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Abstract
We introduce the problem of finding a spanning tree along with a partition of the 
tree edges into the fewest number of feasible sets, where constraints on the edges 
define feasibility. The motivation comes from wireless networking, where we seek 
to model the irregularities seen in actual wireless environments. Not all node pairs 
may be able to communicate, even if geographically close—thus, the available pairs 
are specified with a link graph G = (V ,E) . Also, signal attenuation need not follow a 
nice geometric formula—hence, interference is modeled by a conflict (hyper)graph 
C = (E,F) on the links. The objective is to maximize the efficiency of the commu-
nication, or equivalently, to minimize the length of a schedule of the tree edges in 
the form of a coloring. We find that in spite of all this generality, the problem can 
be approximated linearly in terms of a versatile parameter, the inductive independ-
ence of the conflict graph. Specifically, we give a simple algorithm that attains a 
O(� log n)-approximation, where n is the number of nodes and � is the inductive 
independence. For an extension to Steiner trees, modeling multicasting, we obtain a 
O(� log2 n)-approximation. We also consider a natural geometric setting when only 
links longer than a threshold can be unavailable, and analyze the performance of a 
geometric minimum spanning tree.
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1  Introduction

We introduce the problem of finding a spanning tree along with a partition of the 
tree edges into the fewest number of feasible sets, which are independent sets in 
a given conflict (hyper)graph. The motivation comes from wireless networking, 
where we seek a basic communication structure while capturing the irregularities 
seen in actual wireless environments.

A spanning tree is the minimal structure for connecting the given set of nodes 
into a mutually communicable network. The cost of a communication spanning 
tree is the time required to schedule all the tree edges—the transmission links—
while obeying the interference caused by simultaneous transmissions. The sched-
uling complexity of the tree represents its throughput capacity: how much com-
munication can be sustained in the long run. The task might be to aggregate the 
data measured at the sensor nodes, or to broadcast using one-to-one communica-
tion to all nodes of the network.

Technically, the former premise means that the set of usable or available or 
reliable links is now given as a link graph G = (V , L) over the set V of nodes. We 
place no restrictions on the structure of this graph. The second premise implies 
another (hyper)graph, the conflict graph C = (L,W) , this time on top of the links. 
In the Connectivity Scheduling problem, we seek a spanning tree T of G and a 
coloring of the links of T minimizing the number of colors used, where the con-
flict graph C specifies whether a given set of links in L can coexist in the same 
color class.

These formulations naturally raise a number of questions: Can arbitrary sets 
of available/usable links actually be handled effectively? Can we disconnect the 
conflicts/interference from the geometry? Since the ugly specter of intractabil-
ity is bound to raise its head somewhere, what are minimal restrictions that keep 
these problems well-approximable?

Formal definitions The set of available links is given as the edges of a link 
graph G = (V , L) over the set V of nodes. We place no restrictions on the structure 
of this graph. The interference conflicts are captured by a fractional conflict graph 
C = (L,W) on top of the set L of communication links. Here W ∶ L × L → ℝ

+ is a 
function on ordered pairs of links, where W(e,  f) represents (or approximates) 
the degree to which a transmission on link e interferes with a transmission on 
link f. For convenience, let W(e, e) = 0 . Following Kesselheim [29], we define 
the asymmetric function Ŵ(e, f ) on a pair of links by Ŵ(e, f ) = W(e, f ) +W(f , e) , 
if e ≺ f  , and Ŵ(e, f ) = 0 , otherwise. We shall write W(S, f ) =

∑
e∈S W(e, f ) 

( Ŵ(S, f ) =
∑

e∈S Ŵ(e, f ) ) and W(e, S) =
∑

f∈S W(e, f ) ( Ŵ(e, S) =
∑

f∈S Ŵ(e, f ) ). 
Also, Ŵ(S, S�) =

∑
e∈S Ŵ(e, S�).

A set S of links is an independent or a feasible set if W(S, e) < 1 , for all e ∈ S . A 
coloring of C = (L,W) is a partition of L into independent sets. Observe that when W 
is a 0–1 function, we have the usual independent sets and colorings of graphs. Also, 
the formulation with fractional conflicts corresponds to hypergraphs that contain 
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a hyperedge for each minimal set S′ where W(S�, e) ≥ 1 holds for some e ∈ S� . Let 
C[Y] = (Y ,W↾Y ) denote the subgraph induced by a given subset Y ⊆ L of links.

We can now state our Connectivity Scheduling problem formally:

Given a link graph G = (V , L) and a fractional conflict graph C = (L,W) , we 
seek a spanning tree T of G and a coloring of C[T] , using the fewest number 
of colors.

A fractional conflict graph C = (L,W) is �-inductive independent, w.r.t. an ordering 
≺ of the links, if, for every link e and every feasible set I (not necessarily containing 
e), Ŵ(e, I) ≤ 𝜌 . Here, “inductive” refers to how the interference is measured only 
towards later links, and “independence” that it is towards independent sets. We write 
e ≺ I to mean that e precedes each link in I. In geometric settings (including range-
based and SINR models), ≺ corresponds to a non-decreasing ordering by link length.

Our results A key contribution of this work is the formulation of the Connectiv-
ity Scheduling problem that captures in a highly general way the irregularity and 
unreliability of wireless setting, while avoiding the inapproximability monster.

We show that Connectivity Scheduling can be approximated within a O(� log n)
-factor, where � is the inductive independence of the (fractional) conflict graph. This 
is particularly relevant since � is known to be constant in both of the predominant 
interference models: the physical (or SINR) model, and the protocol model. This 
is attained by a simple greedy algorithm that can be viewed as a combination of 
Kruskal’s MST algorithm and a link scheduling algorithm for the physical model. 
Interestingly, the result implies that the approximability of Connectivity Scheduling 
is not significantly affected by restricting the set of allowable links. We also general-
ize the problem to Steiner trees and obtain a O(� log2 n)-approximation by a novel 
reduction to the multi-dimensional Steiner tree problem.

In contrast, we find that in the geometric setting, where the links are embed-
ded in the plane, the (perhaps more natural) approach of selecting and coloring 
an MST fails badly. However, we show that MST gives improved results in the 
natural special case where all short links are available.

Our results extend the state of the art for Connectivity Scheduling in the geo-
metric SINR model in three ways: our algorithms give good approximations in 
the presence of unavailable links (in contrast with the known results), they work 
in general metrics (first such results, even with all links available), and we obtain 
similarly good approximations in the Steiner extension.

Related work The connectivity problem in the geometric SINR model was first 
considered by Moscibroda and Wattenhofer [37]. It was, in fact, the first work on 
worst-case analysis in the SINR model. They show that unlike in random networks, 
the worst-case connectivity depends crucially on the use of power control, and with 
optimal power control, O(log4 n) colors suffice to connect the nodes. They soon 
improved this to O(log2 n) [36, 38]. Currently, the best upper bounds known are 
O(log n) [17] and O(log∗ Λ) [22], where Λ is the ratio between the longest to the 
shortest length of a link in a minimum spanning tree (MST), a structural parameter 
that is independent of n. Both of these results hold for the MST of the pointset; there 
are pointsets where Ω(log∗ Λ) colors are necessary for coloring an MST [22]. For a 
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comparison, we present our results for the Euclidean SINR setting together with the 
corresponding state of the art in Table 1 (see Sect. 5 for details).

The scheduling complexity of connectivity relates closely to the efficiency of 
aggregation, a key primitive for wireless sensor networks. We refer the reader to 
Incel and Ghosh [27] for bibliography on aggregation/collection problems.

Inductive independence was first defined by Akcoglu et al. [1] and studied by Ye 
and Borodin [40] in the graph setting, while the weighted version was introduced by 
Hoefer et al. [26]. It has been used as a performance measure for various throughput 
problems related to wireless networks, including admission control [11], dynamic 
packet scheduling [23, 31], and spectrum auctions [23, 25, 26]. On the other hand, it 
has not previously been applied to connected structures.

Outline of the paper We first discuss the modeling of irregularity and variabil-
ity in Sect. 2. Our main technical results are given in Sect. 3. We give in Sect. 3.1 
a greedy algorithm for Connectivity Scheduling achieving O(� log n)-approxima-
tion, where � is the inductive independence number of the conflict graph. We also 
obtain a similar approximation of a Steiner or multicast version of the problem in 
Sect. 3.2. We examine, in Sect. 4, how the standard approach—finding a minimum 
spanning tree—fares for our problem in the geometric setting where the links are 
embedded in the plane. Implications of our results to the SINR (or physical) model 
are given in Sect. 5. The rest of the paper can safely be read without any background 
in that model. We then close with open problems. A brief primer on SINR concepts 
is given in Sect. 6 for completeness.

2 � Modeling Irregularity

Algorithmic studies of wireless connectivity to date have generally involved strong 
“niceness” assumptions. One core assumption is that points are located in the 
Euclidean plane and all (close enough) pairs of nodes are available as links for use 
in the spanning tree. Interference modeling has become progressively more realistic, 
starting with range-based graph models to the fractional SINR model of interference, 
but the common thread is that interference is a direct function of the geometry.

The objective of this work is to embrace the irregularity in connectivity prob-
lems. We replace the previous assumptions by the opposite premises: a link may 
not be usable even if it should be and Interference need not follow the underlying 

Table 1   Results in the Euclidean SINR model

Λ ( Λ� ) denotes the ratio of the longest and shortest link lengths in an MST (distances between the nodes, 
respectively). Π denotes the ratio of the longest reliable and shortest unreliable link lengths

Setting Approximation

No unreliable links O(log n) [17], O(log∗ Λ) [22]
With unreliable links O(log n) [This work]
With unreliable links, Steiner variant O(log n log∗ Λ) [This work]
Only long unreliable links O(Π +min(log∗ Λ�, log n)) [This work]
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geometry. The primary objective at the outset of this research was to extend 
results that hold in the SINR model to somehow capture irregularity. The SINR 
model is based on three axioms: (a) Signal decreases in strength as a fixed poly-
nomial of the distance traveled, (b) interference is additive, and (c) message is 
received if the strength of the signal is sufficiently stronger than the total interfer-
ence. We embrace the last two axioms, which have been verified experimentally 
(e.g., [39]), while aiming to modify the first one.

One approach would be to allow for variability of some restricted form. This 
could take the form of, say, bounded variation in pathloss (the decrease of the 
signal strength with distance); or, two different path loss constants (i.e., the expo-
nent of the polynomial decay); or, the addition of specific forms of obstructions. 
Such modifications would however neither be very general nor particularly easy 
to reason about. One could easily grow a whole subtopic of ”reasonable” exten-
sions to SINR.

The other extreme is to treat the most general version, sometimes called abstract 
SINR, where signal strength and position are completely disassociated. However, 
this has the serious downside of intractability: computing a good solution to most 
basic problems becomes impossibly hard, or n1−�-hard to approximate, for any fixed 
𝜖 > 0 [13].

We believe our formulation combines the best of both worlds: generality and 
computational tractability. This is a key contribution of this work. Our formulation, 
e.g., captures the following natural variations non-stochastically:

–	 Arbitrary forms of obstructions or loss of line-of-sight.
–	 Heterogeneous networks sharing the same channel, e.g., using differing coding 

or technology.
–	 Arbitrary variation in signal propagation and pathloss.
–	 Existence of unavailable links, either with or without a corresponding increase in 

pathloss.

The difficulty of the environment is then captured by a simple parameter, � , the 
inductive independence, which interpolates nicely between perfect environments 
and the worst-case instances that are hard to approximate.

Notable instantiations Connectivity Scheduling has a number of special cases of 
independent interest, both graph-based and geometric:

–	 A well-studied setting is where two links conflict if they are incident on a com-
mon link, i.e., when C is the square of the line graph of the link graph G . This 
case corresponds to bidirectional version of the classic radio network model. 
The directed version of Connectivity Scheduling was treated in [9] as the radio 
aggregation scheduling problem.

–	 In range-based or disk models, nodes are embedded in the plane and two links 
are adjacent if the distance between (the closest points on) them is less than K 
times the length of the longer link, where K is some fixed constant. In a variant, 
the condition is on distances between particular nodes on the links. Also, in the 
the related protocol model, adjacency occurs if the distance is less than K1 times 



	 Algorithmica

1 3

the length of the longer link plus K2 times the length of the shorter link, for some 
constants K1,K2.

–	 The original driving motivation is when nodes and links are embedded in a met-
ric space and the fractional conflicts follow the geometric SINR model of inter-
ference in terms of the lengths and distances between links. The implications for 
this setting are treated in Sect. 5. Before this work, only the case when G is the 
complete graph over a set of points in a Euclidean (or doubling) metric was con-
sidered.

–	 A natural special case occurs when link availability is restricted by link length, 
so that only reasonably long links are unavailable or attenuated, but short links 
follow the normal SINR laws (short links are available). This is treated in Sect. 4.

–	 Finally, when the conflict graph C is the line graph of the link graph G , i.e., 
C = L(G) , we obtain the well-known minimum degree spanning tree (MDST) 
problem, where given a graph G , the goal is to find a spanning tree of smallest 
maximum degree. By König’s theorem, the chromatic number of the line graph 
of a tree (in fact, of any bipartite graph) is equal to the maximum degree of the 
tree. This problem has more structure that allows for better solution: while it is 
NP-hard, it can be approximated within an additive one [8]. In particular, L(G) 
is claw-free (does not contain an induced star graph K1,3 ), which is stronger than 
being 2-inductive independent), and is intimately related to G.

Related work on modeling Wireless networking in the real world behaves quite dif-
ferently from the theoretical models [10, 33, 41] and typically displays a high degree 
of irregularity. This manifests in how the strength of signals (and the corresponding 
interference) often varies greatly within the same region, and is often poorly cor-
related with distance [2]. This behavior holds even in simple outdoor environments, 
but is magnified inside buildings. It is also evidenced by fluctuations, sensitivity to 
environmental changes (even levels of humidity), and hard-to-explain unreliability.

There are many approaches that have been proposed to model irregularity in 
wireless networks. We first examine static cases, or the modeling of non-geometric 
behavior. The basic SINR model allows the pathloss constant � to be adjusted [14], 
giving a first-order approximation of the signal gain. In the engineering community, 
it is most common to assume that the deviations are drawn from a particular sto-
chastic distribution, typically assuming independence of events. There are, however, 
issues with such assumptions, including how they can be validated and how to deal 
with actual instances (rather than probabilistic distributions). On the computer sci-
ence side, the prevailing approach is to view the variations as conforming the plane 
into a non-Euclidean metric space [6, 16], while retaining some tractable character-
istics. This can also entail identifying appropriate parameters [4].

For frequent temporal changes, the standard engineering assumption is Rayleigh 
fading. Dams et al. [5] (see also [21]) showed that link scheduling algorithms are not 
significantly affected by such variation, assuming independence across time.

For unpredictably changing behavior, there is much research on adapting to new 
conditions, particularly with exponential backoff. A theoretic model proposed to 
specifically capture unreliability is the dual graph model [35], which extends the 
radio network model to a pair of graphs, the reliable and the unreliable links, where 
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the latter are under adversarial control. The focus there is on distributed algorithms 
for one-shot problems, like global and local broadcast problems, where the nodes do 
not know which links are reliable. As far as we know, it has not been considered in 
settings involving a long-term communication structure.

3 � Approximations in Terms of Inductive Independence

3.1 � Greedy Algorithm

A natural greedy approach is to find as many edges as possible that form a feasible 
set. This set can be assigned the first color and the process repeated, ensuring that 
edges added always connect different trees of the forest being grown. The key step is 
obtaining a constant-approximation for a maximum feasible subset.

We assume in this section that G can have parallel edges but no loops. We assume 
that the conflict graph C is �-inductive independent, for a number 𝜌 > 0 , and that 
the corresponding conflict function W and ordering of edges ≺ are given. In typical 
applications, such as wireless scheduling, the ordering is known. For bounded � and 
ordinary graphs C , it can be computed in polynomial time. In general, the problem 
of finding a (near-)optimal inductive independence ordering is hard. Note also that 
the results of this section can be recovered even if no particular ordering is known, 
if we assume that C is an ordinary graph, and replace � by the simpliciality of C [24].

In the maximum feasible forest problem, the goal is to find a maximum cardinal-
ity subset of edges of the link graph G that is both independent in the conflict graph 
C and acyclic in G . 

The algorithm, given as Algorightm 1, is a greedy algorithm that mixes the edge 
selection criteria of wireless capacity algorithms [16, 29] with the classic MST algo-
rithm of Kruskal [34], thus the name CapKruskal. It processes the edges in order 
of precedence ≺ and adds an edge to the forest S if: a) the interference on that edge 
from previously selected edges S is small, and b) the edge does not induce a cycle 
with S (as per Kruskal). We state it in terms of the classic union-find operations of 
MakeSet, Connected, and Union.
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Theorem  1  Let F be a maximum feasible forest of G. Then the output of 
CAPKRUSKAL(G, C) is a feasible forest containing Ω(|F|∕�) edges, where � is the 
inductive independence of C.

Proof  Let S and S′ be the final sets computed in CAPKRUSKAL(G, C) . By definition, 
S′ is feasible. To argue that S′ is large, we examine an arbitrary feasible forest, break 
it into three parts, and show that none of the parts can be too large compared to S′ . 
This will hold, in particular, for the optimal feasible forest.

First, observe that the selection condition of the algorithm implies that 
Ŵ(S, e) < 1∕2 , for each e ∈ S . It then follows that

so for at least half of the links e ∈ S it holds that W(S, e) < 1 , i.e., |S�| ≥ |S|∕2.
Let I be an arbitrary feasible forest. Let IR be those edges e in I that failed the 

degree condition ( Ŵ(S, e) ≥ 1∕2 ), and IT those edges e = (u, v) in I that failed the 
connectivity condition ( CONNECTED(u, v) ). The rest, IS = I ⧵ (IR ∪ IT ) are contained 
in S. We bound these sets in terms of S.

Since IT contains only edges inside components that S also connects (recall-
ing that I induces a forest), |IT | ≤ |S| . Also, clearly IS ⊆ I ∩ S ⊆ S , so |IS| ≤ |S| . To 
bound the size of IR , observe first that by the definition of �-inductive independence,

On the other hand, by the selection criteria,

Thus, |IR| ≤ 2� ⋅ |S| and |I| ≤ (2� + 2)|S| ≤ 4(� + 1)|S�| . 	�  ◻

Coloring algorithm Algorithm Connect repeatedly calls CAPKRUSKAL to obtain 
a large independent set of links and assigns it a new color class. These links are then 
contracted in the graph and the process repeated until we have obtained a spanning 
tree.

A simple contraction of an edge e = (u, v) in a graph G = (V ,E) 
results in the graph G∕e = (V �,E�) , where V � = V ⧵ {u, v} ∪ {uv} and 
E� = E ⧵ {(w, u), (z, v) ∈ E} ∪ {(w, uv) ∶ (w, u) ∈ E ∧ (w, v) ∈ E} . Note that con-
traction leaves the conflict graph C intact. The operation Contract(G, S) contracts all 
edges in S of a link graph G and outputs the resulting graph. Observe that contrac-
tion preserves upper bounds on inductive independence (but can improve it). 

∑

e∈S

W(S, e) =
∑

e∈S

Ŵ(S, e) <
|S|
2

,

Ŵ(S, IR) =
∑

f∈S

Ŵ(f , IR) ≤
∑

f∈S

𝜌 = 𝜌 ⋅ |S| .

Ŵ(S, IR) =
∑

e∈IR

Ŵ(S, e) ≥
∑

e∈IR

1

2
=

|IR|
2

.
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The pseudocode of the algorithm is given in Algorithm 2. The proof of the fol-
lowing theorem follows the classic set cover argument [28].

Theorem 2  Connect terminates after O(� log n) ⋅ � iterations, where � is the mini-
mum number of colors of a spanning tree of G, and � is the inductive independence 
of C.

Proof  Let S0, S1,… , Si−1 be the sequence of edge-sets returned by Connect. For 
each k, denote nk = |V(Gk)| and xk the cardinality of the optimum independent (in 
C[Gk] ) forest in Gk . By averaging, xk ≥ nk∕� , and by Theorem 1, |Sk| ≥ xk∕(4� + 4) . 
Thus,

and by induction, for any k0 > (4𝜌 + 4)𝜒 ln n,

so no nodes remain in Gk0
 . 	� ◻

A near-linear dependence on � , the inductive independence, is unavoidable for 
polynomial-time approximation algorithms. For instance, when the link graph G is 
already a spanning tree, Connectivity Scheduling becomes precisely the classical 
graph coloring problem (of C ), which is hard to approximate within an n1−�-factor 
[7].

3.2 � Algorithm for a Steiner Tree Extension

A natural generalization of Connectivity Scheduling is to allow for relay nodes 
that can be optionally used in the tree construction but need not be spanned. For-
mally, the node set V contains a subset X of terminals and we seek a Steiner (or 
multicast) tree that spans all the terminals. As before, we ask for the minimum 

nk = nk−1 − |Sk−1| ≤ nk−1 −
xk−1

4� + 4
≤ nk−1

(
1 −

1

�(4� + 4)

)

nk0 ≤ n0

(
1 −

1

𝜒(4𝜌 + 4)

)k0

≤ n0 ⋅ e
−k0∕((4𝜌+4)𝜒) < n0 ⋅ e

− ln n = 1 ,
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number of colors to color the tree links under the conflict graph C . We refer to 
this as the Steiner Connectivity Scheduling problem.

It is not hard to construct examples for which optimal multicast trees are arbi-
trarily better than trees that use only the terminals, even in a geometric setting. 
One such instance is given in Sect. 4.3.

We give a O(� log2 n)-approximation algorithm for Steiner Connectivity 
Scheduling with �-inductive independent conflict graph C . The approximation 
factor reduces to O(� log n) when C is a ordinary graph (i.e., when edges have 
0/1-weights). As before, the weight function W and the ordering ≺ are known to 
the algorithm.

Our algorithm is a reduction to a multi-dimensional version of the Steiner tree 
(MMST) problem, recently treated by Bilò et al. [3]. In MMST, each edge e of the 
input graph has an associated d-dimensional weight vector w̄e ∈ ℝ

d
+
 , where the 

weight of edge e along dimension i, w̄e[i] , indicates how much of the i-th resource 
is required by e. The objective is to find a tree that minimizes the �p-norm of its 
load vector, where the load vector w̄T of a Steiner tree T is the sum of the weight 
vectors of its edges. We use the �∞-norm, as we want to minimize the maximum 
use of a resource. For that case, Bilò et al. [3] gives a greedy O(log d)-approxima-
tion algorithm.

Given an instance of Steiner Connectivity Scheduling with link graph G and 
conflict graph C , our reduction is as follows. Each link e in G is itself (or corre-
sponds to) a resource, so there are n = |L| resources. The weight of link e along 
dimension f is we[f ] = Ŵ(f , e).

Our algorithm simply applies the MMST algorithm of Bilò et  al.  [3] to this 
reduced instance and then colors the tree using the algorithm InductivenessCol-
oring below. Thus, we find a tree T that (approximately) maximizes the quantity 
maxf∈L

∑
e∈E(T) we[f ] . We refer to this quantity as the inductiveness of the tree, 

which is formally defined as follows:
The inductiveness of a subset S of links in G (w.r.t. ordering ≺ ) is 

I
≺(S) = maxf∈L Ŵ(f , S) . 

It remains to relate inductiveness to the chromatic number (Lemma 1).
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Lemma 1  Let S ⊆ L be a subset of links, and denote by � the minimum number of 
colors needed to color S in C . Then 𝜒 = O(I≺(S) log n) , and if additionally C is an 
ordinary graph, then 𝜒 = O(I≺(S)). Also, 𝜒 ≥ I

≺(S)∕𝜌 , when C is �-inductive inde-
pendent (and possibly fractional).

Proof  The first bound, 𝜒 = O(I≺(S) log n) , is achieved by Algorithm  3. The 
algorithm takes the links in S in opposite order of ≺ and adds each link to the 
first set Si where Ŵ(e, Si) < 1∕2 . Let i be the index of the last non-empty set Si 
and let e be a link in Si . The fact that e was not added to the sets S1, S2,… , Si−1 
implies that Ŵ(e, St) ≥ 1∕2 , for all t < i , both when e was added and later. Thus, 
Ŵ(e, S) =

∑
t Ŵ(e, St) ≥ (i − 1)∕2 , which in turn implies the total number (i) of 

colors used is at most 2I≺(S) + 1.
The second observation is that in the while loop, the index k grows to at most 

⌈log n⌉ . Indeed, by an averaging argument similar to the one in Theorem  1, we 
know that |S1

i
| ≥ |Si|∕2 . Similarly, in each iteration of the loop, |Si| is halved, which 

implies that the number of iterations is at most ⌈log n⌉.
Thus, the total number of colors used by the algorithm is at most 

(2I≺(S) + 1)⌈log n⌉ = O(I≺(S) log n) . The claim for ordinary graphs C is proved 
similarly, but here the second loop is unnecessary, since every subset Si is an inde-
pendent set.

Finally, we show that 𝜒 ≥ I
≺(S)∕𝜌 . Consider an optimal coloring of S, consisting 

of color classes T1, T2,… , T
�
 . Then,

as required, where in the last line we used the definition of inductive independence 
and the assumption that the Tt are independent. 	�  ◻

Theorem 3  There is an O(� log2 n)-approximation algorithm for Steiner Connectiv-
ity Scheduling with a �-inductive independent conflict graph C. If C is an ordinary 
graph, the approximation ratio is O(� log n).

Proof  Directly follows from Lemma 1, since the MMST algorithm of Bilò et al. [3], 
applied to our instances, gives a O(log n)-approximation to the inductiveness of the 
optimal tree. 	�  ◻

4 � All Short Links Available on the Plane: How Good is an MST?

In the geometric setting of Connectivity Scheduling, nodes are located in the plane 
(or in a doubling metric), and the interference between two links is a function of the 
lengths of links (distance between the two end-nodes), and the distance between the 
(endpoints of) links. For instance, in the SINR model, the interference between two 
links is a function that is decreasing in their distance and increasing in the length of 
the interfered link.

I
≺(S) = max

f∈L
Ŵ(f , S) = max

f∈L

𝜒∑

t=1

Ŵ(f , Tt) ≤

𝜒∑

t=1

max
f∈L

Ŵ(f , Tt) ≤ 𝜌𝜒 ,
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In this setting, a Euclidean minimum spanning tree (MST) over the set of nodes 
is a natural candidate for connectivity, since it favors short links and has low degree 
(or, more generally, contains few links in the vicinity of any node). Indeed, geomet-
ric properties of the conflict graphs can be used to show that an MST of n nodes is, 
e.g., O(log n)-colorable under the Euclidean SINR model (i.e., with all links avail-
able) [17]. In this section, we examine the chromatic number of an MST in the pres-
ence of unavailable links.

We begin with introducing some basic geometric properties of the conflict graphs 
that can be extracted from all major interference models defined in the plane. The 
remainder is then split into two parts. In the first part, we focus on the case when all 
links shorter than some threshold are available, and prove a bound on the chromatic 
number of an MST, depending on the mentioned threshold. In the second part, we 
show that the obtained result cannot be improved significantly, and that in general an 
MST can have extremely large chromatic number compared with the optimum.

4.1 � The Conflict Graph on the Plane

We make limited assumptions about the conflict graph C . We first define some 
notions. By a t-square we mean a square of side t in the plane. A square hits a link if 
an endpoint of the link is within the square. A set of links of length at most � is said 
to be s-sparse if every �-square hits at most s links, and a set of links of length at 
least � is d-dense if some �-square hits at least d links.

Geometric model assumptions We assume that in C , every s-sparse set of links is 
O(s)-colorable, while a d-dense set requires Ω(d) colors.

These assumptions are satisfied by all major interference models defined in the 
plane (or in doubling metrics); we argue this for the SINR model in Sect. 6.

4.2 � MST When All Short Links are Available

We consider here the case when all short links are available. This is motivated by 
experimental results which indicate on one hand that signal strength is poorly cor-
related with distance, but also that short links are nevertheless almost always strong 
and reliable [41], with most of the variability in the links of intermediate range. This 
is probably the most natural relaxation of the problem involving geometry.

The setting is as follows. All pairs of nodes u, v ∈ V  within unit distance (after 
normalization) form an available link in L, i.e., are connected by an edge in G . Also, 
there is a maximum distance Π so that pairs of nodes of distance more than Π are 
not connected by an edge. Node pairs u, v ∈ V  of distance in the range 1 to Π may or 
may not form an edge in G . We call the links of length at most 1 short links.

We examine the approximability of Connectivity Scheduling w.r.t. Π.

Theorem  4  Every MST of G can be colored using � + O(Π
√
�) colors under the 

conflict graph C , where � is the optimum number of colors of a spanning tree and � 
is the number of colors required to schedule an MST of the complete graph over V.
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In many settings, � is a negligible term (see, e.g., Corollary 2), in which case 
we obtain a O(Π∕

√
�)-approximation.

Before proceeding to the proof, we state several technical lemmas. We assume 
below a fixed MST T of the link graph G . Denote a = Π

√
�  . We split the non-

short links into medium links, of length from 1 to 
√
a , and long, of length at least √

a . We refer to the maximal connected subgraphs of T containing only short 
(non-long) links as clusters (resp. blocks). A t-square hits a cluster (or a block) if 
it contains a vertex of that cluster (block).

The plan is to show that both medium and long links of T form a O(a)-sparse 
subset, and hence can be colored using O(a) colors. To that end, we show that 
such links are only used to connect different clusters and blocks, which cannot 
be too close to each other, since otherwise the MST property would be violated. 
As for the short links, they are part of a MST of the complete graph over V, and 
hence can be colored using � colors.

Lemma 2  There is no short link in G connecting two clusters. Similarly, there is no 
non-long link connecting two blocks.

Proof  Suppose there is a short link e connecting two clusters C1 and C2 . By the max-
imality of the clusters, e ∉ T  . Then there is a non-short link f in T connecting C1 and 
C2 . Replacing f with e in T results in a smaller spanning tree, contradicting that T is 
an MST. 	�  ◻

Lemma 3  Every 
√
a-square S hits O(a) clusters.

Proof  A 1∕
√
2-square can hit at most one cluster, as otherwise the respective ver-

tices contained in the 1∕
√
2-square would be within unit distance and could be 

connected by a short link, contradicting Lemma 2. Thus, a given 
√
a-square S hits 

at most (
√
2a + 1)2 = O(a) clusters, since it can be covered with that many 1∕

√
2

-squares. 	�  ◻

Lemma 4  Every Π-square S hits O(a) blocks.

Proof  First, observe that if there are at least 2 blocks, every block B must have a ver-
tex incident to a long link in T, because T has to connect B to some other block, and 
by Lemma 2, it has to use a long link for that. We partition the set of blocks hit by S 
into Class 1 and 2, where the former consists of blocks containing a vertex inside S 
that is incident to a long link in T, and Class 2, the remaining blocks. We bound the 
two classes separately.

Let t denote the number of long links of T that are hit by S. Since S can be cov-
ered with O(Π∕

√
a + 1)2 = O(Π∕

√
�) of 

√
a-squares, at least one of them hits 

Ω(t∕(Π∕
√
�)) = Ω(t

√
�∕Π) long links. Thus, the long links of T are (t

√
�∕Π)

-dense, and by our assumption on C , � = Ω(t
√
�∕Π) . Rearranging, we have that 

t = O(a) . We conclude that the number of Class 1 blocks hit by S is in O(a).
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Next, we consider Class 2 blocks. Each such block must have a vertex incident on 
a long link e in T, with both its endpoints outside of S. Thus, a Class 2 block must 
have vertices both inside and outside of S, and T uses only short or medium links to 
connect vertices from the two sides. For each Class 2 block B, identify a single link 
used in T to connect the vertices of B inside S to those outside S, and refer to it as 
B’s linker. Note that each 1∕

√
2-square hits at most one linker, as otherwise the cor-

responding blocks could be connected with a short edge, contradicting Lemma 2. A 
short linker is one with length at most 

√
�  ; those must have an endpoint in S within 

distance 
√
�  from the border of S, as they must cross the border. Thus, the total area 

in S that can contain an endpoint of a short linker is at most 2Π
√
�  , and by covering 

it with 1∕
√
2-squares, we see that there are O(Π

√
�) = O(a) short linkers.

We partition the non-short linkers into i-linkers , which have length between 
Qi ∶= 2i ⋅

√
�  and 2Qi = 2i+1 ⋅

√
�  , for i = 0, 1,… . Let qi be the number of Class 

2 blocks with i-linkers. Observe that an i-linker has an endpoint in S within distance 
2Qi from the border of S. Thus, the total area in S that can contain an i-linker is at 
most 8ΠQi , and it can be covered with O(Π∕Qi) different Qi-squares. Thus, some Qi

-square hits qi∕O(Π∕Qi) = O(qiQi∕Π) of i-linkers (each in T, and of length at least 
Qi ), so T is Ω(qiQi∕Π)-dense. Hence, by our assumption on C , � = Ω(qiQi∕Π) , and 
by rearranging, qi = O(

√
�Π∕2i) = O(a∕2i) . The number of Class 2 blocks is then 

bounded by

	�  ◻

Proof of Theorem 4  The short links are contained in an MST of the complete graph 
on the pointset, and hence they can be colored using � colors.

Next, we show that medium links form a O(a)-sparse set, and can be colored 
using O(a) colors, by our assumptions on C . Let S be a 

√
a-square and let S′ be the 

3
√
a-square with S in the center. Note that the medium links with an endpoint in S 

have the other endpoint within S′ and are used to connect clusters that hit S′ . Since 
there is no cycle of cluster connections, the number of medium links touching S 
must be fewer than the number of clusters hitting S′ , or O(a), by Lemma 3.

Concerning the long links, we can apply a nearly identical argument as above, but 
considering a Π-square instead of a 

√
a-square, and blocks instead of clusters. This 

shows that long links form a O(a)-sparse set, and can be colored using O(a) colors 
as well. 	� ◻

4.3 � Limitations of MST

The bound of Theorem  4 is quite good if the optimum solution of Connectivity 
Scheduling has large chromatic number, compared to the maximum usable link 
length Π . Can we improve the bound when this is not the case? The answer is nega-
tive. The MST can actually fail quite badly.

O(Π
√
�) +

�

i=0

qi = O(a) +
�

i=0

O(a∕2i) = O(a)
�

i=0

2−i = O(a) .
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Theorem  5  For any integer n > 0, there is an instance G = (V , L) of links over n 
nodes embedded in the plane, such that G contains a spanning tree that is O(1)-
colorable while every MST requires Ω(n1∕3) colors. Moreover, this is a tight instance 
for Theorem 4, up to constant factors.

Proof  Let k ≥ 1 be an integer and K = 2k2 . Let 
V = {o} ∪ {vi,j ∶ i = 0, 1,… , k − 1, j = 0, 1,… ,K − 1} denote the set of 
n = kK + 1 = 2k3 + 1 nodes. We position the nodes in the plane using polar coordi-
nates, with the node o as the origin. For node vi,j , angular coordinate ri,j is 2� ⋅ i∕k , 
while its radial coordinate is k + j.

The available links are given by L = O ∪ S ∪ Y  , where

or the ordinary, the short and the yuge links. That is, the link graph is in the form of 
a wheel, centered at origin, with k spokes, and K nodes on each spoke (see Fig. 1). 
Ordinary links are incident with the origin, while the yuge links form the tire of the 
wheel.

We observe that d(vi,K−1, vi+1 mod k,K−1) > k = d(o, vi�,1) , for any i, i′ . Thus, the 
MST consists of the short and the ordinary links, S ∪ O . Since all the ordinary links 
have an endpoint in the origin, they form a Θ(k)-dense set, and they (and the MST) 
must be colored with Θ(k) = Θ(n1∕3) colors in C.

On the other hand, a more efficient solution is to use the short links, the yuge 
links, and a single (arbitrary) ordinary link. As a union of three O(1)-sparse subsets, 
it can be colored with O(1) colors.

Let us now view the constructed instance in the context of Theorem 4. Observe 
that the threshold under which all links are available is 1 (and all short links are 
present in G ), while Π < 2k . We have shown that the MST must use Θ(k) = Ω(Π) 
colors, while there is a spanning tree that can be colored using O(1) colors. That is, 
the number of colors needed for the MST is Ω(Π) = Ω(Π

√
�) , which is what Theo-

rem 4 claims (note that in this instance, � = O(1) ). 	�  ◻

O = {(o, vi,1) ∶ i = 0,… , k − 1},

S = {(vi,j, vi,j+1) ∶ i = 0,… , k − 1, j = 0,… ,K − 2},

Y = {(vi,K−1, vi+1 mod k,K−1) ∶ i = 0,… , k − 1},

Fig. 1   The construction from 
Theorem 5. Yuge edges are 
colored orange, ordinary edges 
red, and short edges blue (Color 
figure online)
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This same example shows why the known results for Euclidean SINR do not 
carry over to general metric spaces (even without missing links). Namely, one could 
simply form a metric space on the n nodes by shortest-path distances in the link 
graph. This example also shows how optimal multicast trees can be much more effi-
cient than spanning trees, when we restrict the terminals to the nodes incident on 
yuge links along with the origin.

One way to try to overcome the hard example above would be to consider 
bounded degree minimum spanning trees. However, the example above can be mod-
ified so that the maximum degree of the resulting link graph G is at most 3, but the 
result is similar. To this end, one can replace the top vertex o in the construction 
with a chain of k equally spaced nodes connected into a simple path (which is a 
sparse subset), where each node is incident with one ordinary link. The ordinary 
links would still make a Θ(k)-dense set.

5 � Implications to Signal Strength Models

We consider in this section the implementation and implications of our results to 
signal strength models, most importantly the metric SINR model.

SINR-feasibility, besides the underlying metric, also depends on the transmission 
power control regime. Different regimes give different notions of feasibility. Never-
theless, it is known that for most interesting cases, SINR-feasibility has the constant-
inductive independence property. In particular, power control is usually considered 
in two modes: oblivious power schemes, where links use only local information, 
such as the link length, to define the power level, and global power control, where 
all power levels are controlled simultaneously to give larger independent sets. The 
former includes the uniform power mode, where all links use equal power. Another 
technical issue is directionality of links, which is not explicitly addressed by our 
general results, but will be addressed below.

Let us start the discussion from Euclidean metrics (or more generally, doubling 
metrics). For the global power control mode, Kesselheim [29] introduced a weight 
function W that gives a constant-inductive independent conflict graph for any set of 
links (see [29, Theorem 1]), so our results apply here directly (except for direction-
ality issues, addressed below). Similarly, for oblivious power schemes (excluding 
uniform power), Halldórsson et al. [23] showed that in order to get constant-induc-
tive independence, one may take the natural weight function, affectance (a.k.a. rela-
tive or normalized interference) [23, Theorem 3.3]. In all cases, any non-decreasing 
order of links by length can be taken as the ordering ≺.

For general metric spaces, a slightly more technical definition of inductive inde-
pendence is used. A fractional conflict graph C = (L,W) is (�, �) − inductive inde-
pendent, w.r.t. an ordering ≺ of the links, if, for every link e and every feasible set 
I ∈ F  , there is a subset I′ ⊆ I of size |I�| ≥ |I|∕� , such that Ŵ(e, I) ≤ 𝜌 . The old 
definition corresponds to the setting � = 1 . It is easily verified that Theorems 1 and 2 
extend to cover this new definition, with approximation ratios multiplied by a factor 
of � . Now, the counterparts of the results from the previous paragraph in general 
metrics can be found in [18, Lemmas 2,4] and [30, Theorem 1, Lemma 3], where it 
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is shown that with appropriate weight functions, feasibility for any oblivious power 
scheme (including uniform power), as well as feasibility with global power control, 
can be expressed by an (O(1), O(1))-inductive independent fractional conflict graph.

5.1 � Link directions

In general, weight functions derived from the SINR model depend on link direc-
tions, i.e., each orientation of links gives us a different weight function. In Connec-
tivity Scheduling, however, we would like to have a schedule for a spanning tree 
which includes every link in both directions.

This issue is not present for the global power control mode, where the weight 
function of Kesselheim [29] is independent of directions. In particular, it gives a 
coloring, such that whatever direction is assigned to the links, one can find a power 
assignment that makes it work (the power assignment could be different for different 
orientations of links).

For oblivious power schemes, the following trick applies. It is known that for a 
set of links with some direction and an oblivious power scheme, and with the weight 
function W defined in terms of the affectances, if W(e, S) < 1∕2 , for all e ∈ S (call 
this dual-feasibility), then there is another oblivious power assignment (called the 
dual of the original one) that makes S feasible with the reversed directions of links 
[32]. Thus, we would like to have a coloring where each color class S is also dual-
feasible. To this end, it is enough to modify CapKruskal, so that the threshold 1/2 
in the acceptance condition is replaced with 1/4, and the output set S′ is given by 
S� = {e ∈ S ∶ (W(S, e) < 1) ∧ (W(e, S) < 1∕2)} . Similar methods then show that 
this again gives an O(�)-approximation to the maximum feasible forest problem. 
The rest of the analysis is left intact, so that we obtain an O(log n)-approximation as 
before, but with color classes that are both feasible and dual-feasible. Then we can 
replace each color class with its two copies and reverse the directions of links in one 
of the copies. Each link thus gets a color for both directions, while the number of 
colors used increases by a factor of two.

We summarize the observations above in the following theorem.

Theorem 6  There is an O(log n)-approximation algorithm for Connectivity Sched-
uling in the SINR model in arbitrary metric spaces. This holds both in the case of 
oblivious power schemes and for arbitrary power control. It holds even when only 
a subset of the node-pairs are available as links (but interferences follow the metric 
SINR definitions).

These are the first results on SINR connectivity that hold in general metrics. They 
are necessarily relative approximations, since in general metric spaces, there is no 
good upper bound on the connectivity number, even for complete graphs. A sim-
ple example is the unit metric over n nodes with pairwise unit distances between 
nodes and no unavailable links: The size of a maximum independent set of links is 
bounded by a constant, so every spanning tree has to be colored with (trivial) Ω(n) 
number of colors.
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For the case of points in the plane (i.e., a complete link graph with conflicts 
induced by distances), connectivity can be achieved using O(log n) colors (with gen-
eral power control) [17]. Since it is not known if O(1) colors always suffice, this 
result is not directly implied by Theorem 2. However, it was also shown in [17] that 
the MST contains a feasible forest of Ω(n) edges. The rest of our analysis (using 
constant-inductive independence) then implies a result matching [17].

Corollary 1  Let P be a set of points in the plane. Then, Connect finds and colors a 
spanning tree of P with O(log n) colors.

5.2 � Steiner trees

Similarly to Theorem 6, we can summarize our results for the Steiner variant of the 
problem that follow from Theorem 3.

Theorem 7  There is an O(log2 n)-approximation algorithm for Steiner Connectivity 
Scheduling in the SINR model in arbitrary metric spaces. This holds both in the case 
of oblivious power schemes and for arbitrary power control. It holds even when only 
a subset of the node-pairs are available as links (but interferences follow the metric 
SINR definitions).

Using global power control, we can do considerably better. The main result of 
Halldórsson and Tonoyan [19] shows that, for any set L of links, there is an ordi-
nary (non-fractional) conflict graph C(L) , such that every independent set in C is 
feasible under the geometric SINR model, and the chromatic number of C is at most 
O(log∗ Λ) factor away from the chromatic number of L under SINR (using global 
power control). Recall that Λ is the ratio between the largest and smallest link 
length. Moreover, C is constant-inductive independent [19, Prop. 1]. This directly 
gives us the following Corollary of Theorem 3.

Theorem 8  There is a O(log n log∗ Λ)-approximation algorithm for Steiner Connec-
tivity Scheduling in geometric SINR with global power control.

A similar result with O(log logΛ)-factor instead of O(log∗ Λ) holds also for cer-
tain oblivious power schemes (but not, for instance, uniform power) [20].

5.3 � All short links available

Recall that the parameter � in Theorem  4 was defined as the number of colors 
required to color an MST in the complete graph setting, i.e., when G is the complete 
graph. For Euclidean SINR with general power control, � = O(min(log n, log∗ Λ�)) , 
where Λ� is the ratio of the longest and the shortest distances between the nodes [17, 
22].
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Corollary 2  For a graph G containing all short links, an MST gives a 
O(Π +min(log n, log∗ Λ�))-approximation in geometric SINR with power control.

6 � SINR Definitions

For completeness, we include here various definitions and facts regarding the SINR 
model.

The abstract SINR model has two key properties: (i) signal decays as it travels from 
a sender to a receiver, and (ii) interference—signals from other than the intended trans-
mitter—accumulates. Transmission succeeds if and only if the interference is below 
a given threshold. The Metric SINR model additionally assumes geometric path-loss: 
that signal decays proportional to a fixed polynomial of the distance, where the path-
loss constant � is assumed to be an arbitrary but fixed constant between 1 and 6. This 
assumption is valid with � = 2 in free space and perfect vacuum [12, Sect. 3.1]. In the 
Euclidean SINR model, the distances are planar.

Formally, a link lv = (sv, rv) is given by a pair of nodes, sender sv and a receiver 
rv , which are located in a metric space. Let d(x, y) denote the distance between points 
x and y in the metric, and use the shorthand dvw = d(sv, rw) . The strength of a signal 
transmitted from point x as received at point y is d(x, y)� . The interference Iuv of sender 
su (of link lu ) on the receiver rv (of link lv ) is Pu∕d

�

uv
 , where Pv is the power used by sv . 

When u = v , we refer to Ivv as the signal strength of link lv . If a set S of links transmits 
simultaneously, then the signal to noise and interference ratio (SINR) at lv is

where N is the ambient noise. The transmission of lv is successful iff SINRv ≥ � , 
where � ≥ 1 is a hardware-dependent constant.

6.1 � Additional definitions: power, affectance, separability

We will work with a total order ≺ on the links, where lv ≺ lw implies that dvv ≤ dww . A 
power assignment P is oblivious if both Pv ≤ Pw and Pw

d�
ww

≤
Pv

d�
vv

 hold whenever lv ≺ lw . 
This captures the main power strategies, including uniform and linear power.

The affectance aP
w
(v) [13, 32] of link lw on link lv under power assignment P is the 

interference of lw on lv normalized to the signal strength (power received) of lv , or

where cv =
𝛽

1−𝛽N∕(Pv∕d
𝛼

vv
)
> 𝛽 is a factor depending only on universal constants and 

the signal strength P∕d�
vv

 of lv , indicating the extent to which the ambient noise 
affects the transmission. We drop P when clear from context. Furthermore let 
av(v) = 0 . For a set S of links and link lv , let av(S) =

∑
lw∈S

av(w) be the 

(1)SINRv∶=
Ivv

N +
∑

u∈S Iuv
=

Pv∕d
�

vv

N +
∑

u∈S Pv∕d
�

uv

,

aw(v) = min

(
1, cv

Pw

Pv

d�
vv

d�
wv

)
,
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out-affectance of v on S and aS(v) =
∑

lw∈S
aw(v) be the in-affectance. Assuming S 

contains at least two links we can rewrite Eq. 1 as aS(v) ≤ 1 and this is the form we 
will use. A set S of links is feasible if aS(v) ≤ 1 and more generally K-feasible if 
av(S) ≤ 1∕K.

The following theorem shows that the interference model assumptions of 
Sects. 4.3 and 4 hold for geometric SINR. This fact is widely known, see e.g., [17]. 
We outline a proof for completeness.

Theorem 9  [17] If a link set is s-sparse, then it can be colored using O(s) colors 
under geometric SINR, and if it is d-dense, then it requires Ω(d) colors.

Proof  The former claim essentially follows from the results of Halldórsson [15]. 
Here is a crude sketch of a proof. Let L be a s-sparse set of links of length at most 
� . Partition the plane into squares of side � . Assign each link to a square where it 
has an endpoint, ties broken arbitrarily. It is easy to color the squares using constant 
number of colors, such that for each color class C , the distances between the squares 
in C are greater than c� , where c is a constant of our choice. Let C be any color class. 
Using sparsity, partition the set of links assigned to the squares in C into at most 
s subsets S1, S2,… , Sk , such the intersection of each Si and each square in C is at 
most a single link. Then a standard area argument (see, e.g. [15]) shows that if the 
constant c is sufficiently large, Si are feasible sets (e.g. under uniform power assign-
ment). Note that it is important here that all links have length at most � , so they are 
“attached” to their corresponding squares.

Now consider a subset S ⊆ L that is s(L)-dense, and let � be the minimum link 
length in S, and let X be a �-by-� square with s(L) endpoints from S. Let T ⊆ S be 
the subset of links with endpoints in X, and note that |T| ≥ s(L)∕2 . The distance 
between any two points within X is at most 

√
2� . It follows that no pair of links 

in T can coexist in a 
√
2
�

-feasible set. That is, T, and therefore also L, requires 
|T| ≥ s(L)∕2 colors when � ≥

√
2
�

 . By signal strengthening, the exact value of � 
changes the chromatic number of the set only by a constant factor. 	�  ◻

7 � Conclusion and Open Questions

We introduced a new formulation of Connectivity Scheduling that captures unreli-
able links in wireless networks, thus extending the “vanilla” SINR setting. This was 
done in a way that incorporates certain abstract properties of the geometric SINR 
model, without overly relying on geometry, on the one hand, and without overly 
generalizing the model (which would imply intractability), on the other hand. Our 
new algorithms, besides working in the extended model, also produce results of sim-
ilar quality for a more general variant, namely the Steiner variant of the problem.

Many related problems are left addressing; we mention the most prominent 
ones. In the latency minimization problem, the goal is bounding the time it takes 
for a packet to filter through the tree from a leaf to the root (and back). This requires 
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optimizing both the height of the tree as well as the ordering of the links in the 
coloring (and the number of colors). Another challenging variation is the directed 
case, where the structure we are looking for is an arborescence, rather than a tree. 
This requires new techniques, as our arguments crucially depend on the graph being 
undirected. Finally, in various practical scenarios, it may be necessary for wireless 
nodes to self-organize, and, in particular, compute schedules and connect to each 
other via distributed algorithms. In the context of our work, a key challenge is han-
dling the sequential nature of inductive independence in a distributed setting, or 
finding an alternative measure.
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