Firstly, the search for the opti-
mal sequence of transformation is of much higher complexity than
finding the optimal basic transformations, mainly due to the com-
bination nature. In particular, different image transformations at a
step of the sequence will lead to different transformed images for
which the optimal transformation would be different accordingly.
This means that the selection of the optimal transformation at each
step should be jointly solved with the selection problems for the
following steps. Secondly, the sequential augmentation will have
to incorporate stop conditions to prevent the generation of invalid
transformed images. Taking the image of an elephant in Figure 1 for
instance, the three transformed images are still valid after applying
multiple translations. It will, however, become non-recognizable if
only the top-left corner is kept. Therefore, it is critical to terminate
the sequence of image transformation once the transformed images
are not semantically consistent with the class label. In the follow-
ing subsection, we will explain a deep policy-based optimization
method to address the above challenges.

Action Magnitudes Explanation
ShearX i, ii (i) shear left 6%; (ii) shear right 6%
ShearY i, ii (i) shear up 6%; (ii) shear down 6%

TranslateX i, ii (i) move left 9%; (ii) move right 9%
TranslateY i, ii (i) move up 9%; (ii) move down 9%
Rotate i, ii rotate (i) counter-clockwise or (ii) clockwise 6 degree
Contrast i, ii contrast factor (i) 0.9; (ii) 1.1
Color i, ii enhance color factor (i) 0.9; (ii) 1.1

Brightness i, ii brightness factor (i) 0.9; (ii) 1.1
Sharpness i, ii sharpness factor (i) 0.9; (ii) 1.1

AutoContrast n/a -
Invert n/a -
Equalize n/a -
Solarize n/a -
Posterize i, ii, iii reduce color bits to (i) 5; (ii) 6; (iii) 7

Table 1: Transformation types and their magnitudes used in
this work. Each magnitude defines a possible action for the
agent.

3.2 Policy-based Sequential Image
Augmentation

We cast the search of the optimal transformation sequence to be a
sequential decision process where an agent acts to select an appro-
priate transformation for an input image. Each action is drawn from
an action set 𝐴 including all transformation types (e.g., translation
or rotation) and the relevant magnitudes (e.g., displacement pixels
or angels). At time step 𝑡 , the agent takes state 𝑆𝑡 as input, selects
action 𝑎𝑡 which have the largest Q value as

𝑎𝑡 = argmax𝑎∈𝐴𝑄 (𝑎, 𝑆𝑡 ) (2)

and transforms the image into 𝐼𝑡+1. The sequence of decisions made
by the agent will lead to a set of augmented images, and we denote
𝐼0 as an original image. This process could be illustrated as:

𝑆0
𝑎0→ 𝑆1

𝑎1→ · · · 𝑎𝑇−1→ 𝑆𝑇

A policy network is trained in the reinforcement settings to guide
the agent’s decision, which is either an image transformation or an
early stopping action.

Figure 2 demonstrates how the agent acts to transform a training
image. For a training image 𝐼0, the agent first employs the policy
net to select an action. Then, we apply the action over 𝐼0 to obtain
𝐼1, i.e., the transformed image. The agent will apply the policy net
over 𝐼1 again and repeat the above steps to obtain the sequence
of transformed images: 𝐼2, 𝐼3, . . .. In the rest of this subsection, we
will provide details of the agent in terms of actions, states, rewards,
stop conditions, and objective functions.

Action The action space𝐴 consists of all possible image transfor-
mations that the agent could use to augment individual image-label
pairs. We also introduce a special action, i.e., stop action, which,
once selected, will terminate the sequence of transformation. An im-
age transformation might be associated with two attributes: trans-
formation type and magnitude. Table 1 lists the types of image
transformations used in this work and their magnitude definitions.
Note that both image transformations and early stops will be de-
termined by the policy net according to the visual content of the
input image.

State The state 𝑆𝑡 of the environment represents the information
available to the agent at time 𝑡 . In the proposedmethod, 𝑆𝑡 is defined
by 𝑆𝑡 = {𝐼𝑡 , 𝑎𝑡−1}, where 𝐼𝑡 is the image at t, and 𝑎𝑡−1 is the previous
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action before 𝐼𝑡 . 𝑎𝑡−1 will be encoded to be a one-hot vector without
stopping action, and 𝑎−1 is a zero vector. The state could provide
information on the image content and historical actions, and will
be used for the agent to make decisions. For example, an agent may
not choose to translate the image to the left if the main object is
near the left boundary. The agent may not translate the image to
the right if it just moved the image to the left in the previous step.

Reward For a training image, the reward of an action is de-
fined to encourage the generation of difficult images that challenge
the current classifier. We first train a classifier using the original
training data. Then, we apply each candidate transformation over
the input image and feed both the original image and transformed
image to the classifier. Last, the reward of this transformation is
defined as the difference between two images’ classifier confidences
w.r.t. the true label. Let 𝑐𝐼 ,𝑘 denote the estimated confidence of the
image I belonging to the class k. The reward of a transformation 𝑓

is:
𝑅 = 𝑐𝐼 ,𝑘 − 𝑐 𝑓 ◦𝐼 ,𝑘 (3)

The reward would be positive if the transformed image becomes
more difficult to the classifier, i.e., receiving a lower confidence
level; negative if otherwise. Adding difficult samples to the training
set has been approved to be an effective way to avoid over-fitting
and improve classifier generalization capabilities [10].

Stop Condition The agent will choose to terminate the sequen-
tial transformation once the transformed image receives a wrong
class prediction from the classifier, i.e., apply a stop action. This
intuitive action is used to ensure that the transformation does not
substantially change the visual content of the input image and the
transformed images are still recognizable for the original image
labels. When the stop condition is met, the reward is defined as:

𝑅𝑠𝑡𝑜𝑝 = 𝑐 𝑓 ◦𝐼 ,𝑘 − 𝑐𝐼 ,𝑘 (4)

In contrast to Eq. (3), the reward is positive when the transformed
image receives larger confidence than the input image. The bene-
fits of additionally using this stop condition are two-fold. Firstly,
without this stop condition, the agent will be purely driven by the
reward function Eq. (3) and seek for difficult images and eventually
lead to invalid image-label pairs. The stop condition will constrain
the transformations within a "trust region" where the augmented
samples are visually different from the original image but are still
recognizable. Secondly, the stop condition is able to prevent the
augmentation of outlier samples. For example, if an image receives
a wrong label from the classifier, it will not be augmented since it
leads to a stop action immediately.

Objective functionWe use a deep policy network to approxi-
mate theQ function and employ the concept of double Q-learning [42]
to stabilize the training of the agent. In particular, during training,
we maintain two policy networks: one is the online agent network,
and the other one is the target network. The target network is the
same as the online network, except that its parameters are copied
from the online network every 𝜏 steps. The target network kept
fixed for all other steps. The agent is trained to minimize the differ-
ence between target Q values (fixed network) and current estimate
of Q values (online network). Like [29], we employ a temporal
difference loss function. Let 𝑟𝑡 denote the immediate reward after
action 𝑎𝑡 , 𝑞(𝑆𝑡 , 𝑎𝑡 ) denote the estimated online Q values for the
current state, 𝑞′(𝑆𝑡 , 𝑎𝑡 ) is the target Q value by the fixed target

Figure 3: Empirical study over a toy dataset. The reward and
stop actions would lead to difficult samples (being closer to
the decision boundary). See Section 5 for more details.

network [42]. The loss function is defined as:

𝐿𝑜𝑠𝑠 = (𝑦𝑡 − 𝑞(𝑆𝑡 , 𝑎𝑡 ))2 (5)

where

𝑦𝑡 =

{
𝑟𝑡 + 𝛾 ∗𝑚𝑎𝑥𝑎′𝑞

′(𝑆𝑡+1, 𝑎′) 1 ≤ 𝑡 < 𝑇

𝑟𝑇 𝑡 = 𝑇
(6)

𝛾 is the discount factor, and 𝑇 is the episode length. This loss func-
tion encourages the agent to have correct accumulative reward esti-
mation. During training, the samples 𝑆𝑡 , 𝑆𝑡+1, 𝑟𝑡 are retrieved from
replay memory and are used to calculate this objective function. In
each training iteration, the gradients are propagated through the
online network and used for agent weights update, with the target
network fixed. The memory replay and double network learning
can dramatically reduce the variance of deep Q learning.

3.3 Joint Training
We develop an alternative training scheme to train the classifier and
policy network jointly. The scheme starts with training the classifier
over the original training dataset. Then, there are three iterative
steps. The first step is to train the agent with the rewards generated
from the current classifiers. The second step is to employ the agent
to augment the training dataset and we retrain the classifier over
the augmented dataset at the last step. We repeat these three steps
for multiple iterations until the classifier performance is saturated.
Note that we collect all the transformed images during the iterative
training to form the final augmented dataset. Our empirical studies
suggest that the agent tends to select a few transformation types
during a sequence of transformations, and the use of augmented
data from multiple iterations will diversify the training samples for
the final classifier.

4 EXPERIMENTS
We test and evaluate the proposed policy-based augmentation ap-
proach for image classification tasks.

Datasets We employ three image datasets. The first one is a
newly collected image dataset for garbage classification. It includes
6234 images from 8 categories (5 recyclable categories: Cardboard,
Glass, Metal, Paper, Plastic; 3 non-recyclable categories: Wet Trash,
Food, Bottle).We split the dataset into three-fold: a training set (2774
images), a validation set (310 images), a testing set (3150 images).
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Figure 4: Classifier errors over iterations of augmenta-
tion.The proposed augmentation method uses 14 transfor-
mations (left) or translation only (right).

The training set is further divided into two parts: 1664 images for
classifier training and 1110 images for policy network training. All
images are resized to have a longer side of 500 pixels. As shown
in Figure. 5, the testing images were collected in different settings
from the training images (lighting conditions, camera angles, etc.)
from the training images, which makes this dataset a challenging
task for state-of-the-art classification models.

The other two datasets are the public image datasets: CIFAR-10,
CIFAR-100[21]. We use the standard training/testing splits. For each
dataset, we further divide the training set into two parts: 60% for
classifier training and 40% for policy network training. The classifier
and agent are iteratively trained, as stated in the last section. Then,
the agent acts to augment each training image and the augmented
dataset will be used for classifier training in the next iteration.

Classification NetworksWe implement and train multiple net-
work backbones to obtain the classifier including Wide-ResNet-28-
10, Wide-ResNet-40-2, Wide-ResNet-28-2, ResNet-50, and Shake-
Shake(26 2x96d) [5]. The hyperparameters of these networks are set
to be the same as the previous work [5]. In particular, the variants
of Wide-ResNet[50] are trained with a SGD optimizer (batch size
= 128, initial learning rate = 0.1, momentum = 0.9, weight decay
rate = 5e-4) for 200 epochs. The learning rate is scheduled by a
cosine learning decay with an annealing cycle, and the same sched-
uling is applied to other networks training. The Shake-Shake net
is trained with an initial learning rate of 0.01, weight decay rate
of 0.001 for 1800 epochs. We also follow the same normalization
for input images on the CIFAR dataset as [5](mean=[0.491, 0.482,
0.447], standard deviation=[0.247, 0.243, 0.262]). The ResNet-50 is
trained with a SGD optimizer (batch size = 64, initial learning rate
= 0.1, momentum = 0.9, weight decay rate = 5e-4) for 270 epochs.
We preprocess the images as [25] by cropping a center patch of 224-
by-224 pixels and apply normalization(mean=[0.485, 0.456, 0.406],
standard deviation=[0.229, 0.224, 0.225]) to the RGB channels. Other
than the classifier trained on 60% of training samples, which is used
for policy network reward calculation, we also train a classifier
on all training samples along with the augmented samples, whose
performance is reported in Section 5.

Policy Network Figure 2 illustrates the inputs and outputs of
the policy network. We employ the replay memory method and
double Q-learning [42] to train the agent. At each step t, the agent
takes the image and previous action as input and outputs a vector
for expected Q values on all possible actions. The network archi-
tecture is the same as [47]. The input image is first encoded to a
32-dimensional feature vector by the feature extractor module(four
convolutional layers and one fully connected layer). Then, a one-hot

vector representing the previous action is concatenated to the image
feature vector. The concatenated vector is processed by the Long
Short-Term Memory module, which stores the historical transfor-
mation information. Finally, another fully connected layer outputs
the Q value vector. The action with the largest Q value is executed
during testing.

To study the transferibility of our policy, we train the policy
network with one classifier and then apply the same augmentation
policy to other classifiers. In our experiments, the policy network is
trained with ResNet-50 on Garbage dataset and Wide-ResNet-28-10
classifier on CIFAR datasets. During training, we have one image
from our policy training set, and apply 𝜖-Greedy action selection
until a stop action or the maximum step. The 𝜖 starts with 1 for
5e3 steps then linearly decreased to 0.1 before 1e6 steps. We update
the policy network every 4 steps with an Adam optimizer (batch
size = 64, initial learning rate = 1e-4) for 2e6 steps. The learning
rate is decayed exponentially to 2.5e-5 during training. The target
network is updated with the weights from the latest agent network
every 𝜏 = 1𝑒4 steps. This sequence of data (state, action, reward)
for one image is considered one episode and added to the replay
memory. We set the maximum number of steps of one episode
to be 10 empirically. 64 episodes are randomly sampled from the
replay memory for gradient calculation in each training iteration.
The replay memory size is 500,000 for CIFAR10 and CIFAR100 and
15,000 for Garbage respectively.

5 RESULTS
Study on Toy Data We first investigate how the proposed stop
action and reward affect the augmentation using a toy data. This
toy dataset includes a set of 40 two-dimensional data points. These
20 positive and 20 negative points are generated from two Gaussian
distributions (illustrated by the oval whose radius is the sigma of
Gaussian at radius direction) respectively. We train a logistic regres-
sion model as the classifier. To augment a data point, we randomly
draw multiple nearby data points and select the one that receives
the largest reward as defined in Eq. (3). This augmentation strategy
will choose the most difficult data points from the neighborhood
of a given data point. We repeat the above step until the newly
augmented point receives a wrong prediction from the classifier.
Figure 3 plots the scatter of the data points and the sequence of
transformations for a negative and a positive data point (square
points with arrows between them). The augmented data points in
the sequence are getting closer to the decision boundary. In this
way, the reward and the stop action jointly function to generate
valid yet difficult samples.

Dataset Model Baseline Cutout [8] Ours(Trans)

CIFAR-100 Wide-ResNet-40-2 26.00 25.2 22.58
Wide-ResNet-28-10 18.80 18.4 17.60

Table 2: Classification error rate (%) on testing set of CIFAR-
100. The proposedmethod only used the translation actions.
See texts for more details.

Results on the Garbage Dataset Table 3 reports the classifica-
tion accuracies of different approaches on the garbage dataset. We
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Figure 5: Sample images from the Garbage dataset. Two im-
ages of metal from the training (left) and testing set (right)
have different appearance due to varying lighting condi-
tions.

train three classifier networks with the original training set (base-
line) or augmented dataset, and compare the result with Cutout [8].
For fair comparisons, we only use image translation as possible ac-
tions for agent. As shown in table 1, it involves two transformations
(TransX and TransY) with two magnitude or four atomic actions.
The settings for Cutout are the same as the original paper [8]. Re-
sults showed that our learned augmentation policy could clearly
outperform the Cutout method while using different network archi-
tectures. This dataset is challenging because of the different settings
between the train set and test set. In Figure. 5, the Cutout method
failed to work on this testing image (right) while the proposed
method made a correct prediction. It is noteworthy that Cutout
did not outperform the baseline while using Wide-ResNet-28-2. In
contrast, our translation-only augmentation approach consistently
outperforms the baseline.

Model Baseline Cutout[8] Ours(Trans)
Wide-ResNet-28-2 22.06 21.27 22.25
Wide-ResNet-40-2 22.31 23.49 25.46

ResNet-50 27.37 29.46 33.08
Table 3: Testing Classification Accuracy (%) on the Garbage
dataset.

Iteration 1 2 3 4 5
Average 1.89 1.91 1.78 2.23 2.54

Std 1.35 1.45 1.22 1.49 1.68
Table 4: Average number and standard deviation of trans-
formation types used in each transformation sequence on
CIFAR-100 across all joint training iterations.

Figure 6: Frequency of transformation types in the augmen-
tation sequences for CIFAR-100.

Results on CIFAR10 and CIFAR100 We first study how the
classifier’s performance changes over iterations in the proposed

joint training scheme. Figure 4 plots the performance of Wide-
ResNet-28-10 over iterations on CIFAR100. When we uses 14 kinds
of transformations, we find the performance becomes stable around
the third iteration, and the classifier reaches the best performance
at iteration 5. Similarly, while only using translation for augmenta-
tion, the classifier achieves the lowest test error at iteration 3. This
empirical study showed that the joint training scheme could largely
improve system performance.

Table.2 reports the classifier performance (error rate) over the
challenging CIFAR-100 while using Cutout [8] or the proposed
policy-based augmentation method with only translations as the ac-
tions. We observe that our policy significantly outperforms Cutout,
especially for Wide-ResNet-40-2 (error rate decreased by 3.4 with
our policy, error rate decreased by 0.8 with Cutout). This result
shows the effectiveness of learned translation compared to random
patch erasing in Cutout.

Table.5 includes the results of state-of-the-art data augmentation
methods. We implement the proposed policy-based method with
all the 14 transformations. We also report for each augmentation
approach (last row) the relative size of the augmented data com-
paring to the original training data. From the table, we observed
similar or higher performance compared to previous methods on
both datasets while using a much less number of augmented sam-
ples. For example, the AA method [5] employs 25 augmentation
sub-policy, which results in 75 different transformed images for
each original image. The proposed method augments each image
less than 50 times on CIFAR100 and less than 30 times on CIFAR-10.
The above comparisons indicate the efficiency of sample-specific
augmentation policy over dataset-wide augmentation policy.

We visualize several images and their sequential transformations
and report the overall statistics of the selected actions on CIFAR-
100. In this set of qualitative experiments, we employ the proposed
policy-based method with translation only since this transforma-
tion can be better visualized than others. Fig.7 plots multiple images
(column 1) and the sequence of transformed images. We can ob-
serve that the trained policy can generate well-diverse yet valid
augmented images which are still recognizable after transforma-
tions. This well demonstrates the effectiveness of the proposed
reward and stop condition. Fig.8 plots the transformed versions of
an image over iterations.We can observe that the agent tends to
translate the image to different directions across iterations, result-
ing in localized images highlighting different parts of the object.
The iterative joint training scheme dramatically increases the diver-
sity of augmented images. Note that, at iteration 4, the agent tends
to stop further augmentations and output very similar augmented
images over the sequence. This is because the current classifier, af-
ter multiple iterations, can well recognize most transformed images
and is less motivated to transform the original image.

We calculate the number of transformation types that each se-
quence might involve while using 14 transformations over CIFAR-
100. Figure 6 shows the frequency of transformation types in the
transformation sequences. We can observe that the agent used less
than 3 transformation types for most transformation sequences.
Table 4 also lists the average number of transformation types across
iterations. On average, the first iteration uses 1.89 transformation
types and the fifth iteration uses 2.54 transformation type. The
above statistics shows that the iterative joint training scheme can
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Figure 7: Examples of images transformed by our method. Two transformations: TransX and TransY are used by the agent.

Figure 8: Examples of images generated at different iterations. Two transformations: TransX and TransY are used by the agent.

Dataset Model Baseline AA[5] PBA[17] Fast AA[25] Faster AA[15] RA[6] Ours

CIFAR-10 Wide-ResNet-28-10 3.90 2.60 2.60 2.70 2.60 2.70 2.70
Shake-Shake (26 2x96d) 2.90 2.00 2.00 2.00 2.00 2.00 2.06

CIFAR-100 Wide-ResNet-40-2 26.00 20.70 - 20.70 21.40 - 20.38
Wide-ResNet-28-10 18.80 17.10 16.70 17.30 17.30 16.70 16.69

Augmentation Size – 75× 200× 75 × 75× 196× <50×
Table 5: Classification error rate (%) on testing sets of CIFAR10, CIFAR-100. The last row lists the number of transformed
images for each training image.

actually diversify the ways to augment images and thus improve
the quality of the augmented data.

6 CONCLUSION
We developed a policy-based sequential image augmentation ap-
proach to augment a training image according to its visual content.
We cast the search for sample-specific transformation sequences as
a sequential decision process and introduce amethod to jointly train
the classifier and agent in the reinforcement learning settings. Ex-
periments on both newly collected image dataset and public datasets
show that our method achieves similar or better performance than

previous augmentation methods while using significantly less trans-
formed images. Notably, even with only translations, our method
significantly outperforms the popular Cutout method. Our augmen-
tation approach can be readily extended to solve other multimedia
content understanding tasks, e.g., object detection, video classifica-
tion, and video parsing, etc.
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