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ABSTRACT
Edge streams are commonly used to capture interactions in dynamic
networks, such as email, social, or computer networks. The problem
of detecting anomalies or rare events in edge streams has a wide
range of applications. However, it presents many challenges due
to lack of labels, a highly dynamic nature of interactions, and the
entanglement of temporal and structural changes in the network.
Current methods are limited in their ability to address the above
challenges and to efficiently process a large number of interactions.
Here, we propose F-FADE, a new approach for detection of anom-
alies in edge streams, which uses a novel frequency-factorization
technique to efficiently model the time-evolving distributions of
frequencies of interactions between node-pairs. The anomalies are
then determined based on the likelihood of the observed frequency
of each incoming interaction. F-FADE is able to handle in an online
streaming setting a broad variety of anomalies with temporal and
structural changes, while requiring only constant memory. Our
experiments on one synthetic and six real-world dynamic networks
show that F-FADE achieves state of the art performance and may
detect anomalies that previous methods are unable to find.
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1 INTRODUCTION
An edge stream refers to the time-ordered sequence of edges in a
dynamic network, a commonly used representation of complex sys-
tems [8]. Edges typically correspond to dyadic interactions in those
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systems. For example, in an email network, the edge stream con-
sists of time-ordered emails that record interactions from senders
to recipients, representing the dynamic communication network
between users [38]. Thus, edges and interactions will be used inter-
changeably later on. The goal of anomaly detection in edge streams
is to find unusual edges. These can identify important undesirable
activity in the system. In the case of email networks, regular users
can be harmed by malicious messages, such as phishing, or com-
promised accounts [21, 22]. In transaction networks, anomalous
transactions can indicate financial fraud or money laundering [33].

As anomalies are caused by rare events by definition, it might be
impossible to find sufficient number of training labels for supervised
methods. We thus focus here on unsupervised anomaly detection
approaches. Most current approaches are snapshot-based where
edge streams are aggregated into network snapshots over time [36].
These approaches can detect anomalies only after an entire snapshot
has been collected, which can introduce a significant and often
prohibitive time lag. Instead, we want anomalies in edge streams to
be reported in an online, streaming fashion as soon as anomalous
interactions happen. However, a streaming approach to anomaly
detection in edge streams introduces two major challenges.

First, the approach must be able to handle temporal and struc-
tural changes simultaneously. We illustrate this point by showing
different patterns of anomalies in dynamic networks in Fig. 1. In
case of pattern (iii), where an external node 𝑢 starts interacting
with a node from a different group (from a yellow node 𝑑 to a red
node 𝑔), we need to know that the nodes belong to different groups
(a structural change) as well as the time between the interactions
(a temporal change). The interaction is more likely anomalous, if
the time is short due to the rapid switch to another group [1, 20].
Similarly, we need both temporal and structural changes in case
of pattern (v), where 𝑢 interacts with many nodes from the same
group. All pair-wise interactions between 𝑢 and other individual
nodes can be regular, yet when viewed together, these interactions
can show an anomalous increase in the group interaction frequency.

Second, the approach should be time and memory efficient as a
large number of interactions can take place in a short time, which
significantly constrains the available time for analysis of each edge.
This constraint is especially limiting in the case of streaming ap-
proaches that aim to digest both temporal and structural changes
simultaneously and require significant time and space resources to
compute. For example, an aggregation of timestamps for estimating
time-evolving distributions of interactions must keep track of the
network structural information, but a straightforward approach
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regular freq. high freq. (burst) nodes in different communities the node of interest
Compare patterns Condition Behavior type (anomaly indication) More indicative type of information

(ii) vs. (i) 𝑡𝑖𝑖 > 𝑡𝑖 Interactions within the group (no anomaly) Structural info.
(iii) vs. (ii) 𝑡𝑖𝑖𝑖 = 𝑡𝑖𝑖 Prompt group change (anomaly) Structural + Temporal info.
(iii) vs. (ii) 𝑡𝑖𝑖𝑖 ≫ 𝑡𝑖𝑖 Long-term group change (unknown) Structural + Temporal info.
(iv) vs. (ii) 𝑡𝑖𝑣 = 𝑡𝑖𝑖 Burst of interactions (anomaly) Temporal info.
(v) vs. (ii) 𝑡𝑣 = 𝑡𝑖𝑖 Burst of interactions with a group (anomaly) Structural + Temporal info.

Figure 1: Patterns of interactions in a dynamic network. (i) is an initial interaction, known to be regular, of an external node
𝑢 with a group member 𝑑 . Later interactions of 𝑢 can be: (ii) with a different node from the same group, (iii) with a node from
a different group, (iv) with the same node, but at a much higher frequency, (v) with nodes from the same group, where all
pairwise interactions are regular, but group level interactions are at an increased frequency. The table shows for each pattern
which ones are most likely to be anomalous and what types of information are needed to identify the anomalies.

leads to an increasingly large memory cost as interactions between
new pairs of nodes are encountered. Although snapshot-based ap-
proaches, by utilizing significant time and space resources, are able
to analyze the entanglement of structural and temporal information,
it remains an open problem of how to do that in a stream-based
fashion. In summary, we want an efficient, unsupervised method
for detecting anomalies in edge streams, where the method works
in a streaming manner and is able to take advantage of both tem-
poral and structural information in order to detect a wide range of
anomalous interaction patterns.

Present Work.1 Here, we propose Frequency-Factorization for
Anomaly DEtection (F-FADE), a new approach for detection of
anomalies in edge streams. A key innovation of F-FADE is a novel
frequency-factorization technique that is able to handle a broad
variety of anomalies, such as those illustrated in Fig. 1, while re-
quiring only constant memory. Specifically, F-FADE models the
time-evolving distributions of frequencies of interactions between
nodes of a dynamic network and determines the anomalies based
on the likelihood of the observed frequency of an incoming inter-
action. Using an online factorization approach, F-FADE efficiently
handles the structural information in order to estimate the latent
parameters of the distributions thus reflecting the intensity of fre-
quencies in a maximum likelihood rule. Furthermore, F-FADE keeps
in memory only the most frequent interactions, which results in
constant memory use. Overall, our contributions are as follows:

i. As opposed to the previous probabilistic methods, F-FADE uses
an efficient online factorization to fully incorporate the network
structural information, and therefore can detect anomalies that are
caused by rapid changes in the network structure.

ii. As opposed to previous matrix factorization approaches, our
novel approach operates in the space of the intensity of interaction
frequencies, corresponding to a statistical model that properly con-
trols false positive rates under a mild assumption. This statistical
model of interaction frequencies further allows F-FADE to detect

1The code and supplements are available at http://snap.stanford.edu/f-fade/.

anomalies in a group of simultaneous interactions rather than being
limited to interactions between two nodes.

iii. F-FADE is an online method and has constant memory cost
even with incoming new nodes. We are not aware of any previous
matrix factorization approaches that exhibit this property.

iv. We evaluate F-FADE on the edge streams of three public real
dynamic networks and four email networks of real companies. Our
method significantly outperforms all the baselines and may detect
anomalies that previous methods are unable to find.

2 PRELIMINARIES AND RELATEDWORK
As a preliminary, we classify interactions in dynamic networks
into a number of basic patterns as illustrated in Fig. 1, where two
groups, i.e. organizations, are represented by yellow and red nodes,
and their regular interactions form the base of the network. We are
interested in finding out if any of the interactions of node 𝑢, which
does not belong to any of the groups, are anomalous or regular.
Given a regular interaction between 𝑢 and node 𝑑 from one of the
organizations (Fig. 1 (i)), then the follow-up interactions of 𝑢 can
be assigned to one of four other patterns Fig. 1 (ii)-(v).

Looking only at temporal or only at structural changes might be
sufficient to identify anomalies for some of the above patterns. For
example, in case of (ii), since 𝑢 interacts with another node from
the same group, the interaction is most likely regular, as interacting
with nodes of the same group is a common behavior in many real
networks. We thus need to rely on group membership, a structural
information type, to identify the group to which a node belongs.
Similarly, in case of (iv), we need the frequency of interactions
between two nodes, which is a purely temporal information type.

However, to identify anomalies in more complex patterns, we
need to take into account both temporal and structural changes. In
case of (iii), if this interaction is close in time to the initial interac-
tion, then it is more likely anomalous due to the prompt switch to
another group [1, 20], which is detectable by leveraging structural
information. On the other hand, if the interaction occurs much later,
then temporal aspects become more critical since group member-
ship is less informative after a long time.

http://snap.stanford.edu/f-fade/
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As demonstrated by case (v), anomaly detection in the case of
sudden changes in the frequency of interactions must also take
structural information into account. Node 𝑢 interacts with nodes
from the same group as previously and all pair-wise interactions
between𝑢 and other individual nodes appear to be regular, yet when
viewed together, these interactions can turn out to be anomalous.

Related Work. Many publications concern anomaly detection for
dynamic networks [4, 7, 36]. We briefly review them to discuss their
methodological foundations and related limitations in detecting
some anomaly patterns from Fig. 1.

Probabilistic methods rely on probabilistic models that character-
ize the regular communication patterns of the dynamic network
and determine anomalies based on the pattern deviation from the
models. Probabilistic methods by nature allow computation of 𝑝-
values (or false positive rates equivalently) of their detection even
for a group of interactions [2, 6, 17]. However, they either require
a complex optimization over the entire graph by recording all his-
torical data [2, 10, 29, 32, 34, 43] or only capture limited structural
information restricted in a local network region [6, 17, 47]. Specifi-
cally, the most recent probabilistic method on anomaly detection
in edge streams [6] is unable to track community structures and
thus fails to differentiate patterns Fig. 1 (ii) and (iii).

Matrix factorization methods [39, 40, 42, 48] leverage the “low-
rank” property of real-world network structures [28] that is mostly
represented as overlapping, non-overlapping, or hierarchical com-
munity structures [15]. Anomalies break the low-rank property
and are thus detectable. Matrix factorization approaches globally
capture the structural information but they can neither control
𝑝-values of the anomaly detection nor detect a group of simultane-
ous interactions with proper calibration, such as the pattern Fig. 1
(v). Moreover, to the best of our knowledge, no previous matrix
factorization method works on edge streams, thus these approaches
cannot handle new arriving nodes or provide a timely detection
response.

Distance-based methods propose certain time-evolving measures
of dynamic network structures and use the change rates of those
measures to detect anomalies. Thesemeasures include PageRank [13,
46], the embeddings of nodes [49] or entire networks [14], and other
handcrafted features [18, 35, 44]. However, these methods present
additional limitations besides the loss of control in 𝑝-values of their
detection. For example, SedanSpot [13] cannot detect the change
from the pattern (i) to patterns (iv) and (v) in Fig. 1 because the
personalized PageRank [23] that SedanSpot tries to approximate
is hardly identifiable by nature. AnomRank [46] introduces two
specifically designed transportation vectors to address this issue,
but needs to compute a global PageRank, which does not scale
for edge stream processing. Node embeddings given by the auto-
encoder [49] may also have unidentifiable changes from the pattern
(i) to patterns (iv) and (v) in Fig. 1.

Some recent works may process attributed networks [11, 25,
27, 37], which is not our focus. However, it is interesting to study
in the future whether our key technique, frequency factorization
(introduced later), can be applied there. Other works on counting
persistent patterns may be used for burst and periodic anomalies
(iv) [5], while they cannot detect structural anomalies (iii) and (v).

Algorithm 1: F-FADE (E, 𝑡setup,𝑊upd, 𝛼 ,𝑀 ,𝑚, 𝑓th)

Input :Edge stream E; Param.: 𝑡setup,𝑊upd, 𝛼 ,𝑀 ,𝑚, 𝑓th
Output :An anomaly score stream Sc(𝑡 ) , 𝑡 = 𝑡setup + 1, ...

1 𝑘 ← 0, Act-S, 𝐹 , 𝐻 ← ∅, 𝑄 ∈ R𝑚×𝑚 where 𝑄𝑖 𝑗
iid∼ N(0, 1);

2 for 𝑒 ← (𝑠, 𝑑, 𝑡,𝑤) in E, do
3 if 𝑡 > 𝑡setup then Sc(𝑡 ) ← DETECT(𝐹 , 𝑒 , 𝐻 , 𝑄 , 𝑓th);
4 𝐹 , Act-S, 𝑓th ← UNION(𝐹 , Act-S, 𝑒 , 𝛼 ,𝑀 , 𝑡);
5 if 𝑡 ≥ 𝑡setup + 𝑘𝑊upd then
6 𝐻 ← F-FAC(𝐹 , Act-S, 𝐻 , 𝑄 , 𝑓th);
7 𝑘 ← 𝑘 + 1, Act-S← ∅;
8 end
9 end

3 PROBLEM FORMULATION AND NOTATION
Let E = {𝑒1, 𝑒2, 𝑒3, ...} be a stream of interactions from a dynamic
network. Each 𝑒𝑖 is a 4-tuple (𝑠𝑖 , 𝑑𝑖 , 𝑡𝑖 ,𝑤𝑖 ), where 𝑠𝑖 and 𝑑𝑖 are the
source and the destination nodes, respectively, 𝑡𝑖 is the interaction
time, and𝑤𝑖 is the interaction count. We call the pair of the source
and destination node (𝑠𝑖 , 𝑑𝑖 ) to be the interaction type. Without loss
of generality, we can assume that 𝑡𝑖 is represented as a positive
integer whose unit reflects the systematic time granularity.

Problem Formulation. Our task is to detect anomalous interac-
tions in E which could belong to any of the patterns shown in
Fig. 1. Specifically, the method is expected to utilize temporal and
structural information to detect interactions that impose either a
prompt change of the network structure, belong to the burst of in-
teractions with a single node or a group of nodes as shown in Fig. 1
(iii)-(v). Moreover, the method is expected be online and capable of
processing large amounts of data with bounded memory.

Notation.We introduce interaction-temporal-frequencymap (ITFM)
and interaction-type set (ITS), two frequently used data structures.
Definition 3.1. The interaction-temporal-frequency map (ITFM)
⟨(𝑠, 𝑑), (𝑡, 𝑓 )⟩ maps each interaction type (𝑠, 𝑑) to (𝑡, 𝑓 ), where 𝑡
is a time stamp (a positive integer) and 𝑓 denotes frequency (a real
value). The interaction-type set (ITS) is a set of interaction types, i.e.,
the keys of an ITFM, denoted by {(𝑠, 𝑑)}. We define the operation
ITS(·) which transforms one ITFM into the corresponding ITS.

For ITMF 𝐹 , we use 𝐹 (𝑠, 𝑑) to denote the mapping of the key
(𝑠, 𝑑) to its corresponding (𝑡, 𝑓 ) in 𝐹 . An ITFM or an ITS can be
viewed as directed graphs between the nodes, with ITMFs having
additional edge attributes. We define the node set based on 𝐹 as
𝑉 (𝐹 ) = ∪(𝑠,𝑑) ∈𝐹 {𝑠, 𝑑}. We also define the in and out neighbors
of a node 𝑣 ∈ 𝑉 (𝐹 ) as Nin (𝑣, 𝐹 ) = ∪𝑠 :(𝑠,𝑣) ∈𝐹 {𝑠} and Nout (𝑣, 𝐹 ) =
∪𝑑 :(𝑣,𝑑) ∈𝐹 {𝑑} respectively. Finally, let N(0, 1) denote the standard
normal distribution and let P(·) denote a probability distribution.
We may maintain node embeddings 𝐻 that associates each node
𝑣 ∈ 𝑉 (𝐹 ) with an𝑚-dimensional vector ℎ𝑣 ∈ R𝑚 .

4 METHOD
In this section, we introduce our proposed approach F-FADE, shown
in Alg. 1 (Table 1 provides a description of variables). F-FADE in-
cludes three key components. First, F-FADE maintains an ITFM 𝐹

that consists of a bounded number of node-pairs with temporar-
ily high-frequent interactions between them. 𝐹 essentially records
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𝑡setup The time to set up the model
𝑊upd The time interval for model update, integers
𝛼 The decay rate when updating frequency, range [0, 1)
𝑀 The upper limit of memory size
𝑚 The dimension of node embeddings
𝐹 An ITFM to record interactions with their frequencies
𝐻 The embeddings of active nodes
𝑓th The cut-off threshold of the frequency to record
𝑄 A random full rank matrix used in our model (Eq. (3))

ACT-S An ITS to record active interaction-types
Table 1: Variables in F-FADE

Algorithm 2: UNION(𝐹 , Act-S, 𝑒 , 𝛼 ,𝑀 , 𝑡0)
Input :An ITFM 𝐹 , an ITS Act-S, 𝑒; Param.: 𝛼 ,𝑀 , 𝑡0
Output :The updated 𝐹 , Act-S, the cut-off frequency 𝑓th

1 Insert (𝑠 (𝑒), 𝑑 (𝑒)) into Act-S;
2 if (𝑠 (𝑒), 𝑑 (𝑒)) is in 𝐹 then (𝑡 ′, 𝑓 ′) ← 𝐹 (𝑠 (𝑒), 𝑑 (𝑒)),

𝐹 (𝑠 (𝑒), 𝑑 (𝑒)) ← (𝑡 (𝑒), 𝛼 (𝑡 (𝑒)−𝑡 ′) 𝑓 ′ + (1 − 𝛼)𝑤 (𝑒)) ;
3 else Insert ((𝑠 (𝑒), 𝑑 (𝑒)), (𝑡 (𝑒), (1 − 𝛼)𝑤 (𝑒))) into 𝐹 ;
4 𝑓th ← min 𝑓 ′ s.t. |{⟨(𝑠, 𝑑), (𝑡, 𝑓 )⟩ ∈ 𝐹 |𝛼𝑡0−𝑡 𝑓 ≥ 𝑓 ′}| ≤ 𝑀 ;
5 for 𝑒 = ⟨(𝑠, 𝑑), (𝑡, 𝑓 )⟩ ∈ 𝐹 , s.t. 𝛼𝑡0−𝑡 𝑓 < 𝑓th do
6 Remove 𝑒 from 𝐹 ; Remove (𝑠, 𝑑) from Act-S;
7 end

the network skeleton and keeps updated when new interactions
come in (the subroutine UNION). Second, after an initial short setup
period from 0 to 𝑡setup, which is needed to establish 𝐹 , node embed-
dings 𝐻 are learnt for every time window𝑊upd via the frequency-
factorization approach. Note that we introduce an ITS (Act-S) to
record the temporarily active types of interactions which allows
for efficiently local update of node embeddings. These node embed-
dings parameterize the time-evolving distributions of interaction
frequencies (the subroutine F-FAC). Third, for each new arriving
interaction, an anomaly score will be assigned based on the like-
lihood of its observed frequency with respect to the distribution
parameterized by node embeddings (the subroutine DETECT).

Here, we first describe an online approach to efficiently maintain
ITFM 𝐹 , the network structure. In the next two subsections, we fo-
cus on the other two subroutines F-FAC and DETECT, respectively.

At a certain time 𝑡𝑖 , an element ⟨(𝑠, 𝑑), (𝑡, 𝑓 )⟩ in 𝐹 indicates that
the (𝑠, 𝑑)-type interaction appeared before 𝑡𝑖 most recently at time
𝑡 and that the aggregated frequency of this interaction type is 𝑓 . In
general, the time-evolving aggregated frequency 𝑓 for (𝑠, 𝑑)-type
interactions at 𝑡 is computed as:

Agg-freq: 𝑓 ≜
∑

(𝑠,𝑑,𝑡 ′,𝑤) ∈E:𝑡 ′<𝑡
𝑤 ∗ ker(𝑡 − 𝑡 ′), (1)

where ker(·) is a kernel function for interaction aggregation. ker(·)
is defined over Z≥0 and satisfies

∑∞
𝑖=0 ker(𝑖) = 1. In this work, we

set ker(𝑖) = 𝛼𝑖 (1−𝛼) for some 𝛼 ∈ (0, 1) and thus smaller 𝛼 empha-
sizes more recent observed interactions. F-FADE maintains 𝐹 (line
4) to merge 𝑒 into 𝐹 (lines 2-3 of UNION). The parameter𝑀 controls
the size of 𝐹 which further controls the memory cost of F-FADE.
Infrequent interactions will be removed and the corresponding
cut-off frequency is recorded by 𝑓th (lines 4-7 of UNION).

Algorithm 3: F-FAC(𝐹 , Act-S, 𝐻 , 𝑄 , 𝑓th)
Input :An ITFM 𝐹 , an ITS Act-S, node embeddings 𝐻 ;

Param.: 𝑄 , 𝑓th
Output :Updated node embeddings 𝐻

1 for ℎ𝑣 ∈ 𝐻 , 𝑣 ∉ 𝑉 (𝐹 ) do Remove ℎ𝑣 from 𝐻 ;
2 for 𝑣 ∈ 𝑉 (𝐹 ), ℎ𝑣 ∉ 𝐻 do Randomly initialized ℎ𝑣 ∈ R𝑚 ;
3 for gradient ascent steps = 1, 2, ... do
4 if global optimization (at 𝑡setup) then Sample a

mini-batch Ω ⊆ 𝑉 (Act-S) ×𝑉 (Act-S);
5 if local optimization (at 𝑡setup + 𝑘𝑊upd, 𝑘 ≥ 1) then
6 Sample a mini-batch Ω𝑝 ⊆ Act-S;
7 Sample a mini-batch 𝑉 ′ ⊆ 𝑉 (𝐹 )/𝑉 (Act-S);
8 Ω ← (𝑉 (Ω𝑝 ) ∪𝑉 ′) × (𝑉 (Ω𝑝 ) ∪𝑉 ′)
9 end

10 Do one-step gradient ascent over {ℎ𝑣 |𝑣 ∈ 𝑉 (Act-S)} to
increase

∑
(𝑠,𝑑) ∈Ω logP(𝑓 ; 𝜆𝑠𝑑 ), where 𝑓 = 𝑓𝑠𝑑 if

⟨(𝑠, 𝑑), (𝑡, 𝑓𝑠𝑑 )⟩ ∈ 𝐹 for some 𝑡 or 𝑓 = 𝑓th otherwise;
11 end

4.1 Frequency Factorization
Our approach is to maintain the time-evolving distributions of
frequencies of interactions under regular node behavior. Then
we observe the frequency of incoming interactions and use the
likelihood-based model to determine whether they are anomalies
or not. However, this approach presents a major challenge. In real
networks, interactions between pairs of nodes are typically sparse.
Even worse, the bounded memory cost allows us to track only the
skeleton network structure consisting of highly frequent interac-
tions. Therefore, if we determine the distribution of the interaction
frequency between two nodes by only tracking their historical inter-
action frequency, the model will not be able to make good estimates
when only a few or even no historical interactions are present.

Our solution is to utilize network structures to address this limi-
tation. In general, a real network typically holds certain low-rank
properties, which indicate that latent features of nodes may be ex-
tracted by factorizing the low-rank approximation of the adjacency
matrix that represents the network skeleton. These properties have
been widely used in many network-related applications, such as
community detection [15, 45], link prediction [12], recommendation
system design [31] and also anomaly detection reviewed in Sec. 2.
However, in contrast to previous factorization-based approaches,
our approach is based on the max-likelihood rule to estimate the
latent intensity parameters of the interaction frequencies.

Specifically, consider a probabilistic distribution of frequency 𝑓
with a single positive parameter 𝜆, denoted by P(𝑓 ; 𝜆). Suppose the
expectation E[𝑓 ] monotonically increases with respect to 𝜆 and
thus 𝜆 reflects the intensity of 𝑓 . One general class of such distri-
butions is Gamma distribution: P(𝑓 ; 𝜆) = 1

𝜆𝜃 Γ (𝜃 ) 𝑓
𝜃−1 exp(− 𝑓

𝜆
), for

any 𝜃 > 0. In this work, we choose 𝜃 = 1, which corresponds to the
exponential distribution and which performs well as we show later.

Frequency Model. Recall that we collect and summarize the ag-
gregated frequencies of different interaction-types into the ITFM
𝐹 = {⟨(𝑠, 𝑑), (𝑡, 𝑓 )⟩}. We associate each node in 𝑉 (𝐹 ) with an em-
bedding vector ℎ𝑣 ∈ R𝑚 that changes over time. Then, our fre-
quency model assumes that the frequency of interactions between
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two nodes, say 𝑠 and 𝑑 , denoted by 𝑓𝑠𝑑 , follows the distribution:
𝑓𝑠𝑑 ∼ P(𝑓 ; 𝜆𝑠𝑑 ) = exp(−𝑓 /𝜆𝑠𝑑 )/𝜆𝑠𝑑 (2)

where 𝜆𝑠𝑑 = exp(ℎ𝑇𝑠 𝑄ℎ𝑑 ). Here, the matrix 𝑄 is used to handle
the irreflexive property of the directed interactions and can be
fixed as an identity matrix for undirected interactions. To keep
the embedding space almost isotropic, we expect 𝑄 to be far away
from singularity and thus sample the components of 𝑄 iid from
N(0, 1) (line 1 in F-FADE) [41]. The above parameterization is cru-
cial because it guarantees that the embedding space indeed reflects
structures of real networks where nodes from the same group may
share similar patterns. We illustrate this point via Prop. 4.1. See its
proof in Supplement A [9].

Proposition 4.1. Suppose a node 𝑣 ’s embedding ℎ𝑣 lies in the con-
vex hull of the embeddings of a group of nodes𝐶 = {𝑣1, 𝑣2, ..., 𝑣𝑘 }, i.e.
ℎ𝑣 =

∑𝑘
𝑖=1 𝑎𝑖ℎ𝑣𝑖 for some non-negative {𝑎𝑖 }𝑘𝑖=1 such that

∑𝑘
𝑖=1 𝑎𝑖 =

1. If for all (𝑠, 𝑑), 𝑓𝑠𝑑 follows a Gamma distribution P(𝑓 ; 𝜆𝑠𝑑 ) and
𝜆𝑠𝑑 = exp(ℎ𝑇𝑠 𝑄ℎ𝑑 ), then for any node 𝑢 ∈ 𝑉 , both E[𝑓𝑢𝑣] and
E[𝑓𝑣𝑢 ] are controlled viamin1≤𝑖≤𝑘 E[𝑓𝑢𝑣𝑖 ] ≤ E[𝑓𝑢𝑣] ≤

∑𝑘
𝑖=1 𝑎𝑖E[𝑓𝑢𝑣𝑖 ]

and min1≤𝑖≤𝑘 E[𝑓𝑣𝑖𝑢 ] ≤ E[𝑓𝑣𝑢 ] ≤
∑𝑘
𝑖=1 𝑎𝑖E[𝑓𝑣𝑖𝑢 ] respectively.

Our factorization approach utilizes the maximum-likelihood rule
to calculate node embeddings based on 𝐹 . Recall that node embed-
dings are collected in 𝐻 = {ℎ𝑣 |𝑣 ∈ 𝑉 (𝐹 )} and 𝜆𝑣𝑢 = exp(ℎ𝑇𝑣𝑄ℎ𝑢 ).
The node embeddings 𝐻 can be estimated via:

max
𝐻

∑
⟨(𝑠,𝑑),(𝑡,𝑓 ) ⟩∈𝐹

logP(𝑓 ; 𝜆𝑠𝑑 ) +
∑

(𝑠′,𝑑′) ∈𝐹𝑐
logP(𝑓th; 𝜆𝑠′𝑑′) . (3)

The first term of Eq. (3) consists of high frequency interaction
types (> 𝑓th), while the second term consists of other interaction
types (𝐹𝑐 ≜ [𝑉 (𝐹 )]2\ITS(𝐹 )) that are either infrequent (≤ 𝑓th) or
have never even appeared. The second term is necessary because
the ITFM 𝐹 only records the approximation of the sparse network
structure to satisfy the memory constraint. Even if 𝐹 would record
all the interactions that have appeared, we find in our experiments
that a small positive 𝑓th improves the robustness of the model.
Moreover, in practice, as 𝑉 (𝐹 ) could be large, one may use mini-
batch stochastic gradient ascent to optimize Eq. (3), where the first
term may be sampled from 𝐹 and the second term is sampled from
interaction types not included in 𝐹 .

Online Model Update. At 𝑡 = 𝑡setup, the network skeleton is
available in 𝐹 and we can optimize the embeddings of all the
nodes recorded in 𝑉 (𝐹 ), which is the same as 𝑉 (Act-S). For 𝑡 =

𝑡setup + 𝑘𝑊upd, 𝑘 ≥ 1, we update the model in an online fashion by
decreasing the computation complexity. Note that Act-S records the
types of interactions that appear in the most recent update window.
As the time-evolving frequencies recorded in 𝐹 may significantly
change only for the types of interactions in Act-S, F-FAC focuses
on optimizing the embeddings of nodes in𝑉 (Act-S) that is a subset
of 𝑉 (𝐹 ). We summarize the whole procedure into F-FAC (Alg. 3).
Visualizations of the learnt node embeddings of patterns in Fig.1 are
shown in Fig.2. We may see that the group change can be reflected
via the movement of node embeddings.

4.2 Online Detection
Next, we consider how to assign the anomaly score for each inter-
action, i.e., the DETECT subroutine (line 4 of F-FADE), summarized
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Figure 2: Visualizations of the movement of node embed-
dings learnt via F-FADE when interaction pattern changes
from Fig.1 (i) (Left) to Fig.1 (ii) (Mid.) or (iii) (Right) respec-
tively. Assign the regular freq. as 5 and 𝑓tℎ as 0.005.

in Alg.4. In the previous subsection, we introduced F-FADE to learn
the parameters of distributions of frequencies. The anomaly score
of each interaction depends on the likelihood of the observed fre-
quency of this interaction with respect to the learned distribution.
We define the observed frequency of one interaction as follows.

Definition 4.2. The observed frequency of an interaction is defined
as the inverse of the time difference between the time of this inter-
action and the previous appearance of the same-type interaction.

Let 𝑓 (𝑜)
𝑠𝑑

denote the observed frequency of one (𝑠, 𝑑)-type inter-
action. Its likelihood, based on our model for the distribution of the
regular frequency, is computed as lh(𝑓 (𝑜)

𝑠𝑑
) = P(𝑓 (𝑜)

𝑠𝑑
; 𝜆𝑠𝑑 ) where

P(·) follows Eq. (2). In general, by following the Neyman-Pearson
lemma [30], we can identify interactions with low likelihood values
as anomalous. However, the values of lh(𝑓 (𝑜)

𝑠𝑑
) may not be directly

comparable because their underlying distributions hold different
parameters. A further calibration is needed which can be accom-
plished as follows. We set the anomaly score of an interaction as
the negative log probability to observe a frequency that follows the
same distribution and has a lower likelihood value, i.e.,

Sc(𝑓 (𝑜)
𝑠𝑑
) ≜ − logP[lh(𝑓 ) ≤ lh(𝑓 (𝑜)

𝑠𝑑
)] = 𝑓 (𝑜)

𝑠𝑑
/𝜆𝑠𝑑 , (4)

where 𝑓 denotes a random variable that follows exactly P(𝑓 ; 𝜆𝑠𝑑 )
(Eq. (2)). As 𝐻 only tracks active nodes in 𝑉 (𝐹 ), we may not have
embeddings for nodes 𝑠, 𝑑 (including new arriving nodes and nodes
with less frequent interactions) and thus set 𝜆𝑠𝑑 in Eq. (4) as:

𝜆𝑠𝑑 =

{
exp(ℎ𝑇𝑠 𝑄ℎ𝑑 ) if ℎ𝑠 , ℎ𝑑 ∈ 𝐻
𝑓th otherwise (5)

This setting of anomaly scores promises control on the false positive
rate if the model fits the distributions of the regular frequencies, as
proved in Prop. 4.3, and thus makes anomaly scores calibrated and
comparable. See the proof of Prop. 4.3 in Supplement B [9].
Proposition 4.3. If the model P(𝑓 ; 𝜆) (Eq. (2)) matches the distri-
bution of the regular frequency and an interaction is determined
as anomaly, because its anomalous score (set as Eq. (4)) is greater
than a threshold 𝜏 , then the obtained false positive rate is exp(−𝜏).

Computation of Observed Frequencies. Suppose we observe
interactions 𝑒 = (𝑠, 𝑑, 𝑡,𝑤). The ITFM 𝐹 may contain the time 𝑡 ′
when the (𝑠, 𝑑)-type interaction occurred previously. Conversely, 𝐹
may not contain the time 𝑡 ′, if the (𝑠, 𝑑)-type interaction has never
occurred before or occurred a long time ago.

If 𝑤 = 1, the observed frequency of this single interaction is
simply 1/(𝑡 − 𝑡 ′) if ((𝑠, 𝑑) is in ITS(F) or 𝑓th otherwise. If several
same-type interactions occur simultaneously, i.e.𝑤 > 1, we place
these𝑤 interactions evenly within the time slot 𝑡 , i.e., at {𝑡 − 1 +
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…
t’ tt-1

recorded by 𝐹 = { 𝑠, 𝑑 , 𝑡′, 𝑓′ , … } 𝑒 = (𝑠, 𝑑, 𝑡, 𝑤)

… …

evenly place interactionst’ last time when 𝑠, 𝑑 appeared

1/𝑤 1/𝑤 1/𝑤𝑡 − 𝑡3 − 1 + 1/𝑤
…

: 5
67687595/: if 𝑠, 𝑑 ∈ ITS(𝐹) or 𝑓th otherwise; : 𝑤observed

frequencies

Figure 3: Computation of observed frequencies for (𝑠, 𝑑)-
type interactions at time 𝑡 .

Algorithm 4: DETECT (𝐹 , 𝑒 , 𝐻 , 𝑄 , 𝑓th)
Input :An ITFM 𝐹 , 𝑒; Param. 𝐻 , 𝑄 , 𝑓th
Output :The anomaly score for each interaction in 𝑒

1 Ξout,𝑠 ← {(𝑠, 𝑑 ′) | (𝑠, 𝑑 ′) occurs simultaneously at 𝑡 (𝑒)};
2 Ξin,𝑑 ← {(𝑠 ′, 𝑑) | (𝑠 ′, 𝑑) occurs simultaneously at 𝑡 (𝑒)};
3 Compute the observed frequency of each of these𝑤 (𝑒)

interactions according to their own type (𝑠, 𝑑), the group
types Ξout,𝑠 and Ξin,𝑑 , denoted by 𝑓𝑠𝑑 , 𝑓Ξout,𝑠 , 𝑓Ξin,𝑑

respectively ;
4 Compute Sc(𝑓𝑠𝑑 ), Sc(𝑓Ξout,𝑠 ), Sc(𝑓Ξin,𝑑 ) based on Eqs. (4), (6)

and (6) respectively, and output the anomaly score as
max{Sc(𝑓𝑠𝑑 ), Sc(𝑓Ξout,𝑠 ), Sc(𝑓Ξin,𝑑 )}

1/𝑤, 𝑡 − 1 + 2/𝑤, ..., 𝑡}. Based on this assumption, the observed
frequency of the last𝑤−1 (𝑠, 𝑑)-type interactions is exactly𝑤 while
that of the first (𝑠, 𝑑)-type interactions, according to the definition,
is 1/(𝑡 − 𝑡 ′ − 1 + 1/𝑤) if (𝑠, 𝑑) is in ITS(F) or 𝑓th otherwise. Fig. 3
illustrates the above computation of observed frequencies.
Group-level Detection. So far, the discussion has been concerned
with anomalies of single-type interactions. However, as shown
in pattern Fig. 1 (v), some anomalies may only be detected when
we simultaneously consider a group of interactions with different
types. Our approach can be easily generalized to such group-based
patterns. We can combine interaction types of interest in a group
of interaction types Ξ = {(𝑠1, 𝑑1), ..., (𝑠𝑘 , 𝑑𝑘 )}, view this group as
one type, and then compute the observed frequencies with the
same method that we use for single-type interactions. Suppose the
observed frequency for one interaction with type in Ξ is 𝑓Ξ, then
the anomaly score is computed as:

Sc(𝑓Ξ) ≜ 𝑓Ξ/
∑
(𝑠,𝑑) ∈Ξ

𝜆𝑠𝑑 = 𝑓Ξ/
∑
(𝑠,𝑑) ∈Ξ

exp(ℎ𝑇𝑠 𝑄ℎ𝑑 ) (6)

where
∑
(𝑠,𝑑) ∈Ξ 𝜆𝑠𝑑 denotes the intensity of this group of interac-

tions, which replaces the single 𝜆𝑠𝑑 in Eq. (4). The intuition behind
the use of the sum operation in Eq. (6) comes from the fact that
single-type interactions whose arriving times satisfy an exponential
distribution essentially correspond to a Poisson process and that
merging multiple independent Poisson processes yields another
Poisson process with the intensity that equals the sum of inten-
sities of individual processes [16]. Although any group Ξ can be
investigated, in this work, we focus on the group of interactions
that share common source nodes or common destination nodes.

4.3 Complexity Analysis and Discussion
The memory cost of F-FADE is determined by parameter𝑀 which
controls the size of ITFM 𝐹 . The sizes of Act-S and 𝐻 , according to

Dataset Nodes Edges Year # of Anomalies
BARRA1 38,408 1.64M 12/2013 - 03/2020 5,856
BARRA2 49,189 2.22M 06/2011 - 03/2020 1,255
BARRA3 63,209 2.35M 09/2012 - 03/2020 33
BARRA4 138,940 5.60M 09/2009 - 03/2020 8

Table 2: Statistics of BARRA1-4

their definitions, depend on the size of 𝐹 , and are no greater than
one time and two times of this size, respectively.

The analysis of the online time complexity of F-FADE is more
complicated. Two operations are computationally demanding, the
maintenance of the ITFM 𝐹 and an online update of 𝐻 . 𝐹 requires
efficient operations including search via keys, insert, and delete op-
erations (the subroutine UNION) and thus should be implemented
via a hash map. The most complex operation over 𝐹 is finding the
minimum frequency (line 4 of UNION). Amin heapwhich tracks the
frequencies recorded in 𝐹 can perform this operation within log(𝑀).
Overall, the time complexity for 𝐹 is O(log(𝑀)) per interaction.

Considering online updates of 𝐻 , although each step could be
complex, a constant number of epochs of gradient ascent typically
yields accurate enough solutions (10 epochs in our experiments in
Sec. 5). Our model further benefits from the fact that the product
of matrices 𝐻𝑇𝑄𝐻 may be computed in parallel by parallel com-
puting units such as GPUs, which further significantly improves
the efficiency. The mini-batch training of F-FAC also allows to
accommodate potential memory limits on a GPU. In our imple-
mentation, we also find it empirically unnecessary to traverse all
𝑢 ∈ 𝑉 (𝐹 ). Traversing all𝑢 ∈ N(𝑣, 𝐹 ) with a few nodes sampled from
𝑉 (𝐹 )\N(𝑣, 𝐹 ) (negative examples) has achieved good performance.

5 EXPERIMENTS
In this section, we evaluate the performance of F-FADE compared to
state-of-the-art anomaly detection methods on dynamic graphs. We
focus on answering three questions.Q1.Accuracy:How accurately
does F-FADE detect synthetic and real-world anomalies with labels
compared to the baselines? Q2. Effectiveness: Is F-FADE able to
detect meaningful real-world events? Q3. Parameter Sensitivity:
As discussed in Sec.4.3, the entire memory cost and time complexity
essentially depend on the size of 𝐹 , i.e.,𝑀 . Therefore, how does𝑀
affect the detection performance?

5.1 Experimental Setup
Datasets. We use one synthetic and seven real-world networks,
where the obtained anomalies can be verified by comparing them to
manual annotations or by correlating them with real-world events.

RTM [3] refers to a model to generate synthetic weighted time-
evolving graphs based on Kronecker products [24], which success-
fully matches several of the properties of real graphs. We follow
the same setting in [46] to generate a directed graph with 1K nodes
and 8.1K directed edges over 2.7K timestamps. As our input data
is edge streams, we randomly permute all edges with the same
timestamp and merge them into the stream. We further inject two
types of anomalies to evaluate different models. InjectionS: At each
of 50 randomly selected timestamp, we randomly choose 8 nodes,
inject all edges between them in both directions. InjectionW: We
uniformly at random select 50 timestamps. At each each of 50 ran-
domly selected timestamp, inject 70 simultaneous edges between
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Methods RTM-InjectionS RTM-InjectionW DARPA BARRA1 BARRA2 BARRA3 BARRA4
SedanSpot 0.521 ± 0.012 0.472 ± 0.059 0.657 ± 0.004 0.427 ± 0.059 0.414 ± 0.172 0.524 ± 0.099 0.679 ± 0.024
AnomRank 0.553 0.549 0.764 0.837∗ 0.731∗ N/A N/A
NetWalk 0.516 ± 0.022 0.599 ± 0.013 0.732 ± 0.033 N/A N/A N/A N/A
Midas 0.958∗ 0.993∗ 0.947∗ 0.559 0.563 0.733 0.446
F-FADE 0.719 ± 0.012 1.000 ± 0.000 0.920 ± 0.004 0.875 ± 0.001 0.822 ± 0.007 0.781 ± 0.018 0.941 ± 0.012

Table 3: Anomaly detection performance comparison in AUC (mean ± 95% confidence level for randomized algorithms). *
highlights the best baselines. Bold fonts highlight the optimal performance among allmethods. N/A indicates that themethods
cannot make one pass of those BARRA1-4 datasets within 10 hours with 10 minutes as the systemic time granularity.

two randomly selected nodes. InjectionS and InjectionW mimic
patterns Fig.1 (v) and (iv) respectively.

DARPA [26] is a network traffic dataset simulating various intru-
sion behaviors. It contains 4.5 M IP-IP communications (directed
edges) taking place between 9,484 source IPs and 23,398 destination
IPs (nodes) over 87.7K minutes. Anomalous communications are
associated with labels that can be used for evaluation.

ENRON [38] has 50K emails (directed) exchanged among 151
employees (nodes) over 3 years (from 01/1999 to 06/2002) in ENRON
Corporation. Since there are no labels to represent whether an
email is anomalous or not, we apply F-FADE to detect the event of
a sudden increase in email communication among the employees.

DBLP2 is the collaboration graph of authors from the DBLP com-
puter science bibliography. The nodes in this graph represent the
authors, and edges between two authors represent joint publica-
tions. For simplicity, we focus on the papers published in 1960-2010.
Overall, we obtain a graph with around 653K nodes and 2.9M edges.
Note that this dataset is undirected so we choose𝑄 = 𝐼 in our model.
There are no available labels for anomalies and instead we expect
F-FADE to detect unlikely collaborations, e.g., authors suddenly
changed in their coauthorship activities.

BARRA datasets3 include the email networks sampled over about
the past decade used in multiple organizations who are customers
of Barracuda Networks. Barracuda Networks is a large security
company that focuses on providing developed anomaly detection
solutions over commercial email systems for multiple organizations.
Data is provided in the form of sender, recipient, timestamp, and
label. Sender and recipient are the hashed email addresses of emails’
senders and recipients. The label field indicates whether an email is
an Account Takeover (ATO) attack or not, which is in-prior obtained
via Barracuda internal evaluation. We choose four email networks
related to four organizations denoted as BARRA1,2,3,4 respectively
with their overview in Table 2. Relevant research related to phishing
detection over this data has been published [19], where a supervised
learning method based on email content features was proposed.
However F-FADE is purely unsupervised, does not require access
to the email content and thus offers better privacy protections.

Baseline. We choose four most recently proposed baselines for
comparison including SedanSpot [13], Midas [6], AnomRank [46]
and NetWalk [49] and use the implementations provided by their

2https://dblp.uni-trier.de/xml/
3https://www.barracuda.com/. Ethic claim: Authorized employees at Barracuda were
allowed to access the data (under standard, strict access control policies). No personally
identifying information or sensitive data was shared with any non-employee of
Barracuda. Once Barracuda deployed a set of ATO detectors to production, any detected
attacks were reported to customers in real time.

authors4. Note that SedanSpot [13] and Midas [6] are the SOTA
distance-based and probabilistic methods, respectively, to detect
anomalies in edge streams. We are not aware of any matrix fac-
torization based methods for detecting anomalies in edge streams.
Therefore, we further consider AnomRank [46] and NetWalk [49]
which were proposed for graph streams. As they are not directly
applied to edge streams, we properly revise them to make a fair
comparison. They are both fed with the graph streams aggregated
from edges in each time window under the finest time granular-
ity. AnomRank [46] computes PageRank scores of different nodes
and NetWalk [49] tracks node embeddings. Both methods provide
anomaly scores for each node that are related to at least one edge in
the current time window. We associate an edge with the anomaly
score equal to the greater one of its two corresponding end-nodes.

Evaluation. For the RTM graph, DARPA, and BARRA1-4, which
have labeled anomalies, we use the area under curve (AUC) score
to measure the anomaly detection performance of all methods. We
set up all the models based on the data in the first 10% of total
time, and evaluate them over the rest of data in the remaining
90% of time. For randomized algorithms including SedanSpot [13],
NetWalk [49] and F-FADE, their corresponding AUC scores are
summarized based on 10 randomly independent tests. For ENRON
and DBLP, as they do not have labels, we evaluate the methods
by correlating the predicted anomalies with real-world events. For
ENRON, we set up the models on data from 01/1999 - 04/2000 and
use 05/2000 - 06/2002 for evaluation. For DBLP, we set up themodels
on data from the years 1960-1969, and use the years 1970-2010 for
evaluation. We performed hyper-parameter tuning for all baselines
and report the best performance. For F-FADE, we show the hyper-
parameters in Table 4 and properly tune𝑊𝑢𝑝𝑑 to report the best
performance. Recall 𝑀 is the size of the ITMF 𝐹 , which further
relates to both the space and time complexity of F-FADE (Sec. 4.3).
We will further investigate its effect in Sec. 5.4. More details of
experimental settings are described in Supplement C [9].

5.2 Accuracy of Anomaly Detection
We used AUC scores to evaluate the performance of all methods
over the RTM, DARPA and BARRA datasets (see Table 3). SedanS-
pot performs poorly on the RTM-InjectionS and RTM-InjectionW
tasks, because patterns (iv) and (v) can hardly be detected based on
the changes in the personalized PageRank scores that SedanSpot
essentially tries to approximate. AnomRank also performs poorly
on those tasks, with a lower performance than shown in the original

4SedanSpot: https://github.com/dhivyaeswaran/sedanspot; Midas: https://github.com
/Stream-AD/MIDAS; AnomRank:https://github.com/minjiyoon/KDD19-AnomRank;
NetWalk: https://github.com/chengw07/NetWalk.
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Dataset 𝛼 𝑀 𝑚 initial 𝑓th
DARPA 0.999 200 100 16.7
ENRON 0.999 ∞ 100 0
DBLP 0.999 ∞ 100 0

BARRA1 0.999 100 200 2.6
BARRA2 0.999 400 200 0.93
BARRA3 0.999 400 200 1.2
BARRA4 0.999 400 200 1.1

Figure 4: Hyper-parameters
of F-FADE, the unit of 𝑓th is
10−3minute−1.

EN
R
O
N

May 2000

Aug 2000

Nov 2000

Feb 2001

May 2001

Aug 2001

Nov 2001

Feb 2002

May 2002
0.0

0.5

1.0

SedanSpot

May 2000

Aug 2000

Nov 2000

Feb 2001

May 2001

Aug 2001

Nov 2001

Feb 2002

May 2002
0.0

0.5

1.0

Midas

May 2000

Aug 2000

Nov 2000

Feb 2001

May 2001

Aug 2001

Nov 2001

Feb 2002

May 2002
0.0

0.5

1.0

A
no

m
al

y
S

co
re

1

2
3

4

5
67 8 9

10

F-FADE

D
B
LP

1970
1975

1980
1985

1990
1995

2000
2005

2010
0.0

0.5

1.0

SedanSpot

1970
1975

1980
1985

1990
1995

2000
2005

2010
0.0

0.5

1.0

Midas

1970
1975

1980
1985

1990
1995

2000
2005

2010
0.0

0.5

1.0

A
no

m
al

y
S

co
re

1

2
3

4

5

F-FADE

Figure 5: Real-world events detection over ENRON and DBLP networks.

paper [46], because it is applied to detecting edge-level anomalies
which requires amore timely response. AnomRank exhibits sensitiv-
ity to the choice of the time granularity. This issue can be observed
for AnomRank also on the DARPA dataset. However, AnomRank
performs well on the BARRA1 ad BARRA2 networks because the
variation of interaction frequencies in the email networks seems to
be smaller than that in computer network traffic (DARPA) and thus
the choice of the time-window length for AnomRank is not that
critical. However, AnomRank is not able to process two largest net-
works BARRA3 and BARRA4 on time. NetWalk performs relatively
well on the DARPA network but is not able to process the four large
BARRA networks. Midas performs very well over the RTM and
DARPA datasets, which demonstrates the benefit of probabilistic
models to control false positive rates. Midas is the best performing
method for the DARPA dataset as the anomalies mostly consist of
the patterns (iv) and (v) in Fig. 1. However, this dataset does not con-
tain communities or other low-rank structures, which are present
in real social networks, including the four BARRA networks. Midas
cannot leverage these network structures and performs worse than
F-FADE over the BARRA datasets. In contrast, F-FADE can control
false positive rates and can handle all of these patterns. Therefore,
F-FADE performs uniformly well over all datasets.

5.3 Effectiveness in Detecting Events
Here, we focus on the three methods that are proposed to process
edge streams, F-FADE, Midas and SedanSpot, and evaluate their
capabilities to detect social events over ENRON and DBLP. In order
to visualize the results, we aggregate edges occurring in each week
on ENRON by taking their max anomaly scores per week, and in
each year on DBLP by taking their max anomaly score per year.
Note that these two datasets were previously used to evaluate
SedanSpot [13], where the events are also aggregated weekly for
ENRON and yearly for DBLP. However, an additional threshold
was defined to determine whether an event is anomalous and the
number of anomalous events per week or per year are used to make
the event detection. We do not use the evaluation in [13] because it
may introduce three extra hyper-parameters that are challenging
to tune as the anomaly scores provided by different methods are
not on the same scale. Our evaluation does not depend on extra
hyper-parameters and is thus more equitable.

Over ENRON, F-FADE and SedanSpot show some similar trends,
but SedanSpot outputs many high scores unrelated to any true
events. For Midas, most of the output scores are high and without
much correlation with interesting events. The anomalies detected

by F-FADE coincide with major events annotated as (1)-(10) in the
ENRON timeline. We explain these events in Supplement D [9].

Over DBLP, Midas does not perform well. SedanSpot works bet-
ter than Midas and still outputs many similar max anomaly scores.
In contrast, F-FADE effectively detects many temporal anomalous
coauthorships that are annotated as (1)-(5). Among these events,
SedanSpot only detects (4). We verify the anomalies (1)-(5) using
the public profiles of the authors and list them in Supplement E [9].

5.4 Parameter Sensitivity
As we analyzed in Sec. 4.3, the memory size𝑀 of 𝐹 is the key param-
eter that determines both the space and time complexity of F-FADE.
𝑀 may also affect the anomaly detection performance of F-FADE
via 𝑓th: 𝑓th, as the cut-off frequency, determines the aggregated
frequency of any node-pairs of which the network skeleton 𝐹 may
loss track and the new arriving node-pairs. Given an initial cut-off
frequency 𝑓th,𝑀 directly impacts how 𝑓th varies when F-FADE runs
through the edge streams. Therefore, we would like to understand
how𝑀 affects 𝑓th and further affects the performance of F-FADE.
We evaluate F-FADE over BARRA1 and BARRA2 with different val-
ues of𝑀 changing from 50 to 3,200 with power of 2. The results are
summarized in Fig. 6. As expected, a larger𝑀 may lead to a smaller
convergent 𝑓th, which implies that 𝐹 may track a boarder range
of interaction frequencies and thus the performance of F-FADE
improves. Simultaneously, a greater𝑀 introduces higher memory
and time costs. Interestingly, rather small 𝑀 ’s (100 for BARRA1 or
400 for BARRA2) have already achieved almost the optimal per-
formance, although both datasets contain a large number of edges,
1M+ and 2M+ respectively, which means that F-FADE works well
at relatively small memory and time costs. We suspect that the
regularization based on 𝑓th in Eq. (3) and the network structures
help greatly.

6 CONCLUSION AND FUTUREWORK
In this work, we propose F-FADE that is a purely unsupervised,
online approach for detecting anomalies in edge streams. F-FADE
takes advantage of both probabilistic models and matrix factor-
ization by factorizing time-evolving intensities of interaction fre-
quencies. F-FADE provides false-positive-rate guarantees in the
detection of a single or a group of anomalous edges. F-FADE incurs
only a constant memory cost by recording a network skeleton that
consists of the most frequent interactions. Extensive experiments
demonstrate the power of F-FADE to effectively capture temporal
and structural changes. Finally, the success of F-FADE raises many
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Figure 6: The AUC scores of anomaly detection and the con-
vergent 𝑓th’s of F-FADE OVER BARRA1 (left) and BARRA2
(right) with respect to different memory size𝑀 ’s.

interesting directions for future studies including investigating the
node embedding space obtained from frequency factorization, de-
veloping new approaches to combine the frequency-factorization
techniques with network attributes to detect anomalies, and design-
ing an automatic mechanism of maintaining the memory cost to
enlarge the parameter regime that is optimal for F-FADE.
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A PROOF OF PROPOSITION 4.1
Since 𝑓𝑠𝑑 ∼ P(𝑓 ; 𝜆𝑠𝑑 ) where P(𝑓 ; 𝜆𝑠𝑑 ) is a Gamma distribution that
follows P(𝑓 ; 𝜆) = 1

𝜆𝜃 Γ (𝜃 ) 𝑓
𝜃−1 exp(− 𝑓

𝜆
), E[𝑓𝑢𝑣] can be represented

as E[𝑓𝑢𝑣] = 𝜃𝜆𝑢𝑣 . Recall that we parameterize 𝜆𝑠𝑑 = exp(ℎ𝑇𝑠 𝑄ℎ𝑑 )
for all (𝑠 .𝑑) pairs. We suppose that ℎ𝑣 lies in the convex hull
of the embeddings of a group of nodes 𝐶 = {𝑣1, 𝑣2, ..., 𝑣𝑘 }, i.e.,
ℎ𝑣

∑𝑘
𝑖=1 𝑎𝑖ℎ𝑣𝑖 for non-negative and ℓ-1 normalized {𝑎𝑖 }𝑘𝑖=1. Then,

the upper bound of E[𝑓𝑢𝑣] can be derived as follows:

E[𝑓𝑢𝑣]
𝜃

= 𝜆𝑢𝑣 = exp(ℎ𝑇𝑢𝑄ℎ𝑣) = exp

(
ℎ𝑇𝑢𝑄 (

𝑘∑
𝑖=1

𝑎𝑖ℎ𝑣𝑖 )
)

≤
𝑘∑
𝑖=1

𝑎𝑖 exp(ℎ𝑇𝑢𝑄ℎ𝑣𝑖 ) =
𝑘∑
𝑖=1

𝑎𝑖𝜆𝑢𝑣𝑖 =

𝑘∑
𝑖=1

𝑎𝑖
E[𝑓𝑢𝑣𝑖 ]
𝜃

,

where the inequality is due to the convexity of the exponential
function. Regarding the lower bound of E[𝑓𝑢𝑣], we can derive it as
follows:

E[𝑓𝑢𝑣]
𝜃

= 𝜆𝑢𝑣 = exp(ℎ𝑇𝑠 𝑄ℎ𝑑 ) = exp

(
ℎ𝑇𝑢𝑄 (

𝑘∑
𝑖=1

𝑎𝑖ℎ𝑣𝑖 )
)

= exp

(
𝑘∑
𝑖=1

𝑎𝑖 (ℎ𝑇𝑢𝑄ℎ𝑣𝑖 )
)
≥ exp

(
𝑘∑
𝑖=1

𝑎𝑖 min
1≤𝑖≤𝑘

ℎ𝑇𝑢𝑄ℎ𝑣𝑖

)
= exp

(
min
1≤𝑖≤𝑘

ℎ𝑇𝑢𝑄ℎ𝑣𝑖

)
= min

1≤𝑖≤𝑘
exp(ℎ𝑇𝑢𝑄ℎ𝑣𝑖 ) = min

1≤𝑖≤𝑘
𝜆𝑢𝑣𝑖

= min
1≤𝑖≤𝑘

E[𝑓𝑢𝑣𝑖 ]
𝜃

,

where the inequality is due to non-negativity of {𝑎𝑖 }𝑘𝑖=1 and we
also used

∑𝑘
𝑖=1 𝑎𝑖 = 1.

By combining the upper bound and the lower bound of E[𝑓𝑢𝑣],
we prove that E[𝑓𝑢𝑣] is controlled bymin1≤𝑖≤𝑘 E[𝑓𝑢𝑣𝑖 ] ≤ E[𝑓𝑢𝑣] ≤∑𝑘

𝑖=1 𝑎𝑖E[𝑓𝑢𝑣𝑖 ]. The inequality of E[𝑓𝑣𝑢 ] can be derived similarly
in the same way.

B PROOF OF PROPOSITION 4.3
As for the assumption, P(𝑓 ; 𝜆) (Eq. (2)) matches the distribution of
the regular frequency. Then, for an interaction that is not anomaly,
its observed frequency should follow 𝑓 (𝑜) ∼ P(𝑓 ; 𝜆). Our method
will detect it as anomaly if, according to Eq. (4),

𝑓 (𝑜)

𝜆
≥ 𝜏 .

Then, the false positive rate is nothing but the probability such that
the above inequality is satisfied. That is, when 𝑓 (𝑜) ∼ P(𝑓 ; 𝜆),

P

(
𝑓 (𝑜)

𝜆
≥ 𝜏

)
= P

(
𝑓 (𝑜) ≥ 𝜆𝜏

)
= exp

(
−𝜆𝜏
𝜆

)
= exp (−𝜏) ,

which concludes the proof.

C TRAINING CONFIGURATION
We performed hyper parameter search for best performance for
our method and all the baselines and used the following hyper-
parameters to obtain the reported results:

For RTM graph, DARPA, and BARRA1-4, we setup all the mod-
els based on the data in the first 10% total time. Table 4 lists the
hyperparamters and their values. The unit of𝑊upd is year for DBLP
and minute for others, and the unit of initial 𝑓th is 10−3minute−1.

For baselines, we used the implementations provided by their
authors and we report the range of configurations used for baselines
here:

SedanSpot: 𝑛𝑢𝑚𝑤𝑎𝑙𝑘𝑠 = {5, 10, 20, 50, 100}, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑜𝑏 =

{0.05, 0.1, 0.15, 0.2, 0.5}, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 = {50, 100, 200, 500, 1000} on
synthetic graphs, and 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 = {10𝐾, 20𝐾, 50𝐾} on DARPA
and BARRACUDA, and following hyper-parameter settings as sug-
gested in the original paper on ENRON and DBLP.

AnomRank:𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 = {10, 30, 60, 180, 360, 720,
1440} minutes on synthetic graphs, DARPA, and BARRACUDA.

NetWalk: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 = {20, 50, 100}, 𝑛𝑢𝑚_𝑤𝑎𝑙𝑘𝑠 =

{2, 3, 5},𝑤𝑎𝑙𝑘_𝑙𝑒𝑛𝑔𝑡ℎ = {3, 5, 10}, 𝜌 = {0.1, 0.2, 0.3}, 𝑘 = {5, 10, 20},
𝜆 = {0.0005, 0.001, 0.005}, 𝛽 = {0.1, 0.2, 0.5}, 𝛾 = {1, 5, 10}, 𝛼 =

{0.3, 0.5, 0.7}, 𝑠𝑛𝑎𝑝_𝑠𝑖𝑧𝑒 = {500, 1000, 2000} for synthetic graphs.
𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑖𝑧𝑒 = {20, 50, 100}, 𝛼 = {0.3, 0.5, 0.7}, 𝑘 = {5, 10, 20},
𝑠𝑛𝑎𝑝_𝑠𝑖𝑧𝑒 = {250𝐾, 500𝐾}, and following the other hyper parame-
ter settings as suggested in the original paper for real-word graphs
on DARPA. 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.01 for adam optimizer as suggested
in the public source code.

Midas: 𝑑𝑒𝑐𝑎𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 = {0.3, 0.5, 0.7}, 𝑛𝑢𝑚_ℎ𝑎𝑠ℎ = {2, 5, 10},
𝑛𝑢𝑚_𝑏𝑢𝑐𝑘𝑒𝑡𝑠 = {500, 1000, 2000, 5000} on RTM graph, DARPA,
and BARRACUDA. 𝑑𝑒𝑐𝑎𝑦_𝑓 𝑎𝑐𝑡𝑜𝑟 = 0.5, 𝑛𝑢𝑚_ℎ𝑎𝑠ℎ = 10, and
𝑛𝑢𝑚_𝑏𝑢𝑐𝑘𝑒𝑡𝑠 = 5000 for ENRON and DBLP.

D EVENTS DETECTION IN ENRON
In this section we demonstrate the effectiveness of F-FADE on
ENRON dataset in the main paper 5.3. The anomalies detected by
F-FADE coincide with major events in the ENRON timeline 5 as
follows:

(1) 05/22/2000: The California ISO (Independent System Oper-
ator), the organization in charge of California’s electricity
supply and demand, declares a Stage One Emergency, warn-
ing of low power reserves.

(2) 06/12/2000: Skilling makes joke at Las Vegas conference,
comparing California to the Titanic.

(3) 11/01/2000: FERC investigation exonerates Enron for any
wrongdoing in California.

(4) 03/2001: Enron transfers large portions of EES business into
wholesale to hide EES losses.

(5) 07/13/2001: Skilling announces desire to resign to Lay. Lay
asks Skilling to take the weekend and think it over.

(6) 10/17/2001: Wall Street Journal article reveals the details of
Fastow’s partnerships and shows the precarious nature of
Enron’s business.

(7) 11/08/2001: Enron files documents with SEC revising its
financial statements for past five years to account for 586
million in losses. The company starts negotiations to sell
itself to Dynegy, a smaller rival, to head off bankruptcy,

(8) 01/25/2002: Cliff Baxter, former Enron vice chairman, com-
mits suicide.

5https://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html



F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams WSDM ’21, March 8–12, 2021, Virtual Event, Israel

Dataset 𝑊upd 𝛼 𝑀 𝑚 initial 𝑓th
RTM-InjectionS 5, 10, 20, 40, 80, 160 0.999 100, 300, 500, 700, 1000 25, 50, 100 0.77
RTM-InjectionW 5, 10, 20, 40, 80, 160 0.999 100, 300, 500, 700, 1000 25, 50, 100 3.13

DARPA 60, 120, 360, 720, 1440 0.999 100, 200, 500, 1000, 2000 100, 150, 200 16.7
ENRON 10080 0.999 ∞ 100 0
DBLP 1 0.999 ∞ 100 0

BARRA1 10080, 21600, 43200 0.999 100, 200, 400, 800, 1600, 3200 100, 150, 200 2.6
BARRA2 10080, 21600, 43200 0.999 100, 200, 400, 800, 1600, 3200 100, 150, 200 0.93
BARRA3 10080, 21600, 43200 0.999 100, 200, 400, 800, 1600, 3200 100, 150, 200 1.2
BARRA4 10080, 21600, 43200 0.999 100, 200, 400, 800, 1600, 3200 100, 150, 200 1.1

Table 4: Hyperparameters and their value for F-FADE on different dataset

(9) 02/02/2002: The Powers Report, a 218-page summary of an
internal investigation into Enron’s collapse led by University
of Texas School of Law Dean William Powers, spreads blame
among self-dealing executives and negligent directors.

(10) 03/14/2002: Former Enron auditor Arthur Andersen LLP
indicted for obstruction of justice for destroying tons of
Enron-related documents as the SEC began investigating the
energy company’s finances in October 2001.

E EVENTS DETECTION IN DBLP
In this section we demonstrate the effectiveness of F-FADE on
DBLP dataset in the main paper 5.3. We expect anomalous edges to
represent unlikely collaborations. We verify anomalies using the
public profiles of the authors as follows:

(1) 1988: G. M. Lathrop and J. M. Lalouel have 15 coauthor pa-
pers, but they don’t have any coauthor paper before.

(2) 1998: Raj Jain has 63 papers this year, and he has 32 coauthor
papers with Rohit Goyal and Sonia Fahmy. But Raj Jain has
only 5 papers in 1997, and 4 of them are coauthor papers
with Rohit Goyal and Sonia Fahmy.

(3) 2005: Elizabeth Dykstra-Erickson and Jonothan Arnowitz
have 25 coauthor papers in this year. But before 2005, they
have only 1 coauthor paper in 2003.

(4) 2007: Damien Chablat and PhilippeWenger have 61 coauthor
papers, but they only have 1 coauthor paper in 2006.

(5) 2010: Alan Dearle and Graham N. C. Kirby have 27 coauthor
papers. But before 2010, they have most 3 coauthor papers
in 2003.
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