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Abstract 

Although phosphorus (P) is an essential element, its availability to plants is often limited, and P-

containing fertilizers must be supplemented to stimulate plant performance. However, the 

inefficiencies and negative environmental impacts associated with nutrient delivery strategies have 

motivated interest in nanotechnology-enabled agriculture. Here, we synthesized biodegradable 

polymer nanocomposites (PNCs) containing polyhydroxyalkanoate (PHA) and calcium phosphate 

nanoparticles (Ca-P-NPs) and assessed their efficacy as a P-delivery vehicle, compared to a 

conventional P source (CaHPO4), using tomato as a test plant. The effectiveness of PHA-Ca-P 

PNCs was assessed by measuring plant biomass, fruit yield and quality, tissue elemental and 

chlorophyll content, and enzymatic biomarkers. Phosphorus in the leachate was used as a surrogate 

for runoff. PHA-Ca-P PNCs biodegraded as a result of microbial activity in the soil, controlling 

the release of P during the initial stages of plant growth. PHA-Ca-P PNCs supported plant 

performance comparably to the conventional P source, while significantly reducing the P loss from 

the soil by over 80%. Given the negative consequences of eutrophication driven by P-rich 

agricultural runoff, this significant reduction in lost P has broad implications. Our studies also 

highlight the need to improve the efficiency of P uptake by plants from exogenous P sources. 

Collectively, these findings demonstrate the significant potential of biodegradable PNCs as a 

nutrient delivery platform to simultaneously enhance crop productivity and reduce the negative 

impacts of agriculture on the environment. 

 

 

 



 

Introduction 

As climate change threatens the availability of clean water and arable land, global crop 

production will need to increase by 70% over the next three decades to feed the growing 

population.1,2 Currently, of the millions of tons of agrochemicals applied each year, only 10-20% 

of applied nutrients and pesticides are used by plants.3 Sustainably providing adequate levels of 

nitrogen, phosphorus, and potassium (NPK) remains a primary challenge.2,4-6 P is required for 

energy metabolism, phospholipid membranes and nucleic acids, photosynthesis, and other 

biological processes.7,8 However, dependent on soil physical and chemical conditions, long-term 

P unavailability often occurs in agricultural systems due to the depletion of P from runoff, leaching, 

or formation of insoluble phosphates with other soil components.8, 10-14 Under either condition, the 

resultant P unavailability affects plant production.9,10 Consequently, increasing amounts11 of 

inorganic P,12 considered a nonrenewable resource,12-15 are added to soils as fertilizer.7 By 2050, 

global P use is projected at 26,000 Gg/year,16 but as noted above, delivery efficiency is low.17,18 

An important factor confounding efficient P delivery is its tendency to be lost from soil as 

runoff through rain and irrigation events,19 leading to P accumulation in surface waters, and 

contributing to eutrophication.18 Eutrophication is the most common impairment of surface waters 

in the United States, resulting in excessive algae and aquatic plant growth, and loss of 

biodiversity.20,21 Algal blooms often lead to “dead zones,” which are hypoxic areas in surface 

waters unable to support life.11,20 These algal blooms pose hazards to environmental and human 

health, and lead to significant losses of revenue from aquaculture, fisheries, and recreational 

activities.7,18 The development of novel and sustainable P delivery platforms that reduce runoff is 

therefore critical for sustainably enhancing crop yield while simultaneously mitigating negative 

environmental impacts. 



 

One method for improving P delivery is through nano-enabled agriculture.1,22-25 Taşkın et 

al.26 demonstrated that fertilizing lettuce plants with nanoscale hydroxyapatite resulted in 

equivalent biomass but greater plant P content, compared to highly soluble H3PO4. Lui and Lal27 

reported that nanoscale hydroxyapatite increased the growth and yield of soybean, compared to 

triple super phosphate (Ca(H2PO4)2). Similarly, Mikhak et al.28 showed that nanoscale zeolite 

saturated with nanohydroxyapatite significantly increased biomass, tissue P content, and essential 

oil content from German chamomile (Matricaria chamomilla L.) when compared to rock 

phosphate and triple super phosphate. Although promising, nanoscale P use is limited by the 

challenges of effectively applying and distributing nanoscale nutrients.4,29  

The use of biodegradable polymers is an emerging strategy for achieving tunable release 

and delivery of agrochemicals.30-32 Biodegradable polymers can be used as coatings for dry or 

pelleted fertilizers,33-35 modulating the dissolution of encapsulated nutrients as a function of 

polymer porosity, soil temperature, and moisture.30,36 Varying the polymer type provides 

opportunity for greater temporal control over release to achieve crop-specific nutritional needs. A 

less common approach is to incorporate nutrients directly into a biodegradable polymer to create 

a polymer-fertilizer composite.35 This method relies on polymer biodegradation by soil microbes 

or biophysical-edaphic factors to release the fertilizer cargo.37-40 Volova et al.37 found that urea 

embedded in a biodegradable polymer provided controlled N release to lettuce, leading to reduced 

nutrient runoff and greater plant biomass. The ultimate utility of these materials depends on how 

well they support plant performance; however, there are few available plant-based studies and 

those that have been published are on short time scales.37 Many studies only examine nutrient 

release in well-controlled laboratory settings (e.g. water), without probing the more complex and 

dynamic interplay that will exist in true agricultural settings, including the effects of soil factors 



 

and microbial activity.29,30,40-43 Moreover, many studies rely on complex and costly polymer 

synthesis procedures that are not amenable to scaling and commercialization.39,44 

In this paper, we developed and evaluated a tunable biodegradable polymer nanocomposite 

(PNC) platform containing calcium phosphate nanoparticles (Ca-P-NPs) and 

polyhydroxyalkanoate (PHA), a highly biodegradable microbially-synthesized polymer.45,46 The 

performance of tomato plants receiving PNCs as a P source was compared to a conventional P 

source  (CaHPO4) through measures of biomass, yield, element content, and various enzyme 

activity assays. Leached P from the pots was used as a surrogate to assess P loss from soil under 

planted conditions. The goal of this study was to evaluate the ability of PNCs to support plant 

performance while mitigating the environmental damage resulting from P losses in agricultural 

runoff. 

 

Materials and Methods 

Preparation of polymer nanocomposites containing calcium phosphate nanoparticles. 

Biodegradable PNCs containing calcium pyrophosphate nanoparticles (Ca-P-NPs) were 

synthesized from PHA and amorphous nanoscale Ca2P2O7ꞏH2O (< 150 nm) using solution 

blending. A schematic of the solution blending process and representative photographs of PNCs 

can be found in Figure S1. For these proof of concept experiments, solution blending was chosen 

as a simple route to prepare polymer nanocomposites, one which does not require the use of more 

complex and expensive melt-mix extruders. PHA was purchased from Metabolix (Woburn, MA) 

and Goodfellow (Coraopolis, PA); Ca-P-NPs and chloroform were purchased from Sigma (St. 

Louis, MO) and used without further purification. To create PHA-Ca-P PNCs, chloroform was 

used as a volatile co-solvent. The appropriate quantity of Ca-P-NPs, either 375, 750, or 1500 mg, 

corresponding to 5%, 10%, and 20% weight of the polymer, respectively, were added to 200 mL 



 

chloroform in an Erlenmeyer flask. The flask was tightly sealed and sonicated using a Branson 

1510 ultrasonicator bath (Danbury, CT) at 70 watts for 1 h, after which 7500 mg PHA was added 

and sonicated for an additional 1 h. The PHA-Ca-P suspension was poured into a glass petri dish 

and left to dry overnight in a fume hood to form a thin film of PHA-Ca-P PNC. In two of the three 

tomato experiments, PNCs were vacuum annealed by drying in a Thermo Scientific Lab-Line 

vacuum oven (Waltham, MA) at 80 °C and -13 psi for 3 days; the rationale for this annealing can 

be found below. Finally, PNCs were milled into sub-millimeter diameter particles by first freezing 

in liquid nitrogen and then grinding with a Waring 700S commercial blender (Conair Corporation, 

Stamford, CT). Pure PHA without Ca-P-NPs, for use as a control, was prepared and ground to sub-

millimeter particles in the same way as PHA-Ca-P PNCs. 

 

Characterization. PNCs were characterized using a combination of thermogravimetric analysis 

(TGA) and inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine the 

wt% Ca-P-NPs, attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) 

to assess the chemical bonding present in the composites, and scanning electron microscopy 

(SEM) with energy dispersive X-ray spectroscopy (EDS) to probe chemical composition, 

particularly the presence of residual Cl; complete characterization details can be found in the SI. 

 

Plant growth and leachate analysis. Three separate greenhouse plant growth experiments were 

conducted using PHA-Ca-P PNCs, pure PHA, or CaHPO4 (model conventional P fertilizer; Sigma) 

as soil amendments; see individual experiment descriptions for lists of treatments. In each 

experiment, topsoil (Agway Inc., West Springfield, MA) was mixed 1:1 with silica sand to 

promote drainage (1.45 bulk density (w/v)). The pH of the soil was 6.8. Because the soil contained 



 

initial high levels of available P (> 100 mg/kg soil) as determined through a Morgan test,47 it was 

leached daily for 10 days to reduce available P levels to approximately 40 mg/kg. Air-dried soil 

(2.9 kg for Experiments 1 and 2; 20 kg for Experiment 3) was amended by rotary mixing for 5 min 

and dispensed into five 10-cm plastic pots for Experiments 1 and 2 (0.58 kg soil/pot, 350 mL/pot) 

and 7.57 L plastic pots for Experiment 3 (4 kg soil/pot). One 5-week-old tomato plant (cv. Bonnie 

Best, Totally Tomatoes, Randolph, WI for Experiments 1 and 2; cv. Red Deuce, Harris Seed Co., 

Rochester, NY for Experiment 3) was transplanted into each of 30 pots (6 treatments, 5 replicates 

per treatment). Plants were arranged in a randomized block design under high intensity sodium 

vapor lights at 12 h photoperiods with 25 °C day and 18 °C night. Plants were fertilized one week 

after planting with a modified Hoagland’s solution42  without P salts (2.0 mM MgSO4•7H2O; 10.0 

mM Ca(NO3)2•4H2O; 10.0 mM KNO3; 2.0 ml of Hoagland’s microelements stock solution; 3.0 

mM Fe EDTA).42  Plants in Experiment 1 were fertilized with the no-phosphorus modified 

Hoagland’s solution at a rate of 50 mL/pot only once, plants in Experiment 2 were fertilized with 

50 mL/pot at one and two weeks after transplanting, and plants in Experiment 3 were fertilized 

with 100 mL/pot at one and three weeks after transplanting. At the conclusion of each study, plants 

were harvested, washed in tap water to remove soil, and fresh and dry biomass were recorded. Soil 

samples were subjected to acid digestion for ICP-OES analysis. 

In each plant experiment, leachate was collected as a surrogate for runoff. For leachate 

collection, pots were individually set on greenhouse benches in 14.3 x 14.3 cm plastic weigh boats 

(Fisher Scientific, Inc., Waltham, MA). Pots were irrigated with 100 mL of deionized H2O and 

when needed, an extra 50 mL of deionized water was added to produce leachates for collection. 

The leachates were collected within 10 min, diluted 1:1 in 6% HNO3, and analyzed by ICP-OES 



 

for P and other elements. On days that leachates were not collected, pots that required water were 

irrigated with sufficient volume (60-80 mL) to moisten soil but not allow leaching.  

Three tomato plant experiments were designed to answer different questions and as such, 

were run with different treatments, time periods, and leachate collection schedules. 

Experiment 1. Here, PNCs were not vacuum annealed during synthesis. The six experimental 

groups were: untreated control, pure PHA (2 g/pot), PHA-Ca-P PNCs with 10% wt Ca-P-NPs 

(PHA-10%Ca-P, 2 g/pot), Ca-P-NPs corresponding to the amount used in PHA-Ca-P PNCs, and 

an amount of CaHPO4 corresponding to the P concentration of the PHA-Ca-P PNC treatment; 125 

mg P/kg soil. Leachates were collected as described above on the first day only. The experiment 

was terminated after 8 days due to overt phytotoxicity in experimental groups containing PNCs 

(Figure S2). To investigate the toxicity, 90 g sterile peat-based potting mix (Jiffy Natural and 

Organic Seed Starting Mix, Norton, MA) was mixed with 3 g of PHA. There were five replicates 

for each of the three treatments involved: vacuum annealed PHA, air-dried PHA, and unamended 

control. The soil was planted with fast-growing lettuce seeds (cv. Black Seeded Simpson, W. Atlee 

Burpee, Warminster, PA), and placed under two 32 W fluorescent lights and watered as needed. 

Growth was assessed visually (Figure S3). 

Experiment 2. In Experiments 2 and 3, PNCs were vacuum annealed after synthesis to remove 

residual solvent (chloroform; further explanation below). The six experimental groups were: 

untreated control, pure PHA (2 g/pot), PHA with 10% wt Ca-P-NPs (PHA-10%Ca-P, 2 g/pot), 

PHA with 20% wt Ca-P-NPs (PHA-20%Ca-P, 2 g/pot), and two treatments using CaHPO4 in 

amounts providing P concentrations equivalent to the PHA-Ca-P treatments; 125 and 250 mg P/kg 

soil, corresponding to the 10% and 20% wt Ca-P-NPs loadings, respectively. The experimental 

design and greenhouse conditions were identical to Experiment 1. Pots were irrigated and leachate 



 

was collected using the procedure described above, on days 1, 3, 5, 8, 12, and 17. Plants were 

harvested after 17 d of growth (Figure 1). 

Experiment 3. PHA-Ca-P PNC performance was monitored over the full tomato life cycle to assess 

marketable yield and fruit quality. The same growth conditions were used as above, except that 

pot size (7.57 L) and soil quantity (4.0 kg soil/pot) were increased. The six experimental treatments 

were: untreated control, two pure PHA samples with the same amounts of PHA used in the PHA-

Ca-P composites with 5% and 10% wt Ca-P loadings (abbreviated as PHA5% and PHA10%, with 

76 and 36 g PHA per pot, respectively), CaHPO4 (4 g/pot), PHA-Ca-P with 5% wt Ca-P-NPs 

(PHA-5%Ca-P, 80 g/pot), and PHA-Ca-P with 10% wt Ca-P-NPs (PHA-10%Ca-P, 40 g/pot). The 

amount of P in the CaHPO4 and PHA-Ca-P PNC treatments was equivalent (0.91 g/pot). Pots were 

irrigated and leachate was collected using the procedure described above, on days 1, 3, 5, 7, 10, 

14, and 21, then weekly until harvest at day 155. At day 91, fruit had fully developed in at least 

one plant from each treatment and the experiment was terminated at 155 days. 

At harvest, the following end points were determined: biomass, elemental composition and 

total nonstructural carbohydrate (starch, sugars) content of plant tissues (fruit, shoot, root), 

chlorophyll content of leaves, total protein and enzyme activity (catalase) of roots and leaves, and 

elemental content of the plant tissues and soil. Methodological details can be found in the SI. 

 

Soil-only biodegradation experiments. Thin films of pure PHA and PHA-Ca-P PNCs containing 

20 wt% Ca-P-NPs were prepared for soil-only biodegradation experiments in the same way as 

above, with 5 mL aliquots of suspension poured into 4.25 cm diameter aluminum weighing dishes 

for solvent evaporation overnight, followed by 3 days of drying in a vacuum oven. These circular 

thin films were placed in leached Agway topsoil mixed with sand (see above) that was either 



 

autoclaved for 1 h at 121 °C or not autoclaved. Soil was watered as needed with deionized water 

to maintain moist but not saturated conditions. Thin films were removed from soil each week, 

rinsed, air-dried overnight, and photographed, after which they were returned to soil. 

 

Statistical Analysis. Statistical differences between treatments were determined by a one-way 

analysis of variance (ANOVA) with a Student Newman Keuls multiple comparison test. In 

Experiment 3, the three control treatments (unamended control, PHA5%, PHA10%)  were 

statistically equivalent, and as such, were combined and compared against the P-amended 

treatments using a Tukey test, Fisher LSD, or Dunn's methods. Differences were considered 

statistically significant when p < 0.05. 

 

Results and Discussion 

PHA-Ca-P PNC characterization. ICP-OES results of the Ca-P-NPs wt% in composites 

nominally containing 5 and 10 wt% Ca-P-NPs were 5.8% and 8.2%, respectively (Table S1). The 

TGA data (Figure S4) show a large mass loss just below 300 C attributed to PHA combustion,48 

while the residual mass at 500 C can be ascribed to inorganic Ca-P NPs.49 The wt% Ca-P-NPs in 

the nominal PHA-10%Ca-P PNC was 9% as determined by TGA, comparable to the ICP-OES 

findings. ATR-FTIR (Figure S5) of pure PHA as compared to PHA-Ca-P PNCs indicate that 

incorporation of Ca-P-NPs did not change the chemical bonding in PHA. Characteristic absorption 

bands for PHA50 in the C-O-C and C-C stretching and CH deformation mode regions (1300-1000 

cm-1) overlap with P-O and P=O stretches (1300-1100 cm-1) characteristic of Ca-P (Figure 

S5).41,51,52 This overlap and the low concentration of Ca-P-NPs prevent spectral identification of 

their inclusion in the PNCs. 



 

 

Plant growth studies 

Experiment 1. By day 7, all plants grown in soil amended with PHA were unhealthy and stunted 

(Figure S2). This deleterious effect from the PHA obscured any potential benefit from the PHA-

Ca-P PNCs. Since PHA is widely considered to be a nontoxic biopolymer,45,53,54 we hypothesized 

that trace quantities of chloroform used in PNC synthesis remained and caused the toxicity. EDS 

analysis revealed small quantities ( 0.1 %) of chlorine in the air-dried composites (Figure S6). To 

confirm that residual chloroform was responsible for the stunted growth, fast-growing lettuce seeds 

were planted in soils amended with PHA generated by solution blending that was either vacuum 

annealed or dried overnight in a laboratory hood. Lettuce plants in soil amended with vacuum-

annealed PHA grew significantly larger than those with air-dried PHA (Figure S3), indicating that 

residual chloroform was responsible for the phytotoxicity.55 Chlorine was not detected by EDS in 

vacuum-annealed composites. As such, all subsequently used PNCs were vacuum annealed for at 

least 3 days. These results underscore the need for caution and in particular the importance of fully 

characterizing PNCs made by solution blending and intended for plant growth studies so as to 

avoid confounding effects from even trace quantities of halogenated organic solvents, like 

chloroform, that are ubiquitous in synthesis protocols.56-58 Furthermore, although we were able to 

remove all traces of residual chloroform through vacuum annealing PNCs, there are nontoxic 

solvents59-61 that can be used in solution blending that would be preferable for any commercial-

scale synthesis of PNCs for use in sustainable agriculture; exploration of this modification is 

currently underway. 

 



 

Experiment 2. Plants with no added P showed severe stunting (Figure 1) and leaves exhibited 

typical reddish-purple coloration consistent with P deficiency after 17 days of growth (Figure S7); 

thus, the study was terminated. In contrast, plants grown in soils containing CaHPO4 or PHA-Ca-

P PNCs were healthy and visually similar to one another. The average dry mass of shoots and roots 

from plants treated with PHA-10%Ca-P was 0.80 and 0.22 g, respectively, whereas plants treated 

with CaHPO4 had average dry shoot and root masses of 1.15 and 0.29 g, respectively (Figure S8). 

In comparison, the dry weight of the shoots and roots from PHA control treatments was 0.08 and 

0.05 g, respectively. 

The concentration of P leached from the soils over 17 days is shown in Figure 1. In soils 

amended with CaHPO4 salts equivalent to 10 and 20 wt% Ca-P-NPs, the P concentration in the 

leachate was 4 and 1.6 mg/L at day 1, respectively, while leachates from all of the other soils 

contained < 0.3 mg/L P. In all soils, the amount of leached P decreased over time. However, over 

the course of the 17-day experiment, soils amended with CaHPO4 leached nearly an order of 

magnitude more P than those amended with PHA-Ca-P PNCs. Notably, soils amended with PHA-

Ca-P PNCs leached only slightly more P as compared to the background levels of P leached from 

the PHA or unamended controls. 

The significantly reduced P loss observed from the PHA-Ca-P PNCs as compared to the 

CaHPO4 treatments can be ascribed to the slow release of P as the PHA undergoes microbial 

biodegradation. This is seen in Figure S9, which compares the biodegradation of pure PHA and 

PHA-20%Ca-P added to autoclaved (left hand side of each panel) and non-autoclaved soil (right 

hand side of each panel) after one week. PHA and PHA-Ca-P PNCs exposed to autoclaved soil 

showed no visible or overt signs of biodegradation, while PHA and PHA-Ca-P PNCs exposed to 

soil with an active microbial population were significantly fragmented and decreased in size as a 



 

consequence of biodegradation after one week. As PHA biodegradation proceeds, embedded Ca-

P-NPs will become exposed and subsequently released from the polymer matrix, rendering P 

available for plant uptake.37,62 The rate of PHA biodegradation is determined by soil microbial 

activity and the chemical and physical properties of PHA.63-65 Microbial biodegradation of PHA 

into water-soluble organic acids proceeds via extracellular PHA depolymerases produced by a 

wide range of microorganisms in both aerobic (as in this study) and anaerobic environments.66-68 

In these studies, we used thin films to visualize the effects of biodegradation, since direct 

measurements of PHA biodegradation rates in our experiments were precluded by an inability to 

quantitatively recover the finely milled PHA-Ca-P PNCs powders (Figure S1) from the soil. The 

kinetics of the biodegradation process are illustrated in Figure 2 which shows photographs of how 

the size and structure of pure PHA or PHA-20%Ca-P thin films evolved over the course of 5 weeks 

of incubation time in non-autoclaved soil. Figure 2 reveals a systematic decrease in the size of both 

PHA and PHA-20%Ca-P, such that after the fifth week, both polymers had completely 

biodegraded and were not recoverable. This indicates that controlled P release from the Ca-P-NPs 

embedded in the PHA is likely to have occurred over the course of the first month or so of the 

tomato plant experiments. This is consistent with the literature which reveals that the timescale 

needed for complete PHA biodegradation in soils ranges from 1-12 months.63-65 

 

Experiment 3 

Plant growth effects. The dry weight of shoots and roots of plants across the different treatments 

after 155 days of tomato plant growth are shown in Figure 3. Root and shoot biomasses follow a 

similar trend. The greatest dry shoot masses were observed in plants receiving CaHPO4 and PHA-

10%Ca-P PNC; these were the only treatments significantly different from the control (p < 0.05). 



 

CaHPO4 and PHA-10%Ca-P PNC treatments also yielded the highest root masses, which were 

72% and 84% greater than the control, respectively. Notably, the mean weight of shoots and roots 

in plants grown with CaHPO4 and PHA-10%Ca-P PNC were approximately double those of the 

PHA and controls. The PHA-5%Ca-P treatment exhibited biomass values intermediate to those of 

the PHA-10%Ca-P and controls. Figure 3 demonstrates that PHA-10%Ca-P was equivalent to 

CaHPO4 in supporting plant growth. PHA alone provided no enhancement of plant growth, with 

values being statistically equivalent to the unamended controls.  

The P content of roots and shoots showed trends somewhat similar to the biomass data 

(Figure 3). There was a significant difference (p < 0.05) in shoot P content between treatments 

with added P, including CaHPO4 (4.719 g/kg), PHA-10%Ca-P (3.420 g/kg), and PHA-5%Ca-P 

(1.933 g/kg), and those without, including PHA5% (0.491 g/kg), PHA10% (0.537 g/kg), and the 

control (0.566 g/kg). The concentration of P in both roots and shoots was highest in CaHPO4, 

followed by PHA-10%Ca-P and PHA-5%Ca-P PNCs. There were no significant differences 

among treatments without added P (PHA, control). It should be noted that in previous reports,27,69 

plants receiving nanoscale hydroxyapatite had greater biomass compared to conventional 

fertilizers. One possibility is that nanoscale hydroxyapatite is more easily assimilated by plants 

than Ca-P-NPs, or that the higher water solubility70,71 of the conventional fertilizer 

Ca(H2PO4)2,27,69 as compared to CaHPO4, led to increased P runoff and a reduced fraction of plant-

available P.  

The total chlorophyll content of leaves from harvested plants was statistically equivalent 

across treatments (Figure S10), suggesting that changes in the P level resulting from the CaHPO4 

or the PHA-Ca-P PNC treatment did not impact photosynthetic activity in the plants. This finding 

is important, given that the photosynthetic competence of plants is a function of their total 



 

chlorophyll content.72 P deficiency can compromise plant productivity by altering electron 

transport to photosystem I, resulting in reduced overall photosynthetic efficiency.73 Total protein 

content (Figure S11) across the different treatments was measured, which is an indication of 

overall metabolism, including enzyme activity and protein synthesis, of which P is an integral 

constituent.74 Interestingly, the PHA-Ca-P PNC treatments resulted in 2-3 times higher root total 

protein compared to CaHPO4. This could potentially be a consequence of enhanced microbial 

activity due to PHA biodegradation.10,37,75 Sawan et al.76 observed significant increases in cotton 

seed protein as a result of higher P application rates, although this could cause increased P leaching 

into water bodies; notably, that phenomenon was avoided with the PNC platform. Lastly, tissue 

catalase levels were not impacted by treatment (Figure S12). Catalase converts H2O2 to H2O and O2 

in response to biotic and abiotic stresses, which mitigates the effect of reactive oxygen species and 

other free radicals.77 The lack of change in catalase activity suggests that free radical production 

was unaffected by the source of the P supply. 

 

Fruit effects. Given the importance of nanoscale treatments to yield, a number of fruit-based 

parameters were evaluated. There were no statistically significant differences in the fruit number 

or fruit mass between controls and treatments with added P (Figure 4). It should be noted that the 

soil used in this study contained 239 mg/kg of total P, which provided sufficient available P to 

support minimal physiological processes like flowering and fruit set. In contrast to fruit number 

and weight, the fruit P content was significantly higher (p < 0.05) in plants grown with added P; 

fruit from the CaHPO4, PHA-5%Ca-P, and PHA-10%Ca-P treatments had P contents that were 

129%, 77%, and 91% greater than the untreated control, respectively (Figure 4). Fruit P content 



 

was approximately 20% higher in plants treated with CaHPO4 than those treated with PHA-Ca-P 

composites. 

No significant difference was observed in the fruit lycopene content across all treatments 

(Figure S13). Lycopene is a naturally occurring red pigment present in tomato fruits and is an 

antioxidant that scavenges free radicals and protects cells against oxidative damage. Since 

lycopene is synthesized in plants via the mevalonic acid and methylerythritol phosphate enzymatic 

pathways, the lack of change in lycopene content suggests that PNCs had no impact on these 

important biochemical pathways. In addition, the fruit total sugar content was measured (Figure 

S14); sugars are critical for determining the nutritional value of plant tissues.78 As carbohydrates 

are the most abundant organic macromolecules in plants and require P for their production via 

photosynthesis, the photosynthesis rate has been correlated with the amount of sugars produced in 

plants.79 Here, increased fruit sugar content was observed in plants exposed to PHA-5%Ca-P, 

although no effect was observed with PHA-10%Ca-P. The reason for the higher sugar content with 

the PHA-5%Ca-P treatment is unclear, but regardless, sugar content was clearly not negatively 

impacted by PNC treatments. 

 

Soil Effects. The extent of P leached from soils over 155 days of plant growth was significantly 

greater for the CaHPO4 treatment than the PHA-Ca-P PNCs. Figure 5 shows the cumulative P 

leached from soils as measured by concentration (a) and mass (b); these data represent an average 

of all pots within each treatment group. For both measures, the leachate trends are CaHPO4 >> 

PHA-10%Ca-P > PHA-5%Ca-P  PHA  control. P was leached at an approximately constant rate 

during the initial 20 days, with decreasing quantities thereafter, in each treatment. As expected, 

the untreated control and the PHA treatments demonstrated similar leachate results. Over 155 days, 



 

these three treatments released between 2.7-3.4 mg P, only slightly less than the 4.4 mg P released 

by the PHA-5%Ca-P PNC, which itself was approximately half of the 9.0 mg released by the PHA-

10%Ca-P PNC. In contrast, the CaHPO4 released almost 50 mg P. Compared to the background 

levels of P released from the control and PHA, the CaHPO4 released over 7 times more than P the 

PHA-10%CaP. Considered alongside plant and fruit data, this clearly demonstrates that these P-

containing PNCs can support plant growth to an extent comparable to conventional P-containing 

compounds while dramatically decreasing the magnitude of P loss from soil. It should be noted 

that other conventional sources of P commonly used in agriculture (e.g. triple super phosphate 

(TSP) or diammonium phosphate (DAP)) are actually more water soluble than CaHPO4,70,71 

presumably leading to even higher quantities of P loss than observed in this study. 

Figure 5(c) shows post-harvest total soil P concentrations for each of the six treatments. 

Soil P concentrations were greatest in treatments with added P (CaHPO4 and PHA-Ca-P PNCs); 

the final soil P concentrations in PHA-5%Ca-P, PHA-10%Ca-P, and CaHPO4 were 143%, 91%, 

and 112% higher than the control, respectively (significant at p < 0.05). It is both notable and 

interesting that in spite of the significantly greater amounts of P lost from the soil in the CaHPO4 

treatment relative to the PHA-Ca-P PNCs, the total amount of P present in the soil is statistically 

equivalent across the three treatments. Since 0.91 g P was added to soils amended with the CaHPO4 

and PHA-Ca-P PNC treatments, it is evident that the overwhelming majority of added P is retained 

in the soil, underscoring the generally observed inefficiency of P uptake from inorganic sources of 

this nutrient. This assertion is supported by the data in Figure 5(d) which shows the mass of P in 

the plant (root and shoot) and the fruit calculated from the data in Figures 3 and 4, along with the 

data in Figure 5(b) on the mass of P leached. Analysis of Figures 5(b) and 5(d) reveals that although 

the efficiency of P uptake into the plant and fruit is approximately 60% higher for the CaHPO4 



 

treatment compared to the PHA-10%Ca-P PNC, the magnitude of P loss from the soil with 

CaHPO4 is over 700% higher. In comparing the two PHA-Ca-P PNC treatments with the PHA 

controls, the increase in total P uptake into the plant and fruit is nearly double for the PHA-10%Ca-

P versus the PHA-5%Ca-P. Since the total P present in both treatments is the same, this suggests 

that a PHA-15%Ca-P treatment would deliver P uptake comparable to the CaHPO4 treatment with 

P loss still dramatically reduced. 

Several worthwhile questions remain regarding the fraction of P retained in the soil. For 

instance, it is possible that the retained soil P in the PNC treatments is present in different and 

more bioavailable forms than the CaHPO4 treatments. It is well known that P forms insoluble 

complexes with other soil elements, such as Mg, Al, Fe, and Zn,14 and that P in soils can adsorb to 

soil particles,21,80,81 both of which render the nutrient unavailable to plants. As such, it is possible 

that the time-dependent reactions of P in the soil may differ when initially present in the 

nanocomposite form.  Additionally, up to 80% of soil P is classified as organic,82 meaning that it 

is covalently bound to biological macromolecules within soil organisms. Although organic P is 

unavailable to plants, over time it is mineralized and solubilized into plant-available, ortho forms 

through microbial activity.75,83-85 By initially trapping P within a polymer matrix, it is conceivable 

that significantly less added P would be sequestered through the above processes when using PNCs 

as compared to conventional fertilizers. Furthermore, there is a possibility that PNCs have not 

completely biodegraded at harvest and some amount of P is still contained within the composite 

to be eventually released. If the retained P in the PNC treatments is indeed present in a more 

available form, this could lessen the quantity of P-containing fertilizer needed in subsequent 

cropping events, providing further environmental benefit. Several of these questions are topics of 

current investigation. 



 

The single greatest advantage of using PHA-Ca-P PNCs compared to conventional 

fertilizer is the reduced quantity of P loss from the soil. It is important to note that although the 

quantity of the P lost in these greenhouse studies is proportionally small (Figure 5), given the 

enormous worldwide use of P-containing fertilizers, a fractional decrease in lost P of over 80% 

will translate into significant reduction in negative environmental impacts associated with P-

mediated eutrophication. It is important to acknowledge that although the majority of P losses 

worldwide are presumed to be due to erosion of soil particles bound to particulate phosphorus,21 P 

loss via leaching can occur, especially on flat land that is not subjected to typical water-driven 

erosive processes found on sloped terrain.86 Additionally, many strategies to reduce agricultural 

erosion87 have led to greater P losses through leaching, such as tile drain systems, no-till practices, 

and cover cropping.88,89 

Beyond the environmental benefits of reduced P loss from soil, the use of PNCs as 

agrochemical delivery platforms has other advantages. By using polymers that biodegrade at 

different rates, PNCs could be designed to provide tunable temporal control of P release to meet 

the life cycle requirements of different crops or the environmental conditions of specific soils or 

climates. Since P contained in PNCs remains trapped in the polymer matrix until biodegradation, 

P is presumably unavailable for sorption to soil particles and will not be lost to erosion that occurs 

in floods and seasons of heavy rains.21,80,81,90 PNCs could also be prepared to contain multiple 

nutrients in addition to P or to contain synergistic components, like boron, that have been shown 

to increase nutrient uptake efficiency.91 Additionally, other studies have shown that biodegradable 

polymers such as PHA support strong and diverse soil microbial communities,37 which could 

subsequently impact the availability of typically unavailable fractions of P.10,75  



 

Despite their many benefits, PNCs will not be a commercially viable method of 

agrochemical delivery until they can become cost competitive with conventional approaches. Our 

PHA-Ca-P PNCs, produced on a small scale with laboratory-grade reagents, cost approximately 

400 times more than conventional P-fertilizers such as TSP. Notably, this calculation accounts 

only for synthesis; a full life cycle analysis that incorporates added environmental benefits would 

most certainly narrow that economic gap. Moreover, commercial-scale synthetic methods suitable 

for scale up, like melt mixing, would reduce the cost of producing PNCs as well as eliminate the 

need for costly and potentially toxic organic solvents. Using less expensive biodegradable 

polymers, such as starch or even biowaste, or a less expensive source of P, such as nanoscale 

hydroxyapatite, would also drastically lower the cost of PNCs and potentially improve the 

efficiency of P delivery.27,69 Indeed, it is anticipated that other P-containing PNCs could be 

developed that will not only reduce P runoff but also improve crop yields compared to traditional 

P-fertilizers, further improving their cost benefit. Additionally, as global polymer markets shift in 

favor of biodegradable products, it is reasonable to assume that the price of PHA and other 

biodegradable polymers will decrease in the future.62 Using larger, micron-sized particles would 

likely also lower the cost, although it is unclear how the inclusion of larger particles would impact 

the kinetics of P release from composites. As research increasingly indicates that P, not N, is the 

primary driving force behind eutrophication,92-95 policies are being implemented worldwide to 

manage and limit agricultural P use.96-100 This, in combination with the dwindling supply of 

nonrenewable mineral P as rock phosphate,12,101 necessitates new and innovative ways to manage 

the global P supply, and the PNC platform evaluated in this work demonstrates significant potential 

for having a positive impact on the sustainability of agriculture in the future. 
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Figure 1. Tomato growth observed in Experiment 2 after 17 days in six different soil treatments. Top (from left to right):
Unamended soil (control), CaHPO4 salt with a phosphorus mass equivalent to PHA-10%Ca-P, CaHPO4 salt with phosphorus
mass equivalent to PHA-20%Ca-P, pure PHA, PHA-10%Ca-P, and PHA-20%Ca-P (see text for full details). Bottom: Average
phosphorus concentration in leachate collected from each treatment on selected days during tomato plant growth.



Figure 2. Biodegradation of PNCs containing pure PHA (top) or PHA-20%Ca-P (bottom) over four weeks in soil.



Figure 3. The effect of six different treatments, including polymer nanocomposites (PNCs) on the dry weight (g) of tomato root (a)
and shoot (b) and P content (g/kg) of tomato root (c) and shoot (d). The PNCs consisted of polyhydroxyalkanoate (PHA) solution
blended with either 5 or 10% wt calcium phosphate (Ca-P) nanoparticles. Controls included CaHPO4 added to deliver P equivalent to
the PHA-Ca-P PNCs, as well as PHA added in mass quantities equal to the PHA in the PHA-5%Ca-P and PHA-10%Ca-P PNC
treatments. An unamended control treatment was also included. Within a figure panel, bars with different letters are significantly
different by a one-way ANOVA followed by a Student Newman Keuls multiple comparison test (p < 0.05). In cases where the three
controls were statistically equivalent, these three groups were composited to a single control treatment for statistical analysis. In those
cases, a Holm-Sidak multiple comparison test was used. Error bars represent the standard deviation of 4 replicates.
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Figure 4. The effect of six different treatments, including polymer nanocomposites (PNCs) on tomato fruit number (a), fruit fresh
biomass (b), and fruit P content (c). The PNCs consisted of polyhydroxyalkanoate (PHA) solution blended with either 5 or 10% wt
calcium phosphate (Ca-P) nanoparticles. Controls included CaHPO4 added to deliver P equivalent to the PHA-Ca-P PNCs, as well as
PHA added in mass quantities equal to the PHA in the PHA-5%Ca-P and PHA-10%Ca-P PNC treatments. An unamended control
treatment was also included. Within a figure panel, bars with different letters are significantly different by a one-way ANOVA followed
by a Student Newman Keuls multiple comparison test (p < 0.05). In cases where the three controls were statistically equivalent, these
three groups were composited to a single control treatment for statistical analysis. In those cases, a Holm-Sidak multiple comparison
test was used. Error bars represent the standard deviation of 4 replicates.
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Figure 5. Average phosphorus concentration (a) and mass (b) in leachate collected from each treatment on selected days 
during tomato plant growth. For each treatment, following harvest, (c) shows the mass of phosphorus residual in the soil, 
while (d) shows the mass of phosphorus in the tomato plant (defined as the shoot plus root) and the fruit. Within a figure 
panel, bars with different letters are significantly different by a one-way ANOVA followed by a Student Newman Keuls
multiple comparison test (p < 0.05). In cases where the three controls were statistically equivalent, these three groups were 
composited to a single control treatment for statistical analysis. In these cases, a Holm-Sidak multiple comparison test was 
used. Error bars represent the standard deviation of 4 replicates.


