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Classification of simple algebras in the Deligne
category Rep(Sy)

Nate Harman, Daniil Kalinov

Abstract

We classify simple associative and Lie algebras inside the Deligne categories
Rep(S;), answering a question posed by Etingof.
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Introduction

Deligne defined a family of categories Rep(S;), where ¢ € F' is an arbitrary element of a
ground field F' of characteristic 0 [Del07]. These categories interpolate, in an appropriate
sense, the categories of representations of symmetric groups as rigid symmetric monoidal
F-linear categories.

In [Etil4] and [Etil6] Etingof laid out a program of “Representation Theory in Com-

plex Rank” which hopes to classify certain algebraic structures internal to these Deligne
categories (and their relatives for other families of groups) over the complex numbers and
to interpolate more complicated objects in representation theory.
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One such problem proposed by Etingof was to characterize the simple algebras inside
Rep(S;) for all t € C, the conjectural characterization being that all such algebras should
be interpolations of families of compatible simple S,-algebras (that is, C-algebras with
Sp-equivariant multiplication, and no non-trivial S,-invariant ideals). Where by algebras
we could mean associative, commutative, or Lie.

The case of simple commutative algebras was studied by Sciarappa in [Scil5]. He
characterized which families of simple commutative .S,,-algebras have interpolations to the
Deligne categories Rep(.S;), and showed that if ¢ is transcendental, these form a complete
list of the isomorphism classes of simple commutative algebras in Rep(S;). However, his
methods are unable to rule out the possibility of certain “exotic” simple commutative
algebras existing at special algebraic values of t.

In [Har16] the first author gave a new interpretation for the Deligne categories Rep(.S;)
at algebraic values of ¢ in terms of model theory and the modular representation theory of
symmetric groups, and using this sketched a proof that indeed Sciarappa’s classification
of simple commutative algebras holds at algebraic values of ¢ too.

In this paper we complete this program by classifying the simple associative and Lie
algebras inside Rep(S;) for all values of ¢t ¢ Z~(. The paper is structured as follows.

The first two sections are somewhat auxiliary. In the first section we review the
definition and properties of the Deligne category Rep(S;), with a focus on the model the-
oretic ultrafilter interpretation introduced in [Har16]. The second section contains some
technical lemmas about subgroups of symmetric groups, S,-algebras, and ultraproducts
thereof.

In section 3 we give the classification of associative algebras in Rep(S;). Theorem
3.1.2 says these are classified by a choice of a subgroup H of some symmetric group 5j, a
projective representation of H, and an object of Rep(S,—;). In particular, these exactly
correspond to families of simple associative Sy-algebras over C which have an interpo-
lation in Rep(S;). As in the commutative case, there are no “exotic” simple algebras
appearing for special values of t.

In section 4 we focus on the case of Lie algebras, and here the situation is somewhat
more complicated. Given an object V' of dimension 0 in a rigid symmetric tensor cat-
egory, one can construct a Lie algebra object psl(V') of dimension —2 as a subquotient
of V ® V*. By combining this construction with induction from subgroups we see that
there are many examples of simple Lie algebra objects in Rep(S;) for ¢ algebraic which
do not come from interpolating simple .5,,-Lie algebras over C. However using the ultra-
product interpretation we can view these as interpolating S,,-Lie algebras in large positive
characteristic. Theorem 4.2.5 says that this is all that can happen, and every simple Lie
algebra object in Rep(S;) indeed comes from either interpolating simple S,-Lie algebras
over C, or by interpolating these algebras built from algebras of the form psl(V') in positive
characteristic.

In section 5 we provide a conjectural treatment of the same statement in the case of
Lie superalgebras.
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1 The Deligne category Rep(S;).

1.1 Preliminary notations and definitions.

First we need to establish some notations which we will frequently use.

Definition 1.1.1. For a group H and a field k, denote by Rep(H; k) the category of
finite-dimensional representations of H over k. By Rep(.S,) denote the category of finite-
dimensional representations of S,' over Q i.e. Rep(S,) = Rep(S,;Q). By Rep,(S,)
denote the category of finite-dimensional representations of S,, over I, i.e. Rep,(S,) =
Rep(S,; F,).

Note that for p > n the latter category is semi-simple and the irreducible objects
are the same as in characteristic 0. More precisely, irreducible representations over Fp
can be obtained as a reduction modulo p of irreducible Q-representations which sit inside
irreducible C-representations as a Q-lattice of the full rank. Below we will always work
in the positive characteristic with p > n.

Definition 1.1.2. By A,, denote the subgroup of S,, consisting of even permutations.

Definition 1.1.3. For a Young diagram A, by [(A) denote the number of rows of the
diagram and by |A| the number of boxes.

The irreducible objects of both of these categories are in 1-1 correspondence with
Young diagrams of weight n. So let us make the following definitions.

Definition 1.1.4. By X ()) denote the irreducible representation of S| corresponding to
the Young diagram A. The field over which this representation is defined will be evident
from the context.

Definition 1.1.5. Let X}, denote a vector space F* with an action of S, given by inter-
changing the basis vectors. Here also the field F' will be evident from the context.

Below we will frequently use the following operation on Young diagrams:

Definition 1.1.6. For a Young diagram A and an integer n > A; 4 |A| denote by A|,, the
Young diagram (n — [A|, A1, ..., Aiy)-

We will also need the following definition in the next subsection:

Definition 1.1.7. Denote by F'F,,, a vector space over a field F' with a basis given by
all possible partitions of an n + m-element set. Graphically an element of the basis is
represented by two rows of e’s, the first of length n and the second of length m, where all
¢’s belonging to the same part of the partition are connected by edges. So, in other words,
it is a graph on n + m vertices, the set of connected components of which corresponds to
a partition of n + m (This doesn’t depend on the choice of the graph with the fixed set
of the connected components).

Also define a map gb?’m’k : FP, X FP,,, — FP,) for t € F as follows. Consider
A€ FP,,, and € F'P,, ;. Take a vertical concatenation of the graphical representations
of the corresponding partitions (the last one on top) and identify the rows of length m.
After this we are left with a partition of three rows of e’s of length n,m and k. Now let’s
denote by (i, A) the number of connected components consisting purely of e’s lying in
the second row. Also consider a partition of rows n, k consisting of the same connected
components as the partition of rows n, m, k but with elements of the second row deleted,
denote it by z- A. Then ¢ (i, ) = t1=N) gy - A,

Define FP,(t) to be FP,, with a structure of an algebra given by the map ¢;""".
This algebra is called the partition algebra and it was introduced by Purdon in [Pur91].

!The symmetric group of rank n.



We need to introduce a few facts about symmetric monoidal categories:

Definition 1.1.8. For the object X of the symmetric monoidal cateogory, we will denote
by ox the map from X ® X to itself, given by the symmetric structure, i.e. a map
permuting two copies of X, oftentimes, when the object we are referring to is obvious
from the context, we will denote it by o.

Also we will define the notion of a commutative/associative/Lie algebra in a symmetric
monoidal category (we will ignore associativity and unity morphisms of the monoidal
structure using MacLane strictness theorem and its consequences):

Definition 1.1.9. a) An associative algebra in a symmetric monidal category C is an
object X € C together with maps m: X ® X — X, e: 1¢ — X, such that the following
equalities between morphisms hold moldx @ m=mom ®@ Idx : X ® X ® X — X and
dy =moe®Idy =moldx®e: X — X.

b) A commutative algebra in a symmetric monidal category C is an associative algebra
X such that moo =m.

c) A Lie algebra in a k-linear symmetric monidal category C is an object X € C together
with a map [ ,] : X ® X — X, such that [ ,] oo = —[ ,] and the Jacobi identity
[,]oldx®[,]o({ldx +(c®Idxoldx ®0)+ (ldx ®coo®Idx)) =0: X@X®X - X
holds.

1.2 Definition and properties of Rep(S;).

From now on let ¢ by any element of C .

Here we will briefly discuss the definition of Rep(S;) and state some important prop-
erties it enjoys. For more about this see [Del07], [CO11], [Eti14].2

Note that our notion of a tensor category will differ slightly from [EGNO16]. We
do not require our categories to be abelian, nevertheless all categories we are going to
actually work with will be abelian.

First we need to define a preliminary skeletal category Repg(S;):

Definition 1.2.1. Rep,(S;) is a skeletal tensor category. Its objects are elements of Zx,
which can be graphically represented by rows of e’s, and denoted by [n].

The set of morphisms Homgep, (s,)([7], [m]) is equal to CP,,, and the composition
maps are given by ¢p"™".
Tensor product on objects is defined by the horizontal concatenation of rows and on

morphisms by the horizontal concatenation of diagrams. All objects [n] are self-dual.
Now we can define the Deligne category Rep(.S;) itself:

Definition 1.2.2. The Deligne category Rep(.S;) is the Karoubian envelope of the additive
envelope of Rep,(S;). It is a rigid symmetric tensor category.

Definition 1.2.3. The object [1] is called the fundamental representation and is denoted
by X. The object [0] is called the trivial representation and is denoted by C (by a slight
abuse of notation).

The important properties of Rep(.S;) are listed below:

Proposition 1.2.4. a) Fort ¢ Z>q Rep(S;) is a semisimple category.

b) Fort ¢ Z>, simple objects of Rep(S;) are in 1-1 correspondence with Young diagrams
of arbitrary size. They are denoted by X (\). Moreover X (\) is a direct summand in [|\|].
c) The categorical dimension of X ist and of C is 1.

d) All X(\) are self-dual.

2For the general theory of tensor categories see [EGNO16].
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Also we have an important universal property of the Deligne category:

Proposition 1.2.5. (8.3 in [Del07]) For any C-linear symmetric tensor category T, the
category of C-linear symmetric tensor functors from Rep(S;) to T is equivalent to the
category 7;f of commutative Frobenius algebras in T of dimension t. The equivalence is
obtained using the functor which sends a functor F' to the object F(X).

Here by a commutative Frobenius algebra in a symmetric monoidal category we mean
an object T" with the following structure. First it is an associative commutative algebra
with the corresponding algebraic structure given by ur, 17. Second this object is rigid
(dual objects exist). And finally if we define a map:

1®coevp evr

Tr: T TeTeT 2 Tor 2251,
then the pairing T@T 5% T I 1is required to be non-degenerate, i.e. it corresponds to
an isomorphism between 7" and 7™ under the identification Hom(7' ® T, 1) = Hom(T', T*).

1.3 Ultrafilters and ultraproducts.

It will be important for us that we can think of Rep(S;) for ¢ ¢ Z>¢ as a limit of categories
of representations of S,, over Fp, when n,p — oco. To formalize this statement we will
need to introduce ultrafilters and ultraproducts below.

We will quickly define what ultrafilters and ultraproducts are, state their main prop-
erties and give some examples. The following discussion is taken from [Kall8]. For more
details see [Sch10].

Definition 1.3.1. An ultrafilter 7 on a set X is a subset of 2% satisfying the following
properties:

o X ¢ F,

olf Ac Fand A C B, then B € F

oIf A Be F, then ANB € F;

e For any A C X either A or X\ A belongs to A, but not both.

There is an obvious family of examples of ultrafilters: F, = {4 € 2¥|z € A} for
x € X. Such ultrafilters are called principal. Using Zorn’s lemma one can show that
non-principal ultrafilters F exist iff the cardinality of X is infinite. Also it follows that all
cofinite sets belong to such an F (but not all sets belonging to F are cofinite). From now
on we will denote by F a fixed non-principal ultrafilter on N. Also by something being
true for “almost all n”, we will mean that it is true for all n in some A € F.

Remark 1. Note that by definition of an ultrafilter, if two statements hold for almost all
n, then their conjunction holds for almost all n. Also note that if for almost all n the
disjunction of a finite number of statements holds, then one of them holds for almost all
n (if not then each of them holds on some subset A ¢ F and the union of this subsets is
not in F). We will use these elementary observations quite frequently.

Let’s now define a notion of an ultraproduct.

Definition 1.3.2. Suppose we have a collection of sets 5; labeled by natural numbers.
Suppose that for almost all z € X one has S, # 0. Then [] S, is the quotient of [,y Sz
by the following relation: {s,} ~ {s.} iff s, = ¢, for almost all z. If for almost all 2 one

has S, = 0, then [[- S, = 0. The set [[- S, is called the ultraproduct of S;.

Usually we will denote {s,} € [[S; by [ sa-
First, let’s note that an ultraproduct inherits any operation or any relation, which is
defined for almost all n. Indeed to apply an operation to the elements of the ultraproduct
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we can just apply the correspoding operations to the corresponding sequences of elements,
and get a sequence of elements. In case of the relation doing the same thing we get a
sequence of Boolean values, which are going to be the same for almost all n, since there
are finite number of values.

The most important property of ultraproducts is the following;:

Theorem 1.3.3. Lo$’s theorem (Theorem 2.5.2 in [Sch10])

Suppose we have a collection of sequences of sets Si(k) fork=1,....,m and a collection
of sequences of elements fi(r) forr =1,...,1 and a formula of a first order language
o1, ... 2, Y1, ..., Yy) depending on some pammeters x; and sets Y. Denote by Sk) =
I~ S¥ and [ =TI fy(f). Then ¢( S fn S S(m) is true for almost all n
iff o(fOV, ..., fO,SW St s trye.

In plain language this means that if we have a sequence of collections of sets with some
algebraic structure given by maps between them, then, first, we have the corresponding
maps between the ultraproducts of these sets. And, second, these maps satisfy a given
set of axioms or properties for the ultraproducts iff they satisfy these axioms/properties
for almost all n. Also frequently it is useful to think about an ultraproduct as a certain
kind of a limit as n — oo.

We give a number of examples of such constructions, which are going to be useful to
us below:

Example 1.3.4. If S; is a sequence of monoids/groups/rings/fields then []-.S; with op-
erations given by taking the ultraproduct of the operations in the corresponding sets of
Homg,s gives us a structure of a monoid/group/ring/field by Lo§’s theorem.

Example 1.3.5. If V; are finite-dimensional vector spaces over a field k, then [, V; is not
necessarily a finite-dimensional vector space, since the property of being finite-dimensional
cannot be written in a first-order language. But if the dimensions of V; are bounded, then
they are the same for almost all 7 and hence V' has the same dimension (for example,
because the ultraproduct of bases is a basis).

Ezample 1.3.6. Take the ultraproduct of a countably infinite number of copies of Q. By
Lo$’s theorem [] f@ is a field, which is algebraically closed. It has characteristic zero
since Vk € Z such that k # 0 it follows that k = [[ -k # 0. Also it is easy to see that its
cardinality is continuum. Hence by Steinitz’s theorem? || F@ ~ C. Note that there is no
canonical isomorphism.

FExample 1.3.7. Take the ultraproduct of Fpn for some sequence of distinct prime numbers
Pn. As before, by Lo§’s theorem [] - Fpn is a field, which is algebraically closed. Also as
before it has cardinality continuum. Now k = [[-k # 0, since it is equal to zero for at
most a finite number of k. Hence []F,, ~ C, again not in a canonical way.

Ezample 1.3.8. Suppose C; is a collection of small categories. We can define an ul-
traproduct category C = [[-Ci as a category with objects Ob(C C) = [1-0b(C;) and
Homgs(][ - Xi, [[7Y:) = [[Home, (X;,Y;); composition maps are given by the ultraprod-
ucts of the composition maps, i.e. ([]zfi) o (I[Ir9:) = [1z(fi o g). By Lod’s theorem
this data satisfies the axioms of a category. If the categories C; have some structures,
for example the structures of an abelian/monoidal/tensor category, then C also has these
structures®.

Usually C is too big and it is interesting to consider a certain full subcategorie C in
there, or, equivalently, consider ultraproducts only of some sequences of objects of C;, for
example bounded in some sense.

3This theorem tells us that two uncountable algebraically closed fields are isomorphic iff their charac-
teristic and cardinality are the same. It is proven in [Stel0].
4But the finite-length property, for example, does not survive.



This construction obviously extends to essentially small categories up to an equivalence
of such a category with respect to all relevant structures. All categories which we will
consider are essentially small, and for all the questions we are going to discuss the fact
that ultaproducts are defined up to an equivalence does not matter, so we won’t bother
mentioning this later.

1.4 Rep(S;) as an ultraproduct.

Here, we will show how to construct Rep(S;) using ultraproducts, and discuss some im-
portant consequences of this construction. See [Del07],[Har16].

We want to apply the last example of the previous section to C; = Rep(S,,,K;) —
the tensor category of finite-dimensional representations of S,, over K;. As was stated
before (Definition 1.1.1) we will denote by Rep(S,) = Rep(S,,Q) and by Rep,(5,) =
Rep(S,,F,). We have the following result (Introduction of [Del07] or Theorem 1.1 in
[Har16]):

Theorem 1.4.1. a) Suppose t € C is transcendental. Consider C = [I- Rep(S,).

Denote by X; = @1 — the fundamental representation of S; and Xy = [[-X;. Fix an
isomorphism [[»Q ~ C such that [[ri = t. Then the full subcategory of the []rQ-

linear category C generated by X; under taking tensor products, direct sums and direct
summands is equivalent to the C—linear category Rep(S;), in a way consistent with the
above isomorphism HF@ ~ C.

b) Suppose t € C is algebraic but not integer, with a minimal polynomial q(z) € Z[z].
Fix a sequence of distinct primes p, and sequence of integers t, tending to infinity such
that q(t,) = 0 in F,,. Moreover fix an isomorphism [ zF,, ~ C such that []rt; = t.
Set C = [I- Rep, (S.,). Denote by X;, = F;i the fundamental representation of S;, and

set Xy = [ X+, Then the full subcategory of the [] - Fpn—lz'near category C generated by
Xy under taking tensor products, direct sums and direct summands is equivalent to the
C-linear category Rep(Sy), in a way consistent with the above isomorphism [[-F,, ~ C.

Proof. a) First let us prove that it is indeed possible to fix such an isomorphism. The
ultraproduct [[r¢ is an element of C. Suppose it is algebraic over QQ, then it should
satisfy a monic equation f with coefficients in Q. Then by Los’s theorem for almost all
i we have f(i) = 0, but since this is true for an infinite number of distinct ¢’s, it follows
that f = 0. Hence by contradiction we conclude that []4 is transcendental. Now by
fixing an automorphism of C over Q we may send this transcendental number to ¢.

So we have a tensor category C linear over C, with an object [[-X; of dimension ¢.
Since every X; is a commutative Frobenius algebra, it follows by Lo$’s theorem that X, is
also a commutative Frobenius algebra. Hence by Proposition 1.2.5 we obtain a monoidal
symmetric functor F' : Rep(S;) — C. Since Rep(.S;) is generated by X under taking tensor
products, direct sums and direct summands, it follows that the image of Rep(.S;) under F’
is the full subcategory C in C generated by X; under taking tensor products, direct sums
and direct summands. So we know that F' : Rep(S;) — C is essentially surjective. Now it
is enough to prove that it is fully faithful.

Note that it is enough to prove that

H HOIIlSn (X;?T, X§S> = HomRep(St)([TL [S]) ’
f

and that the composition maps are the same. Indeed both categories can be obtained as
the Karoubian envelope of the additive envelope of the categories consisting of all [s] or
X" respectively.

SFor the similar discussion about Rep(GL;) see [Del07], [Har16], [Kal18].
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But this follows from Theorem 2.6 in [CO11]. Indeed there it is stated that there is
an isomorphism between QP, ; and Homg, (X", X®) for n > r + s. So for almost all
n we have Homg, (X", X®%) = QP,,,. Also Proposition 2.8 in the same article states
that under this isomorphism the composition rule on Homg, (X2", X2*) transforms into
the composition rule on QP, ,, in the definition of Repy(S;). So it follows that indeed
[I-Homg, (X2, X2*) = Hompgep(s,)([7], [s]), and the composition rule is the same.

b) First, again, we need to explain how we can fix such an isomorphism. Let us prove
that there is indeed an infinite number of pairs t,, and p, such that ¢(¢,) = 0 mod p,.
It is enough to show that there are infinite number of primes dividing the numbers ¢(n)
(if in this case the sequence t, is bounded, it follows that some ¢(t,) is divisible by an
infinite number of prime numbers, which is absurd). Suppose it is not so, and there are
only k such primes. Fix C such that we have g(n) < C - n&@ for all positive integer n.
Denote by @ the number of integers of the form ¢(n) for n € Z> such that ¢(n) < N. By

the above inequality this number is at least % . N3=@. On the other hand the number
P of numbers less than N divisible only by k fixed primes is less or equal to log,(N)¥,
since each prime number is at least 2. Hence for big enough N we have P < @, which
contradicts the hypothesis®.

So we indeed can choose such unbounded sequences t,, and p,. Now by Los’s theorem
it follows that [] ¢, is a root of ¢ in C, so by composing with an automorphism of C we
may assume that under an isomorphism C ~ [ F,,, []t, maps to t.

The rest of the proof is the same since the representation theory of S,, is the same in
zero characteristic and in characteristic p > n, and p,, > t,, for almost all n. O

Remark 2. Generally proving something in the case of algebraic ¢ is harder than in the case
of the transcendental t. Thus we will for the most time think about the transcendental
case as a subcase of the algebraic case using the following formalism. By Fy we will mean
Q, and so the case t, = n, p, = 0 gives us transcendental ¢.

Also we will always assume that the sequences p, and t, are the sequences from
Theorem 1.4.1b) corresponding to the given t.

Remark 3. Note that for any finite group G we can characterize Rep(S;) X Rep(G;C)" as
a full subcategory in [[ - Rep, (S, )X Rep, (G), which consists of sequences of objects
[I=Ve = I1#> 1 Unj ® Yi, where Yj runs over all the irreducible objects of G (with
P > |G|), such that each [] - U, is an object of Rep(S;). Indeed on the level of abelian
categories it follows from the fact that Rep, (G) splits into a finite sum of categories of
vector spaces, and it’s easy to check that the tensor structure agrees (it’s the same for
almost all n).

Now we can understand how to obtain the objects X'(\) as ultraproducts. Indeed
FP,(t) for any t # 0,...,2n is a semisimple algebra with the same collection of idempo-
tents given by the specialization of idempotents from the same algebra, but there we treat
t as a formal variable®. So from Proposition 3.25 in [CO11] it follows that the idempotent
corresponding to X'(\) in F'P,(t) is the same one which corresponds to the irreducible
representation of Sy with k& > 2n given by the Young diagram (k — [A[, A1, ..., Ain)-

So using the notation introduced in Definition 1.1.2 the following Corollary holds.

Corollary 1.4.2. For allt ¢ Z>, the irreducible object X(\) of Rep(S;) can be obtained
as an ultraproduct of irreducible objects of Rep, (S:,) as X(A) =[] X¢, (Als,)-

Remark 4. Note that this means that if V" as an object of Rep(S;) equals to the ultraprod-
uct V' =[]V, then almost all V,, cannot contain the sign representation. Indeed, since

6This proof is also written by the first author in his paper, see the proof of Prop. 2.2 in [Har16].

"In this paper we use X to denote a Deligne tensor product of locally finite abelian categories, for the
definition see 1.11 in [EGNO16].

8See discussion in chapter 3.3 in [CO11].



V = &X()\;), we have for almost all n, V,, = @X(\|,,), hence the height of the Young
diagrams appearing in V,, is bounded for almost all n. But if V,, would contain the sign
representation for almost all n it would mean that each V,, would contain the diagram of
height ¢,, which contradicts the boundness of heights of the Young diagrams.

We also need to describe the generalizations of the induction and the restriction func-
tors. First let’s define the latter using the universal property of Rep(S;).

Definition 1.4.3. Consider the category Rep(S;—x) X Rep(S;C) for an integer k, and
in it the object X ® C & C ® Xj. This object is a commutative Frobenius algebra, and
has dimension ¢, so by the universal property we have a functor Rep(S;) — Rep(St k) X
Rep(Sy; C). This functor is called the restriction functor and is denoted by ReSS xSyt

Now we want to describe it in terms of ultraproducts.

Proposition 1.4.4. For all t ¢ Zs, the functor Ress _.xs, 18 equal to 5 Resgzn
where the latter functors are the reqular restriction functors for the finite groups.

XSk’

Proof. Recall that the Littlewood-Richardson coefficient Cf),u equals to the number of
Littlewood-Richardson tables of the skew shape A/v and of weight . We will use the fact
that we have:

S)a
Resslk:_kxsk (X(A) = @ Cz)/\,,uX(V) ® X(p) -
W=k, |ul=F

A priori the above ultraproduct functor is a not a functor between Rep(S;) and
Rep(Si—i) X Rep(Sk; C), but between the bigger categories of unrestricted ultraproducts.
Indeed this functor acts bewteen:

HResSt” xSy - HReppn(Stn) — H (Rep,, (Si,—r) X Rep, (S)) -
F F

Now by Remark 3 after the Theorem 1.4.1 we know how to characterize the category
Rep(S;_r) X Rep(Sk; C) inside the image. So we need to check that if we restrict it to
Rep(S;), we will indeed get objects of Rep(S;_x) X Rep(Sk; C).

So consider X'(A\) = [[ X(A]»). Now

(HResStn ) = [Tz s XOW) =T] @ dixwsxi,

F lul=hlvl=ta—k

where the ¢’s are the Richardson-Littlewood coefficients.

So if t, is sufficiently big, the gap between the first and the second rows of \|;, is
bigger than k. For such ¢, the skew shapes p/v for admissible v are all disconnected —
there is a part above the first row and the part in the first row. Note that we also can put
any sequence of numbers in the part lying in the first row. Hence if we denote by M ()
the set of weights 1/ (not necessarily partitions) such that 0 < u; < p; it follows that the
previous expression equals

[I & oXt)exw= @ drmeX@m,

F o |pl=k,w €M (p)v lul=k,p €M (p),v

where c)‘ .+ 1s the number of skew-shapes A /v of weight 1. Indeed in this formula we just

first summed over the possible choices of fixing the length and the content of the first row
(by fixing u') and then the rest. So the image of X'(\) under the ultraproduct functor
indeed lies in Rep(S;—x) K Rep(Si; C).

Now since []» Resngkxsk (X) = X ®Cao Cx® Xy, it follows that the ultraproduct
functor sends X to X ® C® C ® Xj. So by universality we conclude that the functors are
the same. O



Corollary/Definition 1.4.5. There is a functor from Rep(S;—)X Rep(Sk; C) to Rep(S;)
biadjoint to Resgz_kxsk, denoted by ]ndg:,kxsk and it is equal to [] - ]ndg:”_kxsk.

Proof. 1t can be proven in the same way as above that the ultraproduct of the induction
functors defines a functor into the Deligne category.

After we know this, by Los’s theorem it follows that this functor is biadjoint to the
restriction functor, since it is true in the finite rank. ]

Note that this allows us to define the restriction and the induction functors for any
subgroup of Si in the following way:

Stk XSk

St _ St
IndSHC = Indst,kxsk o Indstika ,

X

where the later functor is defined to be Indg::ig’“ = (Id X I ndé’“)
The same thing holds for restrictions.

2 Technical results on representations of Sy.

In this section we prove some technical lemmas which we will use extensively in our proofs
of the classification. The reader can skip this section at first, and then go back when the
need arises.

2.1 Facts about small-index subgroups in Sy.

In this subsection we will prove that under some restrictions on the index of a subgroup
of Sy it is conjugate to either A, x H or S, x H, where H is a subgroup of Sy_,.

So suppose N > 10, r an integer less then N/2, and G a subgroup of Sy of index less
than (]X ) First following Theorem 5.2 in [DM96] we have the following proposition:

Proposition 2.1.1. Under the above assumptions, up to a conjugation, G contains the
group An_; with j < r, where Ay_; is the group of even permutations of the first N — j
elements.

Now we have the second result:

Proposition 2.1.2. Suppose G is a subgroup of Sy which contains Ax_; and N > 2547,
then G is conjugate to either Sxy_j x H or An_j x H for some H C Sy and j" < j.

Proof. Let’s consider the standard action of Sy on N elements. Consider the orbit of the
first element under the action of G. By assumption it contains the first N — j elements.
Up to taking a group conjugate to G (we conjugate by an element fixing the first N — j
clements) we may assume that the orbit of the first element under G is equal to the first
N — j" elements for j' < j. We want to prove that G contains Ay_;. To do this, it is
enough to prove that any 3-cycle consisting of the first N — j' elements belongs to G.

Let’s denote by B the set of the first N — j elements and by C' the set of the j — j’
elements directly after B. So we need to consider 3-cycles of four types.

The first case is a 3-cycle consisting solely of elements of B. It is trivial by assumption.

The second case is a 3-cycle permuting elements z, y, z such that x,y € B and z € C.
Also let’s denote the first element by 1. Since z belongs to the orbit of 1 under G, it
follows that Jg € G such that g(z) = 1. Now since |B| = N — j is bigger than j by
at least 6, it follows by the pigeonhole principle that there exist two elements a,b € B
such that g(a),g(b) € B and all a,b, g(a), g(b), z,y are distinct. Now consider a double
transposition 7 which interchanges a <+ x and b <+ y, it belongs to Ay_; and hence to
G. Now consider a 3-cycle m permuting g(a), g(b) and 1. It also belongs to Ay_; and
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hence G. Now 7¢g~1mgr € G is a 3-cycle permuting z,y, z. Indeed if ¢ € N is not equal to
a,b,x,y, z then both m and 7 act trivially, hence ¢ maps to ¢ under the above map. The
elements a and m first map to x,y accordingly, then under g they map to something on
which 7 acts trivially, so they are mapped back and then back to a and b. Now (z,y, 2)
first map to (a, b, z) then to (g(a), g(b),1), then to (g(b),1,g(a)), then to (b, z,a) and to
(y,2,2).

The third case is x € B and y,z € C. Again suppose ¢ € G maps z to 1. Again
by the pigeonhole principle there are a,b,¢ € B such that g(a),g(b),g(c) € B and
a,b,c,g(a),g(b),g(c),x are distinct. By 7 denote the double transposition interchang-
ing a <> x and b < ¢, as before 7 € G by the assumptions. Now using two previous cases
it follows that a 3-cycle m which permutes g(a), 1, g(z) belongs to G. Hence by the same
logic as above Tg~'mgT € G is the required 3-cycle.

The final case is x,y, z € C. As before, fix ¢ € G mapping z to 1. By the above cases
there is a 3-cycle m € G permuting g(y), g(z),1. Then g~ 'mg is the required cycle.

Hence Ay_j; C G’, where G’ is a group conjugate to GG. Since the orbit of 1 consists
of the first NV — j" elements, it follows that G' C Sy_;» x Sj. By the above discussion we
are limited to the two cases: G’ = Ay_jy X H or G' = Sy_j x H, where H C Sj. 0

Now we are ready to state the main theorem of this section:

Theorem 2.1.3. Suppose G C Sy has index less than (JTY) for N > 2r +8. Then G is
conjugate either to Sn_; x H or Ay_; x H for some H C S; and j <.

Proof. Using Proposition 2.1.1 we conclude that the conjugate group G’ contains Ay_;
for j/ < r. Now using the Proposition 2.1.2 we conclude that the conjugate group G”
is equal to either Sy_; x H or Ay_; x H for some H C S; and j < j' < r, since
N>2r+7>25+7, ]

2.2 Lemmas on ultraproducts of representations of S; .

Lemma 2.2.1. Suppose V is an object of Rep(Sy) such that V. = [[zV, and V, =
Ind%:(Wn) for some subgroup G,, C S,. Then it follows that G, = S;,—; X H for some
J € Zso and H C S;, for almost all n. Also W = [[-W, is an object of Rep(S;—;) X
Rep(H;C), hence V = ]ndgi_ij(W).

Proof. Suppose V' is equal to the sum of I(V') simple objects of Rep(S;) such that each
one is a subobject of [m]| with m < m(V'). Then for almost all n we have V,, being equal
to the sum of {(V) irreducible representations included in V™ for m < m(V'). Hence for
almost all n we have dim V,, < I(V) - (t,)™"). But since V,, = Ind%:(Wn) for G, C S,
we know that dimV,, = dimW,, - |5, |/|Gn| > |S:,]/|Gn|. Hence we obtain the following
inequality:

(V) - (ta)™ ™) 215, 1/1Gal -

So we have a subgroup G,, C S;, with the index bounded by (V) A0V Since (m(f/")ﬂ) is

a polynomial of degree m(V') 4+ 1 with the highest term being equal to % it follows
that all but finite number of ¢,, we have (m(f/?)ﬂ) > (V) - (t,)™"). Hence for almost all

n, G, satisfies the condition of Theorem 2.1.3 with N =t,, and r = m(V') + 1. Thus for
almost all n we have, after a conjugation, G, = S;,_;, x H, or G|, = A, _;, x H, for
j<m(V)+1land H, C 5;,.

For conjugate subgroups G and G the objects Ind2Y (U) and Ind2y (U) are isomorphic
for the correct choice of the action of G and G’ on U. Hence we may suppose that
Vi = Indgt,”(Wn). But there is a finite number of subgroups H in S; for j < m(V) + 1,
hence there is a finite number of ways to choose G/, for every n. Thus (note that here
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we use Remark 1 in 1.3) for almost all n we have the same j, = j and H, = H C S,
and G,, = Sy,_; x H or G,, = A;,_; x H for almost all n. First we need to rule out the
possibility G,, = Ay, < H.

So suppose Gn = A;,—; x H. Then

Vo = IndZ (W,) = Indg™ o (Us) |

where U, is an S, _; x S;-module with an action of S;, _; induced from the action of A, _;.
But any such representation is equivalent to itself tensored with the sign representation,
hence if a partition \ appears in the decomposition, so does its conjugate \*.

However for any partition we have that [(\)x{(\*) > |A|, so in particular max{l(\),[(A\*)} >
\/W . Therefore any representation induced from A;,_; to S;,_; contains an irreducible
component corresponding to a partition of length at least v/t, — 7. So

Un —ZX ) & X (s)

where [\;| =t, — J, || = j and at least one of \; is of length at least /%, — J.

So we have: .
Vi = @ X(Q)* %, (1)
1,¢

where ( are partitions of ¢,, and ¢’s are the Littlewood-Richardson coefficients.
Suppose A; is of length at least /¢, —j. Then there is ¢ such that cf\jM # 0 and

hence ¢ contains \; and thus [(¢) > I(\;) > v/t, — j. So the lengths of Young diagrams
appearing in V,, are unbounded. But this contradicts V' being an object of the Deligne
category, because all the simple objects appearing in V lie in X®™ for some bounded
m, and hence the length of the Young diagrams appearing in V,, should be bounded for
almost all n. Hence G,, = S;,_; x H.

SoV, = Indgzz_jxﬂ(Wn). The last thing to check is that [[-W, is an object of

the Deligne category. By the Remark 3 after Theorem 1.4.1, writing W,, = @W* @ Uy,
where U}, is all possible irreducible representations of H, it’s enough to check that each
sequence WF gives an object of Rep(S;). As we know from our previous discussions this
is true iff the number of irreducible representations in the sequence WF for each k is
bounded and the number of boxes in the corresponding Young diagrams in all the rows
except the first one is bounded too. But note that when we induce, each representation
in W¥ gives us at least one irreducible representation in the resulting object, so if the
number of irreducible representation is unbounded here it is also unbounded in V,,. Also
if the number of boxes in all the rows except the first one is unbounded, then it follows
that the number of boxes in the irreducible components of V,, is also unbounded. Indeed
by Littlewood-Richardson rule we only add boxes to diagrams when applying induction.
Hence for V' to lie in Rep(S;), W also should lie in Rep(S;—;) X Rep(H;C). So we are
done and V = Indg!  ,(W). O

The next lemma concerns the projective representations of S,,. Denote by §n the dou-
ble cover of S,,. We may regard projective representations of S, as a linear representations
of S,,. We will need the following result ([KT12]):

Theorem 2.2.2. Supposen > 12 and p # 2, then any irreducible projective representation
of Sy, which s faithful as a S, -representation has dimension at least:

Kn—1

n— Kn n—2—
m1n<2L £} J ol J(n—2—/£n—2/£n,1)> ,

where Ky, is 1 if p|n and 0 otherwise.
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Under the same assumptions, any irreducible projective representation of Ay, which is
faithful as a A,-representation has dimension at least:

n—3—Kp_1

min (2““25””,2L > n—2—k, - 2nn_1)) 7

where k,, 1s the same.

Since the only nontrivial normal subgroups of §n are .,Zl\n and the central subgroup,
it follows that any non-linear representation of S, satisfies the condition of the above
theorem. Now we can apply this to obtain the following lemma:

Lemma 2.2.3. Suppose W, is a sequence of projective representations of Sy, (or Ay, ) for
some unbounded sequence t,,, such that dim W,, < MtL. Then almost all W,, are actually
linear representations of Sy, (or Ay, ).

Proof. Suppose the action of S;, on W, is non-linear for almost all n. Then by the
above theorem it follows that for almost all n we have dim W,, > ol™5*] and hence
dim W,, > 2t»=>. So we get that for almost all n ]\4sz1 > 2tn=5 which is a contradiction
since this inequality holds only for a finite number of n.

The same proof with dim W,, > 276 instead of dim W,, > 2~5 holds for A, . O

To prove the last lemma we will need to use another result, namely Lemma 2.8 from
[Etil4]:

Lemma 2.2.4. For each C > 0 and k € Z, there exists N(C,k) € Z, such that for
each m > N(C,k), if X(u) is an irreducible representation of S,, which has dimension
dim X (u) < CmF, then either the first row or the first column of ju has length > m — k.

Now to state our lemma we will need the following definitions:

Definition 2.2.5. a) For an object W of a symmetric tensor category define gl(W) to
be the object W @ W*. It has a structure of an associative algebra given by 1 ® ev ® 1 :
gl(W)®gl(W) — gl(W), and thus has a structure of a Lie algebra given by a commutator.
b) For an object W of a symmetric tensor category define sl(1¥') to be the Lie algebra
given by the kernel of the map ev : gl(W) — 1. In case of the category Vect this algebra is
simple iff the map 1 — 1 given by the composition of the evaluation and the coevaluation
maps for W is not zero.

c) For an object W of a symmetric tensor category such that the above map 1 — 1
is zero, define ps{(W) to be the cokernel of the map coev : 1 — sl(W). In case of the
category Vect this algebra is simple.

d) For an object W of a symmetric tensor category equipped with a (skew-)symmetric
non-degenerate bilinear form (an isomorphism v : W' — W*), define so(WW)(sp(W)) to be
the Lie subalgebra in gl(W) given by the kernel of o 09 ® ¢~! + Id. In the case of the
category Vect this algebra is simple.

Lemma 2.2.6. Suppose V is an object of Rep(S;) given by the ultraproduct of V, €
Rep, (S,), almost all of which are isomorphic to End(W,,) (or si(W,,), psi(W,,), so(W,,),
sp(W,,) if these objects are defined), for some W, € Rep(S;,). Then there exist W) €
Rep(S;,) such that End(W,,) ~ End(W!)(or the corresponding Lie algebras are defined
and isomorphic) and W = [ W), is an object of Rep(S;). Hence V.= W@W*, sl(W), psl(W), so(W),

Proof. Suppose V = "M X(\;), where all X(),) lie in [k] for k < L. Then for almost
all n (n > 3)
dim W,, < dim V,, < M (t,)*,
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so by Lemma 2.2.4 there is a number N (M, L) such that for any n > N(M, L) any
irreducible representation X (p) appearing in W, is such that either the first row or the
first column of y has length ¢, — L.

Hence for almost all n we have W, = ®X (,ug-n)) ® 5]("), with each /Lgn) having the first

row of length at least ¢,, — L, and E;n) being either a one-dimensional trivial or a sign
representation. Let’s denote by W/ a representation equal to W) = ¢ X (u&n)).

We need to check several cases.

e V, = End(W,)
Since the number of summands in V,, = W,, ® W,, is bounded and is bigger or equal than
the number of summands in W, it follows that the number of summands in the latter
representation is bounded. Hence, since there is a finite number of ways to put L boxes into
the rows of a Young diagram, it follows that for almost all n we have W,, = &.X (u; |n)®é’;n),
for some partitions p; of weight at most L. But now since there are also a finite number
of ways to assign to each j either a trivial or a sign representation it follows that for
almost all n the same assigment is used and so we can write W,, = ®X (u;],) ® &;. Now,
if one of &; is the sign representation and another &; is the trivial representation then
the ultraproduct of X (],) ® X (wiln) @ & @ & = (#X(n;|n)) ® sgn is not an object of
Rep(S;) since the number of rows is unbounded. But this contradicts V' being the object
of Rep(S;), hence &; are all trivial or all sign representations. In the latter case taking W,
instead of W,, does not change W,, @ W,, = W @ W/ (since W/ @ W/ = W,, @ W,, @ sgn®?).
But hence W = [[» W), = &X(y;) is well defined.

e sl or psl
In the first case we subtract one trivial representation of S;, and in the second case two
trivial representations, so it follows that the number of summands in W, is still bounded.
Using the same reasoning as above it also follows that &£; are all trivial or are all sign
representations since subtracting trivial representations from W, ® W, cannot delete a
representation with a big number of rows. So it follows that we again can take W/ and
get the same End(W,,) = End(W/) and hence the same Lie algebra.

® 50
Let’s write W,, as W,, = &X (uj(-")) ® U;. There all Vj(»n) are different for different j
and U; are trivial (but not necessarily one-dimensional) representations of S;,. Now,
an invariant symmetric bilinear form on W), is given by an isomorphism ¢ : W,, — W

Since all irreducible representations of S, are real and self-dual, by Schur’s lemma
it follows that an isomorphism ¢ : W,, — W>* decomposes to the sum of isomorphisms
;X (1/](-")) @U; - X *(V](.n)) ® Ur given by the tensor product of the isomorphism
X (V;n)) — X *(VJ(H)) and an isomorphism ¢; : U; — U;. So our symmetric invariant
bilinear form is the sum of products of the symmetric invariant forms on X (y](")) and
invariant forms on U;. Thus the forms on U; also should be symmetric. But then up to
change of basis we can assume that the invariant bilinear form pairs X (ug.")) ® 8;") to
itself in the decomposition W,, = &X (u}n)) ® 5]("). Hence so(W),,) contains copies of all
tensor products of @X(ugn)) ® EJW ® EBX(,LLE”)) ® 52-(”) for ¢ # j. This means first that the
number of summands in W, is bounded. And that the previous argument can be again
used to prove that all £ are either trivial or sign. So we can again take W, instead of
W,, to obtain the same Lie algebra.

o sp
Here the discussion in the previous paragraph can be repeated, but the invariant bilinear
form on U; should be skew-symmetric. Hence all U; are even-dimensional. Again up

to the change of basis in U;, we can write down W, as ®&X (,ug-")) ® 5](") ® Fin where
invariant form is given by sum of products of invariant forms on &X (ug-")) ® SJ(") with

standard skew-symmetric form on F;n. Thus again it follows that sp(W),,) contains copies
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of @X(u§-”)) ® EJ(”) ® @X(,ngn)) ® Si(n) for i # j. So all the previous arguments can be
repeated. O

3 Classification of simple associative algebras in Rep(S;)
and applications.

3.1 Classification.

First we need to understand the classification of simple associative algebras for Rep,(Sy).
There is the following way of constructing such algebras. Fix G C Sy and a simple
associative algebra Mat,,(F,) with an action of G. From this information we can construct
the algebra Fung(Sy,Mat,,(F,)) € Rep,(Sy), which is equal to Ind2N (Mat,,(F,)) as
a representation. We have the following theorem (see for example [Etil7], where it is

formulated for any group):

Theorem 3.1.1. Fiz an algebraically closed field k. Any simple associative algebra in
Rep(Sn, k) is isomorphic to Fung(Sy, Mat,(k)) and all such algebras are simple. More-
over G is defined up to conjugation in Sy and the action of G on Mat,, (k) up to conju-
gation in Aut(Mat,,(k)).

Now by Lo$’s theorem simple associative algebras in Rep(S;) are given by ultraprod-
ucts of simple associative algebras in Rep, (S,) = C, such that their ultraproduct as
objects of C,, lies in Rep(S;).

So suppose A € Rep(.5;) is a simple associative algebra in Rep(.S;), which is equal to
the ultraproduct of Indf;: (B,), where B, are matrix algebras. Then we can apply Lemma
2.2.1 to conclude that for almost all n we have G, = S;,_; x H, B = H]r B,, is an object
of Rep(S;—;) K Rep(H;C) and A = Indg'  ,(B).

For the next step, we need to understand which sequences of B,, are admissible and wat
can we obtain as the result of taking their ultraproduct. We know that B,, = Mat,,,, (F,,)
with a structure of a representation of S;,_; x H. Let’s slightly change the notation
and denote B, = End(V,), where V,, are some finite-dimensional spaces over F,, . Since
St,—; X H acts by algebra automorphisms on B,,, we have a homomorphism S, _; x H —
Aut(B,) = PGL(V,,). So we have a structure of a projective representation of S;,_; x H
on V,. But note that dimV, < dim B,, which is bounded by some M (¢, — j)¥ since
B =[]z B, is an object of the Deligne category. So Lemma 2.2.3 can be applied, and
hence we conclude that the structure of the representation of S; _; is linear and not
projective.

Thus each V,, is a representation of S;, _; together with a projective action of H.
Now we want to prove that [[- V], as a representation of Sy,_; is a well-defined object of
Rep(S;—;). But this follows from Lemma 2.2.6. So indeed we have V =[] V], an object
of Rep(S;—;).

Now we are ready to state the classification theorem:

Theorem 3.1.2. Suppose A is a simple associative algebra in Rep(Sy), then it is isomor-
phic to [ndgj_ij(B), where j € Zy, H C S; and B equals to V @ V*, where V is an
object of Rep(S;—;), together with an action of H on' V ® V* by algebra automorphisms.
Any algebra obtained in this way is a simple associative algebra in Rep(Sy).

Moreover, H is defined uniquely up to conjugation in S;, and the structure of a H-
representation on V@ V* is defined uniquely up to conjugation inside Autass—q1qs(V @ V*).

Proof. From the above discussion it follows that A = I ndgzijx u(B), for B =[] B, and
that B, =V, ® V. for V,, with a projective action of H and linear action of S;,_; which
commute with each other. Moreover [[-V, =V is a well-defined object of Rep(S;_;).
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Suppose V = @ X()\;) ® C* with \; # \; for i # j, then a projective action of H
on each V,, is given by the map p, : H — (@ GL(C*)) /({c- Id}). But there is a finite
number of such maps up to conjugacy, hence for almost all n they are the same and we
get the projective action of H on V itself. Which is the same as the action of H on V®@V™*
by algebra automorphisms.

Also any such algebra is simple by Lo$’s theorem .

Now we only need to check the uniqueness statement. Suppose we have two algebras
Indgzﬂ,X gV ®V*) and Indgﬁ, (W @ W*). These algebras are isomorphic iff almost
all algebras in the correspondi]ng ultraproducts are isomorphic. But by Theorem 3.0.1
it follows that this is only possible iff S, _; x H and S;,_j x H' are conjugate in S,
for almost all n, End(V,,) = End(W,,) and the actions of S;,_; x H and S;,_;; x H' are
conjugate in Aut(End(V},)). So it follows that j = j' (for ¢, > 2max(j,;’)) for almost
all n and hence H is conjugate to H' inside S; (since the conjugation should leave S, _;
invariant). Also it follows that V,, and W,, must have the same dimension, and since the
action of S; on them is the same up to conjugation, we can assume that V,, = W,, and
they lead to the same object of Rep(S;). Hence the last requirement is that the actions
of H and H' on End(V,) are conjugate. Hence by Los’s theorem the statement of our

Theorem follows.
O

Remark 5. This gives us a classification of simple commutative algebras in Rep(S;) given
in [Scil5], [Harl6] as a special case, where we restrict ourselves to B being 1-dimensional.

3.2 Application: functors between the Deligne categories.

In this section we will show how our result about the classification of commutative al-
gebras helps us classify symmetric tensor functors Rep(S;) — Rep(Sy) and also their
generalization Rep(S;) — Rep(Sy) X --- X Rep(Sy ).

We will start with functors Rep(S:) — Rep(Sy), for ¢,¢' ¢ Zs¢. From Proposition
1.2.5 we know that all such functors are classified by commutative Frobenius algebras of
dimension ¢ in Rep(Sy). We will start with the following lemma.

Lemma 3.2.1. Any commutative Frobenius algebra A € Rep(S;) is isomorphic to the
direct sum of simple commutative algebras.

Proof. Using previous notation, we know from Lo$’s theorem that A corresponds to a
sequence of objects A, € C,, with almost all of them being commutative Frobenius
algebras. Now note that such an algebra cannot have a non-trivial radical. Indeed since
/0 lies in every maximal ideal, it also lies in the kernel of Tr. But then for any element
N € /0, we have Tr(a - N) = 0, hence the form is degenerate, which is a contradiction.
So almost all A,, are semisimple as commutative algebras in the category of vector spaces.
Also all of them are finite-dimensional, since they are objects of C;.

Thus it follows that the action of S; on such an A, arises from the action of S
on mspec(A,). And now if the action of S;, on mspec(A,,) has [, orbits with stabilizers
Hi,...,H,, it follows that A, = @ Funy,(S;,,F,,).

So almost all A, are semisimple commutative algebras as objects of C;, so by Lo$’s
theorem the same holds for A. m

We also need another lemma.
Lemma 3.2.2. Any semisimple commutative algebra A € Rep(S;) is a Frobenius algebra.

Proof. We know that A = @fil A;, where A; are simple algebras. Note that Tr4 is equal
to (Tra,, ..., Tra, ), so if we prove that each A; is a Frobenius algebra it will follow that
A is too.
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So consider A = Indgz_jX (1). We want to prove that Tro p is a non-degenerate form
on A. To do that it is enough to prove that for n such that t,, > j the corresponding form
on A, = Indiziij(l) = Fung, _,xu(Si,,1) is non-degenerate.

Consider functions h; which are zero everywhere except one conjugacy class of
St,—j X H, where they are equal to 1. Such functions give us a basis of A,,. Now obviously
hih; = 0;;h;. Hence Tr(h;) = 1, and Tr(h;h;) = d;;. So the form is indeed non-degenerate,

and we are done. O
From these two lemmas and Proposition 1.2.5 it follows:

Proposition 3.2.3. All C-linear symmetric tensor functors between the Deligne cate-
gories Rep(S;) — Rep(Sy) for t,t'" ¢ Zso are in 1-1 correspondence with semisimple
commutative algebras in Rep(Sy) of dimension t.

Proof. From Proposition 1.2.5 we know that such functors are in 1-1 correpondence with
commutative Frobenius algebras of dimension ¢, but from Lemmas 3.1.1 and 3.1.2 we
know that any commutative Frobenius algebra is a semisimple commutative algebra and
vice versa. 0

Now since the dimension of Indg:%X z(C) is (tg)%, it follows that dimensions of
simple commutative algebras in Rep(S;) are multiples of (Z) for some integer k, and
thus all possible dimensions of commutative Frobenius algebras are positive integer linear
combinations of (Z) Or in other words they can be described as f(t), where f € R, and
R, is the subset in the algebra of integer valued polynomials, given by all positive integer

linear combination of binomial coefficients. Hence we have the following Corollary.

Corollary 3.2.4. Symmetric monoidal functors between the Deligne categories Rep(S;) —
Rep(Sy) with t,t ¢ Zsq exist iff t = f(t') for some f € R..

Remark 6. One can obtain a similar description for C-linear symmetric tensor functors
Rep(S;) — Rep(Sy, )X - - - K Rep(Sy, ). Such functors are in 1-1 correspondence with finite
sums of external tensor products of simple commutative algebras in Rep(St; ). And such
a functor exists iff ¢ is the positive integer linear combination of products of binomial
coefficients in ¢}, ...t .

To strengthen the result we can solve a simple number-theoretic problem.

Lemma 3.2.5. Consider a rational number % with r,s — coprime positive integers and
s > 1. Let py,...,pm denote all prime numbers which divide s. Then the set R, (%) =

{fE)| f e Ry} is equal to Z[1/s] = {W“{:z € Zxo}-

Proof. First note that R+(§) is closed under multiplication. It is enough to prove that
the product of (f) and (j) can be expressed as a positive integer linear combination of
(7). This fact follows from the identity (1 + 2)"(1 + w)" = (1 + (2 + w + zw))". Indeed,

expanding this we get:
AV t .
Z(J(j)zwﬁzz:(k)(z—l—w—kzw) ,

1,J k

so it follows that (;)(}) is equal to the coefficient of 2w’ in 35, (;) (2 +w + zw)*, which

is going to be a positive integer linear combination of (2) since all coefficients in the
expansion of (2 +w + zw)* are positive integers.
Now consider () = T(T_S)(T_zsg!;};'(r_(k_l)s). If we consider any prime number ¢ which

does not divide s, then s -1 is divisible by p? iff [ is divisible by p?. Hence in the sequence

17



r, r—s, v —2s ,... the numbers divisible by p are p terms apart, divisible by p? — p?
terms apart and so on. Hence the valuation VP(H?ZO(T —js)) > Vp(Hfzo(l +7)).
Thus if we write k! = h(k)g(k), where h(k) is the part which contains the product

of all prime numbers which do not divide s, and g(k) is the remainder, then we have:
r(r—s)..(r—(k=1)s) _ N_

k! g(k)

for some integer N. So it follows that:

(lgf) N % € Z[1/s].

Since Z[1/s] is obviously closed under addition, it follows that R (%) C Z[1/s], so we need
to show the other inclusion. Consider first k£ such that » < s(k—1), then (z) turns out to
be negative. So we have an element 2 with N < 0 and N, M — coprime in R (£). We also
have 1 € R, (%). Since N and M are coprime it follows that there are integers a,b such
that aN+bM = 1. Note that if a < 0 and b > 0, then the sum is at least N+ M > 1. The
same problem arises with @ > 0 and b < 0. So a,b have the same sign. So making them
positive we can arrange for alN + 0M = £1. So it follows that a% +b= % € R, and
since R, is closed under multiplication 51> € R (). Note that since M was divisible at
least by s, it is divisible by all primes py, ..., p,. Hence by multiplying by an integer we
conclude that pii € Ry(%), hence by taking products an multiplying by positive integers
all "5~ with n > 0 are in R, (%).

P17 --Pm

So, since —N — 1 > 0, it follows that == is in R, (%), thus 7} is in R4 (%) and by
the same logic all _p—il € Ry(%). Thus Z[1/s] C Ry (}) and we conclude that R, (%) =
Z[1/s]. O

Remark 7. Note that since r, s are coprime, it follows that Z[1] = Z[%]. Also it is casy to
see that if | € Zo, then Z[l] = Z and R (1) = Z.

Now we can apply this lemma to get an interesting result about functors into the
Deligne categories.

Corollary 3.2.6. A symmetric monoidal functor between the Deligne categories Rep(S;) —
Rep(Sy) with t' € Q\Z>o exists iff t € Z[t'].

4 Classification of simple Lie algebras in Rep(5;).

First we need to state the classification theorem for Lie algebras in characteristic p. See
chapter 4 of [Str04].

Theorem 4.0.1. Suppose g is a simple finite-dimensional Lie algebra over an algebraically
closed field of characteristic p > 5. Then it is either of classical or Cartan type.

Now we need to explain what classical and Cartan type means. First, classical type
Lie algebras can be obtained in the following way. Take any Dynkin diagram C' and define
a Lie algebra go as a vector space spanned by Chevalley basis corresponding to C' with
the ordinary Chevalley relations taken modulo p. It turns out that this algebra is simple
for any C' except Ay,_; for a positive integer k. In this case we also need to take quotient
by 1-dimensional center of sl;, spanned by scalar matrices and we get a simple algebra
psly,.

Algebras of Cartan type form four series of simple Lie algebras, namely W (m,n),
S(m,n), H(m,n) and K(m,n), where m € Z-( and n € Z7, (in the last case m is odd,
in the second to last case it is even). We will discuss some of their properties in the next
subsection.

The result analogous to Theorem 3.0.1 also holds in the case of Lie algebras, we only
need to exchange word “associative” to “Lie” in the statement of the Theorem ([Etil7]).
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Theorem 4.0.2. Fiz an algebraicallly closed field k. Any simple Lie algebra in Rep(Sy, k)
is isomorphic to Fung(Sn,b), for a Lie algebra by simple in the category of vector spaces.
All such algebras are simple. Moreover G is defined up to conjugation in Sy and the
action of G on b up to conjugation in Aut(Mat,,(k)).

We can now state the following Proposition:

Proposition 4.0.3. Any simple Lie algebra g € Rep(S;) is equal to Indgziijjf), for some
J € Zso and H C S;, where by is a simple Lie algebra given by the ultraproduct of simple
Lie algebras b, € C,, which remain simple under the forgetful functor Res : C, — Vec.

Proof. Since we know that g = [[rg9, and g, = Indgt:(hn), where b, is a simple Lie
algebra as an object of the category of vector spaces, the result follows from Lemma 2.2.1
and Los’s theorem . O

4.1 Ultraproducts of Lie algebras of Cartan type

We want to rule out the case of almost all h,, being of Cartan type.
To do this let’s first explain what W (m,n) actually is (see chapter 4.2 in [Str04] for

details). First, we need to define O(m) and O(m,n).
Definition 4.1.1. By O(m) denote a commutative algebra over F, with a basis xgal) Lzl
for a; € Z>(y with multiplication defined by:

xY”) Coglem) xgbl) Cglom) — (a1 + bl) o (am + bm> x§“1+b1) . glamtbm)

m m a U

By O(m,n) denote a subalgebra of O(m) spanned by mgal) ozl with 0 < a; < p™
Using this, the Witt algebra W (m,n) can be obtained in the following way.

Definition 4.1.2. By W (m,n) denote a simple Lie algebra given as follows:

All other simple algebras S(m,n), H(m,n) and K(m,n) can be realized as subalgebras
in W(m,n). We will need an important proposition about the automorphism groups of
such algebras, see chapter 7.3 of [Str04].

Proposition 4.1.3. There is an isomorphism ¢ : Autc(O(m,n)) — Aut(W (m,n)) from a
certain subgroup Aute(O(m,n)) C Aut(O(m,n)), to the group of automorphisms of Witt
algebra given by:

oc—=(D—ooDoo™ '),

where D is an arbitary element of W (m,n). Moreover it restricts to give an isomorphism
between S(m,n), H(m,n) and K(m,n) and certain subgroups of Aute(O(m,n)).

So from this proposition it follows what we need to understand the structure of the
group Aute(O(m,n)). This is done in [Wil71]. See Corollary 1 and Theorem 2.

Proposition 4.1.4. Take any isomorphism o € Aute(O(m,n)), denote by y; the images

of v; = xgl) under this morphism. By y; denote the linear part of y;. It follows that the
map x; — y; defines an element of GL(m,F,). Also there is an exact sequence:

0 — B — Aute(O(m,n)) — GL(m,F,) |

where B is solvable and the last morphism is as described above.
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Since the automorphism groups of all Cartan type Lie algebras are subgroups in
Aute(O(m,n))? it follows that such an exact sequence holds for any Aut(X (m,n)) with
X =W,S, H, K. Namely we have:

0 — Bx — Aut(X(m,n)) — GL(m,F,) , (2)

for different Bx.
Also we will need to know the dimension formulas for Cartan type Lie algebras, they
are summarized in the following proposition (see [Str04] section 4.2).

Proposition 4.1.5. The dimension of Cartan type algebras are given by the formulas
dim(W (m,n)) = mp="i, dim(S(m,n)) = (m — 1)(p=" — 1), dim(H(m,n)) = p=" — 2
and dim(K (m,n)) = p=" or p=" — 1 depending on m mod p.

Now we have everything we need to move on. So let us prove the following proposition.
Proposition 4.1.6. In Proposition 4.0.3 almost all b, are of classical type.

Proof. Suppose that almost all b,, in Proposition 4.0.3 are of Cartan type. Let’s denote
b = Xo(mn, Ny) (X, = W, S, H, K), then we have a homomorphism S;,_; — Aut(hy,).
Hence, because of (2), we have S;,_; — GL(m,F,, ). There are two possibilities here.
Either for almost all n this homomorphism is trivial or not.

First suppose it is trivial for almost all n. Then for almost all n, S;,_; — B,,, but since
the latter group is solvable, it follows that for almost all n the kernel of this morphism
contains 4,,. But then b, contains only one-dimensional representations of S;,_;. But
since the dimension of b, is bigger than p, — 3 it follows that the length of b, as a
representation of S;,_; is unbounded, hence its ultraproduct does not define an object of
the Deligne category.

The only other option is that this morphism is non-trivial for almost all n. Note that
this morphism cannot have A, as its kernel or the previous argument can be repeated.
Hence, since the lowest dimension of a S;,_j-representation which is not trivial or sign is
t,—j—1, it follows that m,, > t,—j—1, and thus the dimension of b, is at least pir =1 —3.
So it grows exponentially. But the dimension of any sequence of representations defining
an element of the Deligne category grows polynomially. So again ultraproduct of b, does
not belong to Rep(S;_;).

Thus the result follows. O]

4.2 Ultraproducts of classical Lie algebras

So, now we can assume that for almost all b, are of classical type.
Here we again have two possibilities. Either the size of the Dynkin diagram corespond-
ing to b, is bounded for almost all n or it is not. Let’s start with the first case.

Proposition 4.2.1. If the size of the Dynkin diagram corresponding to b, is bounded,
then by has trivial action of S;_;.

Proof. Since there is a finite number of Dynkin diagrams of bounded size, it follows that
for almost all n the corresponding Dynkin diagram is the same, so as a Lie algebra in
the category of vector spaces, b, is of the same type (again see Remark 1 in section 1.3).
But then its automorphism group is a subgroup in some GL N(Fpn). So since the lowest
dimension of an irreducible S;, _j-representation which is not trivial or sign is ¢, —j — 1
it follows that almost all b,, are sums of one-dimensional representations of S;,_;. But
it cannot contain the sign representations for almost all n, or the ultraproduct wouldn’t

9Theorem 7.3.2 [Str04].
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lie in Rep(S;—;). Hence for almost all n, b, is a trivial representation of S;,_;. Thus the
corresponding ultra-product is the same classical Lie algebra corresponding to the Dynkin
diagram with a trivial action of Sy, i.e. equal to the sum of the copies of the unit object
in Rep(S;_;). O

In the second case the size of the Dynkin diagram is unbounded. But the number
of infinite series of Dynkin diagrams is finite, so we may assume that for almost all n
the type of the Dynkin diagram is the same, and it is either A, B,C or D. To proceed
further we need to know something about the automorphism groups of these algebras.
This information can be found in [Sel60], it is summarized in the following Proposition.

Proposition 4.2.2. The group of automorphisms of the Lie algebra of type A,_1 (both in
the case pln and p t n) is the semi-direct product of PSL(n) by Z/2Z, where the second
group acts by X — —X'. We will denote the generator of this group by 7.

The group of automorphisms of the Lie algebra of type B, is PSp(n).

The group of automorphisms of the Lie algebra of type C,, is PSO(2n + 1).

The group of automorphisms of the Lie algebra of type D,, is PO(2n), for n > 4.

We have an additinal complication in the A,_; case, so let us deal with this case first.

Proposition 4.2.3. If b, is a simple Lie algebra of type A for almost all n, then, for
almost all n, S;,_; maps into the subgroup PSL(n) of automorphisms of b,,.

Proof. Suppose the map S;,_; — Z/27Z obtained as a composition of maps S;,_; —
Aut(h,) and Aut(h,) — Z/2Z is non-trivial for almost all n. Note that the map
Ay, —; — ZJ2Z obtained by restriction of this map is trivial, so A;,_; maps into PSL(N,,).
Suppose this map is non-trivial. By Lemma 2.2.3 it follows that this map gives us a linear
representation of A, _; on V = IE‘_pnN". By choosing a bilinear 4;, _;-invariant form on V/,
we can suppose that V* ~ V' as a representation of A, _;. But then since 7 acts on an
element of V@ V* as 7(v ® w) = —w ® v, it follows that 7 commutes with the action of
Ay, —;. So the action of 7 on the isomorphic image of A;,_; is actually trivial, and hence
the image of S;,_; is actually a direct product of A;,_; and Z/27Z, which is absurd. So
Ay, —; is in the kernel of the map S;,_; — Aut(h,). So for almost all n, b, decomposes
as the sum of one-dimensional representations of S, _;, but their ultraproduct lies in the
Deligne category, so almost all of them can not contain any sign representations. Hence
the action of S;,_; on b, is actually trivial. So we get a contradiction. O

From this proposition it follows that in each case S;,_; maps into a projective group
of the corresponding group of linear transformations of a vector space. But from Lemma
2.2.3 it follows that in each case we have an honest map from S;,_; to the corresponding
group of linear transformations, i.e. a represnetation of S;,_; on the corresponding vector
space.

We have the following proposition:

Proposition 4.2.4. If the size of the Dynkin diagram corresponding to b, is unbounded,
then for almost all n, b, = ¥(V,) for the same ¢ (r = sl psl, sp,s0). Also there exist
V' such that x(V,) = ¥(Vy)) and such that V' = [[ V. is an object of Rep(S;—;), hence
b=r(V).

Proof. We have established the first part of the proposition. Also from the discussion
above it follows that we have an action of S;,_; on V,, which leaves the correponding
bilinear form invariant. Now using Lemma 2.2.6 we conclude that such V! indeed exist. [

Now we can formulate the following classification theorem.
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Theorem 4.2.5. Fvery simple Lie algebra in the category Rep(S;) is isomorphic to the
one given by [ndglij(f)), where j > 0 s an integer, H a subgroup of S; which acts on a
Lie algebra by in Rep(S;—;) by Lie algebra automorphisms, and b is of one of the following
kinds:

- An exceptional Lie algebra which is equal to the sum of copies of the unit object of
Rep(Si—;).

- sl(V) for any V' of non-zero dimension, or psl(V') for any V' of dimension zero.

- 50(V) orsp(V) for any V with a (skew)-symmetric non-degenerate bilinear form.

Finally, such a simple Lie algebra is determined uniquely by the above data up to
conjugation of H inside S; and conjugation of the action of H inside of Aut(h).

Proof. We have already checked that Indgi_jx 1 (h) defined using the data described above
gives us a simple Lie algebra, since the resulting algebra g is an ultraproduct of the Lie
algebras which are simple due to Theorem 4.0.2.

Now from Propositions 4.0.3, 4.1.6, 4.2.1 and 4.2.4 we conclude that any simple Lie
algebra can be obtained in this way. Indeed from these propositions we know that such b
exists and is either a trivial representation of S;_; or it is given by r(V'). Now note that
if b = sl(V'), the dimension of almost all V,, are not divisible by p,,, or the algebra sl(V},)
would not be simple for almost all n, hence the dimension of V', which can be obtained
through the isomorphism [];F,, = C is non-zero. In the case of psl(V) on the other
hand it is divisible by p,, for almost all n and hence the dimension of V' is zero. In the case
r = so, sp the S, _;-module V,, has an S;,_j-invariant (skew)-symmetric bilinear form
for almost all n, hence it gives us a (skew)-symmetric bilinear form on V' in Rep(S;). So
indeed every simple Lie algebra can be obtained in the specified way.

The proof of the uniqueness is the same as in Theorem 3.0.2.

O

Remark 8. This theorem can likely be extended to the degenerate case when t € Z>.
Rep(S;) is not abelian for ¢ € Z so instead one should work with the abelian envelope
Rep™(S;) defined in [CO14]. This abelian envelope has a lot of nice properties, for example
it is a highest-weight category (see [BEAH17]), and it still can be similarly interpreted
via an ultrafilter construction as outlined in [Harl6]. The main difference is that the
categories Repab(St) are not semisimple so some care needs to be taken in some of the
arguments. However the main technical step of ruling out the Cartan type Lie algebras
(Proposition 4.1.6) by looking at their dimension growth goes through as is.

5 A conjecture concerning the classification of simple
Lie superalgebras in Rep(S;)

We will state a conjectural extension of the main results of this paper to the setting of Lie
superalgebras, and outline a possible approach to generalize the methods in this paper.
The textbook reference about the theory of Lie superalgebras is [Mus12], it contains the
classification of simple Lie superalgebras over C and their construction (Chapters 1-2
and 4). See the original paper of Kac [Kac77] for the classification.!® How these results
generalize to the modular case with big enough p can be found in [BGL"15] Section 2.3,
[Lei07] and [LBGO09] Section 10.

10The classification problem of finite dimensional simple Lie superalgebras in zero and positive char-
acteristic has a long history, which we in no way attempt to review; thus many important references are
not given here.
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5.1 Lie superalgebras in tensor categories and their simplicity
in Vect

Below we assume that for every Lie superalgebra g = go @ g1, the g; component is non-
zero. If gy is zero, then g is a regular Lie algebra and the result of the previous section
applies.

First we will need some definitions.

Definition 5.1.1. Fix V, W to be non-zero objects of a symmetric rigid tensor category.
a) Define the Lie superalgebra gl(V|W) to be the object (V@& W) ® (V* @ W*) with the
Z]2Z-grading given by gl(V|W )y = V@ V*eW W and gl(VIW), = VoW *aWaV*.
The superbracket [, J;; : gl(V|W), @ gl(V|W); — gl(V|W);y; is given by p— (—1)Ypoo,
where p is the associative algebra multiplication and o = oy w) (see Def. 1.1.8).

b) Define the Lie superalgebra sl(V|W) to be the subalgebra in gl(V|W) given by the
kernel of the map str : gl(V|W) — gl(V|W), Lo, mew) g

c) Consider the map [ : 1 ZVECWs a1(V|W),. The image of this map lies in sI(V|W)
iff dim V' = dim W. In this case define the Lie superalgebra psl(V|W) to be the cokernel
of [ 11— sl(V|W).

d) Fix a bilinear form on V @ V* specified by the identity map ¢ : Vo V* — (Vo V*)* =
V* @ V. Define the Lie superalgebra p(V') to be the subalgebra in sl(V|V*) preserving

oo -1
this form, i.e. the kernel of the map gl(V[V*) W& qyy|v=).
e) Consider a morphism ¢ : V@&V — V @ V| given by the matrix (_(j. d Iod>. This

morphism can also be considered as an element (i.e. a map 1 — gl(V|V)) of gl(V|V)
using evaluation and coevaluation maps. The Lie superalgebra q(V') is defined as the

centralizer of this element, i.e. as the kernel of the map gl(V|V) — gl(V|V)® 1 Ldge,
gl(V|V)@gl(V|V) L, gl(V]V). Next we define the Lie superalgebra q(V') as the kernel of

the map q(V') — 1 given by the restriction of the map gl(V|V), LoV, ©V) 4 Then there
is a non-zero map [ ; 1 <202 q(V)o. The cokernel of this map it the Lie superalgebra
(V).

f) Suppose there is a symmetric non-degenerate bilinear form on V' and a skew-symmetric
non-degenerate bilinear form on W. Denote the corresponding maps ¢y : V' — V* and
Yw W — W*. Then osp(V|W) is the following subalgebra in gl(V|W). We define
osp(V|W)o to be equal to the kernel of the map

Id+oo -t Id+oo ~1

and osp(V|[W); to be equal to the kernel of the map

oo(Py®1) , 1Q¢Pw

gV =Vew awaev: Swre v

Remark 9. These definitions mimic the standard definitions of the above Lie superalgebras
in an element-free fashion. It is straightforward to check that this definition agrees with
the usual definitions for the category of supervector spaces, and that the superbracket
descends onto the various kernels and cokernels used in the definition.

Now we want to know when exactly these superalgebras are simple for the categories
Vecty, and Vecty,. This is explained by the various classification results. Here kg stands
for an algebraically closed field of characteristic 0 and &, stands for an algebraically closed
field of characteristic p.

Proposition 5.1.2. (Theorem 1.3.1 in [Mus12]) Suppose V,W are non-zero objects of
Vecty,.
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a) The Lie superalgebra s\(V|W) is simple in Vecty, iff dim(V') # dim(W).
b) In Vecty, if dim(V) = dim(W) > 1 the Lie superalgebra psl(V|W) is defined and is
simple.
¢) The Lie superalgebra osp(V|W) is simple in Vecty,.
d) The Lie superalgebra q(V') is simple in Vecty, iff dim(V) > 2.
e) The Lie superalgebra p(V') is simple in Vecty, iff dim(V') > 2.

Proposition 5.1.3. (Section 10 in [LBG09], Section 6 in [BGLOS], Section 4.1 in [BGLL13])
Suppose V, W are non-zero objects of Vecty,.

a) The Lie superalgebra si(V|W) is simple in Vecty, iff dim(V) # dim(W) mod p
(See Section 10 in [LBG0Y]).
b) In Vecty, if dim(V') = dim(W) mod p and dim(V'),dim(W) > 1, the Lie superalgebra
psl(V|W) is defined and is simple (See Section 10 in [LBG09)]).
c) The Lie superalgebra osp(V|W) is simple in Vecty,. (See Section 10 in [LBG0Y]).
d) The Lie superalgebra q(V') is simple in Vecty, iff dim(V) > 2.
e) The Lie superalgebra p(V') is simple in Vecty, iff dim(V') > 2.

We have some results about the classification of all such superalgebras.

Theorem 5.1.4. (Theorem 1.3.1 in [Mus12], Section 4.2 in [Kac77]) Let g be a finite
dimensional simple Lie superalgebra over ky. Then it is either given by one of the examples
of Proposition 5.1.2 or by one of the exceptional Lie superalgebras 0(2,1;a) for o € ky,
a#0,1, f(4) or g(3) or by one of the Cartan type superalgebras W(n) , S(n), S(n) and
H(n).

Remark 10. The Lie superalgebras 9(2, 1; o) form a one-parametric series of superalgebras
of the same dimension.

Conjecture 5.1.5. (Conjecture 1 in [Lei07]) Let g be a finite dimensional simple Lie
superalgebra over k, with p > 7. Then it is either given by one of the examples of
Proposition 5.1.3 or by one of the exceptional Lie superalgebras or by a certain algebra of
Cartan type.

5.2 Lie superalgebras in Rep(S;)

Using Definition 5.1.1 we can construct the Lie superalgebras in the category Rep(S;) as
follows. Fix an integer j > 0, a subgroup H C S; and a Lie superalgebra b in Rep(S;_;)
of one of the following kinds:

- An exceptional or a Cartan type Lie superalgebra which as an object of Rep(S;_;)
is equal to the sum of the copies of the unit object.

- sl(V|W) for V, W such that dim(V') # dim(W) and V, W # 0.

- psl(V|W) for V, W such that dim(V') = dim(W) and both objects are not 0 or 1.

- osp(V|W) for any pair of non-zero objects V, W with a non-degenerate billinear form,
which is symmetric and skew-symmetric respectively.

- q(V) for V not 0 or 1.

- p(V) for V not 0 or 1.

Also fix an action of H on h by Lie superalgebra automorphisms. Then we can denote g
in Rep(S;) as ImdgljX ;(h). This is obviously a Lie superagbera since it can be presented
as an ultraproduct of Lie superalgebras. The fact that this is simple follows from the
statement simmilar to Prop. 4.0.2 for the case of Lie superalgebras, which also follows
from the general statement for operads given in [Etil7].

Now using this we can state a conjecture similar to Theorem 4.2.5.
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Conjecture 5.2.1. Any simple Lie superalgebra in Rep(S;) is isomorphic to the one
obtained as [ndgziij(b) from the data j, H,H as described above.

Such a simple Lie superalgebra is determined uniquely by the above data up to conju-
gation of H inside S; and conjugation of the action of H inside of Aut(h).

Sketch of Proof. Below is a rough sketch of the proof for transcendental ¢. In the case of
algebraic t the proof might be similar but relies on Conjecture 5.1.5.

The steps of the proof are the same as in Theorem 4.2.5.

First using the analogue of Proposition 4.0.3 it is easy to see that indeed g = Indgi_j ()
for some simple Lie superalgebra h which is given by the ultraproduct of simple Lie su-
peralgebras b, which remain simple when considered as an object of Vect.

The next step is a little bit more vague, since we need to rule out the possibility of
almost all b,, being of Cartan type with a non-trivial action of S;, _;(analogue of Propo-
sition 4.1.6). This requires some work in the case of algebraic ¢, but is straightforward
for transcendental ¢t. Indeed in this case all b, are Lie superalgebras over a field of char-
acteristic 0 and the dimension of Cartan type superalgebras grows exponentially with n
(hence their rank is bounded, hence almost all actions of S;,_; are trivial).

Next as an analogue of Proposition 4.2.1 it is easy to show that if the dimensions of
b, are bounded, then the action of S, _; will be trivial for almost all n.

Another step is to show that S;,_; x H acts by inner automorphisms of b, for al-
most all n. This is done in a way similar to Proposition 4.2.3 since the groups of outer
automorphisms of these superalgebras are some small groups.

The last step is the analogue of Proposition 4.2.4 which is based on the Lemma 2.2.6.
To prove this one needs to extend Lemma 2.2.6 to cover some more examples relevant for
the superalgebras case, which can be done in a similar way.

After all this is done the claim will follow in the same way as in Theorem 4.2.5.

O
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