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Abstract

In this paper we consider the clustering coefficient, and clustering function in a
random graph model proposed by Krioukov et al. in 2010. In this model, nodes are
chosen randomly inside a disk in the hyperbolic plane and two nodes are connected
if they are at most at a certain hyperbolic distance from each other. It has been
previously shown that this model has various properties associated with complex
networks, including a power-law degree distribution, “short distances” and a non-
vanishing clustering coefficient. The model is specified using three parameters: the
number of nodes n, which we think of as going to infinity, and «, v > 0, which we think
of as constant. Roughly speaking, the parameter « controls the power law exponent
of the degree sequence and v the average degree.

Here we show that the clustering coefficient tends in probability to a constant
~ that we give explicitly as a closed form expression in terms of «,rv and certain
special functions. This improves earlier work by Gugelmann et al., who proved that
the clustering coefficient remains bounded away from zero with high probability, but
left open the issue of convergence to a limiting constant. Similarly, we are able to
show that c(k), the average clustering coefficient over all vertices of degree exactly k,
tends in probability to a limit (k) which we give explicitly as a closed form expression
in terms of «, v and certain special functions. We are able to extend this last result
also to sequences (k»)» where k, grows as a function of n. Our results show that
~(k) scales differently, as k grows, for different ranges of a. More precisely, there
exists constants c.,, depending on « and v, such that as k — oo, y(k) ~ ca,v - k24 if
1<a<?, y(k)~cay - log(k) k" ifa=3andv(k) ~ ca, - k=" when a > 3. These
results contradict a claim of Krioukov et al., which stated that (k) should always
scale with k! as we let k grow.
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1 Introduction and main results

In this paper, we will consider clustering in a model of random graphs that involves
points taken randomly in the hyperbolic plane. This model was introduced by Krioukov,
Papadopoulos, Kitsak, Vahdat and Boguna [25] in 2010 — we abbreviate it as the KPKVB
model. We should however note that the model also goes by several other names in
the literature, including hyperbolic random geometric graphs and random hyperbolic
graphs. Krioukov et al. suggested this model as a suitable model for complex networks.
It exhibits the three main characteristics usually associated with complex networks: a
power-law degree distribution, a non-vanishing clustering coefficient and short graph
distances.

1.1 KPKVB model

We start with the definition of the model. As mentioned, its nodes are situated
in the hyperbolic plane H, which is a surface with constant Gaussian curvature —1.
This surface has several convenient representations (i.e. coordinate maps), such as the
Poincaré half-plane model, the Poincaré disk model and the Klein disk model. A gentle
introduction to Gaussian curvature, hyperbolic geometry and these representations of
the hyperbolic plane can be found in [36]. Throughout this paper we will be working with
a representation of the hyperbolic plane using hyperbolic polar coordinates, sometimes
called the native representation. That is, a point « € H is represented as (r, ), where r
is the hyperbolic distance between u and the origin O and 6 as the angle between the
line segment Ou and the positive x-axis. Here, when mentioning “the origin” and the
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Figure 1: Simulation G(n; «,v) with o = 0.9, v = 0.2 and n = 5000.

angle between the line segment and the positive z-axis, we think of Il embedded as the
Poincaré disk in the ordinary euclidean plane.

The KPKVB model has three parameters: the number of vertices n, which we think of
as going to infinity, and o > % v > 0 which we think of as fixed. Given n, a, v we define
R = 2log(n/v). Then the hyperbolic random graph G(n;a,v) is defined as follows:

* The vertex set is given by n i.i.d. points uy,...,u, denoted in polar coordinates
u; = (r4,6;), where the angular coordinate 6 is chosen uniformly from (—, 7] while
the radial coordinate r is sampled independently according to the cumulative
distribution function

0 if r <0,
Fon(r) = Soplep=t ifo<r <R, (1.1)
1 ifr > R.

* Any two vertices u; = (r;,6;) and u; = (r;, 6,) are adjacent if and only if dp(u;, u;) <
R, where dy denotes the distance in the hyperbolic plane. We will frequently be
using that, by the hyperbolic law of cosines, dg(u;,u;) < R is equivalent to

cosh(r;) cosh(r;) — sinh(r;) sinh(r;) cos(|6; — 8;]2x) < cosh(R),
where |al, = min(|a|,b — |a|) for —b < a < b.

Figure 1 shows a computer simulation of G(n; «, v).

As observed by Krioukov et al. [25], and proved rigorously by Gugelmann et al. [21],
the degree sequence of the KPKVB model follows a power-law with exponent 2o + 1.
Gugelmann et al. [21] also showed that the average degree converges in probability to
the constant 8va?/m(2a — 1)2, and they showed that the (local) clustering coefficient is
non-vanishing in the sense that it is bounded below by a positive constant a.a.s. Here,
and in the rest of the paper, for a sequence (E,), of events, E,, asymptotically almost
surely (a.a.s.) means that P (E,) — 1 as n — oo.

Apart from the degree sequence and clustering, the third main characteristic as-
sociated with complex networks, “short distances”, has also been established in the
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literature. In [1] it is shown that for a < 1 the largest component is what is called an
ultra-small world: if we randomly sample two vertices of the graph then, a.a.s., condi-
tional on them being in the same component, their graph distance is of order loglogn.
In [22] and [19] a.a.s. polylogarithmic upper and lower bounds on the graph diameter of
the largest component are shown, and in [30], these were sharpened to show that logn
is the correct order of the diameter.

Earlier work of the first and third authors with Bode [7] and of the first and third
authors [18] has established the “threshold for a giant component”: if & < 1 then there
is a unique component of size linear in n no matter how small v (i.e. the average degree);
if @« > 1 all components are sublinear no matter the value of v; and if @ = 1 then there is
a critical value v, such that for v < 1, all components are sublinear and for v > v, there
is a unique linearly sized component (all of these statements holding a.a.s.). Whether
or not there is a giant component if « = 1 and v = 1, remains an open problem. In [22]
and [24], Kiwi and Mitsche considered the size of the second largest component and
showed that for « € (1/2,1), a.a.s., the second largest component has polylogarithmic
order with exponent 1/(a — 1/2).

In another paper of the first and third authors with Bode [8] it was shown that o« = 1/2
is the threshold for connectivity: for a < 1/2 the graph is a.a.s. connected, for o > 1/2
the graph is a.a.s. disconnected and when « = 1/2 the probability of being connected
tends to a continuous, non-decreasing function of v which is identically one for v > 7 and
strictly less than one for v < 7. Friedrich and Krohmer [5] studied the size of the largest
clique as well as the number of cliques of a given size. Boguia et al. [9] and Blasius et
al. [6] considered fitting the KPKVB model to data using maximum likelihood estimation.
Kiwi and Mitsche [23] studied the spectral gap and related properties, and Blasius et
al. [4] considered the tree-width and related parameters of the KPKVB model. Recently
Owada and Yogeshwaran [33] considered subgraph counts, and in particular established
a central limit theorem for the number of copies of a fixed tree T in G(n;«, V), subject to
some restrictions on the parameter «.

Clustering

In this work we study the clustering coefficient in the KPKVB model. In the literature
there are unfortunately two distinct, rival definitions of the clustering coefficient. One
of those, sometimes called the global clustering coefficient, is defined as three times
the ratio of the number of triangles to the number of paths of length two in the graph.
Results for this version of the clustering coefficient in the KPKVB model were obtained
by Candellero and the first author [10] and for the evolution of graphs on more general
spaces with negative curvature by the first author in [17].

We will study the other notion of clustering, the one which is also considered by
Krioukov et al. [25] and Gugelmann et al. [21]. It is sometimes called the local clustering
coefficient, although we should point out that Gugelmann et al. actually call it the global
clustering coefficient in their paper. For a graph G and a vertex v € V(G) we define the
clustering coefficient of v as:

1 .
(%ea0) Y Vuwem@y, ifdeg(v) > 2,
C(?}) = 2 U, W~V
0, otherwise,

where F(G) denotes the edge set of G and deg(v) is the degree of vertex v. That is,
provided v has degree at least two, ¢(v) equals the number of edges that are actually
present between the neighbours of v divided by the number of edges that could possibly
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be present between the neighbours given the degree of v. The clustering coefficient of
G is now defined as the average of ¢(v) over all vertices v:

1
c(G) = VG Z c(v).

veV(Q)

As mentioned above, Gugelmann et al. [21], have established that ¢(G(n;a,v)) is
non-vanishing a.a.s., but they left open the question of convergence. Theorem 1.1 below
establishes that the clustering coefficient indeed converges in probability to a constant
~ that we give explicitly as a closed form expression involving «, v and several classical
special functions.

In addition to the clustering coefficient, we shall also be interested in the clustering
function. This assigns to each non-negative integer k the value

1 .
D > e(v), iEN(k) =1,
. — veV(G),
c(k; G) = d;(v();k (1.2)
0, else,

where N (k) denotes the number of vertices of degree exactly k in G. In other words, the
clustering function assigns to the integer k the average of the local clustering coefficient
over all vertices of degree k. We remark that, while it might seem natural to consider
c(k) to be “undefined” when N (k) = 0, we prefer to use the above definition for technical
convenience. This way ¢(k; G(n;a,v)) is a plain vanilla random variable and we can for
instance compute its moments without any issues.

Krioukov et al. state ([25], last sentence on page 036106-10) that as k& tends to infinity,
the clustering function decays as k~!. This seems to be based on computations that were
not included in the paper. Despite the attention the KPKVB model has generated since
then, the behaviour of the clustering function in KPKVB random graphs has not been
rigorously determined yet. In particular it has not been established whether it converges
as n — oo to some suitable limit function. Theorems 1.2 and 1.3 below settle this
question. Theorem 1.2 shows that for each fixed k, the value c(k; G(n; a, v)) converges
in probability to a constant (k) that we again give explicitly as a closed form expression
involving «, v and several classical special functions. Theorem 1.3 extends this result
to growing sequences satisfying k < n'/(?*+t1)_ Proposition 1.4 clarifies the asymptotic
behavior of the limiting function v(k), as k — co. This depends on the parameter «, and
~(k) only scales with k~! when o > 3/4, which corresponds to the exponent of the degree
distribution exceeding 5/2. So in particular our findings contradict the above-mentioned
claim of Krioukov et al. [25].

Notation

In the statement of our main results, and throughout the rest of the paper, we will use

the following notations. We set
4av

&= 7(2a —1)°
We write I'(z) := [, t*~'e~'dt for the gamma function, I'* (a,b) := [,~ t*~'e~'dt for
the upper incomplete gamma function, B(a,b) := fol w1 (1 —u)*~tdu = I'(a)T'(b)/T(a+b)
for the beta function and B~ (z; a,b) := fox 1?1 (1—u)*~'du for the lower incomplete beta
function. We write U(a, b, z) for the hypergeometric U-function (also called Tricomi’s
confluent hypergeometric function), which has the integral representation

1 [ee]
)/ e #eT (1 +t)bmaa,
0

U(a,b,z) = ()

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
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a

see [16, p. 255 Equation (2)], and let GJ;f (z b

) denote Meijer’s G-Function [28], see

Appendix A for more details.
For a sequence (X,,),, of random variables, we write X, —P . X to denote that Xn
n—oo

converges in probability to X.

1.2 Main results

1.2.1 The clustering coefficient

Our first main result shows the convergence of the local clustering coefficient in the
KPKVB model and establishes the limit exactly.

Theorem 1.1. Let a > 3, v > 0 be fixed. Writing G, := G(n; a,v), we have

(Gr) —— 7,

n—oo
where v is defined for o # 1 as

_ 2+44a+ 13a? — 3403 — 12a* + 240° 214«
T T a1t D2a+ ) (a=1)p
N (a —1/2)(B(2a,2a+ 1)+ B~ (1/2;1 + 2a, —2 + 2))
2(a—1)(3a — 1)
5204 (F+(1 - 20‘75) + F+(72a7£))
4(a—1)
L £ Pala—1/2)° ([ (=2a — L) + (=22 = 2,())
2(a—1)2
& Ma2a 1) (M (=20, §) + T (2a — 1,¢))
(@-1)
~ gBa29-40(3q 1) (TH (=60 + 3,6) + [ (~6a + 2,¢))
(a—1)
(= 1/2)B7(1/2;1 + 20, =2 4 20) (T (=6a + 3,&) + T (—6a + 2,¢))
(a—1)
e T2a+1) (URa+1,1—2a,¢) +U(2a+ 1,2 — 20, €))
4(a—1)

1,3 — 2a 1,3 —2a
6a—2 3,0 ) 3,0 5
¢ P2a+1) <G2’3 (5‘3 —4a, —6a + 2, 0) + G2’3 <§‘3 —4a, —6a + 3, O))

4(a—1)

+

+

)

and for . = 1 as the a — 1 limit of the above expression.

A plot of v can be found in Figure 2. The figure also shows the results of computer
simulations that appear to be in agreement with our findings.

In the above expression for «, a factor a — 1 occurs in the denominator of each term,
but we will see that this corresponds to a removable singularity. We have not been able
to find a closed form expression in terms of standard functions in the case when a =1,
but in Section H we do provide an explicit expression involving integrals.

1.2.2 The clustering function

Our second main result is on the clustering function for constant k.

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
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0.8
0.6
0.4

0.2

Figure 2: Plot of v for « varying from 0.5 to 5 on the horizontal axis and for v = %
(blue), v = 1 (purple), v = 2 (green). Simulations (squares in corresponding colour) with
n = 10000 and 100 repetitions.

Theorem 1.2. Leta > % v > 0 and k > 2 be fixed. Writing G,, := G(n; «,v), we have

c(k; G) —— (k)

n— oo

where (k) is defined for o # 1 as
1
Ba(a — NI (k — 2, €)
+8a(a — 1/2)¢0t (k — 2a — 1,€)
24 (3¢ — 1)
(a—1)

+&F729T 20 + 1)e U (2a + 1,1 4+ k — 20, €)

1,3 - 2a
3—4da,—6a+k+2,0/)"

and for o = 1 as the a — 1 limit of the above expression.

(0 = 1/2)2€°T+ (k — 20— 2,€)

v(k) = @1

(erQa@)za
+4§4a_2f+(k——6a—+2,§)<

+(a—1/2)B7(1/2;1 4 2a, -2 + 2a)>

—£17 T (20 + 1)GYg <£

A plot of y(k), together with the results of computer experiments, can be found
in Figure 3. Again, we remark that the above expression for (k) appears to have a
singularity at o = 1, but this will turn out to be a removable singularity. Again, we have
not been able to find a closed form expression in terms of standard functions in the case
when o = 1, but in Section H we do provide an explicit expression involving integrals.
Theorem 1.2 in fact generalises to increasing sequences (kn)nZI-

Theorem 1.3. Let a > %,z/ > 0 be fixed and let k, be a sequence of non-negative

integers satisfying 1 < k, < n'/(*t1) Then, writing G,, := G(n; o, v), we have

clkn;Gr) P
—_— — 1.
v(kn) nooo

The statement of Theorem 1.3 is equivalent to ¢(k,; G,) = (1+0(1))y(ky) a.a.s., using
notation that is common in the random graphs community.

1.2.3 Scaling of ~(k)

To clarify the scaling behaviour of (k) we offer the following result.

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
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Figure 3: Plot v(k) for k varying from 2 to 25 on the horizontal axis, for « = 0.8 and v = %
(blue), v = 1 (purple), v = 2 (green). Simulations (squares in corresponding colour) with
n = 10000 and 100 repetitions.

Proposition 1.4. As k — oo, we have

(Caw +0(1)) - k1 ifa>3,
(k) =% (can +o0(1))- 2B jfo =3 ,
(caw +o0(1)) - k¥t iff <a <3,

where
Bav/(m (4o — 3)) ifo> 32,
Cory += ( 1)3—(121/17;2 2)  B(2a,3a—4 jfa:%’
(srdierhy + D8 (a2etdesd)  BOodecd)) o2 jflca<d.

Theorem 1.3 states that the clustering function of the KPKVB model scales as (k) as
the number of vertices n — oo, and Proposition 1.4 makes clear how ~(k) behaves as k
grows. In particular, these results contradict the scaling claimed in [25] for a < 2, and
confirms it only for o > 3.

We remark that simultaneously and independently Stegehuis, van der Hofstad and
van Leeuwaarden [35] used a completely different technique to obtain a similar, though
less detailed, result on the £ — oo scaling of the clustering function in the KPKVB model.

1.3 Additional observations and results

There are a few additional remarks we would like to make regarding our results.

1.3.1 The degree distribution and the range of k,, in Theorem 1.3

The reader may already have observed that, with a power law exponent of 2« + 1 for the
probability mass function of the degree sequence, we would expect O (n - k~(172%)) = o(1)
vertices of degree exactly k whenever k >> n!/(1422),

This is the reason why in Theorem 1.3 we restrict ourselves to sequences k,, with
ky, < n'/(429) When k,, > n'/(112%) there are no vertices of degree exactly k, a.a.s.,
which in particular implies that the clustering function equals zero a.a.s. for any such
sequence k.

As mentioned previously, Gugelmann et al. [21] gave a mathematically rigorous result
on the degree sequence, which can of course be rephrased as a result on the number of
nodes with degree exactly k. Their results allow k = k,, to grow with n, but unfortunately
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require that k, < n’ with § < min{4a2(3;}r1)’ ggz;g} < 3557 For completeness we
offer the following result, which extends that of Gugelmann et al. to the full range
1<k, <n-1.

Theorem 1.5. Let a > %, v > 0, denote by N, (k) the number of vertices with degree k in
the KPKVB model G(n; a, v) and consider a sequence of integers (ky,), with0 < k,, < n—1.

1. Ifk, < NI asn — oo, then a.a.s.
Np(kn) = (14 0(1)) - n-7w(ky),
where 7(k,) = 2a£2°T+ (k, — 20, €) /Ky ).

2. Ifkp, =(1+ 0(1))ch1+1 for some fixed ¢ > 0, then

Ny (k) —— Po(2ag> ¢ 20+ 1),

3. Ifk, > n?71, then a.a.s. Ny (k) = 0.

1.3.2 Transition in scaling at o = 3/4.

Proposition 1.4 demonstrates that there is a transition in the scaling of the local cluster-
ing function at « = 3/4. This corresponds to an exponent 5/2 for the probability mass
function of the degree distribution. This transition is different from those often observed
for networks with scale-free degree distributions, where transitions occur at integer
values of the exponent. At this point, it is unclear what the underlying reason is for the
appearance of the transition at this particular half integer exponent. Interestingly, a
similar transition point has also been observed for both majority vote models [11] and
flocking dynamics [29] on networks with scale-free degree degree distributions.

1.4 Outline of the paper

In the next section we will recall some useful tools from the literature and define a
series of auxiliary random graph models that will be used in the proofs. In particular, we
relate in a series of steps the KPKVB model to an infinite percolation model G, that was
used in previous work of the first and third authors [18] on the largest component of
the KPKVB model. The value of the limiting constant ~, respectively limiting clustering
function v(k), correspond to the probability that two randomly chosen neighbours of
a “typical point” in this infinite model are themselves neighbours, respectively the
probability of this event conditional on the typical point having exactly £ neighbours.
These probabilities can be expressed as certain integrals, which we solve explicitly in
Section 3. In the same section we also prove Proposition 1.4, on the asymptotics of v (k).
We then proceed to prove Theorems 1.1 and 1.2 by relating said probabilities for the
typical point of the infinite model to the corresponding clustering coefficient/function in
the original KPKVB random graph, using the Campbell-Mecke formula and some other,
relatively straightforward considerations.

In Section 5 we prove Theorem 1.5, which also doubles as a warm-up for the proof
of Theorem 1.3 of the clustering function for growing k. The remaining sections are
devoted to the proof of Theorem 1.3, which turns out to be technically involved. The
main reason for this is that when we push k,, close to the maximum possible value, a
great deal of work is needed to properly control the arising error terms.

The Appendix includes some auxiliary results on Meijer’s G-function, Chernoff bounds
for Poisson and Binomial random variables and the code used for simulations.
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2 Preliminaries

In this section we recall some definitions and tools that we will need in our proofs.

2.1 The infinite limit model G,

We start by recalling the definition of the infinite limit model from [18]. Let P = P, .,
be a Poisson point process on R? with intensity function f = f,,, given by

(694 —a
f(x,y):76 Y 1ysoy- (2.1)

The infinite limit model G, = G («,v) has vertex set P and edge set such that

y+y’

' €EE(Gy) & |z —2/|<e 2,

for p = (z,y),p = (2',y) € P.
For any point p € R x (0, 00), we write By, (p) to denote the ball around p, i.e.

y+y’

Boo (p) ={p' € Rx (0,00): |z —2'| <e 2

}. (2.2)

With this notation we then have that B, (p) NP denotes the set of neighbours of a
vertex p € G,. We will denote the intensity measure of the Poisson process P by pt = (4.0,
i.e. for every Borel-measurable subset S C R? we have u(S) = [ f(x,y) dz dy. Using the
notation p = (z, y) for a point in R x R we shall write [ h(p) du(p) for the integral of &
over S with respect to the intensity measure , i.e. [¢h(p)du(p) = [qh(z,y)f(z,y) dzdy.

2.2 The finite box model G}«

Recall that in the definition of the KPKVB model we set R = 2log(n/v). We consider
the box R = (—Zef/2, Zef/2]x (0, R] in R2. Then the finite box model Ghox = Grox(n; a, v)
has vertex set Vhox := P N'R and edge set such that

pp’ € BE(Ghox) = |7 — 2| er/2 < et5,
where |z|, = min(|z|,r — |2|) for —r < x < r. Using |.|,.r/2 instead of |.| results in the
left and right boundaries of the box R getting identified, which in particular makes the
model invariant under horizontal shifts and reflections in vertical lines. The graph Gpox
can thus be seen as a subgraph of G, induced on V4, with some additional edges
caused by the identification of the boundaries.
Similar to the infinite graph, for a point p € R we define the ball By (p) as

Bhpox (p) = {p' ER: |z — 2| rer < e'5 } . (2.3)

2.3 The Poissonized KPKVB model Gp,

Imagine that we have an infinite supply of i.i.d. points w1, us,... in the hyperbolic
plane H chosen according to a distribution we’ll define shortly, in (2.4) below. In the
standard KPKVB random graph G(n; «,v) we take uy, ..., u, as our vertex set and add
edges between points at hyperbolic distance at most R = 2log(n/v). In the Poissonized

KPKVB random graph Gp, := Gpo(n; o, V), we instead take N 4 Po(n), a Poisson random
variable with mean n, independent of our i.i.d. sequence of points and let the vertex
set be uy,...,un and add edges according to the same rule as before. The vertex set
consists of the points of a Poisson point process with intensity function ng, where g
denotes the probability density of the («, R)-quasi uniform distribution. That is,

asinh(ar)

= . 1 — .
9(7"; 0) 27r(cosh(aR) — 1) {0<r<R,—mw<0<m}

(2.4)
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Working with the Poissonized model has the advantage that when we take two
disjoint regions A, B then the number of points in A and the number of points in B
are independent Poisson-distributed random variables. As we will see, and as is to be
expected, switching to the Poissonized model does not significantly alter the limiting
behaviour of the clustering coefficient and function.

2.4 Coupling Gp, and Gy

The following lemmas from [18] establish a useful coupling between the Poissonized
KPKVB random graph and the finite box model and relate the edge sets of the two
graphs.

Lemma 2.1 ([18, Lemma 27]). Let Vp, denote the vertex set of Gp,(n; a, v) and Vpey the
vertex set of Gyox(n; o, v). Define the map VU : [0, R| X (—m, 7] — R by

eR/2
\I/(T,e) = 9?,R—T . (25)

Then there exists a coupling such that, a.a.s., Vyox = U[Vp,)-

In the remainder of this paper we will write 5 (p) to denote the image under ¥ of the
ball of hyperbolic radius R around the point ¥~!(p) for p € R, i.e.

B(p) =" [{ueH:du(¥ " (p),u),du(O,u) <R} CR.

Under the map ¥, a point p = (z,y) €R corresponds to u := ¥~ (p) = (2e~ /22, R—y).
By the hyperbolic rule of cosines, for two points p = (z,y) = U ((r,0)),p’ = (¢, y') =
U((r',0")) € R we have that p’ € B (p) iff. either r + ' < Rorr 4+’ > R and

coshr coshr’ — sinh rsinhr’ cos (|@ — 0|2, ) < cosh(R),
This can be rephrased as p’ € B (p) iff. either y + ¢y’ > Rory + ¢y’ < R and

cosh(R — y) cosh(R — y') — cosh R
sinh(R — y) sinh(R — y’) ’

1
|z — 2| e < ®(y,y') = ieRm arccos < (2.6)

The following lemma provides useful bounds on the function ®(r,r’). Note that in [18]
the function ® is written in terms of r := R — y,r' := R — ¢/.

Lemma 2.2 ([18, Lemma 28]). There exists a constant K > 0 such that, for every e > 0
and for R sufficiently large, the following holds. For every r,r’ € [eR,R] withy +y' < R
we have that

e3HY) _ Ke3WH)—R < §(y, o) < e3WHY) | g3ty (2.7)

Moreover:
1 ’
D(y,y) > e if gy > K. (2.8)

A key consequence of Lemma 2.2 is that the coupling from Lemma 2.1 preserves
edges between points whose heights are not too large.

Lemma 2.3 ([18, Lemma 30]). On the coupling space of Lemma 2.1 the following holds
a.a.s.:

1. for any two points p,p’ € Vpex withy,y’ < R/2, we have
pp’ € E(Ghox) = U1 (p)T 1 (p') € E(Gpo),
2. for any two points p,p’ € Viox withy,y’ < R/4, we have that

pp’ € B(Grox) <= U 1)U (p)) € E(Gp,).
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Remark 2.4 (Notational convention for points). We will often be working with the finite
box graph Gp, or the infinite graph G, whose nodes are points in R x R;. For any
point p € R x R; we will always use p = (x,y). When considering different points
p,p" € R x Ry, we will use primed coordinates to refer to p/, i.e. p’ = («’,y’), and similar
with subscripts, i.e. p; = (x4, y;).

2.5 The Campbell-Mecke formula

A useful tool for analyzing subgraph counts, and their generalizations, in the setting
of Poissonized random geometric graphs, and in particular the Poissonized KPKVB model
and the box model is the Campbell-Mecke formula. We use a specific incarnation, which
follows from the Palm theory of Poisson point processes on metric spaces, see [26]. For
this consider a Poisson point process P on some metric space M with density x and
let A/ denote the set of all possible point configurations in M, equipped with the sigma
algebra of the process P. Then, for any natural number £ and measurable function
h:RFxN =R,

E| > hp....p6P)

P1,--PLEP,
distinct (2 . 9)

// E[h(z1,..., 25, PU{z1,..., 2 })] p(dzy) ... p(dxy).
M M

2.6 Concentration of heights

When analyzing degrees and clustering in the Poissonized KPKVB and related models
we often encounter expressions of the form

R
| B Potit) = k) e 2.10)

where h(y) is some function and [i(y) is pu (B (y)), 1 (Bpox (y)) or 1 (B (y)). We will
often have to either bound the behavior of such integrals as k,, — oo or establish their
asymptotic behavior. For this we will utilize that Poisson random variables are well
concentrated around their mean.

Let Po()\) denote a Poisson random variable with mean A. Then we have the following
Chernoff bound (c.f. [34, Lemma 1.2])

22
P (|Po(\) — \| > x) < 2e” 2059, (2.11)

In particular, if A = A\,, — oo, then for any C' > 0,

meMwmuzaAu%wﬂso(Mf>. (2.12)

For our application these Chernoff bounds imply that if y is such that /i(y) is far from
k, then P (Po(fi(y)) = k») becomes very small. To be more specific, we define for any

k>0and C > 0,
k =+ C+\/klog(k
yEo =2log <§ 8( )>, (2.13)

where we set y, = 0if k — Cy/klog(k) < £ (recall that we define ¢ := 4av/m(2a — 1)
throughout the paper) and likewise if k + C'\/klog(k) < £ we set y,ic = 0, but note that
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as we consider k£ — oo, we can assume that this case does not occur. For convenience
we write K¢ (kn) = [y, o y,jc} Then we can show that for all y outside K¢ (k)

P (Po(ji(y)) = k) < O (k,jc) . (2.14)

Since we can select C' to be as big as we want we can make this error as small as needed.
This implies that then the main contribution to the integral (2.10) comes from those
“heights” y that are in the interval K¢ (k,). In other words, the main contribution is
concentrated around the heights y for which u(y) = k,. We thus refer to this as the
concentration of heights result. More precisely, we prove the following.

Proposition 2.5 (Concentration of heights). Let o > % v >0, (k,)n>1 be any positive
sequence such that k, — oo and k, = o(n). Furthermore, let [i(y) denoting either
(B W), 1 (Bpox (y)) or i (B (y)). Then for any continuous function h : Ry — R, such

that h(y) = O (e’¥) as y — oo for some 3 < a, it holds that

/ ()P (Po((y)) = kn) ae™ dy ~ / h(y)P (Po(ju(y)) = kn) ae ™Y dy,
0 Kc(kn)

asn — oQ.

The key implication of Proposition 2.5 is that if the function h(y) does not increase too
fast, then we can restrict integration to the interval K¢ (%, ). The full details associated
with these concentration of heights and the proof of Proposition 2.5 can be found in the
Section E of the Appendix.

3 Clustering and the degree of a typical point in G,

As alluded to earlier, we plan to make use of the Campbell-Mecke formula for
comparing the clustering coefficient and function of the (Poissonized) KPKVB random
graph with certain quantities associated with G,. We will be considering the Poisson
process P to which we add one additional point (0, y) on the y-axis. In some computations
the height y will be fixed, but eventually we shall take it exponentially distributed with
parameter «, and independent of P. We refer to (0,y) as “the typical point”.

To provide some intuition for this definition and name, note that we can alternatively
view P as follows. We take a constant intensity Poisson process on R corresponding to
the xz-coordinates, and to each point we attach a random “mark”, corresponding to the
y-coordinate, where the marks are i.i.d. exponentially distributed with parameter a.

Since ¢(G) is defined as an average over all vertices of the graph, it is not immediately
obvious how to meaningfully define a corresponding notion for infinite graphs, and
similarly for the clustering function, the degree sequence, etc. We can however without
any issues speak of the (expected) clustering coefficient of the typical point, or the
expected clustering coefficient given that it has degree k, or the distribution of the
degree of the typical point. (All considered in the graph obtained from G, by adding
the typical point to its vertex set.)

If p=(z,y) € R x [0,00) is a point, not necessarily part of the Poisson process, then
we will write

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
Page 14/132


https://doi.org/10.1214/21-EJP583
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Clustering in a hyperbolic model of complex networks

Integrating the intensity function of P over B, (p) gives

(y+y')/2

uly) = / f(ay) de' dyf = / / W o’ 4ot gy
Beo (p) 0 Celytyly/2 T

[ee] 2 o]
- / 2e+y)/2 X —ay’ dy = W/ ez=a gy
0 T T 0

3.1 The degree of the typical point

Before considering clustering we briefly investigate the distribution of the degree of
the typical point. For y > 0 we define

p(y, k) =P (Po(u(y)) = k), (3.1)

where Po()) denotes a Poisson random variable with mean \.

Let the random variable D denote the degree of the typical point. Since the typi-
cal point has a height that is independent of the Poisson process and exponential(«)-
distributed:

w(k):=P(D=k) = /OOO ply, k)ae™ Y dy.

(Note that here we define 7 (k) as the probability that the degree of the typical point
equals k.) Using the transformation of variables z = 56% (sody = %dz), we compute

1 [/ u\Fk ¥
W(k)—y ; (gef) e 5% ae” W dy

S e et

_ 2a£2a > Zk72a7167z dz
TR
20£2°T* (k — 20, €)

= o : (3.2)

where we recall that I' denotes the gamma-function and I'* the upper incomplete
gamma-function. Note that, unsurprisingly, this is identical to the expression Gugel-
mann et al. [21] gave for the limiting degree distribution of G(n; o, v). Using Stirling’s
approximation to the gamma function, we find that

m(k) ~ 202k~ 2D as |k — 0. (3.3)

(In a bit more detail: we use that I'(a,b) = (1 + 0,4(1)) - T'(a) if a tends to infinity and b
remains constant, and that T'(a + 1) = (14 04(1)) - V27a - (a/e)® as a tends to infinity by
Stirling’s approximation. For a proof of Stirling’s approximation to the I' function, also
for non-integer values of the argument, see for instance [14].)

By a similar computation we have the following result, which will be useful later on.
Forany 8 > 0, as k — oo

oo
/ e M p(y, k)ae™ dy ~ 202 P+ p=2(B+e) =1 (3.4)
0
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3.2 The expected clustering coefficient of the typical point

Let the random variable C denote the clustering coefficient of the typical point (0, y),
in the graph obtained from G, by adding (0, y). We now define

v:=E[C], ~(k):=E[C|D=k].

(Where we take the expectation over both the Poisson point process P and y 4 exp(a),
independently of the Poisson process P.) We shall show shortly that these take on the
values stated in Theorem 1.1 and 1.2.

For any fixed value y, > 0, the set of points inside B (y9) is a Poisson process
with intensity f - 15_(y.)- AS w(Be (Y0)) = p(yo) = £e¥0/? < oo, this can be described

alternatively by first picking N 4 Po(u(yo)) and then taking N i.i.d. points in B (yo)
according to the probability density f - 15_(y,)/(v0). (That is, the intensity function of
the Poisson point process, but set to zero outside of B (yo) and re-normalized in such a
way that it integrates to one.) Hence, if we condition on the event that y takes on some
fixed value yo and that there are exactly k points of P inside B, (yo), then those k points
behave like k i.i.d. points in B (yo) chosen according to the mentioned re-normalized
probability density function. This shows that, for every k£ > 2:

1
E[CID=ky=y)=7=E| Y Twesutw)) | = [Luebuo)]

(2) 1<i<j<k
where w1, ..., u are i.i.d. points in B, (yo) with the above mentioned density. Note that
this does not depend on the value of k. For notational convenience, we will write

P(yo) = E []l{u1EBoo(u2)}] y (35)

with uq, us as above.
We now observe that

A(k) = E[C] D = k] = /OOCIE[(AD — ko = yol g (90) dyo.

where g, denotes the density of y conditional on D = k. That is,

p(yo, k)ae™ v 1 —ayo,

- p(vo, k
9:(vo) = IS p(t k)ae—ot dt ) Plyo, k)ae

where we recall that p(y, k) = P (Po(u(y)) = k) denotes the probability that a Poisson
random variable with mean u(y) is k. Hence,

1 oo
(k) = —= / P(yo)p(yo, k)ae™ ¥ dyo. (3.6)
m(k) Jo
This also gives
v o= => E[C|D=FkP(D=k)
E>2
= (ZP Yo, k ) O dyg (3.7)
= / (1= p(y0,0) — p(yo, 1)) ae™*¥° dyo.
0

A key step is to derive the following explicit expression for P(y).
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Lemma 3.1. Ifa # 1, then

B 1 (a—1/2)e"2¢ (a—1/2)% Y
Py ==t a1 T da-1p
Cipvae (27071Ba—1) | (a—1/2)B7(1/21 + 20, —2+ 20)
+ () ( ala—1)2 + 2(a — 1N )
(1—e 2v)2>  (gma¥)40—2B—(] — ¢=3¥; 20, 3 — 4a)
8(a—1)a 4(a—1) '

We will prove this lemma in a sequence of steps.
Recall that P(yo) is the probability that uy = (21, 1), us = (22, y2) are neighbours in
G, where uy, uy are i.i.d. with probability density f - 15__(,,)/#(%0). In particular

e(vFv0)/2 Vo 0o
P(y; >t) = / / e~ Ydrdy = / 2e(Vtw0)/2 . gmay gy
u(yo) —e(utu0)/2 Ti(yo) Ji
Y /2 1
o aelT et ey

- méevo/2(a — 1)

using that pu(yg) = Eevo/2 = ( 2av )) e¥/2_ Thus, y1,y» are exponentially distributed with
2

m(a—
parameter o — % Now note that, for each ¢ > 0, the probability density f - 15_(,0)/1(%0)
is constant on [—e(t+%0)/2 ¢(t+v0)/2] {1 and it is vanishes on (—oo, —e(t+¥0)/2) x {t} U
(e(t+v0)/2 o0) x {t}.

Hence, given the height y; of u;, the z-coordinate of u; is uniform in [—ez W Hvi) 3 (utv:)],
With this in mind we define P(yo, y1, y2) to be the probability that vy, (x1,y1), (x2,y2) sat-
isfy |z — 25| < e11¥2)/2 where z; and z, are independent uniform random variables
in the intervals [—ez®otv1) ¢3(Wotv1)] and [—e2(¥0t¥2) ¢3(0+v2)], respectively. We then
have that

P(yo)=(a—1/2)2/ / P(yo, y1,yo)e @7/ Witv2) qy dyyy (3.8)
0 0

3.2.1 Determining P(yo,y1,y2)

To compute the integral (3.8) it will be convenient to use the change of variable z; =
e ¥i/2, for i = 0,1, 2. The following result will turn out to be all we need to compute the
integral (3.8).

Lemma 3.2. Set z; = ¢ ¥/2, i =0,1,2. We have

1, ifzg > 21 + 22,20 > 21 > 22,

1—G(zo,zl,22), ifzg < 21 4 29,20 > 21 > 29,

20
z1’

%(1—6:(21,20,22)), ifz1 < zo+ 29,21 >max(zo,22),

P(yo0,y1,92) =
(Yo, 91, y2) if 21 > 20 + 22, 21 > max(2g, 22),

where
1
G(a,b,c) = 1 (b le+be +a®b e 2 —2ab7 — 2ac7!) .

We split the proof of this lemma into a couple of smaller pieces. We begin with the
following lemma.
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yot+yg
r1 —e 2

V2

yo+y2
2

Yoty

yotv2
rK—e 2 1

r1+e 2

yo+ty2
T 2

yotv2
—€ ==

Figure 4: Situation for the intersections of the connection intervals considered in
Lemma 3.3, with yy < y1 < ys fixed and for different cases of 0 < z; < eWotv1)/2 The top
figure shows the case where 0 < z; < e(¥11%2)/2 _ ¢(Wo+12)/2 while the bottom one shows
the case x; > e(¥11v2)/2 _ o(v0+v2)/2 The solid red line indicates the range for x5 such
that the points pg, p1 and p, form a triangle. The boundaries of their neighbourhoods are
shown in, respectively, black, blue and green.

Lemma 3.3. Write z; = e ¥i/2, j = 0,1,2. Ifyo < y1 < y2 (or equivalently zg > z1 > 23),
then

1, if 29 > 21 + 2o,
P(yo,y1,vy2) = { ,

1—G(z0,21,22), ifzg <2z + 2.
Proof. Note that P(yo,y1,y2) is the probability that z, falls into the interval [z; —
e tv2)/2 g1 1 e(1+2)/2] as well as into the interval [—e(¥0t¥2)/2 ¢(Wo+v2)/2) By sym-
metry considerations, we can take x; uniformly at random from [0, evo/2+u1/ 2] as opposed
to [—e¥o/2Hv1/2 evo/24u1/2] Figure 4 shows the intersection of the intervals (red line) for
two different cases for z; < eWoty1)/2,

Since yo < y1 < y» we have that e11%2)/2 > ¢(Wo+v2)/2 and so, when z; > 0, the

“right half” of the interval [—e(v0t¥2)/2 ¢(0+v2)/2] is always covered by the interval [z; —
eWit2)/2 gy 4 eWtu2)/2]  If e(nt2)/2 _ p(yot91)/2 > o(o+12)/2 then the “left half” is

always covered as well. In other words:

ev1ty2)/2 _ (yoty1)/2 > elvoty2)/2 P(yo,y1,12) = 1.

Now consider the case where e(#17¥2)/2 _ o(wotv1)/2 « o(vo+v2)/2  Then, if z; €
[0, eW1Fv2)/2 _ ¢(wotv2)/2] the whole interval [—e(¥oF¥2)/2 (vo+v2)/2] is still covered so that
po, p1 and p, form a triangle. If, on the other hand e(¥11¥2)/2 — o(vot+42)/2 < 5, < e(Wotv1)/2
then the probability that |zo — 1| < e®11¥2)/2 equals

Ty — (e(y1+y2)/2 — e(yo+y2)/2))

1= 2¢(Woty2)/2
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Hence, when eW11¥2)/2 _ ¢(to+41)/2  ¢(W0+v2)/2 we have

e(y1+yz)/2 — e(y0+y2)/2

e(yo+y1)/2
(vo+y1)/2

e xp — (eW1ty2)/2 _ olyoty2)/2)) 1
+ 1-— dz;
eW1+u2)/2 _o(wo+y2) /2 2e(voty2)/2 elvoty1)/2

eWotv1)/2 4 o(votv2)/2 _o(v1+y2)/2

P(yo,yhyz) =

1
=1- W/O T dl’l
_1 (e(yOerl)/? + e(yo+y2)/2 o e(y1+y2)/2)2
T 4eyoty1/2+y2/2

At this point it is convenient to rewrite everything in terms of z; := e ¥%/2. Note
that yo < y1 < ¥ if and only if 2y > 2; > 2, while the condition e(¥1¥2)/2 _ ¢(vo+v1)/2 <
e(Wotv2)/2 hecomes

e(W1ty2)/2 _ o(yot+u1)/2 ~ o(yotu2)/2 2;1251 < Zalzfl + 20*12»2*1 & 20 < 21 + 2.

We now conclude that
P(yo(20),y1(21),y2(22)) =1 if 29> 21 > 20 and 29 > 21 + 22
while for zg > z1 > 29 and 29 < z1 + 29

232:12:2 ( -1

1 1 _n\2
P(yo(20),y1(21), y2(22)) = 1 — 4 2y 2 +301221_Z11321)

_ Lo -1
=1- 1 (z1 2o + 2129 by zazy z2 Lyo— 22’021 — 22024 ) ,
which finishes the proof. O

The previous lemma covers the case when yy < y; < y2. We now leverage it to take
care of the other cases as well.

Proof of Lemma 3.2. Lety; > 0 and z; = e ¥/2,i=0,1,2. Lemma 3.3 gives the expres-
sion for P(yo(20), y1(21), y2(22)) in the case yo < y1 < y2, or equivalently zg > z; > 29, i.e.
the first two lines in the claim of Lemma 3.2. To analyze the other cases we shall express
P(y1,y0,y2) and P(y1,y2,yo) in terms of P(yo, y1,y2) and z;. For this we note that we can
view P(yo,y1,y2) as a 2-fold integral of the indicator function
h(:EO; I, x2) = jl{wofa:l|<e(?/0+?/1>/27\10712\<e(7/0+y2)/2,|:v17:v2|<e(?11+7/2)/2}’

where zy was set to zero, without loss of generality, and the other two x; are uniform ran-
dom variables on [—e(¥0F¥i)/2 ¢(¥0+vi)/2] When we consider the probability P(y1,v0,y2),
this is the 2-fold integral of h(xg, 0, z2) so that

1 1
P(y1,y0>y2) = 26(y1+y0)/2 : 26(y1+92)/2 // h(fIJ(),O,IEQ) dZL'() de

eYo/2 1
T ev1/2 2e(wotu1)/2 Qe(yo+yz)/2 // (0,21, 22) dzy dz

evo/2
= mp(y07y17y2) ZOP(yO7y17y2>

Finally we note that h(zg, 0, x2) = h(z2,0,20) from which we conclude that

P(yo,y1,92) = (20/21) P(y1,Y0,y2) = (20/21) P(y1, Y2, Y0)- (3.9
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To complete the proof for the other cases we note that since P(yo, y1,y2) is symmetric
in y; and y», we can assume, without loss of generality, that y; < y». Then, there are
two more orderings of yg, y1,y2, namely y; < yo < y2 and y; < ys < yp, which can be
summarized as y; < min(yo, y2), or equivalently z; > max(zg, 22). For y1 < yo < y2 and
y1 < y2 < yo we can apply Lemma 3.3 to obtain P(yi,yo,y2) = P(y1,y2, yo) which happen
to agree due to the symmetry in the last two arguments of the expression found in
Lemma 3.3. The expression for P(yg, y1,y2) then follows from (3.9). O

3.2.2 Integrating over vy, y-

Now that we have established the expression for P(yo, y1, y2) we can proceed to compute
P(yo) by integrating over y1, y2. We however start with the following observation.

Lemma 3.4. The function o — P, (yo) is continuous for all a > 3.

Proof. This follows from the theorem of dominated convergence: Let a > % and (o, )nen
a—1/2

a sequence of real numbers converging to «, so we can assume o, — af < € 1= “—

This means that —e < a,, — a < ¢, i.e. Q_TW <ap—1/2< w Define

Fa(y1,92) = P(yo, y1,y2) (a, — 1/2)%e™(0n=1/DWitv2),

As the function z — 22 is increasing in x for > 0 and the function x — e~ (¥11¥2)7 jg
decreasing in x and P(yo, y1,y2) € [0, 1], it holds that

3a—3/2\% _ ae1/2
|fn(y17y2)|§ (2/> e (y14y2) "= ’

which is integrable over R>q x R>( (with integral equalling (6c — 3)?/(2a. — 1)?). Applica-
tion of the theorem of dominated convergence yields that P, (yo) — P.(yo) which gives
the claim as the sequence («,),, was arbitrary. O

Due to this lemma we can first assume o ¢ {3, 1}, compute P(y,) and then obtain the
values of P(yg) at the remaining two points by taking the corresponding limit in «. This
strategy is executed below. It involves the computation of several integrals which are
involved and will take up a few pages. The proof is structured using headers, to aid the
reader.

Note that when writing P(yo) as an integral, see equation (3.8), by symmetry in the
integration variables y; and y», we can assume that y; < y» in which case either gy, or y;
is the smallest height. This gives half the value of P(y,) and hence

P(yo) = 2(11(yo) + I2(y0)),
where I; and I are given by:
Ii(yo) = / P(yo, y1,y2) - (o — 1/2)%e” (0712 t92) qyy dy,
0<yo<y1<y2

I (yo) := / P(yo,y1,y2) - (v — 1/2)%e~ (@7 1/DWitv2) 4y, dyy .
0<y1 <min(yo,y2)

We proceed with computing these two integrals, each of which is split into two
parts. The final expressions of those four integrals can be found in (3.10), (3.15), (3.16)
and (3.18).
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Computing I;(yo) Applying the change of variables z; := e Yil2, g 1,2, and
Lemma 3.2 gives
11 (o) :4(01*1/2)2'/ P(yo,y1(2),y2(2)) 21 T 22’20‘ >dzs dz
zo>2z1>22>0
=4(a—1/2)?- (/ 127972239 2 dap dy
2o>21>22>0
7ﬁ0>’z1>z2>0’ G(ZO,Zl,ZQ) Z%a 2 2a 2dZ2 d21>
z0<z1tz2
= 4(a - 1/2)2(111(y0) — 112(y0))-
The integral I11(yo) is easily obtained:
202,202 T
T — a— af dz d _ a— d
11(%0) / / Z2 Az /0 z] {QQ—JO 21
1
4a—3 da—2
= d —_ . 3.10
2 — 1 /0 T T o012 0 (3.10)

To deal With T2 we note that G(z, 21, 22) is a linear combination of monomials of
the form z82%25 with a,b,c € {—1,0,1,2} and a + b+ ¢ = 0. Let us consider the integral
J(a,b,c)(20) defined by

Jab,c(20) == 26 / zi’*zo‘%zg”o‘*2 dze dzq, (3.11)
20>21>22>0,

z0<z1+22

and note that

1
I o(yo) = Z(Jo,—m(Zo)+Jo,1,—1(Zo)+J2,—1,—1(Zo)+2J0,o,o(Zo)—2J1,—1,0(Z0)—2J1,0,—1(Z0))-
(3.12)
Next we compute J, 3 (%0).

21

20 21 20 Zc+2a—1
Ja,b,e(20) = 23/ / PR 002072 4oy dy :zg/ Pht2e=2 [2 ] dz;
20/2 Jzo—21 20/2 ct2a—1], _

zZo—z1

0 20 i B 20 B B
— 0 . / leJ+c+4o¢ 3 dzy — / le)+2a 2(20 _ Zl)c+2a 1 dz
C+2a_]. 20/2 20/2

Ztoz+b+c+4a72(1 _ (1/2)b+c+4a—2)
(c+2a—-1)b+c+4a—2)

_ w /ZO (21/20)b+20—2 (1 _ (ZI/ZO))C+2O¢—1 le
ct+2a—-1 J, )
_ 4a 2( (1/ )b+c+4a72) o Zga 2 /1 ub+2a72(1 —U)C+2a71 du
(c—|—2a—1)(b+c—|—4a—2) ct+2a—1 /)
2" 2 (1 - (1/2)0Fete?) 7"

= — B (1/2; 20,04+ 2a — 1
(c+2a—1)(b+c+4a—2) c+2a—1 (1/2;¢ 420, b+ 20 —1),

where we have used the substitution u := z1 /2y giving 2o du = dz; in the penultimate
line and B~ denotes the (lower) incomplete beta function. Note that since ¢ > —1,
—a € {0,—1,—2} and by our assumption « ¢ {3, 1}, the denominators that occur during
the integration are all non-zero.
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Plugging this back into (3.12) gives
21— (1/2)0 ) 2
32a(a—1/2) 8a
21— (127
2(a—1)(a—1/2) 42 — 2)
2" 2L (/20 4

I 2(yo) = B7(1/2;14 2a, 20 — 2)

B~ (1/2;20 — 1,20)

+= 32(a—1)2 N 4(2a_2)B7(1/2;*1+20¢,20¢72)
JAa=2(1 _ 4a-2 LAa—2
+2 16((a _(1172))2 - 2(20& - 1)B*(1/2;2a7204 —1)

SO el ) i B
T 16(a—1/2)(a—3/4)  2(2a —1)

B (1/2;2a,2a0 — 2)

Z4a 2( _(1/2)4a—3) Z4a 2 - .
36(04*1)(0473/4) T (2(;,2)3 (1/2; =14 2,200 — 1)
(35— 52 ol + B2 4 03— 324 - 1o + Jat) s>
! s dla=1/2)(a = 1)*(a = 3/4)a

T S - Daa 1)
— (20— 1)a(B™(1/2;2a — 1,20 —2) + B~ (1/2;2a — 1, 2a)
—2B7(1/2:2a — 1,20 — 1)) — (2a — 1)(a — 1)B~(1/2: 1 + 20, 200 — 2))
B (674_72 4a+a(_@+ 132 4O‘)+a (5 %27404)_ 15 3+ 1054) Zéa 2
N (a—1/2) (a—1)2(a—3/4)

(4(a—1)aB (1/2;2a+ 1,2a — 2)

(4(a — D)a(B™(1/2;2a,2a0 — 2) — B~ (1/2; 2, 20 — 1))

4a—2
)
8(a— Da(2a—1)
— 2a—-1)aB™(1/2;2a+ 1,2a — 2)

- (2a—1)(a—=1)B7(1/2;2a + 1,20 — 2)).

+

For the last step we use the identities

B (z;a,b) — B™(z;a,b+ 1) = B" (z;a + 1,b), (3.13)
B~ (z;a,b) + B~ (z;a,b+2) —2B ™ (z;a,b+ 1) = B~ (2;a + 2,b), (3.14)
to obtain
) = G Bl ) (42— )
' 4(a—1/2)?(a—1)*(a— 3/4)x
B zéa_QB*(1/2;2a+1,2a—2). (3.15)

8(a—1)a(2a—1)

Computing I»(yo) We will follow a similar strategy as for I(yo). First, using the
change of variables z; := e ¥/2, { = 1,2, we get

Ia(yo) = 4(a — 1/2)% Plyo, y1(21), ya(22)) 22522252z dzy
1>2z7 >max(z2,29),
20,22>0
=4(a—1/2)2- 202327322072 dzg dzy
1>2z7 >max(zq,z2)>0,
zQ,22>0

2a—3 2a 2
[>z1>max<zo,zz), G(z1, 20, 22) 2027 dzy dzy

zg,22>0,
z1<zg+z2

= 4(a — 1/2)*(In1 (yo) — I22(v0))-
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We start with the easy integral:

204 3 a 2 2a 3 a 2
IQl(yO) = 20 dzadzy = 2o dzpy dzy
1>2z1 >max(z9,20),
zg,29>0

1 2a—1 4a—2
2 20—3 20 a—4 20 — %o
= d P —— d . (3.16
zO/ZO[mJ e 2&1/2021 = da-32a—1) @19

We note that the denominators above are non-zero as o > % and a # %.
To deal with I»3(yo) we consider the function

/ a b+2a—2 c+2a—2
20) i= 2 z z dzo dz
Ja,b,c( O) 0 /1>z1>max(z0,z2)‘ 1 2 2 1

20,22 >0,
21 <2042

and write

1
1 (Jo _11(20) + T3 1 —1(20) + Joa 71(20))

(3.17)
+

1
B (J{,A,O(ZO) - Jé,o,o(zo) - J{,o,q(zo)) .

I>2(yo) =

We now compute J;, ;, .(20)

1 zZ1
/ _ .a b+2a—2 c+2a—2
Jop.(20) = 20 / / 2] 25 dzo dzy
Z0 Z1—2Z20

1
1
_ .a b+2a—2/ _c+2a—1 c+2a—1
=z _z z —(z1 — 29 dz;
B e e A A Ry

1 1

1 . 1

Za Py +ct+4a— Sdz Za/ Zb+2a 2 — c+2a—1 dZ
O/Zoc+2a11 0 Zoc+2a711 (=1 ) !
a 1 (1 . Zg+c+4a—2)

R (c+2a—1)(b+c+4a—2)

S — 2 (1 —20;¢42a,—b—c—4a+ 2)

c+2a—17°
do—2 do—2 p— .
_ 28 — 2o %" B (1—20;¢42a,—b—c—4a+2)
 (c+2a—1)(b+c+4da—2) c+2a—1 '

Here we used that for x € R,y > —1 (note that as ¢ > —1, it holds that ¢ + 2a — 1 > —1):

1 1-20
/ 27(21 — 20)Ydzy = / (s+ 20)%s¥ds
0

20
1—Z0
= Z§+y/ ((s/20) +1)* (s/20)" ds
0
1/2071
— z§+y+1/ (t+ 1)%tY dt
0
1—20
Z(:J)v+y+1 / u’(1— u)—(w+y+2) du
0
=3B (1 — 2y 4+ 1, —z —y — 1).

As ¢ > —1and —a € {0, —1,—2} and by our assumption a ¢ {2}, the denominators that
occur during the computations above are non-zero.
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Plugging the expression for .J; , .(z0) back into (3.17) we get,

Da(y) = 1-— z§a72 B z3a72B_(1 — 20; 1 4 20, — 4 + 2)
’ 32a(a—1/2) S
22— 2072 20°7?B (1 — 20, —1 4 20, —4da + 4)
+ 32(a—1)2 8(a —1)
1-— zé‘a72 z§a72B_(1 — 205 —1 4+ 20, —4da + 2)
+ 32(a—1)(a—1/2) 8(a —1)
20 — 28‘0‘72 zéo‘*zB_(l — 20; 20, —4a + 3)
+ 16(cc — 1/2) (o — 3/4) 4o —1/2)
1— 25272 20%72B (1 — 20; 20, —4a + 2)
 16(a — 1/2)2 4(a—1/2)
20 — 2572 N 20°72B~ (1 — 20; —1 + 20, —4ar + 3)
16(a —1)(a — 3/4) 4(a—1) '

Using some algebra and the identities (3.13) and (3.14) this can be reduced to

L (y0) = ! L == 2
22000 = Ghafa —1/22(a—1)  6dala—1/22(a—1) 8(a—1/2)(a — 1)(4a — 3)
22 (=6 + 25 — 4802 4 440> — 16a*) 2522
T Ra—12 " 512a(0 - 1/2)2(a — 1)%(a — 3/4)

28°72B~ (1 — 20; 20, 3 — 4a)

T T R D122

(3.18)

Combining the results for I;(yg) and I2(yp) Combining the results for I;(yo),
I12(yo), I21(yo) and Ixa(yo) we get, after some algebra, an explicit expression for P(y)
as a linear combination of terms of the form z¥, (1 — z9)" and z{B~ (1 — zp;a, b):

P(yo) =2(I + L) =8(a — 1/2)*(I1,1 — L1 o + Io1 — Iz )

—8(a— 1/2)? (12404—2

2(2a —1)27°
(Bm B2 (o B2 4023 - d2) — Bod 4 Jat)
4a—1/2)?(a—1)*(a—3/4)x
+z§a*23—(1/2; 20+ 1,2 — 2) 20 — 25272
8(a—1)a(2a —1) (4o —3)(2a — 1)

_ 1 n (1 — 29)* + Zo

6da(a —1/2)2(a—1)  6dafa—1/2)2(a—-1)  8(a—1/2)(a—1)(4a —3)
@ (=6+25a —480% +440® — 16a) 5"

32(a —1)? 512c(a — 1/2)?(ov — 1)%(ax — 3/4)

728‘&723’(1 — 20; 20,3 — 4a)
32(a—1)(a—1/2)2

_ 1 (—1/2)z0 (o —1/2)%22
8(a— 1) a—1 4(a —1)2
\ e (27°7Ba 1) | (0= 1/2)B7(1/%1+20,-2+ 2)
0 ala—1)2 2(a— 1«
(1 —zp)% B zé”‘sz_(l — 20;2a,3 — 4a)
8(a—1)a 4(a—1)
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Observe that the above expression only contains terms of the form o« — 1 in the
denominator. The only expression of the form a — 3/4 is in the lower incomplete beta-
function B~ (1 — zo;2cv, 3 — 4) which appears twice in the expression for P(y).

The case of a = 3/4 Note that the factor o — % does not occur in any denominator
of the previously obtained expression. For the lower incomplete beta function, the
last argument 3 — 4« is zero for a = %, however as zp < 1 the integration domain
of the lower incomplete beta function does not touch the singularity at ¢ = 1 (note
B~ (1 — 20;20,3 — 4a) = 01—z0 t2@=1(1 — t)?=42dt). Therefore, the previous expression
holds for this case as well.

3.2.3 Computing v and (k)

Now that we have an expression for P(y,) we can compute v, (k) by integrating over
1o and prove that they equal the expressions given in, respectively, Theorem 1.1 and
Theorem 1.2.

We define

> 0 y/2\F )
= / P(y)ae™"p(y, k) dy = / P(y)ae*"‘y%efﬁe "y
0 0 !

and -
J = / P(y)ae™ Y dy.
0
Then, recalling (3.7) and (3.6), we have

J—1M - 13 d ~(k %
y=J - - an 7()—m-

We will thus compute J and I(*). It will be helpful to change coordinates to z := e~ ¥/2.
This yields

1
J = 204/ P(y)z** 1 dz,
0

and

k 1
_ 28 / P(y(2)) - 224D =67 gz
k! 0
We shall be assuming « # 1. We observe from Lemma 3.1 that for a # 1, P(y(z)) is in
fact a linear combination of terms of the form 2%, (1 — 2)* and 2B~ (1 — z; v, w).
To compute J we observe that, by integration by parts,

7(k)

1
/ 242071 B (1 — 20, w) dz
0

1

Zu+2a 1 1
= B_(l — Z;U’w) + / Zu+2a+w—1(1 _ Z)U_l ds
U+ 2c o u+2afy
1
- u+2aB(u+w+2a’U)’
where we used that %B_(l — z;v,w) = —2z¥71(1 — 2)?~L. This takes care of the two

integrands involving the beta function in P(y). The other integrals are easily computed
and yield the following expression for .J (note that it only depends on « but not on v)

_ 2 4+ 4o+ 1302 — 3403 — 12a* + 24a° 9—1-4a

J =
6(a - 1Pa@r D2atl) @ (@12
N (a—1/2)(B(2a,2a + 1)+ B~ (1/2;1 4+ 2a, —2 + 20v))
2(a—1)(3a—1) '
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We proceed to work out I(*). For this we will compute the integrals involving terms
in P(y(z)) of the form z*, (1 — z)" and B(1 — z,v,w) separately. We first point out that
forany0<a<b<1

b . &/a
/ Zu+2a7(k+1)67§z dz = £u+2a7k / tk7172o¢7u67t dt
a £/b

_ £u+2o¢—k (F+(l€ —2a — u’é“/b) — F+(]§ — 20 — u, §/Q)> .

In particular

1
/ put2e—k—lo—827" qp = gut20hpt (L 9q — y, €), (3.19)
0

where I'T denotes the (upper) incomplete gamma function, and we have used the
substitution ¢t = ¢/z which gives dz = —¢t~2dt. (And of course it is understood that
£/0 = o0). This takes care of the integrals of all terms in P(y(z)) of the form z“.

Next we will consider the integrals over the terms in P(y(z)) of the form (1 —
z)*. For this we need the hypergeometric U-function (also called Tricomi’s confluent
hypergeometric function), which has the integral representation

1 oo
U(a,b,z) = —/ e FeT (1 4 t)bma 1l dt,
L(a) Jo
which holds for a,b,z € C, b € Z<y, Re(a), Re(z) > 0, see [16, p. 255]. Applying the
change of variables ¢t = 1=% (i.e. dt = —s~%ds and s = H%l) yields

z

1
(&
U(a,b,z) = —/ s7P(1 — s)*te 7/ %ds.
I'(a) Jo
Settinga =2a+1>0,b=—-2a+k+1, z=¢£ >0, then gives
1
/ Z2omh=le=8/20 (1 — 2)%%dzy = T2+ 1)e U (2a 4+ 1,1 + k — 20, €). (3.20)
0

Finally we need to deal with the terms in P(y(z)) that involve the incomplete beta
function. Let a,c € R, &, b > 0 positive real numbers. Using the integral definition of the
incomplete beta function, the change of variables s = 1 — ¢ gives:

1 1 1-z
/ 2% ¢*B7(1 — z;b,¢)dz = / zaefg/z/ 711 — )t dtdz

0 0 0

1 1
:/ zae_g/z/ 5711 — 5)’"1dsde.
0 z

Then changing the order of integration and using the substitution u = £/z and recogniz-
ing the upper incomplete gamma function yields

1 1
/zae_f/z/ 71 —s)""tdsdz
0

1 s
= / / 2% dz 571 — 5)P " ds
o Jo
1 o'}

= / €9ty 2 du s (1 — 5)P 7 ds
0 J¢/s

1
_ £a+1/0 It(—a—1,¢/s)s° (1 - S)b—l ds. (3.21)
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To compute this last integral we make use of the fact that the incomplete I'-function has
a representation in terms of Meijer’s G-function (see Lemma A.1 in Appendix A)

I (—a—1,¢/s5) = Gfg(ﬂ a—1 0)

which holds for any a € R and s > 0 (that for a fixed second argument, the upper
incomplete gamma function is entire in the first argument, see [20, pp. 899, 1032ff.]).
We can now evaluate the integral in (3.21) using several identities for Meijer’s G-function.

First, inserting the expression for the incomplete Gamma-function into (3.21) gives

1

Next we apply the inversion identity for Meijer’s G-function (see [16, p. 209, 5.3.1.(9))])

to get
1 S
ga—&-l/ sc—l(l _ S)b_ngﬁ <
0

This expression is actually the Euler transform of Meijer’s G-function (see [16, p. 214,
5.5.2.(5)]) and (as the conditions 2 + 1 < 2(0 + 2) and |arg(¢71)| < 5 (as & > 0) and
1—c—b<1—c(asb>0)are satisfied) it equals

2 —1—0(17 1) ds.

¢HI0(0)Gy (51

1-¢2+a,l
0,1—c—b )’

Using again the inversion identity for Meijer’s G-function we now get

1,b+c
¢,—1—a,0)"

Finally, plugging in a = 6ac — k — 3, b = 2, ¢ = 3 — 4o we obtain

£ ID(D)GLS (g

1,3 —2a

1
a,—8/2p—(1 _ . _ ¢ba—k—2 3,0
/0 2% ¥ BT (1 — z;b,¢)dz = ¢ ['(2a)Gyy (5‘3—4a7—6a+k+2,0

) . (3.22)

Using equation (3.19), (3.20) and (3.22) we get

2« 2021+
(N S S L ala = 1/2)%€T (k — 20— 2,€)
= -1 ( (k—20,¢) -2 @-1)

+8a(a — 1/2)¢0 (k — 2o — 1,€)

2—4(1 -1
+4§4a—2f+(k — b + 2,5) ((()é(?LOé]-)) + ( _ 1/2) 1/2 142, -2+ 204))
+EF2T 200+ 1)e U 2a + 1,1+ k — 2a, £)

4a—2 1,3 -

¢ F(2a+1)G (63 4o, 76a+k+20
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With the expressions for J and I*) and using I'*(¢,2) = 't (g + 1,2) + T (¢, 2) we
now obtain, after some algebra, the expression for ~

J—1O _1(»)

2
Il

2+ 4da + 13a? — 34a® — 120 + 240° N 21l
16(a — 1)20(a + 1)(2a + 1) (a—1)2
n (o —1/2)(B(2a,2ac + 1) + B~ (1/2;1 4 2c, —2 + 2a))
2(a—1)Ba—1)

c20 oo — 1/2)262TF (=20 — 2,€)
oD <—r+(—2a,£) -2 (a—1)
+8a(a = 1/2)60" (=20 — 1,¢)
27Ba—1)

+4£40¢72F+(_6a + 27 é’) ( —+ (a — 1/2)B7(1/2, 1+ 20[, -2+ 20[))

(a—1)
+E2T 2o+ 1)e U (2a + 1,1 — 20, €)

1,3 -2«
a2 3,0 ’
£’ (2a + 1)Gyy (f‘g _ 4a, —6a+2,0>>

52(1 Oz(Oé - 1/2)2§2F+(_2a — 176)
+8a(a — 1/2)€0 (1 - 20 — 1,¢)
2 @Ba—1)

+4§-4a721—‘+(1 — 6o+ 2,€) < +(a—1/2)B7(1/2;1 4+ 2a, —2 + 2a)>

(a—1)
+€1729T(2a 4+ 1)e U (2a + 1,2 — 2a, €)

1,3 - 2a
_ ¢da—2 3,0 B}
7T (2004 1)Gyy <§‘3 ~ da,—6a+ 3, 0))
2+ 4a+ 13a% - 34a® — 12a* 4 240° N g~ l—da
B 16(a — 1)2a(a + 1)(2a + 1) (a—1)2

(a@—1/2)(B(2a, 200+ 1) + B~ (1/2;1 + 2, -2 + 200))
i 2(a—1)(3a—1)

20T (=20, &) €2 2a(a — 1/2)* T (—2a — 2,€)
Ma—1) 2a 1)

2ot la(2a — DI (—2a — 1,€)  €89722742(3a — 1) (—6a + 2,€)
- (a—1) - (a—1)2

£°72(a —1/2)B~(1/2; 1 + 20, —2 + 20)* (=6 + 2, €)
- (a—1)

e T(2a+1) (UQ2a+ 1,1 —2a,€) + U(2a + 1,2 — 20, §))
4(a—1)

1,3 — 2« 1,3 — 2«
6a—2 3,0 5 3,0 5
¢ P2a+1) (G2’3 (5‘3 — 4o, —6a + 2, O) + G <£’3 — 4o, —6a + 3, 0))

4(a—1) ’

+

which is the expression in Theorem 1.1.
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Similarly, we get

k
v(k) = izk))
1
~ Ba(a— DI (k — 20, €)
+8a(a — 1/2)¢0t (k — 2o — 1,€)
274 (3a — 1)
(a—1)

+&F72T 20 + 1)e U (20 + 1,1 + k — 20, &)

1,3 - 2a
3—4da,—6a+k+20) )’

which equals the expression in Theorem 1.2.

a—1/2)26T* (k — 2a — 2,¢€)
(a—1)

(—r+(k ~9a,6) — 22
+ (a—1/2)B7(1/2;1 4 2a, -2 + 2a))

+4£4 72T (k — 60 + 2,€) (

—£7 (20 + 1)GY (g

3.3 The proof of Proposition 1.4

Instead of extracting the scaling of v(k) from its explicit expression, it turns out to be
more convenient to derive it using P(y). Recall that

_ Jo ply, k) P(y)ae”¥ dy
Jo~ Py, k)ae=ev dy

v(k)

The asymptotic behavior for the denominator is given by (3.3). Hence, the main term to
consider is the numerator

/ P(y) p(y, k)ae™ ¥ dy,
0

and in particular the function P(y). We therefore start with establishing the asymptotic
behavior of the latter. First we combine (3.3) and (3.4) to obtain the following scaling
result

Iy e P ply, k)ae v dy

155 ply, k)ae—v dy

~ 20128, (3.23)

Proposition 3.5 (Asymptotic behavior of P(y)). Let o > % v > 0 and c,,, as defined in
Proposition 1.4. Then, as y — oo,

1 3
1. for§<oz<1,

P(y) ~ 67%(40172)0(1#54&727

2. fora =3,

3. and fora > 2,

Proof. We shall deal with each of the three cases for a separately.
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1/2 < o < 3/4 By Lemma 3.1 we get that

e(4a—2)gp(y)
2% 130 1) (a— 3B (5;1420,-2+20) B (1—e ;20,3 - 4a)

afa—1)2 2(a — Da a 4(a—1)
(4a—2)% _ 1 _ 1y2 )

e 2 —¥\2q ) X~ 3 (4a-3)% (a—3) 4(a—1)Y

— (- —-1)+—2 -2 :
+B(a—l)a(( e?) e T et

Now consider again variable z = ¢~%/? and not that z — 0 as y — occ. Because for any
b<1, B (1-z:a,b) converges to B(a,b) < oo as z — 0, we get that as y — oo, the
second line is asymptotically equivalent to

3a—1 n (. —1/2)B~(1/2;1+ 20, -2+ 2a)  B(2¢,3 — 4a)

_ (4a—2)
240+l (q — 1)2 2(a—1)a 4(a—1) ’

= Ca,llg_

with ¢, as defined in Proposition (1.4). The proof now follows since for 1/2 < a < 3/4,
the remaining three terms go to zero as y — oo. For the first of these terms this is true
since

p4a—2)% ((1 _ e_g)za _ 1) —-0 (e(4a—2)ge—g> -0 (e(4a—3)%) = 0(1),
asy —ooand 1/2 < o < 3/4.

a = 3/4 Similar to the previous case we use Lemma 3.1 to obtain (evaluating the
expressions for o = 3/4)
2 2 4ef (1—e 3)32-1) 1 %
2etpy) = 2B (1 - e Hi3/2,0) - 2200 il Y .
Yy Yy Yy 3 y 4y
<5 2B~ (5;5/2, —1/2)>

¥ ((1—6—5)3/2_1> N_g, (3.24)

4 S((1—e%)3/2_1
TR il (U )bt B
y—oo Y 3

which implies that

We can now conclude that all terms in %e% P(y) except the first one are o (1) as y — oo.
By writing z = e~ % we can rewrite the first term as
B~ (1—-2;3/2,0)

log(2)

2 ,
53*(1 —e7%;3/2,0) = —

Since B~ (1 — 2,3/2,0) ~ —log(z) as z — 0, see Lemma B.1, it now follows that for
a=3/4,

L2 _u . -
ylLH;OQB (1—e 2,3/2,0)—&1&6—@3 (1—23/2,0)=1.

We therefore conclude that

as y — oo.

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
Page 30/132


https://doi.org/10.1214/21-EJP583
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Clustering in a hyperbolic model of complex networks

a > 3/4 We first deal with the case o = 1. Here it follows from Lemma H.2 that

9 e¥/2log(l — e v/?)
y/2p _ 2
e/ "P(y) =7 +

4
3 T+m 1
—log(1 — e™¥/2) 4 e7¥/2 (4 log(1 — e™¥/2) — % + 2Li2(e_y))
1
=2+ 1 (ey/2 log(1 — e ¥/2) + 1)
3 7 S |
—log(1 —e7¥/2) 4 e7¥/2 <4 log(1 — e™¥/2) — % + 2Li2(ey))

The last three terms are o (1) as y — oo, while 2 = (o« — 1/2)/(a — 3/4) for a = 1.
Now we will deal with the case « > 3/4 and « # 1. For simplicity we write

2747130 — 1) N (@ —1/2)B=(1/2;1 + 2a, —2 + 2«)
a(a—1)2 2(a — 1« '

eV?P(y) = + (1—e— )Qa—l
a—1 8la—1)a
(1a—3)z B~ (1= e72%;20,3 — 4a)

Qa =

Then, by Lemma 3.1 we get

! 3

Wl

4(a—1)

1\2
—(4a—3)% (O‘_ﬁ) _y
+€( )ZQQ"FWG 2,

The first term is constant while the last two terms go to zero as y — co. We will therefore
focus on the remaining two terms. For the first we have, see (3.24)

ﬁ ((1 a 6_%>2a a 1) - 8(04_301)04 B _4(01— 1)’

v
2

as y — oo. Finally, writing z = e~ 2 we get that

"3 B (1 — e 2Y; 20,3 — 4a) = 2** 3B (1 — 2,20, 3 — 4a).
Therefore it follows, see Lemma B.1, that

_ 1 _
lim —e—(40—3)% B~ (1 —-e2%;2a,3 — 4a) ~ lim 240‘733 (1—-2;20a,3 —4a)
y—oo 4(a—1) z—0 4(a—1)
B 1
Ao —1)(4a—3)

We conclude that as y — oo

_1 2 _1
ey/2p(y)wa 2 1 B 1 _ 173a+2a3 _a g’
a-1 4la-1) 4da-1)(4a-3) (a—-1)(a—3) a-—3

which finishes the proof. O

With the asymptotic behavior of P(y) we are ready to prove Proposition 1.4. Recall
that for any C' > 0 we defined

k+ C\/klog(k
yki’cz2log <€ os( )\/1>.
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and K¢ (k) = [y o y,jc] Since P(y) < 1 by the concentration of heights results (Proposi-
tion 2.5) we have that, as k — oo,

/ODO P(y)p(y, k)ae™* dy = (14 0(1)) /ch P(y)p(y, k)ae™ ™ dy. (3.25)

Yo

Note that this implies that if P(y) = h(y)(1+0(1)) as y — oo, then

o0 o0
| Pt kaeray ~ [ oty kaeray, (3.26)
0 0
as Yy — o0.

Proof of Proposition 1.4. We split the proof over the different cases for «.

1/2 < a < 3/4 By Proposition 3.5 and (3.26) it follows that as & — oo,

e =22 p(y, k)ae ™Y dy
fooo py(k)ae=>¥ dy

é— (4a—2) fo

’7( ) ~ Cq, ca,uk_4a+27

where the last line is due to (3.23) with § = 2a — 1.

a = 3/4 Similar to the previous case Proposition 3.5 and (3.26) imply that as k — oo

Jo PW)ply, k)ae™vdy [ §e=v2p(y, k)ae™ ¥ dy

fo py(k)ae=v dy fo py(k)ae=v dy

However, the final step does not follow immediately from (3.23) because of the additional
logarithmic term.
To deal with this we observe the following upper and lower bound

/ gefy/Qp(y, k)ae™*dy < ykzc / efy/2p(y, k)ae™ Y dy,
Kc(k) Kc(k:)
and similarly, a lower bound
Ye=v/2p(y, k)ae=¥ dy > < Yr,c ~/2p(y. ke~ d
5 Py 5 e Y p(y, k)ae y.
]CC(]C) ]Cc(k?)

Now observe that as k — oo,

+
hec _ o (ki Ml;:log(k)) - log(k).

It follows that
Sco) 57V ply, k)ae™ Y dy

lim sup <1,
koo l0g( )ch(k) e~v/2p(y, k)ae—v dy
and
- Seo $¢7Y2p(y, k)ae¥ dy -
imin ,
R Tog(k) [, e 20l e dy =
which imply
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/ %efy/Qp(y, k)ae™ Y dy ~ log(k) / efy/zp(y, k)ae™ Y dy, (3.27)
KC(’C) K:c(k)

as k — oo.
Since (3.23) with § = 1/2 implies

Iy e 2 p(y, k)ae™v dy
Io” ply, k)ae=ov dy

~ &k

it follows from (3.27) that as k — oo,

Jo© 5e7vp(y, k)ae™ ¥ dy

y(k) ~ 25
(k) Jo ply, k)aeov dy
> e—y/2 Kae= Y d
~ log(k) fo io oLy, )(jj 4o flog(k)kfl = G—Vlog(k)kfl,
Jo ply, k)ae—ev dy ™
when a = 3/4.

a > 3/4 Again, by Proposition 3.5, equation (3.26) and (3.23) with 8 = 1/2, it follows
that as k — oo,

(k) a— % fOOO e’y/Qp(y, kK)ae™®dy «a-— % k1 = S8av -
a—3 IS ply, k)aev dy a—3 (4o —3)°

4 Proofs of Theorem 1.1 and Theorem 1.2

We will first derive Theorem 1.2. It will turn out that Theorem 1.1 has a quick
derivation assuming Theorem 1.2.

4.1 Clustering function for fixed %, proving Theorem 1.2

We will now show that the clustering function of the KPKVB model c(k; G,,) LN (k)
for a fixed k. The key ideas are that the coupling of the Poissonized KPKVB model with
the box model is guaranteed to be exact (in the sense that it also preserves edges) for
all vertices up to height R/4; and that when computing the expected value clustering
function ¢(k; G) in the subgraph of the box model induced by all vertices up to height
R/4 using the Campbell-Mecke formula we obtain integrals that are very similar to the
expressions we found earlier for (k).

We will repeatedly rely on the following observation. When we are simultaneously
considering two graphs G, H we will use the notations Ng(k), Ny (k) to denote the
number of vertices of degree k in G, respectively H.

Lemma 4.1. Let k > 2 and let G, H be graphs such that G is an induced subgraph of H,
or vice versa. Then

6|E(G)AE(H)|

leks @) = elks )| < o S B ARG

provided N¢ (k) > 2|E(G)AE(H)|.
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Proof. We observe that

ca(v) cr(v)
le(k; G) — c(k; H)| = E - E
vev(@), Ne (k) VeV (H), N (k)
dege (v) =k deg s ()=

= Ngl(k) Z ca(v) + Z ca(v)

VeV (G\V(H), VeV (G)NV (H),
degg (v)=Fk degg (v)=Fk,
deg's (0) 2K

1
N (8) Z cy(v) + Z cy(v)

VeV (HN\V(Q), VeV (G)NV (H),
degyy (v)=k dege (v) £k,
degy (v)=k
1 1
(v~ wm) P
deg (v)=degy (v)=k
2|E(G)AE(H)|  2|E(G)AE(H)| | |[Nu(k) — Ng(k)|
ST Ne® T Na®) T Ne®) Naty W
_2|E(G)AE(H)| | 2[E(G)AE(H)| | |Nu(k) — Ng(k)|
B Ng (k) Ny (k) Ng(k)
2|E(G)AE(H)|  2[E(G)AE(H)| +2|E(G)AE(H)\
Ng(k) Ny (k) Ng (k)

6|E(G)AE(H)]
"~ Ne(k) = 2|E(G)AE(H)|

(In the second line we use that degy(v) = degy(v) in fact implies that cg(v) = cg(v)
since one of G, H is an induced subgraph of the other. In the third line we use that
clustering coefficients cq(v), ¢y (v) take values in [0, 1], and if either deg,(v) # degy (v)
orv € V(G)AV(H) and v has degree K in whichever of G, H it belongs to then at least
one edge of E(G)AE(H) is incident with v, and that every edge in F(G)AFE(H) only
affects the status of its two incident vertices. For the fifth line we used that |Ng(k) —
Nu(k)| < [{v € V(G) : degg(v) = K}A{v € V(H) : degy(v) = k}| < 2/E(G)AE(H)|
for similar reasons. In the last line we used that Ny (k) > Ng(k) — |[Na(k) — Nu (k)| >
N¢ (k) — 2|E(G)AE(H)|.) O

Lemma 4.2. |E(G,)AE(Gpo)| = o(n) a.a.s.
Proof. Let us fix some € > 0 and write
G_=G((1—¢en,o0,(1—¢)v), Gy:=G(1+e)n,a,(l+¢e)).

(We ignore rounding issues, i.e. the issue that (1 — ¢)n, (1 + £€)n may not be integers, to
avoid notational burden. We leave the straightforward details of adapting our arguments
below to deal with it to the reader.)

Observe that the vertices of G_, G, G, Gp, all live on the same hyperbolic disk,
of radius R = 2In(n/v). We consider the standard coupling where we have an infinite
supply of i.i.d. points u;, us, ... chosen according to the («, R)-quasi uniform distribution,
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the vertices of G, = G(n; a,v) are uy, ..., u,, the vertices of G_ are uy,...,u_q),, the
vertices of G, are ui,...,u(14c), and the vertices of Gp, are uy,...,uy with N 4 Po(n)
independently of ui,us,....

As N 2 Po(n), by Chebychev’s inequality, we have that |V — n| < en a.a.s. So in
particular, under our coupling we have G_ C G,,,Gp, C G a.a.s. We now point out that,
by the results of Gugelmann et al. on the average degree ([21], Theorem 2.3), we have

4dva? 4dva?
P —_— 2.7. p— 2.7.
|[E(G-)| = (1—¢) o 1) n+o(n), |E(Gi)|=(1+¢) a1 n+o(n) a.a.s.
It follows that
16va?
|E(Gn)AE(Gpo)| < |[E(GL)\ E(G-)|=¢e- ———— -n+o0(n) a.a.s.
m(2a — 1)2

This holds for every fixed € > 0. Sending € \, 0, concludes the proof of the lemma. O

Next, let us recall that by the results of Gugelmann et al. on the degree sequence
([21], Theorem 2.2) we have that

n

Newk) o (4.1)

n n—oo

for every fixed k. In particular Ng, (k) = Q(n) a.a.s. Combining this with lemmas 4.1
and 4.2 we obtain:

Corollary 4.3. For every fixed k > 2, we have

N,
c(k; Gp) — c(k; Gpo) —— 0, and Ner,(k) _©_, (k).
n—00 n n—o0

(For the second statement we use that Ng, (k) — 2|E(G,)AE(Gpo)| < Ng,, (k) <
NG,L (k) + 2‘E(Gn)AE(GPO>|)

In the remainder of this section, we will denote by Gy.x— the subgraph of Gy«
induced by all vertices (z,y) € Vhox = P N'R of height at most R/4.

Lemma 4.4. Under the coupling provided by Lemma 2.1, a.a.s., Gpox— is an induced
subgraph of Gp, and |E(Gpo) \ E(Ghox—)| = o(n).

Proof. We remind the reader that under the coupling of Lemma 2.1, we can view Gpox
and Gp, as having the same vertex set Vhox = P N'R; and two points p = (z,y),p’ =
(2/,y') € Vhox are joined by an edge in Gpey if |z — 2/|, r/2 < e®T¥)/2, while p,p’ are
joined by an edge in Gp, if either y + ¢y’ > Rory+4' < Rand |z — 2| .r2 < O(y,y')
with ® as provided by (2.6). It follows immediately from Lemma 2.3 that Gox_ is an
induced subgraph of Gp,, a.a.s., as claimed.

Fix € > 0, and let X denote the number points of V},x with y-coordinate > (1 — ¢)R.
Then X is a Poisson random variable with mean

eR/2

m s z R vo
E[X] =pu((—=e? B2 x [(1 - :/ / —)e dyd
X] = g (=52, ZeR2) s [(1 = )R, R (H)RU)G y da
— O(eR/Qf(lfs)aR) — 0(1)7

the last equality holding provided € was chosen sufficiently small (using that « > 1/2).
We conclude that, a.a.s., there are no vertices of height at least (1 — ¢)R.
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Let Y denote the number of pairs of vertices p = (z,y),p’ = (2/,9') € Vhox With
y + 1 > R. Then, by the Campbell-Mecke formula

Y]z/ / 1{y+y'zR}u(dp’)u(dp)

oR/2
/ / / / Va) e W) qy/ da' dydx
eR/2 eR/Q R—y T

=0 Re(1 O“)R) = o(n),

the last equality holding because « > 1/2 and n = vef¥’2 . In particular, by Markov’s
inequality, Y = o(n) a.a.s.

Now let Z denote the number of pairs of vertices p = (z,y),p’ = (¢/,y’) for which
y+y <Ry<(l1—e)R,R/4<y < (1—e)Rand |z —12'|,.r> < ®(y,y’). Let A denote the
set of all pairs p, p’ for which both y+3' < R,y < (1—¢)R and |z — 2| ;or/2 < ®(y,y’) hold.
By Lemma 2.2 we have that ®(y,y') = O(ew¥)/2) for all such y,’. By Campbell-Mecke

we can write
ef/2 L(1—¢) /2 L(1—e)R 9 ,
/ / / / Lippreay (&) e~ W) dy drdyda’
,,eR/z ,,ER/z ™

(1—e)
=0 (eR/Q/ / 6(1/2a)(y+y’)dy/dy>
0 R/4

-0 (6R/2+(1/2—a)R/4> — o(n).

Hence also Z = o(n) a.a.s.
This concludes the proof as we’ve now shown that under the stated coupling, a.a.s.,
Ghox— and Gp, differ by only o(n) edges. O

Analogously to Corollary 4.3 we obtain:
Corollary 4.5. For every fixed k > 2 we have

c(k; Gpo) — c(k; Goox—) _r, 0, and

n— 00 n n— 00

Lemma 4.6. For every fixed k > 2 we have

o(k; Grox—) —— (k).

— 00

Proof. We write R_ := RN (R x [0, R/4]) = (—Ze/2, ZeR/2] x [0, R/4] and set

X = Z c(v) = Z CGhon (V) - Naege,  _ ()=k}-

VENG, . (k) vEPNR -

By the Campbell-Mecke formula

E[X] Z/ Ep {chox,(z) deg:  (2)=k) p(dz),

where G . _ denotes the graph we get by adding z as an additional vertex to Gyox—, and

adding edges between z and the other vertices as per the connection rule (for Gpox).
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Spelling out the intensity measure y, plus symmetry considerations, gives

CR/2 1?,/4IE « N (B) g
778R/2 0 P CG{)aﬂo;(yl r,Yy))- {degcl()i;gjl((z,y)):k} . e Y ax

=n / EP [cGw,w ((0.9)) - Lideg o) ((o,y»—k}] ae”* dy
0 box— Gbox—

R/4
—n- / Ep [0 (0, 30))|deg 0000 (0, 30)) = 4] -
0 ox— ox—
P (degG&;yE) ((0,%0)) = k’) ae” 0 dyp.

The random variable deg GO ((0,y0)) follows a Poisson distribution with mean

box—

e(¥tv0)/2

R/4
I [deg 0. ((0,40))] = (Bee ((0,0)) N R / / e~ d dy

6(7/+1/o)/2

25690/2 (1 e(1/2 a)R/4
Hence, for every fixed yo and &k, we have that
P (deg 0.0 ((0.90)) = k) —— P(Po(¢e™/?) = k) = plyo, k).

Next we remark that, analogously to the argument given in the beginning of Sec-
tion 3.2, we have

E [¢000 (0,50)) [ deg o0 (0. 0)) = k] = P(wr € B (w2)) = Paly),
with wy = (21,y1), ws = (22, y2) chosen independently from B, ((0,yo)) N R_ according
to the probability measure we get by renormalizing p, i.e. with pdf

fu 1B ((0,y0)nR_ /1#(Bso ((0,%0)) NR-).

By considerations completely analogous to those following Lemma 3.1, the random
variables y1, y2 both follow a truncated exponential distribution with parameter o — 1/2
truncated at height R/4 (i.e. with density 1, <p 4y - (o — 1/2)e(}/2=2)%i /(1 — (1/2-0) B/4y)
and, given the values of yq, y1, y2, each z; is chosen uniformly on the interval [—e(y”yi)/ 2,
e(o:¥:)/2] In particular

o—1/2 R/4 R4 »
Po(yo) = (1_6(1/2_/Q)R/4> /0 ; P(yo, y1,y2)eM/ 2082 qyy dys,

with P(.,.,y.) as defined in the paragraph following Lemma 3.1. (That is, P(yo, y1,y2) is
the probability that |z, — z3| < e®11¥2)/2, where 1, x5 are independent with z; uniform
on the interval [—e®ot¥:)/2 ¢o+vi)/2]) It follows that, for any fixed ¥y, we have

Fr (yo) (a=1/2) / / P(yo,y1,y2)e M/ 2= WH92) qyy dyy = P(yo).

(Applying monotone convergence to justify the convergence of the integral as n — o0.)

Since (expected) clustering coefficients and probabilities are between zero and one
and ae®¥ is integrable, we can now apply the dominated convergence theorem to obtain
that

E[X o
g SN / P(yo)p(yo, k)oe=% dyo = m(k) - y(k). (4.2)
n n—oo 0
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(Applying (3.6) for the last equality.)
Next, we turn attention our to X(X —1) =3, . cn, (&) ¢(v)c(u). Another applica-
box
tion of Campbell-Mecke shows that

BX(x =1 / / {G“ Aegee () Naeg . .o ()=deg_, .o ()=} | p(d2)p(dZ"),

box— box— box— box—

with Gfaozxf denoting the graph we get by adding z, 2’ as additional vertices to Gpox_. Now
note that if z = (z,y) and 2’ = (2/,y’') satisfy |t —2'|,.r/2 > 2¢f¥/ then the neighbourhoods
of z, 2’ are determined by the points of the Poisson process P in disjoint areas of the

plane. This implies that, provided |z — z/|, r/2 > 2e/%:

box— box— boxf box—

= (4.3)

E [CGgoxf () - 1{degcﬁox7<z>:k}} B |:CGZ () - 1{degci;x_<zf)—k}} :

E[G“ (2)cgs (2) - 1{deg“, (2)=deg_. ./ (=)= k}]

box—

On the other hand, the LHS of (4.3) is always between zero and one, also if |z —
2’| ors2 < 2e®/4. We may conclude that

D]
/ / cc;g (2)- 1{degcgox7(z):k}] I [ngox( ) Haeg,,.. _(z’)_k}:| p(dz)p(dz")

+/ / L |par<2ersay pu(d2) p(d2’)
r_JR_

2
= (/ E [Ccﬁox, () 1{degG§OX_(z):k}} M(dz)> +0(e3/Y)
= (EX)* +0(n%?).
Combining this with (4.2), it follows that Var(X) = E[X (X — 1)] + E[X] - E[X]* =
0 (]E [X ]2) By Chebychev’s inequality, we therefore have
X =n-vy(k) w(k)+o(n) a.a.s.
In combination with Corollary 4.5 (second limit) we can conclude that

X P
NGboxf (k) nreo

C(k;GbOX—) = (k)v

as desired. O

Proof of Theorem 1.2. For completeness, we point out that Theorem 1.2 follows immedi-
ately from Corollaries 4.3, 4.5 and Lemma 4.6. O

4.2 Overall clustering coefficient, proving Theorem 1.1

Proof of Theorem 1.1. Recall in Section 3, we defined n(k) := P(D = k), v := E[C],
v(k) := E[C|D = k] with D the degree and C the clustering coefficient of the “typical
point” in the infinite limit model G,. We can write

y=E[C] =Y E[CID=HPD =k) = (k) -n(k

k>2 k>2

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
Page 38/132


https://doi.org/10.1214/21-EJP583
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Clustering in a hyperbolic model of complex networks

For the KPKVB random graph, or any graph for that matter, we have the similar
relation

c(Gn) = (ki Gn) - (Na, (k) /n).

k>2

By Theorem 1.2 and (4.1) we have, for any fixed k£ > 2:

K K
2> ek Ga) - (N, (R)/m) —=— > 1(k) (k). (4.4)
k=2

k=2
where Slutsky’s theorem justifies the convergence in probability. On the other hand we
have

K

chGn k)/n) +Z (Ng, (k)/n) mZv +Z , (4.5)

k=2 k>K k>K

where the convergence in probability can be justified using Slutsky’s theorem together
with the fact that ) ;- ,7(k) = 1 (one convenient way to convince oneself that this is
true, is to note that D, the degree of the typical point, is a.s. finite). In more detail,

K K
P
> (Ne, (k)/n) = 1= 3" (Ne, (k) /n) —— 1= (k) = 3 n(k).
E>K k=0 k=0 E>K
The result follows from (4.5) and (4.4), by sending K — oc. O

5 Degrees when k£ — oco: proof of Theorem 1.5

Since the new contribution of Theorem 1.5 concerns the cases where the degree
k., — oo, we will assume that this holds throughout this section.

5.1 Proof overview

We start by using the Campbell-Mecke formula to compare the degree distribution in
Gp, with that of the typical point in G,. As we’ve already seen this equals

m(k) = /OOO p(y, k)ae™ dy.

We will relate this to the Poissonized KPKVB model Gp,. More precisely, let Np,(k)
denote the set of degree k vertices in Gp,. We then show in Section 5.2 that for any

1<k, <n—1withk, =0 (nﬁ) E [Npo(kn)] = (1 + 0 (1))nn(k,) and more generally,

E KNP‘;(’“”)H = (140 (1)) ERelEn)) 5.1)

r!

for any integer » > 1 in Section 5.4. The latter result requires us to analyze the joint
degree distribution in Gp,, which we do in Section 5.3. The above result in particular
implies concentration of Np,(k,) from which the result on the degree distribution in Gp,
follows for k, = o (n771 ). When k,, = (1+o0 (1))ch1+1 we use the above result to show
that the fraction of degree k,, nodes in Gp, converges to a Poisson distribution.

To extend these results to ,, we couple the construction of the KPKVB model
to that of the Poissonized version Gp, in Section 5.5 to show that a.a.s, N,(k,) =
(14 0(1))Npo(ky). With these results we then prove Theorem 1.5 in Section 5.6.

We will also establish all the above mentioned results for the finite box model Gy,
since the proofs only require small alterations and we will need these results later on
when analyzing the clustering coefficient and function.
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5.2 Expected degrees in Gy, and Gp,

We proceed with the expected degrees in the finite box and Poissonized KPKVB model.
Recall the definition of the neighbourhood balls By (y) and B(y) of a point (0,y) in,
respectively Gpox and Gp,. We introduce the short hand notation

ppo(y) == p(B(y)) and ppox(y) :== p (Boox (¥)) -

Our first results relate these measures to the measure p(y), of the ball B, (y) in the
infinite model G..

Lemma 5.1 (Expected degree given height in Gp,). Let o > % e>0and0<y<(l1-—¢)R.
Then as n — oo, uniformly in y,

ppo(y) = (140 (1))u(y).

Proof. Recall that when ¢y’ > R — y then p’ € B(y) while for ¢y’ < R — y this is true
when (2.6) holds. We split the integral for up, ,(y) accordingly, into two integrals I,
and I,

Ry av B rnav
ppo(y) = / 20(y,y1)—e *dy, +/ ——e Wdy, =1 [ + .
0 ™ R—y v T

Firstly, we will show that the second integral I» = o(u(y)) and then we will show that
I = (14 o(1))u(y) (both with convergence uniform in 0 <y < (1 — €)R).
For the second integral /5, we compute

R
I, = / @%e_ayldyl = n(e_o‘(R_y) — e_“R) = ne_o‘R(eay -1 = n1_2"1/20‘(eo‘y -1).
Ry V T

Yy
2

To see that n!=2%02%(e™¥ — 1) = o(u(y)), recall that u(y) = £e2. So, we need to show that

1-2a,,2a( ,ay _ 1
n v (ye ) —o(1),
ez
or equivalently that
e —1 200—1
y — 0 ( ) :
ez

For this, note that
ay o
L 0 (eay*g) =0 (e(a_%)y> .
et

Asy<(1-€¢R=(1-¢€2In2 and a > 3, we have

)

o(a=3)y < (a-3)a-aR _ (2)2(“’%)(1*6) — o (n21)
v
where the convergence is uniform in y, 0 < y < (1 — ¢) R, as the last upper bound does
not depend on y.
For the first integral I;, we first recall from Lemma 2.2 that there is a positive
constant K such that for any ¢ > 0, for all y1,y2 € [0,(1 — )R], y1 + y2 < R, we have

e%(yl"‘y?) _ Ke%(yl"l‘y?)_R < <I>(y1,y2) < e%(yl-‘rm) + Ke%(yl-‘rm)—R_
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We thus define the main and error term of I; as

R—y
© ytv1
===l -«
Il,main:/ 2e 2 —e yldyla
0 ™
R—y
3 _pQU _
Il,error :/ 2K€2(y+y1) R76 O‘yldy1.
0

From the error bounds for ¢ as given in Lemma 2.2, it follows that

Il,main - Il,error S Il S Il,main + Il,error-

We will firstly show that I1 jein = (1 + 0(1))u(y) and then that I1 crror = o(p(y)).
For the main term, we obtain, as R —y > ¢R — oo, uniformly in 0 <y < (1 — ¢)R,

R—y R—y
ytyr U _ 20V 1_
Il,main :/ 2e 2 - e (xyldyl — e / e(z a)yldyl
0 0

- W(Za_yl)eg (1= eGm)ED) = (14 o(1))ée = (1+ (1)) u(y)-
2

ke

For the error term, we obtain, for a # 2, uniformly in 0 < y < (1 — €)R,
R—y
Il,error = / QKB%(y-’_yl)_R%e_ayldyl
0 T

R—y
= QK%e%yfR/ e(%_a)yldyl
m 0

o 2RO g () 1)

S (3-a)
T B )
T (3 —a)

For the error term with a = % uniformlyin 0 <y < (1—¢)R,

R—y R—y )
/ 3Ke3 v R =3ui gy, — 3KZ€%y_R/ dyr = 2BV 3v-R(p ) — g (ﬁe%) .
0 v iy 0 iy

We conclude that [ ¢rror = 0(p(y)) and hence I main £+ I1,error = (1 + 0(1))p(y), which
finishes the proof. O

Lemma 5.2 (Expected degree given height in Gpox)- Let a > % e>0and0 <y < (1-€)R.
Then as n — oo, uniformly in y,

fox(y) = (1 + o (1) p(y).

Proof. First note that since we have identified the boundaries of [_ge% %eg] we can

assume, without loss of generality, that p = (0,y). We then have that the boundaries

of Byox (p) are given by the equations ’ = +e “5 which intersect the left and right

boundaries of [—%eg, geg] at height

h(y) = R + 2log (g) _y.

Therefore, if y < 2log(w/2) this intersection occurs above the height R of the box R
while in the other case the full region of the box above h(y) is connected to p.
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We will first consider the case where y < 2log(7/2). Here we have

yty' +u

Bbox / / 7/+1/ J) y dl‘ dy

2 y
= ﬂef/ e —(a=2)y' dy
0

= n(y) (1 - e‘(a“)R)

where the error term is o (1), uniformly in y.

Now let y > 2log(n/2) and recall that pu(y) = £e? where ¢ = © 4‘”’) . Then, after
some simple algebra, we have that

h(y) Te Te
ubox(y)=/ / e Up e Sy da’ dyf +/ / o @y da dy
0 — 2 {‘7« [<e } h(y) Ze2
R

h(y)
2av %/ (=3 gy +aV62/ oV gy
0 h(y)

" (1 - (g)‘(m‘” e—(a—é)(R—y)) + ek ((;T)‘Qa Ry e_aR)

vl

Il
)

where
—(2a-1) y —2«
dn(y) == (%) e~ (=3 (ER-y) L ¥ i Ve—la=HR—% _ % (%) e~ (=H)ER-y)  (52)
Since R — y > R we have that |¢, (y)| is uniformly bounded by O (e‘(“—%)ER), which is
o(1) fora > 1. O

We can now use a concentration of heights argument to show that the integration
of the Poisson probabilities IP (Po(up,(y)) = k) over 0 <y < (1 — ¢)R is asymptotically
equivalent to 7(k,). And the same holds if we instead consider pyox(y). The proof
contains some technical elements that are contained in the Appendix to not hinder the
flow of the argument.

Lemma 5.3. [let0 <e < 1. Then forall0 <k, <n—1,asn — oo,

(1-e)R
/0 P (Po(p (B (y)) = kn) ae™*¥dy = (1 4+ o (1))mw (k). (5.3)

Moreover, the same holds if we replace p (B (y)) with p (Bpox (v)) in (5.3).

Proof. We will show that
(1-e)R 00 ;
/ P (Po(ppo(y)) = kn) ae™ ¥ dy = (1 + 0(1))/ P(Po(ée?) = ky)ae™ % dz.
0 0

This implies the result because the last integral equals (1 + 0(1))201520‘]6;(2““) =1+
o(1))m(ky). Where the last asymptotic equality follows from (3.3).

Define the function z(y) = 2In ”P"T(y) (note that z(y) is well-defined as ppon(y) > 0
and that z(y) is bijective because pup,(y) is strictly monotone increasing and continuous,
see Lemma 3.3. in [21]). By rearranging, we have that

z(y)
ppo(y) = Ee 2.
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From Lemma 5.1, it follows that uniformly for all 0 < y < (1 — ¢)R and &e? = (1 +
o(1))ppo(y) = (1+ o(1))ée %", so that

e = (14 o(1))e” W),

Next we need a similar result regarding the derivative of up,(y), i.e.

1 1
Hpo(y) = (L+o(1))5u(y) = (1 +o(1) Gupo(y) = (L + 0 (1))u'(y).
uniformly for 0 < y < (1 — ¢)R. This result is given by Lemma F.1 in the Appendix. The
lemma is placed there since the proof is a straightforward though cumbersome use of
function analysis and we do not want to break the flow of the argument.

We now have that

ZI _ 2:“’%’0(y> — 0
W) = [P0 (y) LoD,

which implies that

(1-e)R
/ P (Po(po(y)) = kn) ae—*Vdy
0

%) = k‘n) ae™ W) (y)dy.

(1—e)R .
—@rom) [ P (Pofee
0
We now apply integration by substitution to the integral, i.e. use the new variable
z = z(y), to obtain

A= . A=)
/ P (PO(feE) = k;n) ae % dy = / P (Po(uu(2)) = kn) ce™**dz.
z(0) 2(0)

Note that since the function y — 2In % is monotone increasing it follows that for
large enough n, K¢ (ky,) C [2(0), 2((1 — €)R)]. Therefore, by a concentration of heights
argument (Proposition 2.5) it follows that

2((1-e)R) .
/ P (Po(u(2)) = kn) ae™*dz = (1 + 0(1))/ P(Po(u(z)) = ky)ae™**dz,
z(0) 0

and hence

(1-e)R 0o
/ P (Po(ppo(y)) = kn) ae™Vdy = (1.+ o(1)) / P(Po(ju(2)) = kn)ae™ " dz,
0 0

which finishes the proof for up,(y).

The proof for pupex (y) follows similar arguments. First, we define z(y) =2log(ubox (y)/€)
and use Lemma 5.2 instead of Lemma 5.1 to establish that e=®¥ = (1 + 0 (1))e~**¥), For
the derivative z’(y) we recall from the proof of Lemma 5.2 that pnex(y) = (1 + ¢n(y))1(y)
with ¢, (y) given by (5.2). The derivative of ¢, (y) can be uniformly bounded by o(1)
for 0 <y < (1 —¢)R. Hence we get pi . (y) = (1 +0(1))p'(y) and thus 2/'(y) =1+ o (1)
uniformly for 0 < y < (1 — ) R. We can now apply the same change of variables and a
concentration of heights argument to arrive at the required statement. O

The main result of this section now follows almost immediately.

Lemma 5.4 (First moment of number of degree k vertices). Let Np,(k) and Npox(k)
denote the number of vertices with degree k vertices in the Poissonized KPKVB model
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Gp, and the finite box model Gy,.x, respectively. Consider a sequence of integers k,, — oo
with0 <k, <n-1.Ifk,=0 (nTlH) then as n — oo,

E[Npo(kn)] = (1+0(1))nmw(k,) and I [Npox(kn)] = (14 o(1))nm(ky).
Moreover, if k,, > nTaFT then
E[Npo(kn)] =0(1) and IE[Npex(kn)] =o0(1).

Proof. We shall consider Gp,. The proof of the statements for G, follows using the
same arguments and we omit it here.

Let Dp,(p) denote the degree of a node p € Gp,. Then since Np,(k,) = Z,UGV(GPO)
1y Dap, (v)=kn} and P (Dp,(p) = k) is invariant under translations in the z-axis, we can
apply the Campbell-Mecke formula to obtain

R
E [Npo (k)] = / P (Po(ppo(y)) = kn) 22 ey

0 v T

R
= n/o P (Po(upo(y)) = kn) ce™*¥dy

(1-e)R
=n </0 P (Po(upo(y)) = kn) ae™“Ydy

R
+ /( P (Po(upo(y)) = kn) aeaydy> )

1-e)R

where 0 < € < 1 is a constant to be chosen later. Note that

R R
/ P (Po(upo(y)) = kn) ae™Ydy < / e~ Ydy = Qe 1) = g(p—20(1=2)),
(1—e)R (1-e)R
Now first consider the case where k,, = O (n 2@1+1) Then, fora > 3 and 0<e< 55,1
we have 2a(1—¢) > 1. Therefore, 2‘;S+f) > 2a+1 and thus &, = O (nm) =o0 (nQC;Sﬂg))

(2a+1)

This implies that k,, > n~2(1=9) or, stated differently, ©(n=2*(1~9)) = ( (2a+1) )

The first statement of the lemma now follows from Lemma 5.3.
When £, > n2e+17, Lemma 5.3 implies that

(1-e)R
w [ R Pour ) = ke = (10 (D)nr(,) = O (nk= ) <o (1).

On the other hand,

R
"/ P(Po(upo(y)) = kn)ae™*dy = O (n1—2a<1—e>> 7
(1-e)R

which is o (1) since by our choice 2a(1 —¢) > 1. Thus the second claim of the lemma
follows. O

5.3 Joint degrees in G}, and Gp,

To prove the factorization of higher moments of Np,(k,) and Nyox(ky,) as in (5.1), we
first have to understand the joint degree distribution in Gp, and Gy,.x, respectively. This
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subsequently requires us to analyze the joint neighbourhoods of two points p, p’ in these
models. To explaining the proof strategy we will use the finite box model, since the
formulas there are slightly easier. The results for the Poissonized KPKVB model Gp,
follow the same idea.

For r € N and py,...,p, € R, we write Gpox U {p1,...,p,} for the finite box model
obtained by adding p1, ..., p, to the vertex set of the graph and adding all corresponding
edges according to the connection rule. Then we define, for any positive integer s and

VC {p17 e ,ps}'
Vbox(V, k;p1,...,ps) =P (every p € V has degree k in Gpox U {p1,...,Ds}) - (5.4)

In particular, for two points p,p’ € R and V = {p,p’'}, vvox(V, k;p,p’) is the joint degree
distribution of p,p’ in Ghox. We will use similar notation for the Poissonized KPKVB
model. That is, Gp, U {p1,...,p.} denotes the Poissonized KPKVB model obtained by
adding p1, ..., p, to the vertex set of the graph and adding all corresponding edges and
wpo(V, k;p1,...,ps) the corresponding joint degree function.

If we define,

Xy (p,p') :=Po (,u (Bhox (p) \ Brox (p/))) 5
Xo(p,p') = Po (1t (Byox (') \ Boox (1)) ,
Y (p,p") := Po (1t (Box (P) N Brox (') ;)

then each of these are independent Poisson random variables, while

Obox({p: 0"}, ki, p) =P (X1 (p, p) + Y (0, 0") = k, Xo(p,p') + Y (p,p') = k) .

Recall the definition of y,fmc from equation (2.13). We will show (see Lemma 5.7) that
for any two points p, p’ whose y-coordinate is in K¢ (k,) and whose z-coordinates are
sufficiently separated, it holds that x (Bpox (p) N Bpox (p)) = O (k. ~¢). Since the mean of
X1 and X5 for such two points is k,,, the contribution of the Poisson random variable
Y (p,p’) to their degrees becomes negligible as k, — oo and hence the joint degree
distribution will factorizes on this set. The main idea is that if p and p’ are sufficiently
separated in the z-direction, then the overlap of their neighbourhoods Byox (p) N Bhox (P')
is of smaller order than p (Byox (p)) + 1t (Boox (P')). We now proceed with analyzing theses
joint neighbourhoods.

Let p,p’ € R and denote by Myox(p, p’) the number of common neighbours of p and
P’ in Gpox U {p,p’}. We shall establish an upper bound on the expected number of joint
neighbours when p and p’ are sufficiently separated. Observe that I [Nyox(p,p’)] =
M (Bbox (p) N Bpox (p/))-

We start by analyzing the shape of the joint neighbourhood. Due to symmetry and the
fact that we have identified the left and right boundaries of the box R, we can, without
loss of generality, assume that p = (0,y) and p’ = (2, y’) with 2’ > 0. To understand the
computation it is helpful to have a picture. Figure 5 shows such an example. There are
several different quantities that are important. The first are the heights where the left
and right boundaries of the ball By (p) hit the boundaries of the box R. Since z = 0
these heights are the same and we denote their common value by h(y). We also need to
know the coordinates Jrignt(p, p’) and Ergni(p, p’) of the intersection of the right boundary
of the neighbourhood of p with the left boundary of the neighbourhood of p’ and those for
the intersection of the left boundary of the neighbourhood of p with the right boundary
of the neighbourhood of p’, which we denote by e (p, p’) and s (p, p’). Finally we will

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
Page 45/132


https://doi.org/10.1214/21-EJP583
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Clustering in a hyperbolic model of complex networks

, v 4y
r1 =2 +e 2
y+y1

y+y1
r1=x+e 2

h(y)

et (05 1)

------------- /gright (p7 p/)

Trere(p, p")

Figure 5: Schenllatic representation of the neighbourhoods of p and p’ in Gyx when
|z — 2’| > e* +e'r used for the proof of Lemma 5.5. Note that although here p’ ¢ Bpox (p),
this is not true in general. This situation was merely chosen to improve readability of
the figure.

denote by d(p, p’) the distance between the lower right boundary of By (p) and the lower
left of Bpox (p’), which is positive only when the bottom parts of both neighbourhoods do
not intersect, as is the case in Figure 5. The condition d(p,p’) > 0 is exactly the right
notion for p and p’ being sufficiently separated.

We start by deriving expressions for these important coordinates. For this we
introduce some notation. For any p = (z,y) € R we will define the left and right
boundary functions as, respectively,

2log(x —2)—y if—geR/QSzgx—ey/z,

b, () = { 2log (WeR/Q—I—x—z) —y ifo—eWtR/2 f pell/2 < 5 < %eR/Q, (5.5)
0 otherwise,
2log(z —x) —y ifx+ey/2§z§§eR/2,

by (2) = § 2log (meft/? + 2 —z) —y if — ZeR/?2 <z <z 4 eWHR/2 — rel/2, (5.6)
0 otherwise.

Note that these functions describe the boundaries of the ball By (p).

In particular,

P’ = (2,y') € Byox (p) if and only if y' > min {b, (), b} (/) }.

We shall derive the expressions for the point (Z1es(p, p'), et (p, p)). The z-coordinate
#1o(p,p') is the solution to the equation b (z) = b, (z) for —5ef/2 < z < +¢¥/2. This

equation becomes

/

2log (W@R/2+Z*’I/) —y =2log(z' —2) — v/,

atl—ﬂeR/Q

whose solution is Tret w73

Plugging this into either the left or right hand side of the
T R/2—$/

above equation yields the y-coordinate gies(p, p’) = 21log (m) The expressions for

Zright(p, P’ and Jrignt(p, p’) are derived in a similar way. The expression for d(p, p’) follows
as the difference b, (z' — e¥'/2) — b (ev/?).
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The full expressions of all coordinates are given below for further reference.

h(y) = R —y +2log (g) (5.7)
T
ynght(pv ) - 210g (yy) (58)
3 teT
. , !
Trignt(p,p') = ———» (5.9)
mel/2 — g
yleft(pv ) = 2log <yy,> s (5.10)
ez +ez2
. 7 — 7T6R/2
et (p, p') = g (5.11)
1+e
d(p,p') = |z — 2’| - (e%+e%). (5.12)

The following result shows that if d(p,p’) > 0, then the expected number of common
neighbours is o (¢ (Bpox (p)) + 1t (Boox (P')))-

Lemma 5.5. Let p,p’ € R. Then, whenever |x — 2/|,, > (e% + e%),

oo\ —(2a—1)
E Woox(p, )] < 1 Boos (1)) (('9”') + geebin w)

¥ ¥
ez +e2

Proof. Again without loss of generality we assume that p = pp = (0,y) and p’ = (¢, y/)
with 0 < 2’ < Zef/2. Note that since 0 < 2’ < Zef/2, fuigne(p, ') < et (p, p'). We write
g for Grigns (p, p) and observe that below j the balls Bpox (p) and Bpox (p') are disjoint.
Therefore, if we define A := {p; = (1,91) € RN Byox (p) : y1 > ¢}. Then

E [Npox(p, p')] < 1 (4).
We proceed with computing the right hand side

vty

h(y) pe 2 eft/?
p(A) = / / o Sz, y1) doy dy; + / J(w1,y1) doy dyg
g KN hw) - ger2

—e

h(y)
2aye%/ e~ (a=3)u dy, +aueR/2/ e~ dyy
g h(y)

7T
<¢ (e, I e—) e—(@=1)i | 1 eR/2,—ah(y)

i\, UV L
=u (Bbox (p)) (6_((‘“_2)3/ + ge—(a—Q)(R_y)) .

The result follows by plugging in

xl
9 = Gright (p, p') = 2log (yy/> )

e2 +ez2

and noting that 2’ is the same as |z — 2’|, by our generalization step. O

We can also prove a similar result for the Poissonized KPKVB model Gp,, denoting by
Npo(p,p’) the number of joint neighbours in Gp, U {p,p’}.

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
Page 47/132


https://doi.org/10.1214/21-EJP583
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Clustering in a hyperbolic model of complex networks

Lemma 5.6. Let 0 < ¢ < 1, p,p’ € R with y,y < (1 — ¢)R, denote by Np,(p,p’) the
number of joint neighbours of p,p’ in Gp, and let K be the constant from Lemma 2.2.

Then, whenever |z — 2’|, > (e? —I—eZ) (1+ z K)

P / 7(20&71)
E [Neo(p,p')] < 1t (B (p)) (e@“” ('””') + g ~lom e -’”)

Yy Yy
e2 +e2

where
2
A = log (1 + ”4K) .

Proof. We will proceed in a similar fashion as for Lemma 5.5. That is, we will bound
the expected number of common neighbours by the number of neighbors of p whose
y-coordinate is above the intersection of the right boundary of B (p) and the left boundary
of B (p’). Denote by ¢ the height of this intersection point. Then

2av [FY R
E [Npo(p, p')] < 7/ Oy, y1)e Y dy; + aveR/Q/ e~ dy,.
T Jy R—y

The second integral is bounded by % (Byox (y)) e~(@=3)(R=v) We bound the first integral
using Lemma 2.2 as

2av [FY 2av [Fv

- Oy, y1)e” ¥ dyy < — (6
i 7 v

y+y1

+ Ke %(yﬂ/l)*R) e~V dy;

R—y

SQO&V 1+K %/ —(a— 2)y1dy1
Yy

< (1+ K)p (Bpox (p) e~ 729,

where we used that 3% < R—y+ % forall y; < R — y for the second line.
It remains to compute g, for which we will establish the following bound

I’l
g > 2log <) — 2\ (5.13)

ez ez

To show (5.13) we note that for any point y; > ¢, the corresponding z-coordinate of
the left boundary of B (p’) must be to the left of that of the ball B (p), i.e. 2’ — ®(¢y/,y1) <
®(y,y1). Therefore it is enough to show that for all

.’L'/
y1 < 2log () —2),
e2 ez

it holds that ®(y,y1) < 2’ — ®(y', y1), with A as defined in the statement of the lemma.
Note that by assumption on z’ := |z — 2/|,, (since we can take x = 0) the above upper
bound is non-negative. Using Lemma 2.2 it suffices to prove that for all such y;,

y+111 v 4y1 3.,/
+ R — Ke2 R
e Rez(y yl) <1» —e 2 62(74 yl) ,

which is equivalent to
vy g\ v ¥\ s
(e?—l—e?)e? + Ke (e2+e2) ez <z
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Plugging the upper bound for y; into the left hand side and using that (e¥/2 + e¥'/2)3 >
e3/2 4 ¢3V'/2, we obtain

[N

’ 7y 3 3
(e% + e%) e? + Ke B (e + e%) e 7 <ale ™+ Ke B(a')2e

where we also used that 2/ < ge_R/Q. O

Let us now define the stripe
Skn,C =RN (R+ X Kc(kn)), (5.14)
and in addition define, for any 0 < € < 1, the following set

E(kn) = {(p,p) €Sppic & |z — 2| > kp T}, (5.15)

s

where |z, = min{|z|, 7e®/? — |z|} denotes the norm on the finite box R where the left
and right boundaries are identified. Then for any two points p,p’ € £.(k,) the expected
number of joint neighbours is o (k).

Lemma 5.7. Fix 0 < ¢ < 1 and let ¢’ = min{e(2a. — 1), ¢}. Then for all (p,p’) € E.(ky,), as
n — oo,

1t (Bbox () N Bpox (1)) = O (k,lgs') .

Proof. Since for all (p,p’) € E:(k,,) we have p (Bpox (p)) , 1t (Boox (P')) = © (ky,), Lemma 5.5
implies that

11 (Boox (P) N Boox (1)) < O (kn) dn(p, '),

where

_ —(2a-1) 2a+1,—(a—3)R ay —(a—3HR
x—a|, 3v e 2)fe ve 2
bn(p,p') =2 ( | )

Y 4 2 y s + y y
ez +e2 22 (e2 +e2 ez +ez2

We thus need to show that ¢,(p,p’) = O (k;e/). For (p,p’) € &.(k,), it holds that

ev/2 ev'/2 = O (k) and |z — 2/|,, > k1*< and hence

) (‘Tyx/!;)—@a—l)
e2 +ez2

For the second term in ¢, (p,p’) we use that e®¥" = © (k2%) and e® = © (n?) to obtain

0 (ks7ee).

3V2a+1e—(a—%)R€o¢y

2m2a (e% + e%)

= 0 (1)n~ D21 — o (n—m—%)) .

Finally, the third term satisfies O (n~(?~Yk 1), and we conclude that

én(p,p') = O (k,f(?a*l) +n(em) 4 n*@“*l)k;l) _0 (k,g) 7

n

where we used that ¢/ = min{e(2« — 1), ¢}. O
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It is clear that using Lemma 5.6 instead of Lemma 5.5, the above proof applies to the
Poissonized KPKVB model, yielding the following result.
Lemma 5.8. Fix 0 < ¢ < 1 and let ¢’ = min{e(2a — 1),¢}. Then for all (p,p’) € E.(kn), as
n — oo,

(B NB®) =0 (k).

Recall the definition of the stripe Si, ¢ = RN (R4 x [y,;mc,y,:n c]) from (5.14).

Consider a fixed number of points p1, ..., p,.. Then, if their z-coordinates are sufficient far
apart and their y coordinates lie within the stripe S, ¢, their degrees are asymptotically
independent.
Lemma 5.9 (Asymptotic factorization of degree probabilities). Let (k,) be a sequence
of integers with 0 < k, <n-—1, k, = O n?a1 ) and k, — co. Let C,C" >0 andr,s
be positive integers with r + 1 < s. Fix 0 < € < 1. Then, it holds uniformly for all
(v1,...,0s) € (Skn,c)’ = Sky,c X+ X Sk, ¢, satisfying |z, —x,, | > kpte foralll <i<r,
that

gD({’Ul,... ,UT+1};’U1,...,’US)

= (1 + 0(1))90({7}17 s 7”7"}5 U1y ,US)SQ({UT+1}§ U1y.-- ,US) +0 (k;C,> ,

where o is either pp, Or hox. (Here uniformity means that the o (1) and O (k,,) terms do
not depend on vy, ..., vs.)

Proof. Let H = GpoU{p1,...,ps} or H = Gpox U{p1,...,ps}and 1 <r <s. For1 <j <r,
let Y; be the number of vertices of H which are adjacent to both p; and p,;. Let
X; be the number of vertices of H which are adjacent to p;, but not to p,y;. Then,
X; +Y; = Dpy(p;) is the degree of p; in H.

Now let X, be the number of vertices of H which are adjacent to p,,1, but to none
of p1,...,pr. Let Y, ; be the number of vertices of H which are adjacent to p,;;, and
at least one of py,...,p,. Then, X, 1 + Y11 = Dy (pr+1) is the degree of p,1 in H. By
definition, we therefore have

o({p1,-- ey i1, ps) =P (X1 +Yi = =X+ Y = k),

@({pla-"apT};ply"'7ps) IP(XI +Yl == X?" +Yr' = kn)7
@({pr+l};p17' o aps) == ]P(XT+1 +Yr+1 == kn)a

and the claim of the lemma is that

]P(X1+Y1:...: T+1+Y7"+1:kn) (516)
= (1+0(1))IP(X1 +YVi1=-=X,+Y, :kn)IP(XT-‘rl +Y = kn)—i—O(k);C) ‘

To prove (5.16) let ¢/ = min(e,e(2ac — 1)) € (0,1). Since for 1 < i < r, it is given

that |z, — p,,,| > k¢, then in the case where H = Gp, U {p1,...,ps} it follows from

Lemma 5.6 that E[Y;] = O (k}f‘f/). When H = Gpox U {p1,...,ps} we get the same result
using Lemma 5.5. The rest of the proof is independent of which of the two models we
consider and only uses that E[Y;] = O (k}b‘s/).

n

co > 0 such that ¢y ki InkL=® > c1vplnp (where ¢ = f_—ca, which is well-defined
because 1 — ¢’ > 0). Now define

AsY, 1 <Yi+---4Y,, wealsohave yu:=E[Y, ;] =0 (klfgl). In particular, there is

= [ —co\kn S Inki™  u4 co\/ ki Inki] N No.
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By equation (2.12), we have

P(Y, €A, =P (m+1 — | > co\/ kL In k}ﬁ’)
7(1—5/)0%
<P (IY}-+1 —ul = 61\/u1nu) =0 (kn : ) :

—~

1—€")e}

As by definition c; satisfies 5 “L = (, this implies that for the event S,, = {Y, 11 € A4, },

P(S5) =0 (k,°).

n

Beginning with the left-hand side of the claim of the lemma, the law of total probability
applied to the events {Y;+1 = y»41}, forall y,. 1 € A,, and S¢ implies that

P(Xi+Yi==X, 1 +Yo1=ky)

= Z PXi+Yi="=Xop1 +yrs1 = knlYri1 = 4r01) P (Yo = yri1)
Yr+1€AR
TP X+ Y= =Xy + Yo = kn|S) P (S7)

= Z PXi+Yi==X,ni+yrr1 =k =041) P(Yo1 = yrg1) +O (k;C) .
Yr+1€A,

As X, is independent of X,..., X,,Y7,...,Y, by the properties of a Poisson process
(as X,11 counts the number of points in a set which is disjoint of X;y,..., X, Y7,...,Y}),
it follows that

PXi+Yi==Xpp1+ Y1 =ky)
= Z PXi+Y1i= =X, +Y, = kY1 =Yr+1) P (X1 + Y1 = k) P (Vi1 = yrg1)
Yr+1€AR
+0 (k,°).

We will now show that uniformly for all y,11,s € A,, it holds that,
P (Xr+1 = kn — y'r+1) = (1 + 0(1))]P (Xr+1 = kn — S) . (517)

To see this, observe that for all y,41, s € A,, we have that |y, — s| < 2¢\Vk: ™ Inki ™.
Denote the expectation of X, by A, write §,, = k,, — y,+1 — A and note that

P (Xr-i-l =kn — yr+1) _ P (Xr-i-l =k, — y7'+1)
P (X, 11 =Fk,—5) P(Xry1=Fkn—Yrs1+ (Ury1 —5))
_ (kn — Y1+ (Y1 — )] AS—Uri1
(kn = yrg1)!

We will now use that @ = (1 +o(1))(a + b)® for b*> = o(a), applied to a = k, — yr11

and b = y,+1 — s. To see this auxiliary fact, note that by Stirling’s approximation to the
factorial (see e.g. [15], [31]), it follows that

a %e—a— aty
O (o S o (142) bt

aa+% e—a

Since 1 + g < eg, it holds that (1 + g)a < eb. Furthermore, as In(1 + ) > z — % (for
2 2
x € (—1,1)), we have that (1+ 2)* = ee"(142) > (= 33) = b3 = (1 +0(1))e’ because
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b? = o(a). Finally, b> = o(a) also implies that (1 + %)% =1+ o(1). This finishes the proof
of the auxiliary fact and we can continue with

r (Xr+1 = kn - yr+1)
P (XT+1 = kn - S)

= (14 0(1) k= g1+ (s = £))7+ X0
= (14 o)A+ 8 + (g — 5))P oA

= (1+0(1)) <1 + W>y+

Sn(yrp1—3)  (Wrp1—9)2
A A

= (1 +o(1))e e =1+o0(1),

where the last line follows since 8, [y, 11 — 5| < 2coV ks © Inks ¢ and A = O(k,) and
therefore, with convergence uniform in .41, s,

Surss =) (yrar =) _ Ak Ikl
A ’ A - A
As P (S%) = O (k; ), we have
1= > PV =5)+0(k°).

s€A,
From (5.17), it then follows that

P (X7'+1 - kn - y7-+1)
=P (Xr+1 =kn— ?JV'+1) Z P (Y7"+1 = 5) +0 (k;C)

— 0.

SEA,
= (14 0(1)) 3 P (Y1 = )P (X1 = ko — ) + 0 (k)
SEA,
=(1+0(1) > P(Xp41+ Yop1 = kn, Vo1 =) + O (k,€)
SEA,

= (14 0(1)P (Xy 41+ Yeg1 = kn, Vi1 € A) + O (k)
=1 +01) (P (X414 Yrs1 = kn) =P (Xpp1 + Y1 = kn, Y1 € 42)) + O (k;C)
= (14 0o)P (X1 + Yes1 = ky) + O (k).

Note that P (X, 41 + Y, 41 = k,,) no longer depends on y, and neither does the O (k, )
error term. Therefore we have

]P(X1+Y1="': r+1+YT+1=kn)
= Z P (Xl +Yi ==X, +Y, = kn|Yr+1 :yr+1) P (Xr+1 +Yr41 = kn) P (Yr+1 :yr—i-l)
Yrt1E€AR
+0 (k)
=1+ 0o(1)P (Xps1 + Yrg1 = kn) X
Yo PXi4Yi= =X+ Y, =ka[Yig1 = yri1) P (Vi1 = yr1)
Yr+1€A,
+0 (k,°).
For the last summation we have
Z PXi+Yi= =X, +Y, =k,|Yos1 = yr1) P (Vo1 = yry1)
Yr41E€AR
:P(X1+Y1 = :Xr+Yr:kn7K‘+1 eAn)
=(1+o)P(X1+Yi==X,+Y, =k,) + 0 (k,;“).
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Finally, plugging this into the previous step gives

PXi+Yi==Xp 1+ Y1 =kn)
— (14 0(1))P (Xys1 + Vst = )
Y PXa4Vi= =X 4 = kYo =y ) P (Y1 = 4rp1)
Yrt1€AR
+0 (k)
= (1+0(1))]P(X’I‘+1 +Y;+1 = kn)IP(Xl +tVi=-=X,+Y, = kn) +0 (k;C)v
which establishes (5.16) and thus the claim of the lemma. O

5.4 Factorial moments of degrees

Now that we have analyzed the joint neighbourhoods and degree distributions in both
the Poissonized KPKVB and finite box model, we can show convergence of the factorial
moments of the number of nodes of degree k in both models.

Lemma 5.10 (Factorial moments). Recall that Np,(k) denotes the number of degree k
vertices in Gp,. Let (k) be a sequence of integers with0 < k, <n—1,k, =0 (nﬁ)
and k,, — oo. Then, for any positive integer r, it holds that

- [(Npo(kn>>] — (14 o(1)) BVEo(kn))"

r r!

The proof of this result requires the following technical lemma which states that the
integration of the joint degree distribution can be factorized.

Lemma 5.11 (Factorization of degrees). Let (k,) be a sequence of integers with 0 <
kp <n—1,ky =0 (nT) and k,, — co.
Let ¢ be either pyox Or pp,. Then we have that

A.-~A@({p17...,pr},kn;p17~--apr)dﬂ<p1)"'du(pr)
= (1+o0(1)) (/R ap({pl},kn;pl)du(p))r-

Proof. Let C > r(2a + 1) and define the set A = (R x - -+ X R)\(Sk,,.c X -+ X S,.c). We
will first show that the contribution of the integration of ¢ over this range is negligible.

For (p1,...,pr) € (R x -+ X R)\\(Sk, ¢ X --+ X Sg,.c), thereisa j, 1 < j <r, such
that y; ¢ [y, . y,jmc], so that the Chernoff bound (see in (2.14)) yields that P(D¢y, (v;) =

kn) = O (k;©). As, for 1 < j < r, the event {Dg,, (p1) =...= Dgy, (pr) = kn} implies
the event {D¢,, (v;) = ky}, it follows that P (D¢, (p1) = - -+ = Dayp, (pr) = kn) = O (k;€)
and hence,

[ P W6y 1) = -+ = D (0r) = ko) ) o) = O (7).

Next we note that by the concentration of heights (Proposition 2.5) it follows that

/ o({p1}, knsp1) du(pr) = (1 + 0(1))/ ©({p1}, kn;p1) du(pr)
Sk, C R

= (14 0(1))2a%*nk;; 2o+1) (5.18)
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Since for C' > r(2a + 1) it holds that n"k; ¢ = o ((nkn
that

(QQH)) ) it now suffices to show

/ / @({plvapT}7knap177p7')d,u'(p1)dﬂ(p7)
Skp,C Skp,C

We will prove this using induction. More precisely, for every fixed positive integer s,
we will show by induction on r, 1 < r < s, that for all p,41,...,ps € Sk, ¢, it holds that

/ / o({p1,-- e} knsp1, - ps) du(pr) - - - dp(py)
Sk, Sk, ,C

Note that for r = s this is the claim of the lemma. Throughout the proof H is either
Gpo U{p1,...,ps} or Gpox U{p1,...,ps}, depending on whether ¢ is, respectively, ¢p, or
Pbox-

For r = 1, we only need to show that uniformly for p; € Sk, ¢,

ns

e({p1}, knip1, - ps) = (14 0(1)p({p1}, kns p1)-

To see this, note that as p; € Sk, ¢, the expected degree of p; in Gp, is O(k, ). Assume
that p; is adjacent to s’ < s many vertices among ps, ..., ps. Then, as s’ < s is bounded
and k,, — oo as n — oo, we have that

P(Dep, (p1) = kn — ) = (1 + 0(1))P (Do, (p1) = k).
So, we have the base case of the induction,

e({p1}, knspr, .. ps) = P(Du(p1) = kn) = P(Dap, (p1) = kn — §)
= (1+0(1)P(Dgp, (p1) = kn) = (1 4+ o(1))p({p1}, kn; p1)-

Assuming the claim holds for integer r < s, we will show that it holds for » 4 1.
Let pry2,...,ps € Sk,,c (if r+2 > s, this definition is void and the corresponding

points will never be used in the proof). Fix 0 < ¢ < 1 small enough s.t. % + € < a. Define
the region that the (r + 1)-th vertex p,1; is far apart from all other vertices horizontally,

Felkn) ={(p1,.-.,prs1) € (Skmc)“rl V1I<i<r: |z, —xp |2 k‘}{"s}.

We will split the integration into this region and its complement F.(k,)¢ =

(Sk'n,C)r—i_l \fE(kn)-
Firstly, we derive an upper bound for the complement F. (%, )¢. Note that

@({pla v 7pr+1},kn;pl, cee 7pS) < @({plv s 7p7’}a kn;ph s ,ps)7

and so,
//f e o({p1, .- prsa s knipr, - ops) dp(pr) - - - dp(prga)
S// o({p1, - 0r}s knsprs - ps) du(pr) - - - dp(praa).
Felkn)e
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For (p1,...,pr+1) € Fe(kn)¢, we have that (p1,...,p,) € (Sk,c) and p.y1 =
(Tr41,Yr41) satisfies y,- . < yrp1 < y,jmc and x,; falls into an interval I,, of length
2kite. As the integrand ¢({pi,...,p,};p1,...,ps) is constant in z,,;, we can upper
bound the corresponding integration as follows,

/ ({pla"'apT} kn7p17"'aps)d:u’(p’r+1)
{(@r41,Yr41)ESk,,c:Trp1€IL}

Vi e
/ / pla"'vpr} kala--is) Otderldl‘r+1dyr+l

Yine qu

< 2k;+6¢<{p1,...,pr},kn;pl,...,ps)j/ & emamrindy, .
Y

n,c

Furthermore, we have that

Yk e o0 _
e Writdy, 1 < / e rtdy, 1 =0 (efayknac>
y;:",c yl;n,c
—2a
kn —cVknInk, _
O(( C\/g n ) )O(ana)'

We have thus established that

// o so({ph...,pT},kn;pl,u-,ps)du(m)-~du(pr+1)
Fe(kn)e

<O (kyTk, ) : /S o({p1, .- pr}ikniprs .o ps) du(pr) -+ - du(py).
kn,C n

The r-fold integral can the bounded from above using the induction hypothesis as

O (kyt>) (/S w({pl};pl)du(p1)> . (5.19)

Finally, we use that k1t<=2% = o (fskn’C @({pl};pl)un(dp1)>. To see this, we will firstly
show that k}+¢=2% = o (nkﬁ(mﬂ)) and then apply (5.18), which says that

/skc e({p1};p1) du(pr) = © (nk;@aﬂ)) .

By our choice of ¢, we have that § + € < o, which implies that 55 < 1, and hence, using
k, = O <n2a1+1 )’

et —17.2+€ -1, 2t ~1
— —@at) =n""k; :O(n n1+2a) zo(n n) =o(1).
Having shown that kl+e—2 — (fsk P {p1}; pl)un(dpl)), we therefore conclude

from (5.19) that

//( )w({pl,m,pr}7kn;p1,---,ps)du(pl)"'du(prﬂ)
Felkn)e

=o</ ﬂ@ﬁ%mmﬂd@ﬂ)(/ ﬂ@ﬁ$mmMMm0
Skp,C Skp,C

r+1
=0 </$ @({Zh}, kn;pl) d:u(pl)>
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For the integration over F.(k,), recall that by Lemma 5.9,

o({p1s-- - Pry1 b ks p1s oo Ds)
= (L+oW)e({p1s-- s}y knsp1, - - oo D) ({Pra1 o kni P1s - - ps) + O (B, ©)

This implies that

// o({p1y - prrats kni 1y - ps) dp(pr) -+ - dp(prga)

}-e(kn)

=(1+0(1))//( )@({pl,.--,pr},kn;ph-~-,ps)<p({p7-+1};p1,---,ps)du(pl)---du(pTH)
Fe(kn

+0(/€EC)// dp(p1) - du(pria) = M + E.
-Fe(kn)

To finish the induction step we have to show that

r+1
M = (1+0(1)) </S <p({p1},kn;p1)un(dp1)>

and

r+1
E=o0 </ o({p1}, kn;pl)un(dp1)>
Sk, C

For M, note that we can factorize to integration over py,...,p, and over p,4;.
Furthermore, we note that the condition (py,...,pr+1) € Fe(k,) implies that (writing

Dr+1 = (Zr41, Yr+1)) the horizontal coordinate z,;, falls into an interval I,, of length L,

satisfyin

fy g ™™ 14e ™ 14e
— —2rk, " <L, < — —2k,"".
1% 1%

As ke = O (n%) = o(n) for e < 1 and o > 1, this shows that the length of the

integration range in x,,; satisfies L, = (1 + o(1))=". Thus, we have that

N
Yo e av _,
M = (1+0(1))/ / w({pr+1},kn;p1,...7ps)7 e Wrttdy, 1 da,
I, Jyo

ykn‘c
></ / o{p1,-- o} knipr, - ps) dp(pr) - - - dp(pr)
Sk,,,C Sk, ,C

Yin e

=(1+ 0(1))n/ Oo{pra1} knsp1,y .. ps)ae” *Vrttdy,

Yin e

></ / o({p1,-- - pr}ip1s - ps) dp(pr) - - - du(pr)
Sk, Sk, ,C

= (1+0(1))/ W({pr—kl}akn;pla'"7ps),un(dp1)

Sk ,C

></ / o({p1,-- - pr} kniprs - ps) du(pr) - - - dp(py)-
Sk, Sk, ,C

By applying the base case of the induction to the first factor and the induction hypothesis
to the second one, we have derived that

r+1
M = (1+0(1)) (/S e({p1}, kn;pl)du(p1)> :
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Finally, for F we observe that
r=0(:) [ [ ) i) = 0 () (1 o)
Recall that again by (5.18),
| et bim) duton) = © (k).

which implies that

r+1
(/ o({p1}, knsp1) du(p1)> =0 (nr+1k;T(2o‘+1)) )
Sknxc

For C > r(2a + 1), we can conclude that indeed

r+1
o({p1}, kn;p1) du(m))

E—-0 (n”lk‘gc) —0 (nr+1k;r(2a+l)> —0 (/
S

kn,C

O
We now prove the result for the factorial moments.

Proof of Lemma 5.10. We give the proof for the Poissonized KPKVB model. The proof
for the finite box model G} follows using similar arguments.
First of all, we observe that

Npo(kn) 1
( = > Lbayp, (p1)==Dap, (pr)=kn}-

r

distinct

This can be seen by induction on r. For » = 1, the claim is clear. Assuming it holds for
r > 1, by the induction hypothesis,

(Npo(kn)) _ (Npo(kn)> Neo(kn) =7

r+1 T r+1
1
T (r+ 1) Y. Mboy, (r)==Dep, p)=kn} (Neolkn) = 7).

Plyeees pre€V(Gpo),
distinct

Now, we can write

Npo(kn) = > Lipgy, (prs1)=knt + > LDep, (proa)=kn}-

Pr41€V(Gpo), Pr41€{P1,s--sPr }
pr+1€{p1,....pr}

The first sum leads to the right-hand side of the claim for » + 1, whereas the second sum
will cancel with the —r.
By the Campbell-Mecke formula

NPO(kn) 1
]E |:< r ):| - E]E Z H{DGPO(pl):"'=DGpo(p7‘)=kn}

Plsees preV(Gpy),
distinct

= %/R-~-/Rsolso({ph~~~,pr},p1,..~,pr)du(p1)---du(pr),
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where we integrate over r additional points which we can think of as being added
independently and with the same distribution as the vertices of the Poissonized KPKVB
model Gp, in the upper half-plane coordinates.

With r = 1, it follows that

IE [Npo (kn)] :Awpo({p1}7kn;P1)f($1yy1)dfC1 dy,

which yields that the right-hand side of the claim of the lemma can be rewritten as

S = ([ eultond i) duto) )

Using Lemma 5.11, we conclude that

E {(NP(’(R"))] :%/R"'/RSOPO({pla~~-7pr}7kn§p17-~'7p7”)dﬂ(p1)"'d/l(p7“)

r

=1+ o) ([ raltpnd uspn) (o) don
= (14 0(1)) 5 (B [Nk )]) =

5.5 Coupling G,, to Gp,

In the previous sections we have established results for the degrees and the factorial
moments of the degree k,, nodes in the Poissonized KPKVB and finite box model. Our
intended result, however, was for the degree distribution in the original KPKVB model.
In order to extend the result for the Poissonized KPKVB model to the original model we
will use a coupling argument to show that the expected difference between the number
of degree k,, nodes is negligible.

Lemma 5.12. Asn — oo, it holds that for0 < k, <n —1,
E [|Nn(kn) - NPO(kn)H =0 (E [NPO(kn)]) .

Proof. We couple both models by taking an infinite supply of i.i.d. points w1, us, ... chosen
according to the («, R)-quasi uniform distribution and letting the vertices of G(n; «, v) be
uy,...,u, and the vertices of Gp,(n;a,v) be uy,...,uy with N 4 Po(n) independently
of uj,ug,.... Thus, under this coupling, the only difference between G, = G(n;a,v)
and Gp, = Gpo(n;a,v) is the number of points. Note that since N is Poisson with mean
n, it follows from the Chernoff bound (see also equation (135) in the paper) that we
may assume that n — Cv/nlogn < N < n + Cv/nlogn. To keep notation simple we will
suppress this conditioning in the derivations.

Clearly, if N = n the graphs are the same. So we will consider the two cases
n— Cy/nlogn < N <nandn < N < n+ Cy/nlogn. We will prove the latter case. The
other case uses similar arguments and hence we omit the details here.

If n < N <n+ Cy/nlogn then the G,, has less vertices that Gp,. Write V,,(k,) and
Vpo(kn) to denote the set of vertices that have degree k,, in G,, and Gp,, respectively.
Then since the vertices 4, 1,...,uy are not present in G,

N
|Nn(k;n) - NPo(kn)| = Z Il{UiEVn(k'n)AVpo(k'n)}
i=1

n N
= Z T u, eV (k) AVEo (k) + Z Liu,evio(kn)}-
=1 i=n+1
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Let Dp, denote the degree in the Poissonized KPKVB model of a point u placed according
to the («, R)-quasi uniform distribution. Then, using the Campbell-Mecke formula, the
expectation of the second summation equals

R
(N =P (Dpy = k) = (N =) [P (Polian () = k) ae™ dy

(14 0(1))C+/nlognp, = o(E[Npo(kn)]) -

Therefore it remains to consider the first summation.

Let D, (u) and Dp,(u) denote the degree of a point u in G,, and Gp,, respectively.
Then there are two scenarios to consider: 1) either D, (u;) = k, and Dp,(u;) # k, or
2) Dy, (u;) # ky, and Dpo(u;) = ky. In the first case, since w; is present in both graphs it
follows that Dp,(u;) > k,. Similarly, for the second case it must hold that D,,(u;) < k.
Hence we have

D T Vi (k) AV (1)}

i=1

= Z ]]'{Dn(“i):kn,DPo(ui)>kn} + Z ]]'{Dn(ui)<knvDPo(“i):kn}'
i=1 i=1

Let us first consider the second summation, i.e. the case where the node has degree
smaller than k,, in G,,. Taking the expectation gives nP (D,, < k,, Dp, = k), where D,
denotes the degree in the KPKVB model of a point u placed according to the (a, R)-quasi
uniform distribution. We now observe that because the points u4,...,uy used to couple
the graphs are independent, we can view the graph G,, as being obtained from Gp, by
removing N — n points, uniformly at random. Therefore if a point has degree k,, in Gp,
but smaller degree in G, this means that at least one of its neighbors was removed.
Denote by Z(n) a random variable with a Hypergeometric distribution, for taking N —n
draws from a population of size N, where there are k,, good objects. That is, Z(n) denote
the number of removed neighbors of a node u with degree k,, in Gp,. We then have

P (Dy, < kn, Dpo = k) = P (Z(n) > 1) P (Dpq = kn)
(N —n)k,

<E[Z(n)]P (Dpo = k) = N

P (Dpo = ky) .-

Because a > 1/2 and k, = O (nﬁ) it holds that k,, = o (1 /logn) Since N = © (n) and
N —n < O (y/nlogn) it then follows that =% — 4 (1), from which we conclude that

E Z ]l{dn(“7‘,)<kn7DPo(u1‘,):k’n} =nP (Dn < knv DPO = kn)

i=1

< o(1)nP (Dpo = kyn) = o (E [Npo(kn)]) -

We now proceed with the other summation, for the case where a vertex has degree
k, in G, but larger degree in Gp,. Since the degree of v in Gp, can be a most N —n
larger we have

N—n
P (D, (1) = kn, Dpo(u ZIP w) = kn, Dpo(u) = ky +1) .

Using that the graph G,, can be seen as being obtained from Gp, by removing N —n
points uniformly at random, a point with degree k,, + ¢t in Gp, can only have degree k,
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in G, if exactly t of its neighbors where removed. Let us therefore denote by Z(n,t)

a random variable with a Hypergeometric distribution, for taking NV — n draws from a
population of size N, where there are k,, + t good objects. Then

P (Dn(w) = kn, Dpo(t) = ky + 1) = P (Z(n,t) = t) P (Dpo = ky +1).

Recall that, forany 0 < e < 1

R
P (Dpo = kn +1t) = / P (Po(ppon(y)) = ky +t) ae™*¥dy
0
(1—-e)R
= / P (Po(ttpon(y)) = kn +1t) e™¥dy
0

R
* / P (Po(ppon(y)) = kn +1) ce™*Vdy.
(1—-e)R

By Lemma 5.3 the first part is (1 + o(1))7(k,, + t) while the second part is O(n~2*(1-2))
and hence

P (Dpo =k +1) <O (1) (n(kn +) +n~2079).

In addition we have that P (Z(n,t) =t) < O (1) w. We thus obtain

N—n N-—n
E|Z
Z P (Z(n,t) = t) P (DPO = I{/’n + t) < @) (1) M (ﬂ-(kn + t) + n—2a(1—6))
t=1 P t
N—n
= (N = n)(kn +1) —2a(1—¢)
—0(1) > 5 (7o +1)+ 71 )
logn g
= on k + —2a(l—e)
0 ( - ) > 5 ( +1)+n )
logn | v
40 (\/?) ( k +t 7201(175)) ,
t=1
where we used that Y22 = O ( /%82

n

We will show that both summations are o (w(k,)). For the first summation we recall
that k"(logi\/g)S/Z = o(1) for k, = O (nﬁ), while for ¢ > 0 small enough n—2*(1—°) =

o (kn (QO‘H)) = o(m(ky)). Hence, since 7(k, +t) < m(ky),

o( loi"> z_:t"( (ko + 1) + 0720079 O(km/logn )gi

<l<:n(log\/£)3/2> W(k:)_l o(m(ky)) -

IN

Q

For the other summation we use that

1M

W(kn + t iﬁ n T t <O (k_Qa) =0 (knﬁ(k'n)) )

t=1
together with the fact that for ¢ small enough, log(n)n=2¢(1=%) = ¢ (k;(zaﬂ)) =o(m(ky)).
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This implies that

N—n
O< lorgln> Z (W(kn-l-t)"-n_Qa(l_E))

t=1

<0 (\/@Mﬁ%)) +0 ((N - n)\/@n—mu—s))

0 (w(kn)) + O ((logm)n =220~} = o (w(kn))..

IN

It now follows that

nP (Dy(u) = kn, Dpo(u) > kn) = »_ P (Dy, = ky, Dpo = ky, + 1)

which finishes the proof for the case where N > n. O

5.6 Proof of Theorem 1.5

We now have all necessary ingredients to prove the main result on the degrees,
Theorem 1.5.

Proof of Theorem 1.5. Recall that we shall only give the proof for the case where k,, —
oo, since result (i) for fixed £ = O (1) follows from [21].

(i) First we recall that the statements regarding = (k) and its asymptotic behavior
follow from Equation 3.2 and Equation (3.3).

By Lemma 5.4,
E [Npo(kn)] = (14 o(1)) (k).

Using Lemma 5.10 with 7 = 2 we have that | {(NP"Q(’“”))] =(1+ 0(1))w,

which implies

B (Neu(h] = 28 (V7o) | 4 B eo(h)

= (1 + o)) (E[Npo(kn)])* + o (B [Npo(kn)])?),

(because E [Np, (k)] = (1 + o(1))nn(k,) — 00). Hence, by Chebyshev for any € > 0,

Var(Npo(kn)) _
P (INpo(kn) = E [Npo(kn)] | 2 € [Npo(kn)]) < 2(E [Nli(kn)])z =o(1).

As N, (kn) = Npo(kn) + Ny (kn) — Npo(kn) = Npo(kn) & |Np(kn) — Npo(ky)| (Where
the sign depends on whether N,,(k,) > Np,(k,) or not), due to Lemma 5.12, we

have that
E [Nn(kn)] =Lk [NPO(kn)} +E HNn(kn) - NPO(kn)H
= (14 0(1)E [Npo(kn)] = (1 + o(1))n(kn).
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r!

(ii) Let ¢ = 2a£2*c~(2*+1) ¢ R. The proof consists of showing that I [(Npor(kn))} - &
for every positive integer r.

Ifk, =01+ 0(1))cnﬁ, for some positive constant ¢ > 0. then by Lemma 5.4,
E[Npo(kn)] = (1 + 0(1))20€%*n(1 + o(1)) ~ o= (et =1
= (L +0(1))2a€>* ™+ = (14 o(1))(,
which implies E [Np,(k,)] — ¢ (as ¢ is a positive constant). From Lemma 5.10, it
then follows that IE {(NP”T(’“"))} =(1+o(1 ))M — &;. Thus, it follows from

[2, Theorem 8.3.1] that Np,(k
Finally, since k,, = O (n aTT ) by Lemma 5.12,
E[[Np(kn) — Npo(kn)|] = o(IE [Npo(kn)]) = 0(¢),

from which it follows that P (| N, (k) — Npo(kn)| > 1) < E[|Np(kn) — Npo(kn)|] =
o(¢). Hence, it also holds in the original KPKVB model that N, (k,,) 4, Po(¢).

n) 4 Po(¢) for the Poissonized version.

(iii) We will show that in this case E [N, (k,)] = o(1). This then implies, by Markov’s
inequality,
P (Ny(kpn) > 0) < E[N,(kn)] = o(1).

First we observe that as the Poissonized KPKVB model Gp, has the same intensity
measure as the original KPKVB model with a fixed number n of points, the expected
degree of a vertex of the KPKVB model with radial coordinate » = R — y is given by
tpo(y) and hence,

asinh(a(R —y))
cosh(aR) —1

R
Ewamnznl P (Bin(n — 1, upo(y)/n) = kn) dy.

Fix 0 < & < $275 A 25=1. We first show that we only need to consider integration up

toy <(1—¢)R. By our choice of ¢, 2a(1 — €) > 1, so that

cosh(aeR) —1 —2a(1—e)) _ 1
cosh(aR)—liO(n )70(71 ).

This implies

R ; _
n/ . asinh(a(R y))d <n cosh(aeR)
(

P (Bin(n — 1, spo ki, <
1-e)R (Bin(n =1, ppo(y) /) ) cosh(aR) —1 Y cosh(aR) —

and thus it is enough to show that

=o(1),

asinh(a(R —y))
cosh(aR) —1

(1—¢)
”A P (Bin(n — 1. jipo(y)) = k)

Note that for all 0 < y < (1 — )R we have
asinh(a(R —y))

cosh(aR) — 1
Hence, by bounding the Binomial probability (see Lemma D.2)

(1-¢)R _ . asinh(a(R —y))
n/o P (Bin(n =1, spo(y)) = kn) cosh(aR) — 1

e n (1—-e)R
<(1+0(1) mm” [ P olienat) = k) ac vy

<(1+o0(1)) _”kn na(ky) = O ( nk;@a“)) :

dy=o0(1).

=({1+o0(1)ae .

n—ky,

e
V2T
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. 1
We shall now consider two cases: nze+1 < k, <n' ¢ andn'—¢ <k, <n-—1.

If nZa+ < k, < n'—° then , /72— =1+ o0(1) and hence

Vs D = 0 (nk ) =0 (1),

For k, > n'~¢ we have, by our choice of ¢, that 2 — (2a+ 1)(1 — ¢) < 0, and thus

n —(2a+1) _ 27 —(2a+1)\ _ 3 (2a+1)(1-¢)) _
”n—k‘nnk" O(n?kn ) O(n2 ) o(1). O

6 Clustering when k£ — oco: overview of the proof strategy

The proof of Theorem 1.3 follows the same strategy as outlined in Section 2 and
executed in Section 4. However, the fact that £ = k, — o0 as n — oo, introduces
significant technical challenges, especially for k,, close the the maximum scale nzatT,
For example, the coupling between Gp, and Gy.x we use becomes less exact so that
we can no longer use Lemma 2.3 to conclude that triangle counts in Gp, and Gy are
asymptotically equivalent. Moreover, since we are ultimately interested in recovering
the scaling of ¢(k,,; G,,), which Theorem 1.3 claims is v(k,), we need to show that each
step in the strategy outlined in Section 2 only introduces error terms that are of smaller
order, i.e. that are o (7(k,)). This will turn out to require a great deal of care in bounding
all error terms we encounter.

In this section we explain the challenges associated with each step and give a detailed
overview of the structure for the proof of Theorem 1.3 using intermediate results for
each of the steps. We first define the scaling function

ka2 gfl < <3,
s(k) = { log(k)k™! ifa =3, (6.1)
k1 ifa > %7
so that v(k) = © (s(k)) as k — oco. We will end this section with the proof of Theorem 1.3,
based on the intermediate results.

Remark 6.1 (Diverging k,). Throughout the remainder of this paper, unless stated
otherwise, {k,},>1 will always denote a sequence of non-negative integers satisfying

1
k, — oo and k,, = o(n2a+1>, as n — oo.

We start with introducing a slightly modified version of the local clustering function,
which will be convenient for computations later,

* . _ 1
c*(k;G) = BN vg;a) c(v). (6.2)
deg(v)=k

Notice that the only difference between c(k; G) and ¢*(k; G) is that we replace N (k)
by its expectation E[N(k)]. The advantage is that now, the only randomness is in the
formation of triangles. In addition, note that since E [N (k)] > 0 a case distinction for
N (k) is no longer needed for ¢*(k; G). It is however still relevant since we are eventually
interested in c(k; G). Following the notational convention, throughout the remainder
of this paper we write c¢*(k; Gp,) and c¢*(k; Gbox) to denote the modified local clustering
function in Gp, and Gp ,,(a,v), respectively.

Figure 6 shows a schematic overview of the proof of Theorem 1.3 based on the
different propositions described below, plus the sections in which theses propositions
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______________________________

Infinite limit

KPKVB graph

model
Gn — G(n, a, V) Goo _ Goo(a, V)
Local clustering Clustering limit
C(kn;Gn) ’V(k/’n)
Lemma 6.2 P ition 6.6
Section 9.3 roposition 6.

Section 7

Adjusted local
clustering
c*(kn; Gr)

Gbox = Gbox(n; a, V)

Proposition 6.3
Section 9.3

] local clustering

: E [C*(kn§ Gbox)]
""" Poissonized KPKVB I
graph E

GPO = GPO (na a, V) E

Expected adjusted :

Proposition 6.5
Section 8
Adjusted clustering Adjusted clustering
function I:=>> function
1 ! 1

c* (kn; GPO) 1 : ! 1 c (kna Gbox)

T T T T T T T T T T T T T T T T T T T T Proposition 6.4
Section 9.2

e e e e

N N N N T T e

Figure 6: Overview of the proof strategy for Theorem 1.3. The left column denote the
models in which the true hyperbolic balls are used while the right column contains the
models that use an approximation of these. The most important part is the transition
between these to setting which is accomplished by Proposition 6.4.

are proved. Observe that the order in which the intermediate results are proved is
reversed with respect to the natural order of reasoning. This does not create any circular
logic, since each intermediate result is independent of the others. We choose this order
because results proved in the later stages are helpful to deal with error terms coming
up in proofs at earlier stages and hence help streamline those proofs. Below we briefly
describe each of the intermediate steps leading up to the proof of Theorem 1.3.

6.1 Adjusted clustering and the Poissonized KPKVB model

Recall that the first step for the fixed k case was to show that the transition from
the KPKVB graph G, = G(n;«,v) to the Poissonized version Gp, did not influence
clustering. Here we first make a transition from the local clustering function c¢(k,; G,) to
the adjusted version c¢*(k,,; G, ). The following lemma justifies working with this modified
version. The proof uses a concentration result for N, (k,) and full details can be found in
Section 9.3. For a sequence of random variables (X,,),cn and a sequence (a,)nen, We

write X,, = op (a,,) to denote that X,,/a, B 0asn — .
Lemma 6.2. Asn —

|c* (kn; Gr) — c(kn; Gn)| = op (s(kn)) .
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We then establish that the modified local clustering function for KPKVB graphs G,
behaves similarly to that in Gp,. The proof, found in Section 9.3, is based on a standard
coupling between a Binomial Point Process and Poisson Point Process.

Proposition 6.3. As n — oo,

E [|c* (kn; Gn) — ¢*(kn; Gpo)|] = 0 (s(ky)) -

6.2 Coupling of local clustering between Gp, and G},

The next step is to show that the modified clustering is preserved under the coupling
described in Section 2.4. The proof can be found in Section 9.2. This step is one of the
key technical challenges we face in proving Theorem 1.3.

To understand why, recall that the degree k of a node is related to its height y, roughly
speaking, by k ~ £e?/2. Therefore, when k is fixed we have that the heights of nodes
with that degree are also fixed, in particular y < R/4 for large enough n. In addition,
the main contribution of triangles would also come from nodes with heights ¢’ < R/4.
This allowed us to use Lemma 2.3 and conclude that the triangles present in the graph
Gpo, where exactly those present in GG« and therefore the local clustering function was
the same in both models. When k,, — oo this is no longer true in general. For instance,
suppose k, = n;a;fl, for some small 0 < £ < 1. Then the relation k, ~ £e?»/? implies
that y, ~ 2= log(n) — 2log(¢). Since R/4 = } log(n) — § log(v) we get that R/4 = o (yy)
for all @« > (3 — 4¢)/2 and hence y,, > R/4 for large enough n, violating the conditions
of Lemma 2.3. However, by carefully analyzing the difference between the adjusted
local clustering function in both models we can still make the same conclusion. This is
summarized in the following proposition whose proof is found in Section 9.2.

Proposition 6.4 (Coupling result for adjusted clustering function). As n — oo,
E[lc*(kn; Gpo) = " (kn; Ghox)|] = 0 (5(kn)) -

Together, the three results described so far imply that the difference between the
clustering function for a KPKVB graph and the adjusted clustering function for the finite
box graph Gy,x converges to zero faster than the proposed scaling (k) in Theorem 1.3.
Hence, it is enough to prove the result for ¢*(k; Gpox)-

6.3 From the finite box to the infinite model

To compute the limit of the adjusted clustering function ¢*(k; Gpox) We first prove in
Section 8 that it is concentrated around its mean E [¢*(k,,; Gbox)].

Proposition 6.5 (Concentration for adjusted clustering function in Gypox). Asn — oo,
E [[c*(kn; Gbox) — E ™ (kn; Goox)][] = 0 (s(kn)) -

This result represents another technical challenge we face when considering k,, — oc.
For the proof, we first identify the specific range of heights that give the main contribution
to the triangle count, showing that the triangles coming from nodes with heights outside
this range is of smaller order. Then we prove a concentration result for the main
term, using that the neighbourhoods of two nodes whose z-coordinates are sufficiently
separated can be considered to be disjoint (see Section 5.3). The full details are found in
Section 8.

Assuming this concentration result, we are left to compute the expectation of the
local clustering function in the finite box model, E [¢*(k,; Gbox)], and show that it is
asymptotically equivalent to v(k,) as n — oo. To accomplish this we move to the infinite
limit model G, and show that the difference between the expected value of ¢*(k; Gpox)
and v(k,) goes to zero faster than the proposed scaling in Theorem 1.2.
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Proposition 6.6 (Transition to the infinite limit model). As n — oo,
| [¢* (kn; Goox)] — Y(kn)| = 0 (s(kn)) -

Recall that for the finite box model the left and right boundaries of R, where
identified, so that graph Gj,.x contains some additional edge with respect to the induced
subgraph of G, on R,. The proof of Proposition 6.6 therefore relies on analyzing
the number of triangles coming from these additional edges and showing that their
contribution to the clustering function are of negligible order, see Section 7.

Remark 6.7 (Notations for different graphs). We will use the subscripts n, Po, box and oo
to identify properties of, respectively, the KPKVB mode G,,, the Poisson version Gp,, the
finite box model Gy,ox and the infinite model G,. For example Np, (k) denotes number
of nodes with degree k in Gp, and ppox(y, k) = P (Po(u(Bpox (y))) = k), i.e. the degree
distribution in Gy for a point p = (z, y).

6.4 Proof of the main results

We are now ready to prove Theorem 1.3, using the results stated in the previous
sections.

Proof of Theorem 1.3. We first rewrite c(k,; G, ) as

c(kn; Gn) = Y(kn) = (c(kn; Gn) = € (kn; Gn)) + (" (kns Gn) = " (kn; Gpo))
+ (¢ (K3 Gpo) — € (kni Grox)) + (" (kin Gox) — B[c*(kin; Gox)])
+IE [C*(kn7 Gbox)] - ’Y(kn)

Then, we take absolute values and apply the triangle inequality.

‘C(km Gn) - 7(k71)| < |c(kn5 Gn) - C*(km Gn)‘ + |C*(kn5 Gn) - C*(km GP0)|
+ |C*(kn§ GPO) - C* (kru Gbox)| + |C* (kna Gbox) - E [C*(k'rﬁ Gbox)”
+ |]E [C*(krﬁ GbOX)] - 'Y(kn)‘ .

The first term is op (s(ky,)) by Lemma 6.2. For the other terms, the propositions pre-
sented above in this section can be applied in order to show that the expectation of
each difference is o (s(k,,)): Proposition 6.3 for the Poissonization in the second term,
Proposition 6.4 for the coupling between the Poissonized KPKVB and the finite box model
in the third term, Proposition 6.5 for the concentration in the fourth term and finally
Proposition 6.6 for the transition to the infinite limit model.

In particular, this implies that all terms are op (s(k,)). We thus conclude that

|c(kn; Gn) = Y(kn)| = op (s(kn)) = op (v(kn)) ,

which establishes the first statement of the theorem and finishes the proof. O

7 From Gy, to GG, (Proving Proposition 6.6)

In this section we shall relate the clustering in the finite box model Gy, to that of
the infinite model. The main goal is to prove Proposition 6.6 which states that

[ (" (Fn; Ghox)] = v(kn)| = 0 (s(kn)) -

Recall that G is obtained by restricting the Poisson point process P to the box
R = (-1, I,] x (0, R], with I,, = geR/Q and connecting two points p;, ps € R if and only
if |27 — @o|,.r2 < e¥17¥2)/2 We also recall that by definition of the norm |.|,.r/> the
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left and right boundaries of R are identified. See Section 2.2 for more details. Due to
this identification of the boundaries some triples of nodes that form a triangle in the
finite box model do not form a triangle in the infinite model. Therefore, to establish the
required result we need to compute the asymptotic difference between triangle counts
in both models. To keep notation concise we write | - |,, for the norm | - | r/2.

For any p € R x R, we define for the finite box model,

Toox(p) = Y Thox(p,p1,p2),

p1,p2€P\{p},
distinct

where the sum is over all distinct pairs in P \ p and

Thox(Ps P1,P2) = L{p, €Boox(p)} L {92 Brox (1)} L {p2€Brox (p1)} -

Similarly, for the infinite model we define

Too(y) = Z T (y, p1,p2),

P1,p2 €P\(0,y),
distinct

where
Too(Y:01:P2) = Lip, B0 (1)} L{p2€Boe (1)} L{p2€Bos (p1)} -

Recall that, slightly abusing notation, we write B (y) for B ((0,y)) and that Npox(k)
denotes the number of vertices with degree k in Gy,ox.

We will first relate (k) to an integral expression involving 7w (y) and E [¢* (K, ; Gbox )]
to one involving E [Thox(y)]. Recall the definition of y,ic from (2.13) and the interval
Ko(kn) = s, 1 Ui, ¢)- Note that for any y € K¢ (ky) it holds that

Fn = C/knlog(kn) _ 5 _ kn + Cy/Fnlog(kn) (7.1)
£ S ¢ ’ ‘

and thus k,, — C\/k, log(k,) < pu(y) < kn + C+/k, log(ky).

Lemma 7.1. Let v(k,) be defined as in (3.6). Then as n — o0

1 —a
(k) = (140 (1) g5 /’C o BTl Bjac™ dy (7.2)
Moreover,
1
E [¢* (kn; Gpox)] = (1 +O(1))k27r(k>/}< " )E[Tbox(y)] Poox (Y, kn)oe™ Y dy, (7.3)

asn — oQ.

Proof. Recall that
P(y) =E []]-{ulel’)’oo(ug)}] ,

where u; and u, are independent and distributed according to the probability density
1 (Boo ()" Lfu,eB. ()} f (i, yi). It then follows from the Campbell-Mecke formula that

E[Tx(y) = /1{[116800(y)}l{pzeBm(y)}:ﬂ-{pzeBo@(pl)}f(ajlayl)f(zQayZ)dxl dao dyy dyo
=11 (Bs (y))* Py).
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It then follows that,

v(kn) = W(Ilcn) ,/O‘X’ P(y)p(y, k)ae™ ¥ dy
- 77(11<:n) /000 E [T ()] 1t (Boo ()2 ply, k)oe™¥ dy.

Because E [Tho ()] 1t (Boo (y)) > = O (1), uniformly in y € Ry and p(y) = (1 + o (1))kn
uniformly for y € K (k,,), by the concentration of heights (Proposition 2.5)

w(llgn) /OOO E [Too (y)] 1 (Bso ()% ply, k)ae™ dy

1 _
—(toM)—gs [ BB 0) o kac dy
Tr(kﬂ) K:C(kn)
1
_ —Qay
=00 s [ B plyKae " dy
For (7.3) we recall that
N 1
¢ (ki Groox) = 7 2 wox(P) g, ().}
0X n pep

where cpox(p) can be expressed as

1 Thox(p)
Chox(p) = m Z Toox (P P1,P2) = ~5— e
2 plwdpzf?’t\p,

By the Campbell-Mecke formula

E (e (ki Groo)l = Freiy - B [ o0, (10 )] Fla) oy
1
= m /RE [cbox (D) DGy (P) = k] poox (s kn) f (2, y) dz dy

_ (14o0()n - .
- m /K:C(k?n) E [ ehox (V)| Dy, (¥) = knl poox (¥, kn)ae™Y dy,

where the last line follows from the concentration of heights, for which we used the
upper bound E [chox(y)| Do, (¥) = kn] < 1.

To analyze the conditional expectation we observe that, similar to the analysis of
~(ky), conditioned on there being k,, points in Byex (y), each point u; = (z;,y;) is indepen-
dently distributed according to the probability density /i (Byox (¥)) " 1w, eBoo ()} f (Ti, Ui).-
Therefore,

E [chox ()| Do (1) = knl

ko)
= ( 9 ) E Z ﬂ{UiGBbox(uj)}

1<i<j<kn

=1 [u1 (S Bbox (UQ)]
— 1 (Boox (1)) / / Toox(y p1. p2) (21, y1) f (22, y2) ey dys daea dys

= U (Bbox (y))72 I [Tbox(y)] ’
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and thus, by applying a concentration of heights argument on p (Bpox (y))_Q,

nit (Bpox (210g(kn /€))) >
E [Nbox(kn)]

E [ (ki G = (10 (1) L o)l ot o™y

To finish the argument, we first note that x (Byox (21og(kn/€))) > = (1 + 0 (1))k2, while
I [Npox(kn)] = (1 + o (1))nm(kn),

by Lemma 5.2. We therefore conclude that

E [C* (kn; GbOX)] =(1+o (1)) E [TbOX(y)} Poox (Y, kn)ae_ay dy. O

i
k2m(kn) Jico (k)

As a result of this lemma we only need to compare the difference in triangles between
both models for height in the interval K¢ (k). This will significantly help the analysis.

7.1 Comparing triangles between G, and Gj,ox

To analyze the difference |Thox(y) — Too(y)| we first reiterate that the difference
between the indicator 1y, ¢g,,(p)} in the finite box model and 1, c5__(p)} is that in Gpox
we identified the boundaries of the interval [—Ze®/2, Z¢/2] and we stop at height y = R.
This induces a difference in triangle counts between both models. To see this, note that
for any p = (z,y) with 0 < y < R we have that Bpox (p) = Boo (p) N R. This means that
if p’, p2 € Bpox (p) and pa € Bo (p') N R then py € Bhox (p) N Buox (p) and hence (p, p’, p2)
form a triangle both in Gy and G,. However, it could happen that there are points
in the intersection Bpox (p) N Bpox (p’) that are not in B, (p) N By (p'). Let us denote this
region by 7 (p,p’), see Figure 7 for an example of this region. Then, any p> € T (p,p’)
creates a triangle with p and p’ in Gy, that is not present in G,. Finally, any point
p2 € Boo (p) N B (p’) with height yo > R creates a triangle with p,p’ in G, but not
in Gbox-

Let us now define the following triangle count function

Thox (po) = Z Thox (po, p1,p2),

(P1,p2)EP\{po},
distinct

where _
Thox(Po; P15 P2) = L{py €Booe (0)} L{p2 €Boox ()} L{p2 €8s (p1) "R} -

Then Tbox(po) only counts those triangles attached to pg that exist in both Gy,ox and G,
and thus, by definition of the region 7 (pg, p1),

Thox(P0) = Toox(P0) = D L, Br(po)} L{paeT (po.p1)}

P1,p2€P\{po}
distinct

The next result, which is crucial for the proof of Proposition 6.6, computes the
expected measure of T (p,p’) with respect to p’.

Lemma 7.2. Let py = (0,y) withy € K¢o(k,). Then as n — oo,

E HTbox(po) - 7Nﬂbo;ﬂ)u)H =yO0 (n*(Qa*1)> +ev O (n*(4°‘*2>) '

The proof of the lemma is not difficult but cumbersome, since it involves computing
many different integrals. We postpone this proof till the end of this section and proceed
with the main goal, proving Proposition 6.6. First we state a small lemma about the
scaling of s(k,,) that will be very useful.
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Lemma 7.3. Let s(k,) be as defined in (6.1). Then for any k,, = o (nﬁ) asn — oo,

n_(2a—1) =0 (S(kn)) :

Proof. First let % <a< %. Then

n~ o g(k,) "t = - Rar a2 — (n7(20‘71)+§3ﬁ) =o0 (n 4azcrﬁﬂ) =o(1),

since 4a® —4a+1 > 0 for all @ > % Similarly, for oo > % we have that 4a2 > 2 and hence,

n—(2a—1)8a(kn) —0 (n—(Za—l)kn) =0 (n_ 42aj+12> = 0(1) . O

The first key implication of Lemma 7.2 is that the triangle count in the finite box
model is equivalent to k2 P(y), where P(y) is defined by (3.5).

Lemma 7.4. Let py = (0,y). Then uniformly fory € K¢ (ky),
E [Thox(po)] = (1 + 0 (1)kn P(y) + o (s(kn)k?) ,
asn — oo.

Proof. Recall that E [T (y)] = u(y)*P(y) = (1 +0(1))k2P(y) on K¢ (k). We will show
that

E (B [Thox(po)] — Too ()] = 0 (s(kn)k7) .

which implies the result.
Define R’ := (R x R;) \ R. Then we can write

|Tbox(p0) - T (y)‘ < )Tbox(pO) - fbox(po)‘ + ‘Tbox(pO) - Too(y)‘

= ’Tbox(pO) - Tbox(}?o)‘ + ) Twlpo.p1,p2).

p1,p2€PNR/,
distinct

Then by the Campbell-Mecke formula

IIE [Thox(po) — Too(po)]| < E HTbox(p()) - Tvbox(p(])H + / / / / Too (po, p1,p2) du(p1) dp(pz)-

The first part is taken care of by Lemma 7.2. For the other integral we have

2
// Too (po, p1,p2) dp(pr) dpa(p2) < (/ Lip, eBoc (o)} f (71, 91) d2y dy1>
!/ R/
O (

00 2

<ey/2/ e~ (=5 dy1>
R
-0 (eye—(Qa—l)R> -0 (eyn—(4a—2)) )
Thus we conclude, using Lemma 7.2, that,
|E [Thox(po) — T (po)]| = O (yn’(“’” + n*(“"‘”)ey) : (7.4)
Therefore, on K¢ (ky,),
[E [Thox (o) — Too (po)]| = O (log(len)n~ G2~ 4 2~ (10=2))
= 0 (tog(kn~ @D 4 K260 = o (s(k, )2)

where the last part follows from Lemma 7.3 and the fact that s(k,,)? = o (s(k,)). O
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We can now prove the main result of this section.

Proof of Proposition 6.6. First, by Lemma 7.4 and (7.3) we have

E e (kn; Ghox)] = (1 +0(1)) P(y) P (Y, ke dy

i
T(kn) Jice (k)

ootk s [ POty kac ™ dy

By Lemma 5.3 the integral in the second term is (1 + o (1))n(k,) and thus the second
term is o (s(kn)) = o (y(k,)). Hence it remain to prove that the first term is (140 (1))y(y).
Using (7.2) it is enough to show that

/ P(y)poox(y, kn)ae™ dy = (1 + 0 (1)) / P(y)p(y, kn)ae™ ¥ dy.
Ke(kn) Ko (kn)

Now recall the substitution of variables from the proof of Lemma 5.3: 2(y) = 2 log(’“’%(y)).
We will apply this change of variables to the right hand side in the above equation. This
yields

/ Py)poon (b, ke dy
K:C(kn)

= (o) [ P~ 2loa(1 40 (0)plely). k) (o dy

= (o) [ P = 2log(1 o (1))ols bjae ™ d

Next we recall that by Proposition 3.5

Y — — .
e~s(ta=2)c gta—2 ifi<a<3,
¥ .
P(y) ~ { de ifor =2,
Y afl . 3
—ga—3 3
e 2% ifa> 3.

In particular, this implies that P(z—2log(1+o0(1))) = (140 (1))P(z), uniformly on K¢ (k,).
We therefore conclude that

/ P() pvox (Y, kn)ae™ ¥ dy = (140 (1))/ P(2)p(z, kn)ae™ " dz,
)Cc(k‘n,) ’CC(kn)

which finishes the proof. O

From the proof of Proposition 6.6 we immediately obtain the following useful corollary,
which will be used in Section 8. Recall from (5.14) that S, ¢ = RN (Ry X [y o, ¥ o))

ns

Corollary 7.5. Let py = (0,y). Then, as n — oo,

In N %
/ / Poox(Y, kn)E [Tbox(po)} flz,y)dedy = (1+0(1))nk3/ P(y)p(y, kn)ae™ Y dy.
—1I, ’Cc(kn) 0
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z(p,p") z*(p')

Figure 7: Example configuration of two points p and p’ for which Bpex (p) N Bpox (p)
is not a subset of By, (p) N By (p’). The red region indicates the area belonging to
Brox (p) N Bpox (p') but not to By, (p) N B (p)-

In particular,
| sl ko) [Toon(po)] )y = © (kG k).
kn,C

7.2 Counting missing triangles

We now come back to computing the expected number of triangles attached to a node
at height y in Gpox that are not present in G ..

Recall that 7 (p,p’) denotes the region of points which form triangles with p and p’ in
Ghrox but not in G,. Figure 7 shows an example of a configuration where 7 (p,p’) # 0.
We observe that 7 (p,p’) # 0 because the right boundary of the ball By (p') exits the
right boundary of the box R and then, since we identified the boundaries, continues
from the left so that Bpox (p') covers part of the ball Byox (p) which would not be covered
in the infinite limit model.

The point (Z(p,p’), 4(p,p’)) is the same as (Zef;, Gierr) from Section 5.3). Using the
same approach as there we can compute the other two coordinates, z*(p’) and y*(p’). In
total we have the following four expressions:

x*(p/) — .13, _ zeR/Q7
. T
y*(p') = 2log (gem) -y,
) , x' — wek/?
&(p,p) = 11 ew—u/2’

e

, R/2 _ o1
J(p,p') = 2log <ey/2+ey'/2> :

The crucial observation is that 7 (p,p’) = 0 as long as the point (z*(p'),y*(p')) is
above the left boundary of p. This happens exactly when y*(p') > b, (z*(p’)), where
b, (2) is defined in (5.5). Therefore the boundary of this event is given by the equation
y*(p') = b, (z*(p')) which reads

2log (563/2) —y =2log (geR/2 - x’) — .
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e

Figure 8: Example for a given p of the boundary function 2’ > b(2’), given by the
red curve, which determines whether 7 (p,p’) = (. We see that when y' = b;(2’) then

(@(p,p"),9(p,p") = (" (@), y" (P)).

Figure 9: Three different areas B,(f) used in the proof of Lemma 7.2.

Solving this equation gives us the function
% z

which is displayed by the red curve in Figure 8. It holds that y*(p’) > b, (*(p')) if and
only if 4" < b5(2’) and hence we have that 7 (p,p’) = () for all p’ € R for which y’ > by (2').
We also note that when y' = b7 (2) the two points (z*(p’),y*(p")) and (Z(p,p’), J(p,p"))
coincide.

This analysis allows us to compute the expected difference in the number of triangles
for the finite box model and the infinite model, for a typical node with height y, i.e. prove
Lemma 7.2.

Proof of Lemma 7.2. Due to symmetry it is enough to show that

R I,
/ / 1 (T (p,p1)) du(pr) = O (yn‘(“‘” + n‘<2“‘1>ey) . (7.6)
0 0

The proof goes in two stages. First we compute u (7 (p,p1)) by splitting it over three
disjoint regimes with respect to p;, with z; > 0. Then we do the integration with respect
to p;.
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Computing u (7 (p, p1))
Recall that I, = Zef/2 and define the sets

A ={p1 = (z1,51) €R : 0<yy <y —2log(L,,/(I, — 1))},

x
Ag) — {pl = (z1,11) €R : y—2log(l,/(I, —x1)) <y1 <y+2log (1+ Il>}’

n

L,
A ={p1=<x1,y1>en Y+ 2log (H‘fl) <y <y+2log (M>}
n n — 41

and let BY) = Brox (p) N AY fori = 1,2,3, see Figure 9. Here the heights of the two
intersections are given by

In
he(y) =y + 2log (In+ey)7 (7.7)
B (y) = y + 2log | (7.8)
y=y+2og| ) :

With these definitions we have that the union B,, := U:.L:l Bﬁi) denotes the area under

the red curve in Figure 8 and hence, for all p; € R\ B,, with z; > 0 we have that
T(p,p1) = 0. So we only need to consider p; € B,,. We shall establish the following
result:

O (I;%e™vt) if py € B,

(7.9)
O (I;2*e>v) ifp; € BYY UBY).

1 (T (p,p1)) = {

Depending on which set p; belongs to, the set 7(p,p;) has a different shape. We
displayed these shapes in Figure 10 as a visual aid to follow the computations below.

Case p; € BY:0< y1 <y —2log(I,/(I, —x1)) In this case the integral over ps splits
into two parts

Y (p1) prite¥1Ty2)/2 o1,

IT(Ll)(pl) . / e~ dxo dys
h2(P1) —1I,
hi(p1) rl_e(y1+y2)/2
B = / / e~ 2 dxy dys.
y*(p1) x*(p1)

We first compute Iy(f).

y*(p1)
I’r(Ll)(pl) — / (351 4 elvty2)/2 _ ]n) e dysy
h

2(p1)

IA

y*(p1) )
ev1/2 / e~ (@=3)v2 dys
h

2(p1)
1/2
_ 2ev1/ (e—(a—%)hz(m) _ e—(a—%)y*(m))
200 — 1

_ 2 ey (1Y
200—1" I,

=0 (Irjzamleo‘yl) ,

where we used that z; < eW+¥1)/2 = o(I,,) forall y; <y and y € K¢ (k,) so that
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(=5ef/2 hi(py)) by, (2)

p1 € BV

(=3ef/2 ha(pr))

(—5e™2 hi(p1)) by, (2)

P1 € Br(lz)

((p,p1), (P, p1)) by (2)

(z*(p1), " (p1))

(3)
P1 6 Bn / pul b;’l (Z)
b, (Z) (:i(papl)ag(papl))

Figure 10: The different shapes of 7 (p, p;) depending on the regime to which p; belongs.
The top figure is for p; € B,(ll), the middle one for p; € B,(f) and the bottom one for

p1 € BS’)-

https://www.imstat.org/ejp
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1 —(2a—1) 1
1-— -1 = — .
< In) 0] <In> asn — oo

For IT(LQ)(pl) we have

hi(p1)
I.,(Q) (p1) = / ([n - e(y1+yz)) e~ dyy
y*(p1)

hi(p1)
< QIn/ e~ Y2 duo dys
y*(p1)

2 —2a _—
aln (I;Qaeo‘y1 — (In + 1) 2o g ayl)

O (I,**x1e™) = O (I;(Qa_l)eo‘“) .

We conclude that for p; € Bél):

1 (T (p,p1)) = O (I, **@1e2%)
which establishes the first part of (7.9).
Case p; € BY: y — 2log(I,/(In — x1)) < 11 < y+ 2log (1 + %) Here we split the

integration into two parts (see Figure 10). Recall that z*(p, p1) = 21 — I,,. Then, for the
first part we have

hi(p1) pz™(p,p1)
U (p, 1) / f(x2,y2) dra dys
h(y)

(x (—ah(y _ —ahl(m))> B
oo tn))
ol ((1—2) )

for the last line.
For the second part we first us the upper bound on y; to compute that

xq 4+ eW1Tv2)/2 o 4 oty2)/2 < (ey/2 + ey1/2) ey2/2
< vl <2 N “71> o2 = 0 (elvmr2)
— In )
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since |z1| < I,,. Then we have

h(y) z1+elvtyv1)/2 o,
I = / / J(w2,y2) drs dys
9

(p,p1) ely+ya)/2

h(y) L
=0 ey/Q/ e~ (@=3)v2 dys
9(p,p1)

—0 (eym ( —(a= i) _ ¢ (a")h(y)))

—(2a—1)
ol () ™ )
& €
=0 <[T:(20t—1)eay> ,

(2a—1)

where for the last line we first used that (21, — 1)~ (*~Y < I, and then

_ 20—1
((ey/2 + 6yl/?>2 g e(d%)@/) < el@=3)y ((1 + . 1+ ?) — 1) -0 (e(a*%)y) )

It then follows that for p; € B

u(T(.p1) = O (12 Ve,

Case p; € BY: y+ 2log(1+21/1,) < y1 <y +2log(L, /(L — x1))

(y1+vy2)/2

xr1—e
1'(1)_/ / f(z2,y2) dao dys

e(u+ua)/2

=0 </ Tie” 2 — <ey1/2 — ey/g) e (@=3)v: dyz)
-
¥
=0 ml/ e 2 dys | .
v

v 1 . N1 ) 2
—ay2 _ —ay” _ —ay\ _ —2a ayr et S
/y* ¢ dyz = @ (6 ¢ ) o« (I" c (ey1/2 — ey/Q)
) 1 a —2«a
= M (1 — (1 — e(y—yl)/2)2 (xl) ) =0 (I;Qaeayl) )
« I,

and hence we have

Now

WM = O (I, 2w e™) .
For the second integral we have, using that y < y; for p; € B(?’)

ew1tv2)/2 4 00 _og,

/ / f(z2,y2) dra dy2
Co(utu2)/2

Y
=0 (/ (6y/2 + ey1/2) e—(a—%)yz dy2>
i
<6y1/2/ —(a—%)yz dy2> )
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For the integral we have

*

Y
/ e—(a—%)yQ dys = 2 <€—(a—%);0 _ e—(a—%)y*)

—(2a—1)
= - 2 1 << y2/£n+_ 9511/2> _ I;(2a—1)e(a—§)y1> -0 (I;(za—l)e(a_%)yl) 7
o — e e

where we used the upper bound on y; and the fact that 21, — z; = O ([,) for all
x1 € [—In, I,]. We conclude that

n

Iff) -0 (I—(Qa—l)xleay) 7

and hence for p; € Bff)

W (T (o) = O (I w1e2%) = O (I Dee)

Integration u(7 (p,p1)) with respect to p;
We now proceed with the second part of the computation leading to (7.6). Here we will

integrate (7 (p,p’))(p, p1) over the region B, := BYuUBP uBY, see Figure 9. Let us
first identify the boundaries of these areas.

The area Bfll) is bounded from above by the line given by the equation

In
=y —21 .
Y=Y Og<In—JI1>

Solving this for z; yields z; = I, (1 — e(#*~¥)/2) and hence the area BY is given by

B’r(Ll) = {(xlayl) : 0 < Y1 < Y, 0 <z < In (1 - €(y1*y)/2> A e(y+yl)/2} .

In a similar way we have that B,(LQ) is bounded from above by line

In
=y+21
1 =y+ Og<In+r1)’

which yields 21 = I,, (e®¥17¥)/2 — 1). The lower red boundary is the upper boundary of
B,(LQ) and hence we have

Yyi1—vy Y1

Bf):{(:cl,yl):h*(y) <y <h(y), In (1*6' z )\/In (e T —1) <z gew%},

We continue in the same way for Bﬁf)

Yy—yi

Bﬁf’):{(xl,yl) y<wy1 <RI, (1 —e 2 ) <z <I, (e% - 1) /\ew’zy1 /\In}.

We these characterizations of the areas we now integrate p(7 (p, p1)) over B, splitting
the computations over the three different areas.
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Integration over B,(Ll): We use that I, (1 — e%) A eyzyl <I, (1 — eyl{y) so that
[ 0T S oy di
By,
I,(1 e(v1 y)/2)
<[] (T, p0) S o1, ) s
o Jo
_ O (I—2a/ /
2
(@) <In(2a 1)/ (1 7e(y17y)/2) dy1>
0

0 (In (20—1) ) (0] (yn (2'171)) .

e(vtv1)/2

I dl’l dy1>

Integration over B,(Lz): We will show that
W(BE) =0 (I;1e@ ), (7.10)

which together with (7.9) yields

[ o 0T ) forn) doy iy = 0 (B Do)
B

n

= 0 (%)

y1;y _ 1) :

The integration is split into two parts determined by I, (1 —eT y) VI, (e'

e(ytv1)/2
/ / f(z1,y1) dor dys
(y) JI,(1— elvi— u)/2
h*(y) pelvtvi)/2
/ / f(z1,y1) doy dys.
I, (e(yl y)/2_ 1)
For the first integral we use that e*#> — I,(1 — e”=") < e¥1/2 (e¥/2 4+ e7¥/2) to
obtain
(y+y1)/2
/ / f(z1,y1) der dys
(v) (1— elvi— y)/2)
-0 ey/Q/ —(a—3)y dy:
h*(y)
I —(2a—1)
—0|ev2| e (e _ o—(a—3)y n
I, +ev
— 0 (1),
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For the second integral note that et — L(e™z" —1)<e “5"* and hence

(y+v1)/2

h*(y)
/ / f(x1,y1) dzy dyy
I, (elv1— y)/2_ 1)
h* (y) L
-0 67;'/2/ e~ (@20 gy,
y
L . I —(2a—1)
—0|e¥? | e a2y _ g=(a=23)y n
I, —ev

so that (7.10) follows.

Integration over B,(Ls) :  For this case we show that
wW(B®) =0 (e“*a)y) , (7.11)
so that
/3(3) p(T(p,p1)) f(z1,y1)dzrdys = O (M(Bg))fﬁ(%fl)eay)
=0 (Ig(%‘_l)ey) .

Here the integral is split into three parts:

I, (eV1=9/2_1)

“(v)
u(B) / / f(z1,y1) doy dys

I,(1— e(y— yl)/2)
h(y) e(yty1)/2

f(z1,y1) doy dys
*(y) JI,(1— e(y— y1)/2)

+/ / f(xlvyl)d1'1 dyl
h(y) n(l—e(?!—?ll)/Q)

Y

Let us first focus on the first integral. Since I,(e "z~ —1) — I,(1 —¢
we get, using similar arguments as above

yy1 —
2

)<Ie

eW1—¥/2_1)

o h () 1
/ / f(x1,y1)deydyy = O I,Le*y/Q/ e~ (e=2)y dy,
I, (1—elv—v1)/2) v
—(2a—1)
0 (LLe% (1 - ( In ) ))
I, —ev

_ 0 (d0-).

Proceeding to the second integral, we first note that ey+2y1 —In(l—ey_zy1 )=0 (Inehz )

so that similar calculations as before yield

h(y) pelvtv)/? h(y) .
/ flar,yn)derdys = O [ Le v/ / e ay, | =0 (),
“(y) J In(1—elv=v1)/2) h*(y)
O
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8 Concentration for ¢(k; G,,,) (Proving Proposition 6.5)

In this section we establish a concentration result for the local clustering function
c*(k; Gpox) in the finite box model Gy,ox. Similar to the previous section we will focus on
typical points p = (0,y) with y € K¢ (ky,).

8.1 The main contribution of triangles

Recall that Nyox(ky,) denotes the number of vertices in Gy,ox with degree k,,. We first

write
Tbox ( kn )

C* knvG ox) = T N1t ~r .
oni Goox) = BV E [V ()]

)

where

Tbox(kn):zﬂ{chox(p):kn} Y LB L2 Bun (1)) (2B (01} -
peP (p1,p2)€P\{p},

distinct

In particular, the variance of ¢*(k;,; Gpox) is determined by the variance of Thox (k).
Next, recall the adjusted triangle count function

Thox (po) = Z Thox (o, p1,p2),

(p1,p2)€P\{po},
distinct

where
Thox (P05 P15 P2) = L{p, €Bune(p0)} L {p2€Booe (p0)} L{p2€Bos (p1)R} 5

as well as the definition of K¢ (k)

bu = Cv/Fulog(ka) |, | _ g _ kn+ Cy/knlog(kn) }
3 - 3 ’

Ko(kn) = {y S

and write R(ky,C) = [—In, I] x Kc(ky,) for the part of the box R with heights in K¢ (k).
Slightly abusing notation, we will define the corresponding triangle degree function

Toox(kn, C) = Z ]]-{degbox(p):kn}fbox (p), (8.1)
PEPAR (kin,C)

and with that a different clustering function.

fbox(km C)

Ebox(k") = m.

(8.2)

The idea is that the main contribution of triangles of degree k,, to the triangle count
Thox(kr) is given by fbox(kn, (). Therefore, in order to prove Proposition 6.5 it suffices to
show that fbox(kn, () is sufficiently concentrated around its mean. This last part is done
in the following proposition.

Proposition 8.1 (Concentration fbox(kn,C)). Let o > % v > 0 and let (k,),>1 be any

positive sequence satisfying k,, = o (n TaFT ) Then for any C > 0, as n — oo,

E [Toos(ha, €] = (14 0 (1) B [Taon(ha, ©)]

We first use this result to prove Proposition 6.5. The remainder of this section is
devoted to the proof of Proposition 8.1. The final proof can be found in Section 8.3.
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Proof of Proposition 6.5. We bound the expectation as follows,

E || Thox ki, ©) = B |Thox ki, )]

(k;)E [Npox (k)]
+ 2E [|C*(k‘n; Gbox) - Ebox(k'n)” .

E [|c* (kn; Gbox) — E[¢* (kn; Ghox)]|] <

We will show that both terms are o (s(k,,)).
First we note that 1{,,c5_(p)nR} < L{pscBun(p:)} and hence Thox(p) < Thox(p). This

implies that

Tbox(kn» C)

Ebox kn) = 77 T~
) ("5 )E [Noox (n )]

S c* (kna Gbox)a

and therefore
E HC* (kna Gbox) - Ebox(kn)” = [C* (kna Gbox)] -E [Ebox(kn)] .
For the expectation of Ty (ky, C') we use that

E [Tbox(p)(chox(p) = kn} = (2")#(81)“ (y) ’E [Tbox(p)} '

Recall that for y € R(k,,C)

1 (Boox () F = (L+0(W)p(y) " = (1L +0 1)k,

where the error term is uniform in y.
We thus obtain

E [Toox(hnsC)] = [ B[ Ton()| Dt (0) = o sty ) (,3) iy

R(kn,C)

= o) () [ e (30) B [Tos)] o ey

—+o); [

R(kn,C)

=+ oin(’y) [T Pwst b ay

E {,fbox(y)] pbox(yv kn)ae_ay dy

where the last line is due to Corollary 7.5. In particular, since the last integral is
C) (k;(mﬂ)s(kn)) we conclude that

E {fbox(kn,C)} o (nk;<2a—1>s(kn)) . (8.3)

Since E [Nyox(kr)] = (1 + 0o (1) n(ky,) it follows that

E [Thox(hn, ©)] o [ Py)ac—v dy

() E [Noox(kn)] ey~ (Lo M)lka).

Ebox (kn) =

On the other hand, Proposition 6.6 implies that E [¢*(k,; Gbox)] = (1 + 0(1))v(k,) and
thus we conclude that

2E [|e* (kn; Ghox) — Cox(kn)l] = 0 (v(kn)) = 0 (s(kn)) -
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For the remaining term we use Holder’s inequality and Proposition 8.1 to obtain

1

E [|Thos(kn: C) — E [Thox (b C)] || < (E [ Toox(kn, O2| = E | Toox(kn, )] 2) ’
—0 (E [Thox(kn, C)D .

This implies

E[[Ton(hn )~ E [Tk O[] (B[Bntba O]\
() E [Noox (k)] = ) B Moo ) — )
which finishes the proof. O

We note that the above proof establishes the following important result

Corollary 8.2. Let k,, — oo. Then, asn — oo,
E HC*(kTL? Gbox) - Ebox(kn)u =0 (S(kn)) .

8.2 Joint degrees in Gy,

To prove Proposition 8.1 will use results from Section 5.3 regarding the joint degree
distribution in Gy,.,. For any two points p,p’ € R we will denote by

Pox (P, P ki, k') := T (Po (1 (Brox () = k., Po (1 (Brox (p'))) = k') , (8.4)

the joint degree distribution.
Recall the definition of & (k) from Section 5.3,

ny

Ee(kn) = {(pm’) ERXR:yy €Yp, crYiy.c) @and [z — '], > k,,lﬁs},

where

e — 2log <kic,/£klog(k)> |

as defined in (2.13). Furthermore, we recall that by Lemma 5.9 the joint degree dis-
tribution of two point p,p’ € £.(kn) factorizes, i.e. on the set & (k) the joint degree
distribution in Gy is asymptotically equivalent to the product of the degree distri-
butions. We shall now prove a slightly stronger result (Lemma 8.4) which also takes
care of bounded shifts in the joint degree distribution ppex(p, o', kn — ¢,k — '), for some
uniformly bounded ¢, € Z. For this we first need the following simple result for Poisson
distributions.

Lemma 8.3. Let k,, — oo be a sequence of non-negative integers and X = Po()\,,) be a
Poisson random variable with mean \,, satisfying

kn — Cvknlog(kn) < A < ky + Cv/kyp log(ky),

for some C > 0. Then, for any t,,, s, = O(1), asn — oo,

P(X =ky—tn) ~P (X =kn—sn).
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Proof. Note that k, > t,,s, for large enough n. Hence, using Stirling’s formula, as
n — 0o,

P(X =k, —s,) (K — t)!
kn — 8n (kp — 8p)kn—5n
T — b (o — b ) tn
— gn(gn)knftnetnfsn (kn _ Sn)tnisn)\ff‘it"

tn—5n
= Eeltn=tn) ogEn) =5 (‘“) s
n )\n ’

where we wrote ¢, = (k, — $p)/(kn —tn). Note that £,, — 1 and hence \//,, — 1. Moreover,

tn
since (ky, — $p)/An — 1 and |s,, — t,,| = O (1) we have that (u) ~ 1 Therefore it
remains to show that

P (X = kn — tn) (kn —tn — (sn B tn))!>\5n7tn

tn—s Sp—1
eln n )\n” n

lim e*n—tn)log(fn)+tn—sn _ 1
n—oo

For this we note that for any z, such that |z| < 1/2, we have
r—x% < log(l+z) < z.

Write z,, = ¥¢,, — 1 = t"%i" Then by the assumptions of the lemma, z,, — 0, and thus, for
n large enough,

(tn — Sn)2

pa— < (k, —t)1log (,) < t,, — sp.

tn*Sn*

In particular

(tn—sn)?

e Fnin < e(kn—tn)log(én)-&-tn—sn < 1,

(tn Sn)

and the result follows since — 0. O

We can now prove the main result of this section.

Lemma 8.4. Let0 < e < 1, k, — oo and let t,,t., s, s, € Z be uniformly bounded. Then
for any (p,p’) € E-(k,), asn — oo,

pbox(p7pl7 kn - t'ru kn - t{n) = (1 +o (1))pbox(pa kn - Sn)pbox(p/a kn - 3;1)
Proof. Define the random variables

X1(p,p') :=Po (1 (Bpox (1) \ Boox (1)) ,
Xa(p,p') := Po (1t (Bpox (') \ Brox (1)) ,
Y(p,p') :=Po(u (Bbox (p) U Byox (1)) »

so that

Poox(D, Dy ki, — oy kn — t7,)
=P (X1(p,p") +Y (0, 0") = kn — tn, Xo(p,0') + Y (p,0') = kn — t,) .

Since by Lemma 5.7 u (Bpox (p) N Bhox (p')) = O (k}ffl>, it follows from Lemma 5.9 that
Pbox(p7p/7 kp —tn, kn — t;L) = (1 +o (1))pbOX(p7 kpn — tn)pbox(p/7 kyn — t;)

The result then follows by applying Lemma 8.3 twice. O
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8.3 Concentration result for main triangle contribution

We now turn to Proposition 8.1. Before we dive into the proof let us first give a high
level overview of the strategy and the flow of the arguments.
Recall (see (8.1)) that for any C' > 0

Thox(km C) = Z ]l{degbox(p):k}fbox(p)~
PEPRNKc n(kn)

Then we have

Tbox(knvc)2 = Z ]]-{chox(p)7DGbox(p/):k"} Z TP(pvp17p2)T'P(plvpllvpl2)7

p,p' €EPnNKc (kn) (p1,p2),(P} ,PH) EPn,

distinct

This expression can be written as the sum of several terms, depending on how {p, p1,p2}
and {p’, p},ph} intersect. To this end we define, for a € {0,1} and b € {0, 1, 2},

— /

Lo =" D> Ypg, () Doy,, 0)=ka) o P):
p,p’ €EPnNKc (k)
H{p}n{p'}=a

where
Bpp) = ) Tp (P, p1,2) TP n (D', P1, 12),

P1,P2,P],PHEPn

[{p1,p2}0{p].P5}I=b,
distinct

with the sum taken over all two distinct pairs (p1,p2) and (pf, p5). Then we have

1 2

Tbox k C ZZ

a=0 b=0

To prove Proposition 8.1 we will deal with each of the I, ; separately, showing that

E [Ioo] = (1+0(1)E [Thox(kn,C)r, (8.5)

and for all other combinations
~ 2
E[Io] = o (IE [Tbox(kn, 0)} > . (8.6)

Note I » = ﬁ,ox(kn,C) and since (8.3) implies that It [Tbox(k‘n,C)} — oo, it follows
that (8.6) holds for I ».
Recall that R(k,,C) = [—1I,,I,] x Kc(ky) and (5.15)

E-(kn) = {(p,p) ER xR : y,y € Kc(ky) and |z — 2’|, > k.t } .

Let & (k,) be the same set but with |z — 2/|,, < k) *° and denote by I, the the part of
I,» where (p,p') € E:(ky). Will split the analysis between [ , and Ia,b I ;- The idea
for these two cases is that by Lemma 8.4 it follows that on the set & (k,) and for any
uniformly bounded ¢,t’ € Z, the joint degree distribution factorizes,

pbox(pvplv ky + t, kn, + t/) = (1 +o0 (1))pbox(p7 kn)pbox(p7 kn)

- 2
In particular this allows us to prove that I [I§,] = (1 + o(1))E {Tbox(kn, O)] . On the
other hand, the expected number of points in & (k,)¢ is O (kL™k, 2*E [Nyox(kn)]) =
0 (]E [Nbox(kn)]2), where the latter is the expected number of points in the square

R(kn,C) x R(kn,C). Hence we expect the contributions coming from &.(k,)¢ to be
negligible.
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Proof of Proposition 8.1. Throughout this proof we set i = [{p’, p1, p2, P}, 5} N Brox (P)
J=H{p'} N Byox (p) | and define ¢’,j’ in a similar way by interchanging the primed and
non-primed variables. In addition, we write ﬁbox(p, v, k, ) to denote the indicator that
|Box () N (P\{p,p’, p1, P2, 11, P2})| = k and [Boox (p) N (P\ {p,p’, p1, p2, P}, p3})| = ¢. Note
that this also depend on {p1, p2,p}, ph} but we suppressed this to keep notation concise.
Similarly we write Dyox(p, p', k, ¢) to denote the indicator that |Byox (p) N (P \ {p,p'})| =k
and |Byox (p') N (P \ {p,p'})| = ¢, which now only depends on p and p’. Then, by the
Campbell-Mecke formula

’

/
= [R{chox (D)=kn Dasy,, (p')=kn } T (PP )}

=K Z -5b0x(p7p/7 kn - i, kn - i/) Tbox(p7p17p2)fb0x(p/ap/1ap/Q) )

p1,p2,P],PHEPR
[{p1,p2}N{p] .ph}I=b,
distinct

where the sum is over all distinct pairs (p1, p2) and (p}, p3). We also know that
B [Tp (k)] = © (nk; Vsq (k) )

We will now proceed to establish (8.5) and (8.6).

Computing Iy We first show that
E [lo,0 = I5.0] = 0 (B [Thox (kn, O , 8.7)

so that for the remainder of the proof we only need to consider p,p’ € &.(k,) and hence,
we can apply Lemma 8.4.
For Jy we have, using Lemma 8.4

/
= [1{D0box (P)=Fkn,Day, (p’):kn}JO(pzp )]

=E Z Bbox(pap/a kn - ’i, kn - i/) Tbox(pvplvp2)fbox(p/ap/13p/2)

p1,p2,P].PHEP\{p.p'}
[{r1,p2}n{p} ,PhH}I=0,
distinct

=B | Doox(p:0/ bn = — 2k — 3" =2) > Thox(P.p1p2) Y. Thox(p' 11, 15)

p1,p2€P\p, Pl pHEP\D’,
ity 172
distinct distinct

D) = b

= (14 0 (1)) pbox (5,2 o T )E [ Thon (0)| Dty () = | B [ Toon 1)

Next we recall that for all ¢’ € Ka(k,,) (see (7.1)),

E | Tox(¥)| Do () = ] = (’“;>u (Boox (1) B | Toox@)| = 0 (1) K2P (/).

where p’ = (2/,y’) and we used that E [fbox(p/)} — (1+0(1)k2P(y), forall i € Ke(kn).
Therefore, using that ppox (p, ', kn, kn) < phox(p, kn),
/
E |:1{DGbox (p):kn;DGbox(p/):kn}JO(p7p ):|
<0 (kr%) Pbox (P, kn) B {TbOX(p)’ Dg,,.(p) = kn} P(y')7
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and thus
E [To,0 — I5 o]

-/ o B[00 000 1m0y P00 ST ) ' dy
;

S O (ki) k‘,ll—i_g (/" P(y/)e—oty’ dy/> E |:j:box(kna C)]

n

= 0 (K250 (k) [ Toon (. 0)] )

~ ~ 2
- (nk;(Qa_l)sa(kn)E [Tbox(kn, C)D - (]E [Tbox(kn, (J)] ) :
which proves (8.7). Here we used that k27¢ = o (n) and

E [Thox (ks C)| = © (B [Thox(kn)] ) = © (nk; @ Vs (k) )

for the last line.
We will now show that

E [I50] = (1 + 0 (1)E [E [Thox(kn, C)]?]

Recall the result from Lemma 8.4, that for (p,p’) € &.(k,) and any two uniformly bounded
t,.t' e,

Pbox(papla kn+t Kk, + t/) = (1 +o0 (1))pbox(p; kn)Pbox(pa kn)

Therefore, by defining h(y) = E [fbox(y)‘ D¢, .. (y) = kn}

E [I5,] = (1+0(1))/g " )pbox(p, En)poox (s kn )W) h(y') f (@, y) f (2", y") dz’ da dy’ dy.

The difference with E []E [Thox (Kn, C)]Q} is in that the above integral is over &.(k,,) instead

of R(ky,C) x R(kn, C). Since the difference between the two sets is & (k, )¢ and nkl e =
o (n?) it follows that

E [ (Thos 0 O] = [ poas(p. ) entsls ) b)Y ) (,) (') 'l dy
Ee(kn)

= /5 (kn)e pbox(p, kn)pbox(p/, kn)h(y)h(y/)f(m, y)f(x/’ y/) dﬂl‘/ dx dy/ dy
2
- Ot </;cc<kn> h(y)Ppox (y; kn)are ™ dy) = 0 (B [B [Thox(kn, O] ) -

Thus we conclude that I [I5 ] = (1+ 0 (1))E []E [Thox (kn, C)]ﬂ , which finishes the proof
of (8.5).

Computing E [Io 1] We first write

E [H{DGbox(p):k"*DGbox(pl):k"}J1:| < @) (1) knpbox(pvplv kn; kn)E |:Tbox(p)’ DGbox(p) = kn:| .
(8.8)
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Then, using that pyox(p, ', kn, kn) < poox (P, kn),
E [Io — I3,]

—/g(k" )C]E[JI{DGbOX(p)yDGbox(p,):k"}Jl(p,p')] fla,y) f(@',y') da’ de dy’ dy

=k Po0x(D: ) E | Toox(9)| Dt (0) = b f(@,) f(a', ) da’ divdy' dy

Ko (kn)?
lo—a! |<kpTE
+

<0 (K2 ( [ e dy'> B [Thox(in. O]

n

~0 (kfff*?a]E [ﬁ,ox(kn, C)D .

Recall that E [Tvbox(km C)} =0 (nk;(zafl)s(kn)). Therefore to show that IE [Io1 — I, ] =

- 2
0 (E {Tbox(k:n, C)} ) it suffices to show that k2t¢72¢ = o (nk;(m_l)s(kn)). When 1 <
o < 2 we have
da—1+c¢ <1
200+1 ’

for € small enough. Hence

_ _ _ _ _ _ _ da—1+e
n T 2T s(ky, ) TR T2 = T e 1+5:0(n Ly 2a+ )zo(l).

When o > 2,
B2 s ) 22 = O (log(a)) n 2 = 0 (1),

for € small enough.
For (p,p’) € & (k,,) we assume without loss of generality that pj = p1 = (x1,41), i.e.

Joi= Y, Thex(@pup) >, Toox(t',p1,05)-

(p1.p2)EP\{p}, PLEP\{p’,p1}

distinct

Now let Zj; denote the part of Jy 1 where y; < 4log(k,,) and yq, y5 < clog(k,).
We first analyze E[Zy1| Dg,., (p), Dag,..(®') = kn]. When y; < 4log(k,) and both
Y2,y < elog(k,) we have that

/7
|2y — ah| < |w1 — ao| + |oy —ah] < e <€y22 —|—ey22> < 2k2TE,

whenever fbox(g,pl,pg)fbox(g’,pl,pg) > 0 while both |z — x|, |2/ — 24| = O (k}*¢). Hence
it follows that Thox(p, P1, P2)Thox (P, P1,P5) > 0 implies that
|z — 2| < |z — za| + |22 — 2h| + [2h — 2'| = O (K2F9) .
Next, by integrating only over z, and y}, we get
E[Z0,1] Déyor (P); Do (') = kin] = O (6%1{|m7z’|§0(1)ki+5}E {Tbox(P)’ Déyo. (p) = knD

=0 (k:nE [Tbox(P)‘ Da,,.(p) = k”D ’
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Thus
/ Poox(Ds 0’y ks kn)E [ Zo,1| Day o, (P), Doy (P') = k) (2, y) f(2', ') do dy da’ dy’
Ee(kn)

=0 () B [Toallns O] [ gty e ay
Ko (kn

= 0 (k27K E [ Toox (kn, ©)] ) = 0 (E | Thox (ki C)F) :

where the last line follows from the analysis done for E [Iy — IS,O]-
It now remains to consider Jo,1 — Zo,1 := Z;,. We will show that

E [ Z51] DGyor (P): DGy (9) = bin] = 0 (K s(kn)?) - (8.9)

Using that the joint degree distribution factorizes on &, (k,) this then implies that

2
Poox (Ys kn) f(z,y) dv dy)
kn,C)

E [I&J = o(szbs(kn)Q) </72(
=0 ((ns(kn)kg2o‘+1)2> =0 (E [fbox(kn, C’)} 2> ,

which finished the proof of (8.6) fora = 0,b = 1.
We first consider the part with y; > 4log(k,). Since the integration over zi,xs

and z4 of E[Z},| Da,..(p), Déy.. (') = kn] is bounded by O (eye%) we get that the
contribution to E [ Z , | D, (p): Day., (P') = kn| with y > 4log(k,) and (p,p’) € E(ky) is

R R
1) eye%/ e (a=)u dy, | =0 ki/ e—(a=Hu dy,
4log(kn) 4log(kr)

-0 (k;”;—“a—?)) = 0 (ki 50 (kn)?) .

Here the last step follows since for £ < a < 3
Ji-(a2)—d g y=2 _ p3—(d0-2)—4t2(a=2) _ p—5tda _ o (]),

while for o = 3

ki_(4a_2)_4s(kn)_2 =0 (log(kn)_2) ki_(4a_2)_2 =0 (log(kn)_2) =o0(1),

and for o > 2
kz_(4a_2)_48(k‘n)_2 — ki—(4a—2)—2 — 0(1).

Next we consider the case where y; < 4log(k,,) and at least one of y», v} is larger
than elog(k,). Due to symmetry it is enough to consider the case with y; > elog(k,).
Here the contribution to E [ Z5 | Da,.. (p), Da,.. (1)) = kx| is

’

E | Thox(p)| O (eyz / zg(kn) (=32 dy2> =0 (k") E [Toonr)]
=0 (k" s(hkn)) = o (Kis(kn)?)

The last line follows since k, ' = o (s(k,)) for 1 < a < 2 and k;' = O (s(ky,)) for o >

oo
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Computing E [Io 2] In this case we have
E [ﬂ{DGbox(p):kmDGbox(pl):k"}J2:| = (1+0(1))Pbox(p7p/7 kna kn)E {beX(p)‘ DGbox(p) = kn .

We then use that pyox(p, P, kn, kn) < poox(p, kr) to obtain

E [Ios — I5s) = O (K1) ( / e dy'> E [Thox(Fin, C)]
Ke(kn)
=0 (k" D) E [Thox(kn, ©)| = 0 (B [Thoxhn, ©)] )
were the last line follows since E [Tvbox(kmC)} =0 (nk;(h_l)s(l@n)) and kin~! =
0 (s(kn))-

For the other term we use the fact that the degree distribution factorizes;

E [IS,Q] = O (1) (/ pbox(y/a kn)f(x/’ y/) dx/ dy,) IE [Tbox(kn? C):|
R(kn,C)
~ - 2
=0 (nk;(2a+1)) E [Tbox(kna C)} =0 (E [Tbox(knv C)} ) )
where we also used that k,2 = o (s(k,)).
Computing E [I; ;] Using (8.9) we get

El11) =0 () | puoe(y ) [ Tous| Do (p) = ko] £(a,3) doly

R(kn,C)

= O (kn) B [Toox(k C)|

Now observe that for £ <a < 3
kpn 2O g (k,) "t = K207 = 0 (n%) =o(1),
while for o > 3
k= k2 Vs(k,) "t = O (n—lk;@a—l)) —0(1).

_ 2
We conclude that k, = o (nk~(2*~Vs(k,)) and hence E I, ;] = o (]E {Tbox(kn7 C’)} ) O

9 Equivalence for local clustering in Gp, and G},

In this section we establish the equivalence between c¢*(k;G,,) and c¢*(k; Gpox) as
expressed in Proposition 6.4, using the coupling procedure explained in Section 2.4. As
in the previous section we write | - |,, for the norm | - | .r/2.

Recall the map ¥ from (2.5)

oR/2
U(r,0) = (92 ,R’I‘> ,

and that B (p) denotes the image under ¥ of the ball of hyperbolic radius R around the
point ¥~!(p). Under the coupling between the hyperbolic random graph and the finite
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box model, described in Section 2.4, two points p = (z,y) and p’ = (2/,y’) are connected
if and only if

1 h(R — y)cosh(R — y') — cosh
‘m_x/|”§(I)(yay/)zieR/zarccos (cos (R — y) cosh(R —y') — cos R)7

sinh(R — y) sinh(R — y')
see (2.6). We will often use the result from Lemma 2.2 to approximate the function @,
fory + vy’ < R, by

e2 W) _ ge3Wty)-R < §(R—y R—y) < e3Wty) 4 ge2Wwty)-R

where K is a constant determined by the lemma.

9.1 Some results on the hyperbolic geometric graph

We start with some basic results for the hyperbolic random geometric graph. Recall
that B (p) = {p € Rx R, : |z — /| < e@¥)/2} and observe that (2.8) from Lemma 2.2
implies the following.

Corollary 9.1. For sufficiently large n and p € R,
Bo (p) NR([K, R]) € B (p) NR([K, R]),

where K is the constant from Lemma 2.2.

Furthermore, Lemma 2.2 enables us to determine the measure of a ball around a
given point p = (0, y) - this is will be fairly useful in our subsequent analysis.

Let p € R. Then we can see that the curve 2/ = e2(¥*+¥) with 2/ > 0 meets the right
boundary of R, that is, the line 2’ = geR/Q aty = R —y+2In7. Hence, any point
p' € R([R—y+2In7, R]) is included in B (p). In other words,

B (p)ma([R—yHlng,R]) :R([R—y+21ng,R]).
This together with the fact that for any v’ = (+/, ¢’),
P <y=R—r=dy(V p),v)<R

implies that
(B(p) & Boo (p)) NR(R —y + 2 3. R]) = 0, 0.1)

where A A B denotes the symmetric difference of the sets A and B. We can now compute
the expected number of points in B (p) A B (p), i.e. those vertices that are neighbors of
p in only one of the two models.

Lemma 9.2. Let 0 < y,, < R be such that R — y,, — oo and write p,, = (z,,y,). Then we
have, asn — oo,

e(1/2—a)Rtayn ifa < 3/2,
(B (pn) & Boo (pn)) = O(1) - § (R = yn)e®/2~8 ifa = 3/2,.
e3yn/2-R ifa > 3/2.

Proof. Let r, := R — y,. Lemma 2.2 implies that for such a p,,, if a point p belongs to
B (pn) A B (pn) N 'R([O, Tn]) then

|2y — 2| = O(1) - e3Wntv)-R
Now, if p € [y, 7, +2In Z)] and also p € B (p,) & Bo (pn), then
|x’n - l“n - EGR/2 —_ e%(y7z+y).
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Finally, (9.1) implies that no point in R([r,, + 2In T, R]) belongs to B (p,) A B (pn). We
first compute the expected number of points in p € B (p,,) A B (pr,) that have R—y < r,,.
The result depends on the value of «, yielding the following three cases

W(B () & Bog () NR((0, 7,])) = O(1) - P0n/2-F / e/ g

e(l/2-a)Rtayn if < 3/2,
=0O(1): ¢ (R —y,)e?¥/>~ R if o = 3/2,
e3un/2-R if o > 3/2.

Next we compute the number of remaining points in B (p,,) A Boo (pn),

vo

rn+2InZ
2 /m 1
1(B (pn) 2 Bo () N R([rn, R)) = 7/ (§6R/2 - ef(y’*y)) e dy

n

rn+2InZ
=0(1)- eR/z/ T e dy = 0(1) - ef/2e=amn

n

=0(1)- e(1/2—a)Rtayn

Now note that for any a > 3/2, we have
((1/2 = )R+ ayn) — (Byn/2 — R) = (3/2 — a)(R — yn) = —00,

by our assumption on y,. For « = 3/2, these two quantities are equal. From these
observations, we deduce that

ell/2me)Btayn if o < 3/2,
(B (pn) & Boo (pn)) = O(1) - § 7€ /2-F if o = 3/2,
e3yn/2—R if o0 > 3/2. -

9.2 Equivalence clustering Gp, and G,y

Here we prove Proposition 6.4. We first note that Lemma 5.1 and Lemma 5.2 imply
the following

E [Neo(ka)] = © (1) nk,, 22D, (9.2)
and
E [Nyox (kn)] = © (1) nk;, 2oFD), (9.3)
Moreover,
oy EDpo(kn)] (9.4)

n—oo I& [NbOX(kn)]
Recall that Proposition 6.4 states

lim s(kp) P E[|c* (kn; Gpo) — ¢* (kn; Ghox)|] = 0.

n—oo

Next recall the definition of K¢ (k)

k, — C\/kylog(k, v kn+ Cy/kylog(k,
ICc(k:n){yEIRJr: ; og( )\/0<62§ + : og( )AGR/2}7

and (8.2)
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Tbox(kru O)

Ebox(k") = m

7

where Tyox(kn, C) counts for all nodes p = (z,y) with y € K¢ (k,) the pairs (p;,py) that
form a triangle with p, with the exception that it considers p; € B (p1) N R instead of
Bpox (p1). Then using Corollary 8.2 we get

E[[c*(kn; Gpo) — ¢ (kn; Ghox)|] < E[|c" (kn; Gpo) — Chox(kn)|] + 0 (s(kn))
and hence it is enough to prove that

lim S(kn)_lE [lc* (kn; Gpo) — Chox(kn)|] = 0.

n— 00

The following lemma will be frequently used in the proof of Proposition 6.4.

Lemma 9.3. Let t,r € R be fixed and let p(y, k) be any of the three probability functions
pro(Y, k), ppox(y, k) or p(y, k). Then for any sequence k,, of non-negative integers with

k,=0 (n 2a1+1> and C > 0 large enough,

/ e pr(y, kn — r)e” Y dy = O (1) k; 2271420
Ko
as n — oQ.

Proof. Note that on K¢ (k,) we have that e = © (k2!). Hence, by Lemma 5.3

[ chntubn =) dy =0 () [ty — ) dy
Kc Ko

-0 (kit) (kn o 7,,)—(20-{-1) -0 (1) k;2a—l+2t. -
Proof of Proposition 6.4. To keep notation concise we abbreviate E [Np,(k,)] and

EE [Npox(kn)] by Tipo (kr) and Tipox(kr ), respectively. We will also suppress the subscript n
in most expressions regarding the graphs Gp, and Gpox. Finally we will write

TPo(p) = Z TPo(pup17p2)a

(p1,p2)€EP\{pr},
distinct

with
Tro (P P15P2) = Lip, B} LpaeBp)} LipaeBo)}s

to denote the triangle count function for p in Gp,. Then we have

E [|C*(k’n; GPo) - Ebox(kn)u

k) 1 {degp, (p)=hn} L {degy o (0)=hn} 7
— n E PolP ni o o Ebox (P nt ox
(5) 2 Tl el = T Thenle)

kn 717 — T
< < 9 > npo(kn) 'E Z jl{degpo(y):kn}TPo (p) — jl{degbox(p):kn}Tbox(p)
peEP
k —1
“(3)
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The last term can be rewritten as

ﬁPo(k'n)
ﬁbox (kn)

ﬁPo(kn)

e [ o0(1),

-

IE [Cpox (kn)] = ’1 -

where we used Proposition 6.6 (See Section 7). The first term in this product converges
to zero by (9.4) while the second term scales as s(k, ). Hence

ﬁPo(kn)

m E [Chox(kn)] = 0 (s(kn)) ,

’1_

and therefore we are left to analyze the other term. By the Campbell-Mecke formula we
have that

E (1> Lidegpn0)=kn1 TPo(P) = L{des, . (m)=kn} Toox(P)
pEP

= / E H:ﬂ'{dEgPo(y):kn}TPO(y) - ﬂ{degbox(y):kn}fbox(y)H f(z,y) dy da.
R

Since

(
= () oot 0)@ (s ) )
(C]

nilkiaJrg) PPo (ya kn)a

—~

and similar for the other term, it follows that

Ldegp, (y)=kn} L{degy, () =Fn} 7
E || =Sk X/ "] 7 _ Y obox I/ <
H ﬁPo(kn) PO(y) ﬁPo(k‘n> bo! (y)

<O (k23 (ppo (Y kn) + pox (s kn)) -

Therefore, by a concentration of heights argument (c.f. Proposition 2.5), it is enough to
consider the integral

n/}C * )E H:ﬂ-{degpo(y)zkn}TPo(y) - ﬂ-{degbox(y)zkn}fbox(y)H e dy, (9.5)
c(kn

where we also used that f(z,y) is simply a constant multiple of the function e~*¥. Since
(" )7po(kn) = © (nkﬁ(m*l)) we have to show that

n— o0

lim kff’_ls(kzn)_l/,c " )E Hﬂ{degpo(y):kn}TPO(y) - ]l{degoo(y):kn}fbo"(y)u e dy=0.
c\Fn

For o > 3/4, s3/4(ky) = log(kyn) 'sa(kn) = 0(sa(ky)) and thus it suffices to prove the
following two cases:

1. if1/2 < o < 3/4, then
n—oo

lim kp®—? /K " )E Hﬂ{degpo(y>=kn}TPo(y) - ﬂ{degboxw):kn}fbox(@/)H e”*dy =0,
C n

EJP 26 (2021), paper 13. https://www.imstat.org/ejp
Page 94/132


https://doi.org/10.1214/21-EJP583
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Clustering in a hyperbolic model of complex networks
2. if 3/4 < «, then

Jim K /;c o |1 et 1=y Tro) = Laegy =ty Toox (9)] ] € dy = 0.
c(Kn

We shall proceed by expanding the integrand and analyzing the individual terms. With a
slight abuse of notation we shall write y instead of (0, y) in an expression such as B (y).
In addition we write Dp,(y, kn; P) for the indicator which is equal to 1 if and only if B (y)
contains k, points from P \ {(0,y)}. We define Dpox(y, k,; P) analogously for the ball
Brox (y). It is important to note that for any p’ € R it holds that p’ € Bpox (y) < p' €
B ()

We need to split the integrand over several terms and then analyze each of these
separately. Applying the Campbell-Mecke formula yields

E H]]-{degpg(y)zkn}PPo(y) - :ﬂ-{degm(y)zkn}Tbox(y)H <

E > [Dpo(y; kn — 2; P\ {p1,p2})Tpo(y, 1, p2)

(p1,p2) EP\{(0,y)},
distinct

7Db0x(ya kn 7277)\ {p17p2})fbox(yaplap2) )

where the sum ranges over all distinct pairs of points in P \ {(0,y)}. In what fol-
lows, we will set Bpoaco (P') = B(0') & (B (p') N'R) and Bponbox (P) = B (p) N Byox (')
and observe that Bporpox (¥) = B(y) N By (y). We will now bound the sum that is
inside the expectation. We will split the sum into different parts, depending on com-
binations of p;,p2 € P\ {(0,y)} for which only one of the two terms of the differ-
ence is non-zero. Clearly, for this we need that either p; € Bpornox (y) and ps €

Bporco (P1) O p1 € Bpoaco (y) and p2 € Bponpox (P1). We will consider the following
four cases:

1. p1 € Bpronbox (¥) and pa € Bpoass (P1),

(@ y1,92 < (1—¢e)RA(R—y),

) y1 > (1 —e)RA(R—y).
2. p1 € B(y) \ B (y) with y; < K and pa € Bporbox (¥)-

3. 1 € Bronss (y) with y1 > K and ps € Bponbox (V).

where K in the last two cases is the constant from Lemma 2.2.

Observe that when y; < (1—¢)RA(R—y) and y2 > (1 —e)R A (R — y) it follows
from Corollary 9.1 that ps € Bponbox (p1) and thus we do not have to consider this
case when p; € Bporpox (¥) and ps € Bpoaoo (p1). Similarly, when y; > K and p; €

Bpoaroo (y) Corollary 9.1 implies that p; € B(y) \ B (v) which explains the setting of
case 2.
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We can now bound the sum by the following expression:

Z |Dpo(y, kn — 2;P \ {p1,p2})Tro(y, p1,D2)

(p1,p2)€P\{(0,y)},
distinct

~Dyox(y: kn — 2P\ {p1, p2}) Thox (y, 1, p2)
< Y L1 €Brorpon(v)} " Lipa€Brons (1)} DPo(Ys kn — 2: P\ {p1,p2}) (9.6)
p1,p2€P\{(0,y)}
y1,92<(1d;i‘)]£A(R*y),
+ Z L{py €Brormos(®)} * Lip2Brono (1)} Pbox(¥: kn — 2;P \ {p1, p2}) (9.7)

p1,p2€P\{(0,y)}
y1,y2<(1-e)RA(R—v),
distinct

+ Z L1 €Brormos ()}~ Lpe€Bronm (p1)NB(w)} PPo(¥s kn — 2, P\ {p1,p2})  (9.8)
p1,p2 €P\{(0,y)}

y12(1—e)RA(R-y),
distinct

Y LpeBromn®)}  LpeeBroan ()08} Phox(U: kn — 2P\ {p1,p2})  (9.9)

pr1,p2 €P\{(0,y)}
y12(1—e)RA(R—v),
distinct

+ Y LB\ B )} L {p2eBw) B ()} DPo(ys kn — 2P\ {p1,p2}) (9.10)
p1,p2€P\{(0,y)}
y(p1)>K
distinct
Y LpeBu)\Ba )} p2eB)nBa (1)} Phox (y: b — 2P\ {p1,p2}) (9.11)
p1,P2€P\{(0,y)}
y(p1) =K,
distinct
+ > Lip1€Bronc (¥)} L{p2€B(y)NBu (v)} - (9.12)
p1,p2€P\{(0,y)}
y(p1)<K,

distinct

In the following paragraphs we will give upper bounds on the expected values of each
one of these partial sums.

The sums (9.6) and (9.7) We will analyze (9.6). The analysis of the other sum (9.7)
is similar. Note first that for any two points p;, ps the following holds: p; € B(y) and
D2 € Broaco (p1)NB (y), then ps € B(y) and p1 € Broaco (p2) NB (y). Using this symmetry,
it suffices to consider distinct pairs (p1,p2) € P\ {(0,y)} with 0 < yo <y; < R—y. Let
D denote the set of these pairs.

We are going to consider several sub-cases and, thereby, split the domain D into the
corresponding sub-domains. Let w = w(n) — oo as n — co be a slowly growing function
and set y,, :=y +w. We let

D1 ={(p1,p2) €eDNP : y<y1 <R/2, y, <y2 < y1},

Dy ={(p1,p2) €DNP : y1 <R/2, y3 <y, } and
D3y ={(p1,p2) EDNP :R/2<y1 < R—y,y2 <1}

Note that D C D; U D, U D3. Hence, we can write

I > LpeB)y MpeeBronn (p)rBw)} Dro(ys kn — 2P\ {p1,p2})

Pr1,p2€P\{(0,y)}
y1.92<(1—e) RA(R—y) (9.13)

3
SY Bl Y Lpesu) Mpmebroas (0B} - Dro(¥kn — 2P\ {p1,p2})

i=1 (p1,p2)€D;
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We bound each one of the above three summands as follows:

El Y Tpesw)  LpeBroawmnBum)} Deo(yskn — 2P\ {p1,p2})
1.p2)ED
(p1,p2)€D1 (9.14)
<E Z LipieB)} * LipeeBy)} Dro(ys kn — 2P\ {p1,p2}) | = Iﬁll)(y%
(p1,p2)€D1
El Y Tpesw)  LpeBronwmnBm)} Dro(yskn — 2P\ {p1,p2})
(p1,p2)ED2
<E Z ﬂ'{PlGB(y)} ]l{pEEBPvoo(pl }DPO(y’ -%P \ {pl’pQ}) = I7(12) (y)
(p1,p2)ED2
(9.15)
and
E Z LipieB)} * Lp2eBroas (0)nB()} PPo(Ys kn — 2;P \ {p1,p2})
(p1,p2)€D3 (9.16)
SE| Y Lpesw) Lpeesw) Dro(t kn — 2P\ {prp2}) | == (y).
(p1,p2)€D3

We will bound each term using the Campbell-Mecke formula and show for i = 1,2, 3 that
for1/2 <a<3/4

lim kSo—3 / W (y)e ™ dy = 0, (9.17)
n—oo ICc(k )
and for a > 3/4
lim k%/ T (y)e ™™ dy = 0. (9.18)
n—oo )Cc(k )

For the first term (9.14), we note that
E [Dpo(y, kn — 2;P \ {p1,02}] = ppo(ys kn — 2),

and hence Z.” (y) becomes

R/2
proly, k / / / / Lp1 €Bpormox(y)} ﬂ{meB(y)}e_Ol(y1 e dya dwa dy; dzy.

(9.19)

Next, Lemma 2.2 implies that for y’ < R—y, we have that if (z/,y’) € B(y), then |2/| <
(1+ K)ey/”y//Q, where K > 0 is as in Lemma 2.2. Using these observations, we obtain:

I Z Lpy €Brormon((0:9)} * Lip2eB)} * DPo(y kn = 2P\ {p1, p2})

p1,p2€D1

R/2 Y1
= pro(y, kn — 2)e / en/? / ev2/2em v o= Widy,dy, .
Yy

w
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Now, the double integral becomes

R/2 Y1
/ ey1/2/ eY2/2o—ay2 "W dyody, =
Yy

w

R/2
O(l) / ey1/2—(xy1 . e(l/?—u)ywdyl
Y

R/2 (9.20)
— O(1) - /2= / et /2o gy,
Y
=0(1)- e(1/2=a)yu+(1/2—a)y
< 6(17204)1/’
since y,, = y + w and w — co. We then deduce that
E| Y LYpieBroma(©)}  Lipeebu) - Droly,kn — 2P\ {p1,p2}) (9.21)

p1,p2€D1

& ppo(y, kpn — 2)e1 729,

We now integrate this with respect to y and determine its contribution to (9.5);
/ ppo (Y, ki — 2)e1 2Wem % dy dz = O (K, 5> 11),
Kc(kn)

where we used Lemma 9.3 with ¢t =1 — 2a..
Since 1 — 6a + min{6a — 3,2a} < 0 for all & > 1/2 we deduce that for 1/2 < o < 3/4

n—roo

lim kga_3/ ZW (y)e ¥ dy = 0,
’CC(kn)
while for a > 3/4

n—0o0

lim ki"‘/ M (y)e ¥ dy = 0.
Ke(kn)

We will now bound the term in (9.15). Using similar observations as for the previous
term we get that IT(LQ) (y) equals

In. pR/2 pln pye
p P°(y’k”_2)/ I / / I / 1, B)) LipacBronn(@ynye "2 dys duy dys day.
-1, J0 -1, J0

Now, Lemma 2.2 implies that for y, < R—y;, we have that if (x2,¥2) € Broao ((1,41)),
then z lies in an interval of length Ke3v/2+3¥'/2=R where K > 0 is again the constant
in Lemma 2.2.

Using these observations we obtain:

R/2 . Yo o
Iy(?) (y) — pPo(y, k, — 2)€y/2/ €y1/2+3y1/2/ 63y2/27367ay2 e dy2 dyl- (9.22)
0 0
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The integrals satisfy

R/2 Yw .
o R / 2= gy ( / o(3/2-)y dyQ)
0 0

_ o) R eU=/2R il < <2 eB/2mve jf L << 2
R ifa>2 Yy ifozZ%

e~ 2 Re(3/2=)y if% <a< %7
(y+wn)e 2t if3 <a<2,
(y+w(n))Re B ifa>2.

—0(1)

Since y, ;= y +w(n) < R = O (log(n)) we conclude that on K¢ (ky,)

n~ok32 ifl<a< g,
I (y) = O (1) pro(y, kn —2) { ™ log(n) if 2 <a <2,
n=2log(n)? ifa>2,
and hence
n-eki iflca<d,
/ I (y)e ™ dy = O (1) k;, @) £ =2 log(n) if 3 <a<2,
Foaln) n~2log(n)? ifa >2
n-af2-t iflca<d,
_ —a —(2a+1) 3
=0 (1)< n=%log(n)kn if; <a<2,
n=2 log(n)Qk;(zaH) ifa>2.

Now for 1/2 < « < 3/4 it holds that 4a® — a + 1 > 0. Hence since k,, = O (nTIH) we
have

a?—a
kga—gn—aki—%y _ n—akia—l -0 (nfcwri%li) -0 (kn4 2a+1+1> =o0(l),
from which we deduce that

n—oo

lim kSo—3 / T2 (y)e™ ¥ dy = 0.
KC(kn)

For a > 3/4 we have that both n=*log(n)k; ! and n=2log(n)?k, ! converge to zero as
n — oo and hence in this case

lim kﬁo‘/ TP (y)e ¥ dy = 0.
n—oo Kc(kn)

We will now consider the term in (9.16). Recall that D5 consists of all pairs (p;, p2) € D
such that R/2 < y; < (1 —¢)RA (R —y) and y; < y, with the property that p; € B (y)
and py € Bpoaco (1) N B (y). So, in particular, ps € (B (p1) U B (p1)) N B (y).

We will consider this intersection more closely. We use Lemma 2.2 to define a ball
around p; that contains both B (p;) and B (p1). For K > 0, we define, for any point
p1=(v1,491) € R x Ry,

Bpo(p1) :={(z",y) : v <R—y1, |z —2'| < (1 + K)e%(yl"’y/)}. (9.23)
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It is an implication of Lemma 2.2 that

(B (p1) U Bso (1)) N R([0, R — y1]) € Bpo(p1)-

Therefore, any point ps = (22, y2) € Bpoaso (P1) N B (y) with y2 < R — y; must belong to
Bp, (p1)N Bpo(y)-

We will use this in order to derive a lower bound on y5 as a function of 1, y;. Let us
suppose without loss of generality that z; < 0. The left boundary of Bp,((0,%)) is given
by the equation 2/ = (1 — K)e%(”y/) whereas the right boundary of Bp,(p;) is given by
the curve having equation ' = z; + (1 + K )e%(ylﬂ/). The equation that determines the
intersection point (%, §) of these curves is

z1+ (14 K)eW+9/2 = (1 - K)e+9)/2,
We can solve the above for g
21| = (1 —|—K)eg/2 (ezn/? + ey/2> .

But y1 > R/2 and since y € K¢g(k,), it follows that for sufficiently large n, y <
(14+¢€)R/(2a + 1). So if € is small enough depending on «, we have

1] = (14 K)e?/2 (/2 4 9/2) = (14 K + o(1))e?/> /2,

Let ¢ denote the multiplicative term 1 + K + o(1), which appears in the above. The
above yields

J= (2 log(|z1]e™¥1/2) — log cK) V0 :=g(z1,y1)- (9.24)
In particular, note that § = 0 if and only if |z;]| < cxe¥t/?. Moreover, since p; € B (y) and
z1 < R—y, we also have that |z1| < e +¥1)/2(1 4 0(1)). This upper bound on |z;| together
with (9.24), imply that for n sufficiently large, we have § < y. This observation will be

used below, where we integrate over y,, thus ensuring that the integrals are non-zero.
We conclude that

P’ € Bro(y) N Bro((x1,31)) = ¥ > §(z1, 1),
which implies
LpaeBroan (p)NBW)} < L{yy>g(01,1)p2eBra((0.0)} (9.25)

If we integrate this over x5, yo we get
I Y1
/ . /0 Lipa€Bronce (p)nBy)}€ 2 dyadrs

I, Y1
- —ay
< ~/—I ~/O ]l{yz29(1‘17’!/1)711265130(21)}6 *dy2dz

<(1+K)-ev/? /yl ev2/2=av2 gy,
J(z1,y1)
=0(1)- e¥/2+(1/2=a)g(z1,91)

Note also that
E [Dpo(y, kn — 2; P\ {p1,02})] = pro(y, kn — 2),
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uniformly over all (py,p2) € D3. Hence the Campbell-Mecke formula yields that 1-7(13) (y)
equals:

(R—y)A(1—¢) .
O(1)ppo(y, kn e1//2/ / ]l{pleg(y)}e(l/%a)y(m,y1)*ay1dy1dx1
R/2
n  r(R—y)A(1-2)R h
= O(1)pro(y. kn em/ / et o} €72V iy i,
Due to the symmetry of Bpo(y), the integration over z; is:

(14+K)ev/?tvr/2
O(1) - e¥/2 . / I (1/2-0) gy
0

We will split this integral into two parts according to the value of §(x1,y1):

(14 K)ey/2tv1/2 (14 K)ey/2+v1/2 cre¥l/?
/ (D) (1/2-0) g :/ (D@1 (1/2-0) gy +/ dr..
0 0

crevl/2

The first integral becomes:

(1+K)6y/2+y1/2 (1+K)ey/2+y1/2
/ (O (1/2-0) gy / ¢0(e11)/201-20) g

creyl/2 crevl/2?

(1+K)ey/2+’y1/2
:O(l)/ .’L’% 2a ——(1 Z(X)dx

crevl/2

=0(1)- e~v1/2+ay ew%l—a)

=0(1) - evr/2Hy(i=0),

The second integral trivially gives:

ev1/2

/CK dry = O(1) - e¥/? = O(1) - en/?Hv(1=2),
0
We conclude that
(1+K)ey/2+y1/2
ov/2 / I (1/2-0) o (1) . 1 /2+9(3/2-0),
0
Now, we integrate this with respect to y; and get
R—y
ey(3/2fa)/ (/2= gy, — 0(1) . e¥(3/2—a) (1/2—a)R/2 _ 0(1) cpl/2me gy(3/2-a)
R/2
from which we deduce

I3 (y) = O(1) - n/272 VG279 ppy (y, Ky, — 2). (9.26)

We now apply Lemma 9.3 with ¢ = % — « and get

/ IO (y)e = dy = O (1) n~ () / B2y (k2o dy
Kc(kn) Kc(kn)

— 0 (- gz
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Since for a > 1/2, k, = O (nﬁ) = 0(n'/?) we have that ke —3k2-4ep—(a=1/2) =
o (1) and hence for 1/2 < a < 3/4.

n—oo

lim &S*—3 / T3 (y)e ¥ dz dy = 0.
]CC(kn)
For a > 3/4 we observe that 2% + 2« — 5/2 > 0. Hence,
kiani(afé)ki%a =0 (nf(o‘fl/mn%) =0 <nw) =o(1).
and we get for a > 3/4

lim k2 / T3 (y)e™ ¥ dz dy = 0.
Kc(kn)

n—oo

The sums (9.8) and (9.9) Again, we will only consider (9.8) since the analysis for the
other term is similar. Recall that in this case, we consider pairs (p1, p2), with p; = (21, y1)
satisfying y1 > (R —y) A (L —¢)R, and p1 € B(y), p2 € Bporss (1) N B (y). We split this
into three sub-domains: i) yo > R —y; ii) R —y1 < y2 < R—y and iii) y» < R — y;. Similar
to the analysis above we define

Dy :={(p1,p2) : p1,p2 € P\{(0,9)}, n1
Dy := {(p1,p2) : p1,p2 € P\{(0,9)}, n1
Dy :={(p1,p2) : p1,p2 € P\{(0,9)}, n

(I1-e)RAN(R-y), R—y<ys <R},
(1-e)RAN(R-y), R—y1 <y2 < R—y},
(1-e)RA(R-y), y2 < R—uy1},

vV IV IV

and write, for: =1, 2, 3,

Iy =B | Y LpeBw)  HpeeBroaw @B} - Do kn — 2P\ {p1,p2}) | -
(p1,p2)€ED;:

In the first case, note that for y € K¢ (k,) we have, for small enough ¢ and sufficiently

large n, 2y < 2(1 + 5)% =o0(R). Thus y; +y2 > 2(R —y) = Q(R) and thus p2 € B(p1)

for large enough n. Furthermore, y, > R —y; + 21n(7/2), which implies that ps € By, (p1)
too. Hence, the contribution from these pairs is zero.
The Campbell-Mecke formula yields that:

I, R
0w =ow [ [ gyt
—I, J(1—e)RA(R—y)
I, R
/ / :ﬂ'{PzEBPvoo(p1)ﬁB(y)}pP0(y7 Ky — 2) : eia(yQerl) dy2 dzs dyl dz;.
—I, JR—y

We proceed to bound the integral:

I, (R In prR
/ / LipieB(y)} / / ]l{meBpvoo(pl)ﬁB(y)}e_a(y] 02) dyy day dyy da
—I, J(1—e)RA(R—y) —I, JR—y

I, rR In R
= / / / / e~ *Witv2) dyy ey dyy day
—I, J(1—e)RA(R—y) J—I, JR—y

I, R I, R
= / / e~ dy day / / e 2 dysdxsy | .
—I, J(1—e)RA(R—y) —In JR—y
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We evaluate

/ / 670‘y1dy1d$1 _ 0(1) .n- efaRJr((ER)\/y))a _ O(l) om - efaR+o¢y+a€R7
1—e)RA(R—vy)

I. /R
/ / e~ 2 dysdxs = O(1) - n - e @Btay,
—I, JR—y

Also, n-e~*F = O(1) - (/2= whereby we deduce that

/p 1, B} L {preBronm (p)rBw)y € T2 dyadwsdyy day

1
_ O(].) . e(l—2a)R+2ay+aeR _ O(].) . n2(1—2a)+2a£ .20y

With these computations we obtain

/ Ir(Ll)(y)e—ay dz dy — O(l)n2(1—2a)+2ae/ Qayppo(y, k., )e_o‘y dy dz
Kc(kn) Kc(kn)
_ 0(1)n2(172a)+20¢5 k2a71'

Thus, for 1/2 < a < 3/4, we have

k‘2 2(2a—1)
kSa—S n2(1—2a)+2045 kia—l _ n2as <T;l) — 0(1))

provided that € = ¢(«) > 0 is small enough, and hence for such ¢

lim &S~ 3/ T (y)e™ ¥ dz dy = 0.
Ko (kn)

n—oo

When o > 3/4 we have 2(1 — 2a) < 1/2(4a — 1) and we get

kia n2(1—2a)+2o¢5 . k?loz—l < kia—l n2(1—2a)n2as — 0(1)7

provided that ¢ is small enough, depending on «, so that

n—oo

lim k2* / M (y)e ¥ dzdy = 0.
Ke(kn)

We now consider the second sub-domain D,. The Campbell-Mecke formula yields that:

IPW=E| > Lpesn)lipesooanonnswDpoy: kn = 2P\ {p1})
(P1,p2)€D:
= O( )ppo y, k / / ﬂ{mGB(y)}
1—e)RA(R—y)

/ / 1{p2€BPQAOO(pl)mB(y)}e_a(yl+y2) dys dzo dyp dz;.
Y1

We bound the integral as follows:

/ / Lip,eB()} / / LipaeBronnpnBee W) dys dea dys day
I, J(1—e)RA(R—vy)
n R—y
/ / LipieBw)} / / Lipsenye” ") dys da dyr dey.
1—e)RA(R—y)
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Now, by Lemma 2.2,
R—y
/ / Lip,eByne “dysdrs = O(l)ey/2/ e(L/2=e)v g
R—y1
=0(1)eY /2+(1/2 a)(R=y1)

We then integrate with respect to y;:

L. (R
O(l)ey/z/ / Lpengyel /2O Fe W dy, dey
— 1—e)RA(R—y)

I, R
< O(1)ev/2+(/2-0)R / / e(@=1/2m c=am gy 4o
- 1—&)RA(R—y)
— O(1)ev/2H1=0) R=((1=2)RA(R=1))/2
— O(1)ev/2+ (/2= RH(R)VY) /2

_ O(l)e“ 1/2—a)R+eR __ 0(1)n172a+66’y

Therefore we get

[ 2P iy
Kc(kn)

=0 (n1_2a+5) / ppo(y, kn — 2)eYe” ¥ de dy
’Cc(kn)

=0 (1) n172a+5k72a+1

where we used Lemma 9.3 with ¢t = 1.
For 1/2 < o < 3/4, we have

k2 2a—1
e o
n

provided that € = ¢(a) > 0 is small enough, yielding

n—oo

lim kS~ 3/ T2 (y)e ¥ dz dy = 0.
Ke (kn)

Similarly, for o > 3/4 we have 2a — 1 > 1/2 and we get
kpn'™207e « n7V2E Lk, = 0(1),

provided that ¢ is small enough, so that
lim k2* / TP (y)e ¥ dz dy = 0.

For the third sub-domain D3 we shall use (9.25) which states that if po = (22,42) €
Brorso (p1) N B(y) and yo < R — y1, then ys > §(x1,y1), where (cf. (9.29))

9(z1,11) = (21og(|x1\6_3’1/2) - 1och> V0.
Moreover, py € Bpo(p1).
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Again, we will use the Campbell-Mecke formula:

IW) =B | > 1 eBw)lipeeBoonn i) Dro(: kn — 2P\ {p1,p2})

(p1,p2)€D3

I, R
= O(1)ppo(y, kn — 2)/ / Lip,eB(y)} X
—1. J(1—e)RA(R—y)

I, R—y1
/ . /O LipseBronn By e “ Y T2 dysdaadys day

The inner integral with respect to ps := (22, y2) is

In R_yl
/ I /o L{preBronce (p)nB(y)} e dyads

I, R—
< " 1 " 5 e~ V2 dysdas
~ )1 Jo {y229(z1,91),p2€Bpo((0,9)) }
R—y1
:O(l)ey/2/ eyz/%ayzdyQ
9

(z1,91)
— O(l)ey/2+(1/2_a)g(“’y1) )

Thus, we get

In R In R—y1
/ / Lip,eB)} / / LpaeBronce (p1)NB(y)} X
—I, J(1—e)RA(R—y) -1, J0O

67a(y1+y2)dy2dx2dy1 dxq
I. (R A
<o) / / e/2+(1/2=0)0 (@ 101) =09 gy
—I, J(1-e)RA(R—y)

Due to symmetry, to bound the integral it is enough to integrate this with respect to z;
from 0 to I,,. We will split this integral into two parts according to the value of ¢(x1,y1):

I y1/2

I’rl, n CKe€é
/ (0@ (1/2-0) g :/ ecla1n)(1/2-0) gy +/ K .
0 CK€y1/2 0

The first integral becomes:

In I
/ 6?9(11,y1)(1/27a)d1,1 _ 0(1)/ I%—2a67%(172a)dx1

Kevi/2 crevl/2
R)e_yl/Q'*‘“yle%Q(l_“) ifa <1,
1)e~v/2an+2(1-a)un/2  jfq > 1
R)e(a—1/2)y1n2(1—a) ifa<1,
1)evi/2 ifa>1.
The second integral trivially gives:

y1/2

/ dzy = O(1)e¥/2,
0

Putting these two together we conclude that

I’IL
ey/2/ () (1/2-0) g (1) ey /2+(3/2-00).
0
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Now, we integrate these with respect to y;:

R
n2(1—a) / e(a—l/Z)yl—ayl dyl _ O(1)n2(1—a)e—R/2+sR/2+y/2
(1—e)RA(R—y)
=0(1) - n'20te . v/2,
Therefore, we conclude that
I (y) = O (R) n' 20+ V2 pp (y, Ky, — 2),

and hence, using again Lemma 9.3,

/ I (y)e ¥ dzdy = O (R)n'2eFeeD) / 2 ppo (y, kn — 2)e ™Y dz dy
Kc(kn) KC(kn)
-0 (R) n172a+5(2a71)k;2a+1.

It follows that for ¢ = £(«) small enough

k2 2a—1
kgla73Rnlf2oz+s(2a71)k;2a+1 _ Rne(Qafl) <’:) _ 0(1)

and hence for a > 1/2,

lim k;go‘_S/ T3 (y)e™ ¥ da dy = 0.
’CC (kn)

n—roo

Since 2o — 1 > 1/2 when « > 3/4 it immediately follows that

lim k2 / 73 (y)e ¥ dzdy = 0.
]CC(kn)

n—roo

The sums (9.10) and (9.11) Again, the analysis for both terms are similar and we shall
analyze (9.10). Let us set p = (0, y). Recall that Bpoaoo (y) NR([R—y +2log (%), R]) = 0.
Thus, the summand in (9.10) is equal to 0, when y; > R — y + 2log(w/2).

Recall the definition of the extended ball Bpo (p) around p (9.23) that contains both
B (p) and Bx (p)

Bro(y) == {p' 1y < R—y, |a/] < (1 + K)ez )},

and that we have E [Dp,(y, kn, — 2; P\ {p1,p2})] = ppo(y, kn — 2).
Further, observe that,

B(y) "R([0, R —y)) € Bro(y),
and

We thus conclude that
B (y) € Bro(y) UR([R — y, R)). (9.27)

Hence, if we set

hy(p1) =1, eBp)\Bo (1)} (1 (Bpo(p1) N Bro(y)) + 1 (R([R -y, R]))) ,
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then

Lip:eBp)\Boo (1)} I Y LlimeBwinsatny | - Dro(ykn — 2P\ {p1,p2})
p2€P\{p,p1}
= O(11{p, eB(y)\Boo () (B () N B (p1)) ppo(y, kn — 2)
é O(l)hy(pl)pl:’o(yv kn - 2)
To calculate the expectation of the above function we need to approximate the inter-
section of the two balls Bpo(y) and Bp,(p1), where p; = (z1,y1). Let us assume without
loss of generality that x; > 0. The right boundary of Bpo(y) is given by the equation
r=z(y)=(1+ K)e%(yﬂ/) whereas the left boundary of Bp,(p1) is given by the curve
e=a(y) =z — (14 K)ezn+y),
The equation that determines the intersecting point of the two curves is
z1— (14 K)e(z}+y1)/2 =1+ K’)e(ﬂﬂ/)/?7
where g is the y-coordinate of the intersecting point. We can solve the above for g

z1 = (1+ K)eV/? (ey/Q —|—ey1/2) :

But since p; = (21,41) € Broas (p), we also have x; > e Therefore,
yt+yqg Y1ty
eQ/Q > 1 e 2 1 e 2 1 e(y/\yl)/Q. (928)

>
1+ K o2 1 en/? = 2(1 1K) w2~ 2(11 K)
The above yields

9> (yAyr) —2log(2(1 + K)) :==9(y1,y), (9.29)
which, in turn, implies the following
p € Bpo((0,1)) N Bro(p1) = y(p) = §(y1,y)- (9.30)

We thus conclude that
B(p1) N B(p) € (Bro(p) NR([9(y1,9), R])) U R([R -y, R)),
which in turn implies that
1t (Bro(p1) N B (p)) < p (Bro(p) N R([G(y1,9), R]) + n(R([R -y, R))).
Therefore,

hy(p1,P) < Lip, eBip)\Ba )3 (Bro(p) NR([H(y1, ), R]))
+ LipreB(p)\Bo ()} 1 (R([R — y, R])) .

Now, the Campbell-Mecke formula gives

D > LpeBu\Ba ()} LpeeB)NBa (1)} Do kn — 2P\ {p1,p2})

p1,p2€P\{(0,y)}
y(p1)2K

<E Z hy(p1, P\ {p1})

p1EP
va Y
=— | Efhy(pr, P\ {p1})] e a1 dys
T JrR
vo , . Y
< 7/ Lip, eB)\Boe ()} (Bro(p) N R([(y1,9), R])) e~ day dy (9.31)
R
rvo —ay
o ) eeB@ By (RIE =y, B])) 7" day dy. (9.32)
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Recall that (Bpoacs ((0,9))) NR([R — y + 2log (5) , R]) = 0. We will first calculate the
measures y appearing in (9.31) and (9.32). The first one is:

™

—0 (e%—m—%)(ywl))

R
1 (Bro(y) NR((c(y1, ), R])) < (14 K)2= . v/ / e~ (a2 gy
J(y1,y)

The second term is:

R
_ _ femav gy = 0 (efe B0 = O (eov-(a- )R
1 (R(R ~y, R))) W/R_yﬂe e dy =0 (efe )=o(c )

Using these, we get

/ IE [y (p1, P\ {p1})] e~ V" dxy dy,
R([O,R—yn+2 In %])

=0 / LipreBponn(pye? 7D day dy, (9.33)
R([0,R—y+21In F])
+0(1) / 1{p166((07y))}eay—(a—%)R—ayl dxy dy. (9.34)
R([0,R—y+21In T])

Now, Lemma 2.2 implies that for any y; € [0, R — y + 2In 7|, we have

I’VL
3 —
/ LpieBronos ()} 421 < IKe2(nity)—R

n

Therefore, (9.33) is

O(1) - e2v— 1 Ropt2ing 2 (a— 1) (1 Ay)—aym
( ) .e e 2 2 dyl
0

o). ek [ [ —a-tim ety [TURE oy,
=0()-e ez 2V dy; +e 2/t e\ 2T dyy
0 Yy

(4—20)y—R if 1 —(a=3)R+y if 3/9
€ o<l e ,  ifa<3/2,
= o) ({ + { /2

R-e®=H  ifa>1, |R-e2C W R ifq>3/2

Similarly, for (9.34) we have

/ Lpy €Bronon (04} €Y7 2 day dyy
R([0,R—y+2In %])

R—y42InZ
— ¢ ¥ -Rtay—(a—3)R / ! B e dyx
0
; e H—Rtay—(a—3)R+(3-a)(R-y) if o < 3/2
= 1 1 7
(1) Re(3+a)y—(a+1)R ifa>3/2,
e—(2a—1)R+2ay ifa < 3/2,

=0(1 : 1
( ) {R . e(%+a)y—(a+§)R if o > 3/2.

We thus conclude, using 2(2 — a)y < y for « > 3/2, that

Bl > me)]| =00 (200 +IP0) +I0()., (9.35)
p1€P\{p}
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where
eW—20)y—R jf o < 1,
Re*v—R ifa>1,
e~(@=2) Bty if o < 3/2,
Rev—E ifa>3/2,

{e<2a1>3+2ay if o < 3/2,

(3)
7 (y) Re(3+a)y—(a+3)R jf o >3/2.

We proceed to calculate:

[ B[ X men P\ i) [ pralyebn Dy
}CC‘(kn)

p1EP

For this we define

M; = IO () pro(y, kn — 1)e™Y dy,
’CC(kn)

so that

/ ]E Z hy(pl) pPo(ya kn - 1)e_ay dy = O (Ml + M2 + MS) ’
Kec(kn) p1€P\{(0,y)}

Computing each of the integral separately we obtain, using Lemma 9.3 and the fact

that n = velt/2,
2 ifa<l
n ifa <1,
M, = / IO (W) ppo(y, kn — e™ ™ dy = O(1) 3 75 ..
Ko (kn) s ifa>1,

and finally

k2o¢—1

e ifa<3/2
Mo ::/ I3 (y)ppo (Y b — 1)e™*dy = O(1) § 77 ’
Ko(kn) o Rt ifa>3/2

Now, we will consider the two cases according to the value of a. First we note
1
that R = O (log(n)) and since k,, = O(n?77) and « > 1/2 we have that RkZn~! = o (1).
Assume first that 1/2 < o < 3/4. In this case, we want to show that
lim kS*~3(My + Ma + M3) = 0. (9.36)

n—oo

Using the above expression for M;, we have

7T—6a 1-2a 2a—1
k=3 (My + My + Mz) = O(1) - k2 <k" ut u ) :

n2 n2a—1 nia—3
We wish to show that each one of the above three terms is o(1) for k, = O(n 7arT ). For

the first one we have
s L7—6a k2 2
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The second term yields:

n2a—1 n

L—2a+1 k2 2a—1
()7,
Finally, the third one yields:

2a—1 2\ 4a—2
ko3 U (k”> =o(1).

n4a72 n

For a > 3/4, we would like to show that

lim k2% - (My + Ms + Ms) = 0. (9.37)

n— oo

Firstly, we note that each M; is as above if 3/4 < a < 1. Therefore, since for this range
2a < 6 — 3 the result follows from the above analysis. Next we consider the case
1 < a < 3/2. Here, only the value of M; changes and we compute that

k53 My = O (1) log(n)n?kp® < O (log(n)) <If> =o(1),

so that (9.37) holds for 3/4 < a < 1.
Proceeding with the case o > 3/2, it is only M and M3 that change values. In
particular, for any « > 3/2 we have

%"MQ = O(1)R2 = o(1).

Also,

9 k2o¢+2 na+1

since k,, = o(n'/?) and hence (9.37) holds. This finished the proof for (9.10).

The sum of (9.12) Using the Campbell-Mecke formula, we write

I > Lip1€Bronoe )} L{p2€B(1)NBos (1)}

pr1,p2€P\{(0,y)}, y1 <K,
distinct

K I, R I,
S/o / I /0 / p LpieBronce )} LipeeBy)nBua (e €™ dra dyz day dys

I, K
< u(B (y))'/I /0 LipieBronm(me Y dzrdyr.

Recall that x (B (y)) = O(1)e¥/2. We bound the integral using Lemma 2.2. In particu-
lar, (2.7) implies that if p; = (z1,91) € Broaco (¥), then because y; < K

|y — eWHv)/2| < oWHu)/2 | gevtui—F — (1)eWtv)/2 . oy F,

Therefore,

I, K
/ I /0 L{(21,91)€Bron((0y)}e Hdx1dyy

K
= O(l)ey_R/ e(y"’yl)/ze_o‘yldyl = O(l)e3y/2_R,
0
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and hence

I > 1 {py €Bponne ()} LpaeBuNBu ()} | = O(1)e? ™.

P1,P2€P\{(0,y)}
y1 <K,
distinct

Now, we integrate this over y to obtain that

/ 1D > LpeBronn @)} L{peBu)nBam)} | € Y dy
)CC (kn)

r1,p2€P\{(0,y)}
y1 <K,
distinct

k=20 if o < 2,
= 0(1)e—R/ e dy =0(1)n 2 logk, ifa=2,
Ko lkn) 1 if o > 2.

To finish the argument assume first that 1/2 < o < 3/4. In this case,
k2a73n72ki72a _ n72k;1la+1 — (1) .

For 3/4 < a < 2 we use that 2a < 6a — 3, so that k2°n~=2k2=2* = o(1). Finally, when
« > 2, we have that

kp*(log (k) A1) ™2 < kp** ™2 = 0 (n') = o(1),
which completes the proof for (9.12) and thus the proof of Proposition 6.4. O

9.3 Coupling G,, to Gp,

Now that we have established the equivalence of the clustering function between the
Poissonized KPKVB graph Gp, and the finite box graph Gy the final step is to relate
the clustering function in Gp, to the KPKVB graph G,,. As mentioned in Section 6.1,
this is done by moving from c¢(k,;G,) to the adjusted clustering function ¢*(k,;G,)
(Lemma 6.2) and then to ¢*(k,; Gp,) (Proposition 6.3). For this we will use the coupling
result (Lemma 5.12) from Section 5.5. We first give the proof of Proposition 6.3 and after
that we prove Lemma 6.2. Recall that Proposition 6.3 states

nh_}ngo s(kn)E[|c* (kn; Grn) — ¢ (kn; Gpo)|] = 0.
Proof of Proposition 6.3. First we note that Proposition 6.4, 6.5 and 6.6 together imply
that
E [C*(kn; GPO)] = (1 +o (1))8(7?77,)

Therefore it suffices to show that
E[[c"(kn; Gn) — ¢ (kn; Gpo)|] = o (E [¢*(kn; Gpo)]) -

For this we observe that we are looking at the modified clustering coefficient, where we
divide by the expected number of degree k,, vertices. As the expected numbers of degree
k, vertices in Gp, and G,, are asymptotically equivalent (see Lemma 5.12), it is therefore
sufficient to consider the sum of the clustering coefficients of all vertices of degree k,,.
Given again the standard coupling between the binomial and Poisson process (as used in
the proof of Lemma 5.12), we again denote by V,,(k, ) the set of degree k,, vertices in
G,, and by Ve, (k) the set of degree k,, vertices in Gp,. If a vertex is contained in both
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sets, it must have the same degree in both the Poisson and KPKVB graph, and given the
nature of the coupling, the neighbourhoods are therefore the same and hence also their
clustering coefficients agree.

The difference of the sum of the clustering coefficients therefore comes from all
the clustering coefficients of the symmetric difference V,,(k,,)AVpo (k). By Lemma 5.12
the expected number vertices in this set is E[|N,(k,) — Npo(kn)|] = o (E[Npo(kn)])-
Therefore we have that

E HNn( n) NPO(kn)”
E [|C* (kn; Gn) —c" (kn; GPO)H < [C*(kn; GPO)]
(1+0(1)E[Npo(kn)]
=o(1)E[c"(kn; Gro)]
which finishes the proof. O
Finally we prove Lemma 6.2, whose statement is
™ (kn; Grn) — c(kn; Gi)| = op (s(kn)) -
Proof of Lemma 6.2. Since Propositions 6.3-6.6 imply that
E[c*(kn; Gr)] = O (s(kn)) ,
and since
= 1
we immediately infer that
I Nn kn
|c* (kn; Gn) — c(kn; Gp)| = ¢ (kn; Gr) ][\/' (]i ))] - 1’ = op (s(ky)) O

A Meijer’s G-function

Recall that I'(z) denotes the Gamma function. Let p, ¢, m, ¢ be four integers satisfying
0 <m < gand 0 < ¢ < p and consider two sequences a, = {ai,...,a,} and b, =
{b1,...,bq} of reals such that a; — b; is not a positive integer for all 1 < i < p and
1 < j < qand a; — a; is not an integer for all distinct indices 1 < 7,j < p. Then, with ¢
denoting the complex unit, Meijer’s G-Function [28] is defined as

m 4
i —t T(1—a;+1t
G;@j( > / My T =05+ 2t (A1)
’ 27“ Hg =m+1 l_b +t) H] =/{+1 F( _t)

where the path L is an upward oriented loop contour which separates the poles of the
function [];_, I'(b; — t) from those of [[;_, I'(1 — a; + t) and begins and ends at +oo or
—0Q.

The Meijer’s G-Function is of very general nature and has relation to many known
special functions such as the Gamma function and the generalized hypergeometric

see [20, 27].

function. For more details, such as many identities for G;}f;f <z E)

For our purpose we need the following identity which follows from an Mellin transform

operation.
1
—-a—1,0/)"
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Proof. Let x > 0 and ¢ € R and note that as the I'-function is the Mellin transform of

e~", by the inverse Mellin transform formula, we have e = 7~ “Ho0 P (p)a—Pdp for
™ C—LOO

¢ > 0 (see [13, p. 196]). Applying the change of variable p(r) = ¢ — r yields e™* =
o fcchq:f: I'(¢ — r)2"~%r, then multiplying both sides with —z9~! gives —29 e ® =
1 fc+q+LooP

~ 3t Jetrg—io0 (¢ — r)a"~ldr. Now, integrating both sides gives

[e'e) 1 c+q+Loo F _
/ ti e tdt = — Matrdr.

27 Joqg—1o0 —r

On the left-hand side is the incomplete gamma function and on the right-hand side with

—r) . . . . 1 .
using —r = Fr((l_r)) is the Meijer G-function, i.e. I'"(¢,z) = Gf:g (m g 0). The claim
follows by plugging in g = —a — 1 and = = % O

B Incomplete Beta function

Here we derive the asymptotic behavior for the function B~ (1 — z;2q,3 — 4a) as
z — 0, which is used to analyze the asymptotic behavior of P(y), see Section 3.3.

Lemma B.1. We have the following asymptotic results for B~ (1 — z; 2, 3 — 4a)
1. For1/2< a<3/4

lim B~ (1 — z,2a,3 — 4a)) = B(2a, 3 — 4a).

z—0

2. When o = 3/4,
B~ (1-2z,20,3 — 4a)

li =—1.
=50 log(2)
3. Fora > 3/4,
1
: 4a—3 p— _ _ —
;%z B™(1—2z,20,3 — 4a) 1a_3

Proof. We use the hypergeometric representation of the incomplete Beta function,
_ z®
B (z,a,b) = —F(a,1 —b,a+1,x),
2a
where F' denote the hypergeometric function [37] (or see [32, Section 8.17 (ii)]). In
particular we have that
z)Qa

1—
B™(1-2z;20,3 —4a) = (G

5 FQ2a,4a — 2,200+ 1,1 — 2).

The behavior of F'(a,b,c,1— z) as z — 0 depend on the real part of the sum of c—a—b
and whether ¢ = a + b [3] (or see [32, Section 15.4(ii)]). Since in our case a, b, c will be
real it only depends on the sum of ¢ —a — b. For c —a — b > 0 we have

F(e)'(c—a—0)

lim F(a,b,c,1 —2) = —————= B.1
lim F(a,b,¢,1 - 2) T(c—a)l(c—b)’ B
if c =a + b then (0. ) ( )
F(a,b,c,1 —z I'la +
li e = — B.2
B Toa(2) NOROK -2
and finally, whenc—a -0 <0
F 1-— I'(c)T —
llm (a’7 b’ C, Z) — (C) (a + b C) . (B.3)
im0 ge-ab T'(a)D(b)
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In our case we have,

(1 _ Z)2oz
2c

with a :=2a, b := 4o — 2 and ¢ := 2« + 1. Therefore,

B7(1— 22,3 —4a) = F(a,b,e,1 —2),

c—a—b=2a+1-2a— (4da —2) =3 — 4a.
Now if & < 3/4 then ¢ — a — b > 0 and hence

o 1 T2a+ )T —4a) T(20)0(3 — 4a)
lim B~ (1 — 2; 20,3 — 4cx) = — = = B(2a,3 — 4
lim B7(1 = 220,83 —da) = 50— m o0 T(3 - 2a) (20,3 = 4a),
where we used that I'(2a. + 1) = 2al'(2a).
When o = 3/4 then ¢ — a — b = 0 and therefore (B.2), together with the fact that
(1—2)3% ~1as z— 0, implies that

. B~ (1 - z;2c,3 — 4a) 1 I'(6a —2) '(5/2)
1m = —— = — = —1.
z—0 log(2) 2a T (2a)T (4 — 2) 31(3/2)
Finally, when a > 3/4, ¢ —a — b = 3 — 4a < 0 and using (B.3) we get
, o 1 T(2a+ 1)I(4a—3) T(4a-—3) 1
lim 2** 3B~ (1 — z,2a,3 — 4a) = — = = . O
2007 (1=2203—40) = T da—2) ~ T(da—2) da—3

C Some results on functions

Lemma C.1. For any 0 < A < 1 there exists a K > 0, such that forall 0 < z < (1 — \)2
1arccos(l —xz) < S < 1arccos(l —z)(l+x).
2 1—(1—x)2 " 2

In particular, as x — 0,

1
B - arccos(1 — x).
1-(1—-x)2 2

Proof. First we observe that forall 0 < z < 2

0<\/%<1j§) garccos(lz)gx/ﬁ(urjg),

while for every 0 < A < 1, there exists a K > 0 such that forall 0 <z < (1 —)\)2,
1 x 1 1
0< — (1 — —) < <
V2 2 V1—(1—1)? \/233(

It then follows that for all 0 < z < (1 — \)2,

1+ Kx).

1 1 1+ K
S < =2z <1 + Kx> < —arccos(1 — x) * xx
1—(1—22) 2 V2 2 1-— 7
1 K+1
< 3 arccos(l — x) <1 + (1—‘__$)x> ,
and
T 1 T 1 1-2
R — 2 ] (1—7) > —arccos(1l — x) 2
1—(1—22) 2 2 2 1+ %
1 1 2
> 3 arccos(1l — x) (1 — W) ,
which finishes the proof. O
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D Some results for random variables

Here we summarize several known results for random variables and provide one
technical lemma for Binomial random variables.

First of all, we recall two versions of the Chernoff bound for Poisson and Binomial
random variables. They can be found in [34, Lemma 1.2]; note that the Chernoff bound
exists in many different versions, the original idea was developed by Chernoff in the
context of efficiency of statistical hypothesis testing in [12].

Lemma D.1. Let Po()\) denote a Poisson random variable with mean \ and let H(x) =
zlog(z) —x + 1. Then

P (Po(\) > k) < e /N forall k > ),
P (Po(\) < k) < e ME/N forallk < .
It follows from the above lemma that
P ([Po(\) — A| > ) < 2¢~ 597

In particular, if A\,, — oo, then, for any C > 0,

C?Ap log(An 2
P (|Po( “ Al = OV Tog(n ) < 2¢ 20nrovanIEGn) <>\;CQ>.

Note that these are equations (2.11) and (2.12) from the main text.
Let Bin(n,p) denote a Binomial random variable with n trials and success probability
p, and 0 < § < 1. Then we have the following well-known Chernoff bound.

52n

P (|Bin(n, p) — np| > dnp) <e™ 3. (D.1)

The following lemma gives an upper bound on the Binomial distribution for p = A/n
in terms a Poisson distribution with mean A. The following lemma gives a standard
comparison between Binomial and Poisson distribution. We provide a short proof for
completeness.

Lemma D.2. Letn > 1,0 < A <n. Then, for any integer 0 < k <n — 1,

P (Bin(n,A/n) = k) \/ﬂ’/nf (Po(A

Proof. Using Stirling’s bounds (see e.g. [15], [31])

27s (§>7 < s! Se\/§<§>7 ,
e e

we have

romisi=0- () () (-3)”

v/ n—k k! n—~k
n n—A\"""
= P (Po(\) = k A=k
e =n (253)
n—k
The result then follows by observing that (Z—:g) eAF < 1forall0 < A < n and
0<k<n-1. O
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E Concentration of heights for vertices with degree k&

Here we will prove Proposition 2.5. We start by considering integration with respect
to the function p(y, k,) = P (Po(u(y)) = k) (the degree distribution of a typical point
in G). Here we show that we may restrict integration with respect to the height y
to the interval K¢ (kn) = [y5, ¢ ¥s. o] on which u(y) = © (k,). Next we show that if we
consider any other measure /i, (y) that is sufficiently equivalent to u(y) on this interval
(which will be made precise later), then we may replace j,(y, kn) := P (Po(fin(y)) = kn)
in integrals with p(y, k). This then implies that we can also restrict integration to
the interval K¢ (ky). We will refer to such results as a concentration of heights re-
sult.

We start with a concentration of heights result for the infinite model G, (Lemma E.1).
We then present a generalization of this result (Lemma E.1) and use this to estab-
lish concentration of heights results for the Poissonized KPKVB Gp, and finite box
model Gyox.

Finally we provide a general result that allow to substitute 5, (y, k,,) in the integrand
with p(y, k,) and show that this holds in particular for the degree distributions in Gp,
and Ghox, given by, respectively ppo(y, kn) = P (Po(upo(y)) = kn) and poox(y, kn) =
P (Po(pbox (y)) = kn).

E.1 Concentration of heights argument for the infinite model

The next lemma states that for a large class of functions h(y) and k,, — oo, to compute
the integral

/ p(Y, kn)h(y)e” Y dy,
0

it is enough to consider integration over a small interval on which e¥/? ~ k,, instead
of ]R+ .

LemmaE.1l. Let o > % v >0, (k,)n>1 be any positive sequence such that k, — oo and
kn = o(n). Then the following holds.

For any continuous function h : Ry — R, such that h(y) = O (¢”¥) as y — oo for some
b < a,

/ p(y, kn)h(y)ae ¥ dy = O (kgc2/2) , (E.1)
R+\}Cc(k7L)

asn — oQ.

Proof. Since 1/(y) = u(y)/2, we get that

Ip(y,k) 1
— == (k- k

oy 5 (= u(y)) ply, k),
which implies that p(y, k) attains its maximum at u(y) = k. Moreover we see that the
derivative is strictly positive when u(y) < k and strictly negative when pu(y) > k. Since
1(y.c) < k and u(y,jc) > k, we conclude that p(y, k), as a function of y, is strictly
increasing on [0,y, .| and strictly decreasing on [y,ic, 00).
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Therefore, by our assumption on h(y),

/ h(y)p(y, kn)ae™ Y dy
]R+\K:C (k?n)

Ykm,C oo
=0 (1)/ ™ p(y, kn)ae™™ dy + O (1) / ™ p(y, kn)ae™* dy
0 ykJr,,,,c
Yin.C oo
=0(1) / Py, kn)e” @y +0(1) / p(y, n)e= @B dy
0 yin,c
Yo, C %)
<0 (1)p(y,;z,o,kn)/ e =AY dy + 0 (1) p(y,jmc,kn)/ e @B gy
0 y;rn,c
Since o« — 3 > 0, we conclude that
/ h(y)p(y: kn)ae™*" dy = O (1) (p(yl;,,ca kn) + P(%&,C? kn)) : (E.2)
R \Kc (kn)

We shall now bound the terms p(y,fn c+kn). We explicitly show the bound for
p(yi c»kn), the computation for p(y; o, kn) is similar. First note that u(y; ) =

k, +C logk(ik) Hence we can write

PF, k) = P (Polu(yf, o)) = kn ) <P (Polu(y, o)) = kn)

log(kn
<P ‘PO(u(yz?n,c)) - u(y;;,c)’ >C k( )
Apply the Chernoff bound (2.12) then yields
Pf, k) = O (,772). (E.3)
A similar analysis yields
P cvkn) <O (k;cz/Q) . (E.4)
Plugging (E.4) and (E.3) into (E.2) yields the result. O

Note that we can tune the error in (E.1) by selecting an appropriately large C > 0,
i.e. by restricting the function h(y) inside the integral to an appropriate interval around
2log(k,/€). This makes Lemma E.1 very powerful. As an example we give the following
corollary, which allows us to bound integrals of functions h,(y) by considering their
maximum of K¢ (ky,).

Corollary E.2. Let h,, : Ry — R, be a sequence of continuous functions which such
that for some s € R and 3 < a, asn — 00, hy,(y) = O (k5e?) and hy,(y) = Q(1), uniformly
on0 <y < (1—¢)R for some 0 < ¢ < 1. Then for large enough C > 0, as n — oo,

/ ha(y)p(y, kn)e™ " dy = (1+0(1)) / ha(9)p(y, kn)ae™ Y dy.
]R+ }CC’(kn)
In particular;,
/ ho )Py, Kin)e ™ dy = O (1) b, 22V max ha(y),
Ry yeKc (kn)

asn — oo.
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Proof. The second result follows immediately from the first. For the first result we note
that by Lemma E.1

/ b (y)p(y, kn)e” Y dy < O (ki)/ PV p(y, ke ™ dy
R+\Kc (kn) R\Kc (kn)

=0 (k).

By assumption on ki, (y),

/ b (y)p(y, kn)e Y dy = O (ki+2ﬂ) /
}CC(kn)

p(y, kn)e” W dy =0 (ki+257(204+1)> ’
Kc(kn)

and

/ h(y)p(y, n)e™ " dy = Q(l)/ p(y, kn)e™ ™ dy = Q(k;, 2> D).
Ko (hn) Ko (k)

Hence, by taking C' > 0 such that C?/2 > max{2a + 1 + s,2a + 1 — 3} we get that
/ o (Y)p(y, kn)e™ Y dy = o (1)/ o (Y) p(y, kn)e™ Y dy. O
Ri\Kc (kn) Ke(kn)

E.2 Concentration of heights for the KPKVB and finite box model

Although powerful, the current versions of the concentration of heights argument is
only valid for the function p(y, ky) := P (Po (i (B (v))) = kn). We want to extend this to
the Poissonized KPKVB model Gp, and the finite box model Gy,.«. To be more precise,
recall that pp,(y) = 1 (B (y)) and ppox(y) = 1 (Boox (v)) and let us define

pro(y, k) = P (Po(upo(y)) = k),

and
pbox(yv k) =P (PO(Mbox(y) = k) :

Then we want when Lemma E.1 to remain true if we replace p(y, k,,) with either the
function ppo(y, kn) OT puox(y, kn). To establish this result we first prove the following
technical lemma.

Lemma E.3. Let 0 < § < 1 and k, — oo be such that k, = O (n'=?%). Let ji,(y) be
a monotone increasing differentiable function such for some 0 < ¢ < 1, fi,(y) = (1 +
0(1))u(y) holds uniformly for 0 < y < (1 — ¢)R. Furthermore, leth : Ry — R, be a
continuous function such that h(y) = O (¢’¥) as y — oo for some 3 < o. Then, for C > 0
large enough

/ 7(y)pn(y, en)e ™ dy ~ / h(y)p(y, kn)e™ ¥ dy,
0 Ke (k)

asn — oo.

Proof. Take any 0 < n < min{d,e}. We first show that we can restrict to integration
to the interval [0, (1 — n)R). By construction 7 < ¢, and hence by the assumption on /i
we have that f,((1 — n)R) = © (u((1 —n)R) = © (n!=9). Therefore, since n < § and

k, = O (n'7?), it follows that f1,((1 — n)R)/k, = w (n°~") = w(l) as n — oco. Hence
Py, k) < ﬁ(( —n)R,ky,) for all y > (1 — n)R. It now follow that

h(y)pn(y, kn)e” Y dy = O (1) pn((1 = n)R, kn)ei(aiﬁ)(lin)R
(1-nm)R

-0 (ﬁn((l ~ )R, kn)n—2(a—6)(1—n)) 7
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where we used that that h(y) = O (¢”¥). Next we use Stirling’s bound k! > v/27k*+z ek
to bound 5, ((1 —n)R, k),

pn((L=n)R, kn) = P (Po(fin((1 = n)R)) = kn)

_ Me—mu—n)m
)
X o
0(1) L-1/2 <Hn((177)R)) ekn—hn((1=n)R)
n kn
_oq) 12 gl (1= £ o (Ba(G =) )
0]

(1) k2 n((1=m)R)/2,

where the last line follows since /i, ((1 — n)R)/k, — oo and 1 — = + log(x) < —x/2 for
large enough z. Because fi,,((1 — 7)R) = © (n1=%)) we conclude that for any C' > 0

" S (1-9) 2
/ hy) pn(y, kn)e™ Y dy = O (kgl/Qn—%ﬁ—a)(l— )e—n /2) -0 (k;c /2) .
(1-8)R

It thus remains to prove that

(1-n) 2
/ h(y)pn(y, kn)e”* dy < O (k;C /8)
yl-:,L,C

and i
Yen,C . . L
/ h(y) pn (Y, kn)e™ ¥ dy < O (knc /s) ,
0

Define ¢ to be such that fi,,(y) = k,, +£ C\/k, log(k,). Then by assumption on ji,, we
have that

Fin & O/l Tog (k) = fin(55) = (1+ 0 (D)u(Gi) = (1+ 0 (1))ge™ /2,

and hence

gF = 2log (kn + CW) —2log(1+0(1))

= Z/kimc —2log(1+o(1)):= y/fmc — €n,

with €, — 0. Recall that ﬂn( ) is monotonic increasing. Now let n be large enough such

that /i, (9,7 —€,) >k + § «/k log(n). Then

(1-n)R . (1-n) R
/ h(y)pn (Y, kn)e™ ¥ dy S/ h(y)pn (Y, kn)e” ¥ dy

At
yl_:n,c Yn —€n

IA

o (1-mR
pn(y; - 6n7kn)/ h(y)e—ay dy
ot +n

(1) ﬁn(:&r—l_ — €n, kn)a

where we used that /i, (y) is monotonic increasing and p, (y, k) is decreasing for all
y > g7, Write A, = /i, (9" — €,,). Then, similar to the proof of Lemma E.1, we have that

IN
Q

PG = €nbin) <P (IPO(A )= Al 2 5 ¢ kep Log (K )> <O(l<: 02/8)

where the last step follows from the Chernoff bound (2.12) with C' = C/2.
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In a similar fashion we can let n be large enough such that i, (9, + €,) < kn —

%\/kn log(n) can show that

Yk ,C G +en
/ B(y)pn (g ke dy < / h(y)pn(y, ke dy
0 0
<O (1) pnlgy + k) = O (1,972, .

The conclusion of Lemma E.3 is that as long as pp,(y) and ppex(y) are (1 + o (1)) u(y),
uniformly on [0, (1—¢)R], then indeed the concentration of height result (Lemma E.1) also
holds in both Gp, and G},ox. This was proven in Lemma 5.1 and Lemma 5.2, respectively.
For completeness we give the proof of Proposition 2.5.

Proof of Proposition 2.5. The proof for [i(y) = u(y) follows directly from Lemma E.1.
Now consider the case i(y) = pupo(y). Then by Lemma 5.1 ji(y) = (1 + o(1))u(y),
uniformly on [0, (1 — )R] and thus in particular on K¢(k,). Finally we note that by
Lemma 3.3. in [21] ji(y) is monotonic increasing. The statement then follows by applying
Lemma E.3.
Finally, for /i(y) = pbox(y) we recall that by Lemma 5.2 fi(y) = (1 4+ o (1))u(y). More
precisely,

2(y) = u(y)(1 = buly)) = {u(y) (1 - 6,(a,%)R> if 0 <y < 2log(n/2),

p(y) (1= dnly)) if 2log(n/2) <y < (1 — &R,
where
puly) = (5) " ememhnw  Yotomproy LV (T tompnm)
n =\ e —e N e .
’ 2 £ e \2

Note that ¢, (2log(r/2)) = e~(®~2)E. In addition, since |¢,(y)| < O (e‘(“—%)ER) for
0 <y < (1 —¢)R we have that /i(y) is monotonic increasing for large enough n. The
statement now follows by applying Lemma E.3. O

F Derivative of ;ip,(y)

Recall that ppo(y) = 1+ (B (y)) denote the measure of the ball at height y in the KPKVB
model and 1(y) = e? denotes the measure of a ball at height 4 in the infinite model G.
In this section we will show that p/»,(y) = (1 4 o (1)) (y), uniformly on [0, (1 — ¢)R], for
some 0 < € < 1. This is a technical result that is needed in the proof of Lemma 5.3 in
Section 5.2.

First we note that it follows from Lemma 5.1 that up,(y) = u(y)(1 + ¢, (y)), where
&n(y) := 1po(y)/p(y) — 1. Taking the derivative we have

1po(y) = 1 (W)L + dn(y)) + 1Y) o, (y) = 1’ () (1 + duly) + 2¢7,(y)),

where we used that a% 1(y) = 3u(y). Hence, to show the result for we thus need to show
that ¢/, (y)) = o (1), uniformly on [0, (1 — &) R].
Writing out the derivative we have

o (y) = upo(y)’la%upo(y) - ;“5(”;;)

where we used again that a% 1(y) = 3u(y). For the second term Lemma 5.1 implies that

%“up#()y) = (1 + 0(1))3 uniformly on [0, (1 — ¢)R]. The following lemma shows that the

same holds for the first term from which we conclude that ¢/, (y)) = o(1) and hence
py(y) = (1+ 0 (1))4(y), uniformly on [0, (1 — <) R)].
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Lemma F.1. Forany0 <e <1,

0 1
lim sup Y) = ppo(y ’O.
pw) ™ o nraly)

"0 0<y<(1-e)R

Proof. We again split up,(y) over the top and bottom part,

pro(y) = (B (y) NR([0, R —y))) + p(B(y) NR(IR -y, R])),

where
2av fim N, —ay’ 3.7
p(By) NR(0,R—y))) = — O(y,y)e” Y dy,

™ Jo

with ®(y,y’) defined as in (2.6). For the second term we have

R
pBENRIR=p.R) = [ [ ey ay

_gev220 1 (e—(a—%xR—y) _ e—(a—%m—y/z) _
47

Taking the derivative of the last expression gives
9
Oy
1 2c0 — 1 1 1
— g BN RA =y 1) + 6?2 (o= J) et g pomtembinn)

/i

(200 — 1)e~(@=2)(B=y) 4 —(a—3)R—y/2
e—(@=3)(R—y) _ o—(a—3)R—y/2

(B (y) VR(IR —y, R]))

= Jn(B ) NR(R -y, R]) (1 -

Since, limy, o0 SUPgy<(1-c)r H (Boo W) ' w(B(y)NR(R—y,R]) = 0, we are left to
show that

lim sup
N 0<y<(1-e)R

R—y ,
1 (Bso ()" 2%2/ D(y,y e dy' — oo (F.1)
0

T Oy 2

We start with some preliminary computations. For convenience we define

cosh(R — y) cosh(R — y') — cosh(R)
sinh(R — y) sinh(R — ¢/) ’

Ey,y)=1-

so that )
D(y,y') = 56R/2 arccos (1 — Z(y,y')) .

Next, following the same calculation as in the proof of [18, Lemma 28], we write

1—e¥—y=R) (] _ev-v-R
=(y,y) = 2~ (R-v-) (1 )(1-e )
’ (1 — 6*2(3*9')) (1 — e*Q(R*y))
— 9~ (R—y—y") hi(y)ha(y)

hs(y')hs(y)’

with
hi(y)=1-— eylfyfR, ha(y)=1-— e~V =R and hs(y)=1-— e 2(B-y)

We suppressed the dependence on n and, in some cases, on 3 for notation convenience.
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We make two important observations. First, Z(y, y’) is an increasing function in both
arguments, for y,4’ < Rand y + ¢’ < R. Second, forall y + 3’ < R, hi(y) < hs(y’) and
ha(y) < hs(y), while hs(y), hs(y’) < 1, so that

2e B=v=9)p () ho(y) < By, y) < 26~ By, (F2)

In particular, since R—y is an increasing function of n uniformly on 0 < y < (1—¢)R, there
existsa0 < § < 1suchthat1/2 < =(y,y’) <2forally+y < Rand (1-§)(R—y) <y <R
and n large enough.

Next, taking the derivative of Z(y,y’) yields,

2 2 (y,y') = Sy, o) + 26~ W " h T )

oy~
1) (1 " Zigi T haly

=Z2(y,v") (1 + on(y,y)),

I
(1]

with ) )
eV —y—R eV—y' —R 2¢—2(R—vy)

4 f— p— p—
(pn(yvy ) - 1— ey/_y_R 1— ey_y/_R 1— 672(3‘79) .

Therefore, by the chain rule,

8 no 1 1 0 _
5. 20.y) = R/2 5.2.y)
y Vi-0 -2y %
1 oR/25
E0:Y) 04wy, (E.3)

\/17 1—Z(y.y))°

Applying the Leibniz’s rule we then get

2 By (I)( /)efay' d /
3 Y,y y
—®(y, R —y)e” (R_y“r/ —B(y,y)e Y dy’

R—y L R/2% / ,
TRy / : (y’ ) (1 +on(y,y)) e dy

Q

—_

|

|

[I]
|

=——e

1 . (1-8)(R— y) leR/QE(%y') o,
e 2>R+ay+/ 2 = (Lt enly,y)) e dy
0

with0 < ¢ < 1suchthat0< E(y,y’) <2forall0<y < Rand (1-9§)(R—y) <y <R.
We proceed by showing that

lim sup
N0 g<y<(1—e)R

It(i‘/) ’
W\ fort=1,3 F.4
/B (0)) or (F4D

while
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2va 1
lim sup —— Dy —=|=0. (E.5)
n—00 g<y<(1-e)R | TH (Boo (1)) @) 2

This then implies (F.1) and finishes the proof.
For I, (y) we have

1 1
lim sup 1 (Boo () ' Ii(y) < lim sup  —e (@ 2)(FEy) =,
N0 g<y<(1—e)R N0 0<y<(1—e)R 2§

For I5(y) we first use that ' < R — y to bound ¢(y,y’) as follows,
, eV —y—R e—2v
@n(ygy ) g 1 _ ey/_y_R S 1 _ 6_29 .

This then yields that

1 ~2 oy E(y, v/ :
Io(y) < 5 (1 e _2y> e [ Ul m—
2 1—e (1-8)(R—y) \/1 —(1- E(y,y’))2
To bound the integral we recall that 0 < Z(y,y') < 2¢~(R~v=¥) < 2 and forall 1/2 < z < 2,
2

L <
VI-(Q-2)?2 " V2—2a’

a where the right hand side is a monotonic increasing function. Therefore

R*y = / /
/ E(.y) e dyf
A=0)E-y) /1 — (1 - Z(y,y))*
R—y

= / ,

S 2/ ‘—‘(y;y ) e~y dy/
(1-8)(R—y) V(2 = E(y, 7))

R—y e~ (B—y—v')

< V3e—a(R-y) / .
(1-6)(R—y) V1 — e (Frv=v)

Making the change of variables z = e~ (B=¥=¥) (dy’ = 2! dz) we get that

a(R—y—y') dy'.

R— —(R—y—y’
V2 (R—y) / ! e”mvy) o B=y=3) gy
(1-8)(R—y) V1 — e~ (F-v=v)
1 —
= \/ie_o‘(R_y)/ zl . dz < V2e 2B\ /1 — ¢—0(R—y) < \/2¢~(F~y),
e—8(R—y) —Z

We therefore conclude that

e ) ef(afé)RwLay
)

1
Ly < — (14—
3(3/)— \/5( + 1—672-1/

which implies (F.4) for t = 3.
Finally, to show (F.5) we first write

2av b(y) 1’ < 20w /(1—6)(R—y) d(y,y) —av gy 1
V-5 |=m om € Y -5
1 (Boo (v)) 2|~ |7 (B ) Jo 2 2

2av
T (Boo (9))

(1-0)(R=9) g (y. ,
+ / W) o dy’ — I (y)
0

2
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Note that by Lemma 5.1

v [A-O(E-1)

= 0y )™ dy' = (1+ 0 (D)n (B ()

uniformly for all 0 < y < (1 — €)R. Therefore

(1-6)(R—y)
_ o / 2wy o gy L g,
) Jo

i
im sup 1 (B 5 5

N0 0<y<(1-e)R

and thus it suffices to show that the lim,,_, SUPg<y<(1—2)R of the second term goes to
Zero.

Recalling the definition of I5(y) we have

(1-8)(R—y) ! ,
/ q)(yé Y )e—ay dy/ _ IQ(Z/)
0

0 d(y, ) 3¢"*2(y. ) /
< )2 ’ 1 e dy'. F.6
_/0 5 ; 2( +on(y,y')| e Yy (F.6)
1—(1-Z(y, "))

We will proceed to bound the term inside the integral. For this we first note that for
0<y <(1-0)(R-y)

, 676(R7y)
L —
en(y:y) < T s

and recall that Z(y,y’) < 2e~(#~¥=%). Moreover, since z//1 — (1 — 2)2 = 2/\/2z — 22 is

an increasing function and e~ (#=v=v) < ¢=3(R=v) for 0 < ¢/ < (1 —8)(R —y),
1el/22(y, ') < R/ e—0(R—y) .

\/1 0oz | VR onEw

Next, recall that ®(y,y’) = Sef/2arccos(1 — Z(y,y’)). Then, since Z(y,y’) < 1 for all
y' < (1-=96)(R—y), y < Rand nlarge enough, we have (see Lemma C.1),

3¢ (yy) S%@(y,y’)E(yyy’%
w, 2.9

forally’ < (1 —9)(R —y) and y < R. Together these facts imply that for n large enough

d 1 R/QE , /
(y2,y)7 20 Sl =(1+¢n(y,y)
V1-(1-Zy)
- 2wy )Ewy) Lel22(y, v ) on(y, v')
= 2 —
\/1 —(1-Z(y,9))
—5(R— R I(R
e 5(R’y)<l>(y,y’)+ e~ 0(R—y) e/ (R—y)
1 — e 9(R-y) \/2@*5(1% y) — e—26(R—y)
6%67%6(1%72’)
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Plugging this into (F.6) yields

— e dy' — L(y)

0D o (y, y)
| 2

R

(1-3)(R—y) 5 e~ 50(R—y) ,
< eV P(y, y) + — e dyf
/0 ( ( (1 — e—o(r—v))/?

e~ (a—1—(a=$)8)(R-y)

«a (1 — 6*5(R*y))3/2 .

< eV (Bo (y)) + e

— ¢)R and observe that

To finish the argument we note that R —y > 0 forall0 < y < (1
) = © (e?) it the then follows

§ < 1 implies that (o — 3 — (v — 2)§ > 1. Since p (Bws (y)

that
2 (1-0)(R—y) ¢ / ,
lim sup v / .y )efay dy’ — I (y)| =0,
N7 p<y<(1—e)R TH (Bso (y)) 0 2
which completes the proof. O

G Code for the simulations

The simulations of the clustering coefficient and function in the KPKVB model were
done using Wolfram Mathematica 11.1. The simulation dots for the clustering coefficient
in Figure 2 were generated by the following code (where in the second line, the entire
script was also run for the values nu=1 and nu=0.5):

n=10000;
nu=2;
R=2+Log[n/nul;
plotpoints=20;
reps=100;
Plotingdataalpha = ConstantArray[O, { plotpoints,2}];
SeedRandom|[ 1 ]1;
For[z=1,z<=plotpoints, z++,a=0.4+z (4.6/plotpoints); sum=0;
For[r=1,r<=reps, r++,V = ConstantArray[0,{n,2}];
For[i=1,i<=n,i++,
VI[[i,1]]=RandomReal[{—Pi ,Pi }];
VI[[i,2]]=ArcCosh[RandomReal[{0,1}](Cosh[a*R]—1)+1]/al;
A= ConstantArray[0,{n,n}];
For[i=1,i<=n,i++,
For[j=1,j<=n, j++,
If[Cosh[V[[i,2]]1]1Cosh[V[[j,2]111—Sinh[V[[i,2]]11Sinh[V[I[}]
,2111Cos[Abs[VI[[i,111-V[[j,111]1] <= Cosh[R] & i != j,
Alli,jlI=1,Alli,j11=011L;
g = AdjacencyGraph[A];
sum=sum+MeanClusteringCoefficient[g]];
Plotingdataalphal[z,1]]l=a;
Plotingdataalphal[[z,2]]=1.0*sum/reps;]
Print[Plotingdataalpha]

The simulation dots for the clustering function in Figure 3 were generated by the
following code (where in the third line, the entire script was also run for the values nu=1
and nu=0.5):
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n=10000;
a=0.8;
nu=2;
R=2xLog[n/nul;
plotpoints=24;
reps=100;
Plotingdatak = ConstantArray[O, {reps, plotpoints,2}];
SeedRandom|[1];
For[r=1,r<=reps,r++,V = ConstantArray[0,{n,2}];
For[i=1,i<=n,i++,
VI[[i,1]]=RandomReal[{—Pi ,Pi }];
VI[[i,2]]=ArcCosh[RandomReal[{0,1}](Cosh[a*R]—1)+1]/al;
A= ConstantArray[0,{n,n}];
For[i=1,i<=n, i++,
For[j=1,j<=n, j++,
If[Cosh[V[[i,2]]11Cosh[V[[]j,2]11]—Sinh[V[[i,2]11Sinh[V[[]j,2]1]]
Cos[Abs[V[[i,111-V[[j,1111] <= Cosh[R] && i != j,A[[i, ]
N=1,A[[i,j1]1=0111;
g = AdjacencyGraph[A];
For[k=1,k<=plotpoints , k++,
sum=0;
result=0;
nrdegk=0;
For[v =1,v<=n,v++;
If[VertexDegree[g, vl==k+1,
result=result+LocalClusteringCoefficient[g,v];nrdegk++1]];
Plotingdatak[[r,k,1]1=k+1;
If [nrdegk>0,Plotingdatak[[r,k,2]]=1.0xresult/nrdegk]];]
Print[Mean[ Plotingdatak]];

H Explicit expressions for v, (k) when o = 1

We've already established that 7, y(k) can be obtained at @ = 1 by taking the o — 1
limit of the expression obtained for & = 1. Here we derive an alternative explicit
expression for completeness. Since the rest of our proofs do not the depend on it the
reader could decide to skip this section on a first reading.

Recall that T'*(¢,z) =T (¢+ 1, 2) + ' (g, z). We will prove the following.

Proposition H.1. If o« = 1 then

575 —12n2 (7473 (—4,n)
n 576
1

1
5 / (1 —4z+32%)1og(1 — 2)(z +n)e "*dz
0

1
- / Lig(2)(2% 4+ nz2)e ™" dz,
0
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and
L/ T4
v(k) = T (k—=3,m) - w1 T (k—4,n)
gk
+ = [ (1—42+32%)In(1 — 2)2' ke dz
2! J,

1

+ L[ 3k Liz(2)e”"/* dz,

with n = 4v/m and Lis(z) = >0, 2'/t?, the dilogarithm function.
Naturally, the proof proceeds by proving the analogue of Lemma 3.1:

Lemma H.2. Ifa =1, then for ally > 0:

9 1, 1—de 3V 43¢V o TATE 1 :
Ply) = je 2 + < 24 o In(1— e 2Y) — 7—2; eV +5e Y Liz(e™),
where Lis(z) = — foz Mdt is the dilogarithm function.

Proof. We want to compute the limit lim,_,; P, (yo(20)). For @ # 1, we label the terms as
follows:

Patinlo) = 5 (s1(050) + sa(a0) + o Gsa(az0) + s 0)
+ss5(a, z0) + se(a, z0) + s7(a, zo)) ,
where
s1(a, z0) = —i

s2(a, z9) = (@ —1/2) 20
(a—1/2)%23

s3(a, 20) = — 1
271 1(3a -1
34<o¢7 2;0) = ’2072+4a¢
«
peae (0= 1/2)B7(1/211 + 20, -2 + 20)
ss(a, z0) = 2, 5
_ (1=2)*
se(a, z0) = o
da—2 p—
B (1 —-29;20,3 — 4
s, z9) = — 2 ( Z(J’ & a).

Now, we consider the functions s;(a) = s;(«, 29) as functions of a only and compute
their Taylor expansion at o = 1, for i € {1,2,5,6,7} up to linear and for i € {3,4} up to
quadratic order, i.e. we write s;() = s;(1) + s(1)(a — 1) + o(w — 1) fori € {1,2,5,6,7}
and s;(a) = s;(1) + si(1)(a — 1) + #(a —1)2+ o((a — 1)?) for i € {3,4}. Using these
expansions, we can rewrite

Plpozo) = —— | S0 s+ Y siha—1)+oa—1)

a—1
i€{1,2,5,6,7} i€{1,2,5,6,7}

+M +s5(1) + s4(1) + %(sg(l) + 7)) (a—1) 4+ o((ar — 1))) .

a—1
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In order to continue, we compute:

81(01) =

sa(a) =

spa) =

sel(ar) =

s7(a) =

T 1670 1

1 1
57T g(a— 1) +o(la—1),

1
—20+ 2z0(a—1) + o(a — 1),

2
Lzl - 12012 1o(a-1))

2

1, 21 20

1620+4<8+ln2 (a—1)

L 8(1 @)2+21 oY a1 o(a—1)?)
3 n2 n2 3 a o((a ,

22

AfB_ﬂﬂﬂﬂD+da—D

L2 <<1n<zo> T i) B (1/23.0)+1/2 [ (- )1 -0 dt) (a = 1)

0
+o(a—1),
(1 —20)2 (1 —20)2
8 * 4

(In(1—20) —1/2)(a—140(a—1)),

2
—%B_ﬂ—zml—ﬂ+da—n

— 22 <1n(zO)B(1 —20;2,—1) + /Ol—zo t(1—1t)"2In <1\/Et> t(1—1t)72 dt) (a—1).

Based on this we see that

and

1 1,

s3(1) + s4(1) = —Ezg + 6% = 0,

i€{1,2,5,6,7}

1

:—74»720—

8
1

:07

1
2

using that

and

1
1 1 1
B0 = TR0 = [ a- e tas
0 1

2

1 1

1 1 )
-1
—24sds=-2+-—-In-+1—-=—-=+41n2
S sas +2 n2 3 8+n,

I
B

172(] 1
B*@fzmlfnzi/ tufw*wp:/(1fgg*m
0 20

1
:/ 572 —stds=—1+27" +1nz.

20
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Finally, it follows that as o — 1,

ST s+ (W) + (1) +o(1)

i€{1,2,5,6,7}

P(yo(z0)) =

Therefore, the desired value of lim,_,1 P(y0(z0)) is given by

1

Y. s+ (51 +51(1)
i€{1,2,5,6,7}
1 2, 4 20 \9 2 1. (1—2)
1
1 1 [2
+ 22 <(1n(z0) + 4) B~(1/2;3,0) + 5/ In(t(1 —t)) (1 —t)~* dt)
0
1720
t
- 25 (ln(zo)B(l — 20;2,—1) +/ In <1\[t) t(1—1t)72 dt)
0 —
1 22 2. 20,4 22
*§+%*z+2“2>+815*§
) 528 22In2
- §Z§ In(zp) + 22 In(2) In2 — 3—20 04
1
+z§/2/ In(t(1 —t))*(1 — )~ dt
0
(1—2)? 1z 22
TR0 n(1—a) — =4 2020
n(1 — z) 3713

4
1—=29 \/E
+ 281In(20) — 20 In 2o — 25 (In 29)? — zg/ In <1t> t(1—t)"2dt
0 —

5 9 zO 20 22 (1 —29)?
=-29— — In ZIn -

1
In2 z
+ gzg In(zp) + 28 In(20) In 2 + & 411 + 23/2/2 In(t(1 —t))t*(1 — )"t dt
0

1_Zolm Vi t(1—t)"2dt
(1) a0

111(1 — ZO)

— zolnzp — 22(In z)% — 23/

5 9 22 2. 22 (1 —2)*
= oy — — In = In In(1 —
19 g0 Ty gl 2jL ;)
3 o 2 z5In2 2 2 :
+§zoln(z0)+zoln(zo)ln2+ 1 +25/2(11/8 = 1/41n2 — 3/21n(2)* — Liy(1/2))
1 1 1
—zolnzp — 22(In20)% + 20(1 + 5(2 — zp)In(z0) + 340 In(z9)? — 5(1 — zp)In(1 — zp)
1 . 1 .
+ 52’0 LIQ(ZO)) — Zg — 523 ng(l)
9 25 4 20,9 28 (1—29)?
=2 In G0 IR St U WY
47 160+ ( 2 TRy ;. m—z)
1, 9 z81n2 9 9
— —z5In(z0) + 25 In(20) In 2 + 1 +25/2(11/8 = 1/41n2 — 3/21n(2)

8

—Lig(1/2) — Lig(1) + Lis(20)) — %Z(Q)(ln 20)% — %zo(l — 20) In(1 — zp),

where we used that

zO/Q/E O —t) 4+ In(1 —)*(1 — )" dt =11/8 — 1/4In2 — 3/21n(2)? — Liy(1/2),
0
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and

PH /HO 1/2In(t)t(1 — )72 —tln(1 —t)(1 — )~ 2 dt
0

1 1 1 1 1
= —— (14 2(2—20)In(20) + =20 In(20)* — = (1 — 20) In(1 — 20) + =20 Liz(20)
20 2 2 2 2

1
+ 1+ 5 Lis(1).

By expanding the squares and collecting terms, the last expression can be simplified to

9 1—4 32 In(2)2 4+ 21i5(1/2) + 2 Lisy(1 1

Yoot LI 11 ) 4 2 (g - DA A LU H LW | Lay
4 4 4 2

9 1—4 322 7+ m?2 1

:izo + #hl(l — Zo) — %23 + 523 Lig(Z),

which finishes the computation. O

Proof of Proposition H.1. It suffices to find the value of J and I*) at & = 1. We can do
this by computing the integrals with the expression for P(y) that we found for a = 1, i.e.

1 2 9
9 1—42+3 7 1
J:20[/ (42-&-‘1_'—2111(1_'2)_ + 7 2’2—|—22’2L12(2’)> Z2a71dz
0
_ 575 1272
- 576
and
2 k 1 1-4 2 2 1
I® = (;f / <ZZ + %32 In(l—z) — 7 —;W 22+ 522 Li2(Z)> ZRah=lp=¢/2 4,
©Jo
ok (/9 1—4z+ 322 7+ m? 1
e e R e S C) Bt
*Jo
977k 3—k nk 7+ 72 Ak
= Tt (k — _ 1 Ttk —4
o1l (k=3,m) =3 — " (k—4,n)
77k ! nk 1
o [ (142327 (1 = 2)2 e A dz 4 o5 / S Lig(2)e ™% dz
©Jo 'Jo
_ Tty
—ﬁr (k_3>77)—ﬂ 1 I (k—4,m)
77k ! nk 1
+ 38 / (1 -4z +32%) (1 — 2)2"Fe " 7dz + 1 / 3 Lig(2)e~"/* dz,
2k! Jo k! Jo

where n = 2~

into (3.7) and (3.6) yields the expressions in the statement of the proposition.

and and Liy(z) = Y.,2, 2'/t?, the dilogarithm function. Plugging this
O
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