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Abstract
This paper studies a notion of topological entropy for switched systems, formulated
in terms of the minimal number of trajectories needed to approximate all trajectories
with a finite precision. For general switched linear systems, we prove that the topo-
logical entropy is independent of the set of initial states. We construct an upper bound
for the topological entropy in terms of an average of the measures of system matri-
ces of individual modes, weighted by their corresponding active times, and a lower
bound in terms of an active-time-weighted average of their traces. For switched lin-
ear systems with scalar-valued state and those with pairwise commuting matrices, we
establish formulae for the topological entropy in terms of active-time-weighted aver-
ages of the eigenvalues of system matrices of individual modes. For the more general
case with simultaneously triangularizable matrices, we construct upper bounds for the
topological entropy that only depend on the eigenvalues, their order in a simultaneous
triangularization, and the active times. In each case above, we also establish upper
bounds that are more conservative but require less information on the system matrices
or on the switching, with their relations illustrated by numerical examples. Stability
conditions inspired by the upper bounds for the topological entropy are presented as
well.
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1 Introduction

Since its introduction for dynamical systems by Kolmogorov [21], entropy has been
an invaluable tool for understanding system behaviors. The Ornstein isomorphism
theorem [34], which characterizes Bernoulli shifts entirely according to their entropy,
further solidified its importance. Broadly, the entropy of a dynamical system captures
the rate at which uncertainty about the state grows as time evolves, which intuitively
corresponds to entropy notions in other disciplines such as thermodynamics and infor-
mation theory [10].

In systems theory, topological entropy describes the information generation rate
in terms of the number of distinguishable trajectories with a finite precision, or the
complexity growth rate of a system acting on a set with finite measure. The latter idea
corresponds to Kolmogorov’s original definition in [21], and shares a striking resem-
blance to Shannon’s information entropy [37]. Adler et al. first defined topological
entropy as an extension of Kolmogorov’s metric entropy, quantifying the expansion of
a map via the minimal cardinality of a subcover refinement [1]. A different definition
in terms of the maximal number of separable trajectories with a finite precision was
introduced by Bowen [4] and independently by Dinaburg [12]. Equivalence between
these two notions was established in [5]. Most existing results on topological entropy
are for time-invariant systems, as time-varying dynamics introduce complexities that
require new methods to understand [20,22]. This work on the topological entropy of
switched systems provides an initial investigation into some of these complexities.

Entropy also plays a prominent role in control theory, in which information flow
occurs between sensors and controllers for generating feedback controls. Nair et al.
first introduced topological feedback entropy for discrete-time systems [33], following
the construction in [1]. Their definition extended the classical entropy concepts and
described the growth rate of control complexity as time evolves. Colonius and Kawan
later proposed a notion of invariance entropy for continuous-time systems [8], which
is closer in spirit to the trajectory-counting formulation in [4,12]. An equivalence
between these two notions was established in [9]. The results of [8] were extended
from set invariance to exponential stabilization in [7]. Entropy has also been studied
in the dual problem of state estimation in, e.g., [28,30,35].

This paper studies the topological entropy of switched systems. Switched systems
have become a popular topic in recent years (see, e.g., [26,38] and references therein).
In general, a switched system does not inherit the stability properties of individual
modes. For example, a switched system with two stable modes may still be unstable
[26, p. 19]. However, it is well known that a switched linear system generated by
a finite family of pairwise commuting Hurwitz matrices is globally exponentially
stable under arbitrary switching (see, e.g., [26, Th. 2.5, p. 31]). This result has been
generalized to the cases where the Lie algebra generated by the system matrices is
nilpotent [14], solvable [23,29], or has a compact semisimple part [2,24]. In particular,
a nilpotent or solvable Lie algebra implies that the systemmatrices are simultaneously

123



Mathematics of Control, Signals, and Systems (2020) 32:411–453 413

triangularizable, whichmotivates us to study the topological entropy of switched linear
systems with such matrices. See [3,15] for related results on robustness with respect
to perturbations and on feedback controls that induce simultaneous triangularizability,
respectively.

Our interest in the topological entropy of switched systems is strongly motivated
by its relation to the data-rate requirements in control problems. For a linear time-
invariant control system, it has been shown that the minimal data rate for feedback
stabilization equals the topological entropy in open-loop [16,32,40]. For switched
systems, however, neither the minimal data rate nor the topological entropy are well
understood. Sufficient data rates for feedback stabilization of switched linear systems
were established in [27,42]. Similar data-rate conditions were constructed in [39] by
extending the estimation entropy from [28] to switched systems. In this work, we seek
to contribute to these efforts.

The main contribution of this paper is the construction of formulae and bounds for
the topological entropy of switched linear systems. In Sect. 2, we introduce a notion
of topological entropy for switched systems, and define switching-related quantities
such as the active time of each individual mode, which prove useful in computing
the topological entropy. In Sect. 3, after proving that the topological entropy of a
switched linear system is independent of the set of initial states, we provide standard
constructions of spanning and separated sets based on a notion of grid. Then, we
construct a general upper bound for the topological entropy in terms of an active-
time-weighted average of the measures of system matrices of individual modes, and
a general lower bound in terms of an active-time-weighted average of their traces.

Sections 4–6 provide formulae and improved upper bounds for the topological
entropy of switched linear systems generated by matrices with various commutation
relations. In Sect. 4, we consider the case with scalar-valued state, in which the general
upper and lower bounds fromSect. 3 coincide and become a formula for the topological
entropy. Section 5 studies the casewith pairwise commutingmatrices, by establishing a
formula for the topological entropy in terms of component-wise active-time-weighted
averages of the eigenvalues of system matrices of individual modes. In Sect. 6, we
investigate the more general case with simultaneously triangularizable matrices, and
construct upper bounds for the topological entropy that only depend on the eigenvalues,
their order in a simultaneous triangularization, and the corresponding active times. The
upper bounds are obtained by first establishing a formula for the solution to a switched
triangular system and two upper bounds for its norm, which are also of independent
interest. For the caseswith commutation relations,we also relate the overall topological
entropy to the topological entropy in each individual scalar component and to that
of each individual mode, and establish upper bounds that are more conservative but
require less information on the systemmatrices or on the switching, with their relations
illustrated by numerical examples. Stability conditions inspired by the upper bounds
for topological entropy are presented in Sect. 7. Section 8 concludes the paper with a
brief summary and remarks on future research directions.

Notations: Let R≥0 := [0,∞), R>0 := (0,∞), and N := {0, 1, . . .}. Denote by In
the identitymatrix inRn×n ; the subscript is omittedwhen the dimension is implicit. For
a complex number a ∈ C, denote by Re(a) its real part. For a vector v ∈ C

n , denote
by vi its i-th scalar component and write v = (v1, . . . , vn). For a matrix A ∈ C

n×n ,
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denote by tr(A) and det(A) its trace and determinant, respectively, and by spec(A) its
spectrum (as a multiset in which each eigenvalue has a number of instances equal to its
algebraic multiplicity). For a set E ⊂ C

n , denote by |E | and vol(E) its cardinality and
volume (Lebesgue measure), respectively. Denote by ‖v‖∞ := max1≤i≤n |vi | the ∞-
norm of a vector v ∈ C

n , and by ‖A‖∞ := max1≤i≤n
∑n

j=1 |ai j | the induced∞-norm

of a matrix A = [ai j ] ∈ C
n×n . By default, all logarithms are natural logarithms.1

2 Preliminaries

2.1 Entropy definitions

Consider a family of continuous-time dynamical systems

ẋ = f p(x), p ∈ P (1)

with the state x ∈ R
n , in which each system is labeled with an index p from a finite

index set P , and all the functions f p : R
n → R

n are locally Lipschitz. We are
interested in the corresponding switched system defined by

ẋ = fσ (x), (2)

where σ : R≥0 → P is a right-continuous, piecewise constant switching signal. We
call the system with index p in (1) the p-thmode of the switched system (2), and σ(t)
the active mode at time t . Denote by ξσ (x, t) the solution to (2) with initial state x at
time t . For a fixed x , the trajectory ξσ (x, ·) is absolutely continuous and satisfies the
differential equation (2) away from discontinuities of σ , which are called switching
times, or simply switches. We assume that there is at most one switch at each time, and
finitely many switches on each finite time interval (i.e., the set of switches contains no
accumulation point). Denote by Nσ (t, τ ) the number of switches on an interval (τ, t].

In the following, we define a notion of topological entropy for the switched system
(2)with a switching signalσ and initial states drawn from a compact setwith nonempty
interior K ⊂ R

n called the initial set. Denote by ‖ · ‖ some chosen norm on R
n and

the corresponding induced norm on R
n×n . Given a time horizon T ≥ 0 and a radius

ε > 0, we define the following open ball in K with a center x ∈ K :

B fσ (x, ε, T ) :=
{

x ′ ∈ K : max
t∈[0,T ] ‖ξσ

(
x ′, t

)− ξσ (x, t)‖ < ε

}

. (3)

We say that a finite set E ⊂ K is (T , ε)-spanning if

K =
⋃

x̂∈E
B fσ

(
x̂, ε, T

)
, (4)

1 In information theory, entropynotions are often formulated using binary logarithmsdue to their connection
with binary signals. In this paper, we use natural logarithms to avoid generating additional multiplicative
constants ln 2 when computing the topological entropy.
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or equivalently, for each x ∈ K , there is a point x̂ ∈ E such that ‖ξσ (x, t)−ξσ (x̂, t)‖ <

ε for all t ∈ [0, T ]. Denote by S( fσ , ε, T , K ) the minimal cardinality of a (T , ε)-
spanning set, or equivalently, the cardinality of a minimal (T , ε)-spanning set, which
is increasing in T and decreasing in ε. The topological entropy of the switched system
(2) with initial set K and switching signal σ is defined in terms of the exponential
growth rate of S( fσ , ε, T , K ) by

h( fσ , K ) := lim
ε↘0

lim sup
T→∞

1

T
log S( fσ , ε, T , K ) ≥ 0. (5)

For brevity, we at times refer to h( fσ , K ) simply as the (topological) entropy of (2).

Remark 1 In view of the equivalence of norms on a finite-dimensional vector space,
the values of h( fσ , K ) are the same for all norms ‖ · ‖ on R

n ; see [19, Prop. 3.1.2,
p. 109] for a slightly stronger statement for the case with a compact invariant set. In
particular, the topological entropy is invariant under a change of basis. For convenience
and concreteness, we take ‖ · ‖ to be the ∞-norm on R

n or the induced ∞-norm on
R
n×n unless otherwise specified.

Next, we introduce an equivalent definition for the entropy of the switched system
(2). With T and ε given as before, we say that a finite set E ⊂ K is (T , ε)-separated
if

x̂ ′ /∈ B fσ

(
x̂, ε, T

)
(6)

for each pair of distinct points x̂, x̂ ′ ∈ E , or equivalently, there is a time t ∈ [0, T ] such
that ‖ξσ (x̂ ′, t)− ξσ (x̂, t)‖ ≥ ε. Denote by N ( fσ , ε, T , K ) the maximal cardinality of
a (T , ε)-separated set, or equivalently, the cardinality of a maximal (T , ε)-separated
set, which is also increasing in T and decreasing in ε. As stated in the following result,
the entropy of (2) can be equivalently formulated in terms of the exponential growth
rate of N ( fσ , ε, T , K ); the proof is along the lines of [19, p. 110] and thus omitted
here.

Proposition 1 The topological entropy of the switched system (2) satisfies

h( fσ , K ) = lim
ε↘0

lim sup
T→∞

1

T
log N ( fσ , ε, T , K ) . (7)

Remark 2 Following [19, pp. 109–110], for a time-invariant system ẋ = f (x) and
a forward-invariant initial set K , the value of h( f , K ) remains the same if the limit
suprema in (5) and (7) are replaced with limit infima. However, this is not necessarily
the case for a time-varying system such as the switched system (2), for which the
subadditivity required in the proof of [19, Lemma 3.1.5, p. 109] does not necessarily
hold.

2.2 Active times, active rates, and weighted averages

In this subsection, we introduce several switching-related quantities that will be useful
in computing the entropy of a switched linear system. The active time of the p-th mode
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over an interval [0, t] is defined by

τp(t) :=
∫ t

0
1p(σ (s))ds, p ∈ P (8)

with the indicator function

1p(σ (s)) :=
{
1, σ (s) = p,

0, σ (s) �= p.

We also define the active rate of the p-th mode over [0, t] by

ρp(t) := τp(t)/t, p ∈ P (9)

with ρp(0) := 1p(σ (0)), and the asymptotic active rate of the p-th mode by

ρ̂p := lim sup
t→∞

ρp(t), p ∈ P. (10)

Clearly, the active times τp are nonnegative and increasing, and satisfy
∑

p∈P τp(t) =
t for all t ≥ 0; the active rates ρp take values in [0, 1] and satisfy∑p∈P ρp(t) = 1 for
all t ≥ 0. In contrast, due to the limit supremum in (10), it is possible that

∑
p∈P ρ̂p >

1 for the asymptotic active rates ρ̂p, as illustrated in the following example.

Example 1 Consider the index set P = {1, 2}. We construct a switching signal σ∗ as
follows2:

– σ∗ with converging set-points: Let t1 := 1. For k ≥ 1, let t2k := min{t >

t2k−1 : ρ2(t) ≥ 1 − 2−2k} and t2k+1 := min{t > t2k : ρ1(t) ≥ 1 − 2−(2k+1)}.
Simple computation yields tk = 2k

∏k−1
l=1 (2l − 1) for k ≥ 2 and ρ̂1 = ρ̂2 =

lim supk→∞ 1 − e−2k = 1.

The switching signal σ∗ (purple) and the active rates ρ1 (blue) and ρ2 (orange) are
plotted in Fig. 1 below,with the asymptotic active rates ρ̂1 and ρ̂2 indicated by the green
dashed line. (As the intervals between consecutive switches grow superexponentially,
logarithmic scale is used for the long-range plot.)

For a family of scalars {ap ∈ R : p ∈ P}, we define the asymptotic weighted
average by

â := lim sup
t→∞

∑

p∈P
apρp(t) = lim sup

t→∞
1

t

∑

p∈P
apτp(t), (11)

and the maximal weighted average over [0, T ] by

ā(T ) := 1

T
max
t∈[0,T ]

∑

p∈P
apτp(t) (12)

2 In all examples, we denote by t1 < t2 < · · · the sequence of switches and let t0 := 0, with σ = 1 on
[t2k , t2k+1) and σ = 2 on [t2k+1, t2k+2).
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Fig. 1 A switching signal σ∗ with converging set-points: the sum of the active rates ρ1 + ρ2 = 1 at all
times, whereas both asymptotic active rates ρ̂1 = ρ̂2 = 1

with ā(0) := max{aσ(0), 0}. As τp(0) = 0 for all p ∈ P , the maximal weighted
average ā is nonnegative. In the following lemma, we establish a relation between
these two notions; the proof can be found in “Appendix A”.

Lemma 1 The asymptotic weighted average â defined by (11) and the maximal
weighted average ā defined by (12) satisfy

lim sup
T→∞

ā(T ) = max
{
â, 0

}
. (13)

3 Entropy of general switched linear systems

The main objective of this paper is to study the topological entropy of the switched
linear system

ẋ = Aσ x (14)

with a family of matrices {Ap ∈ R
n×n : p ∈ P}. Thinking of matrices as linear

operators, we denote by h(Aσ , K ) the entropy of (14) with initial set K and switching
signal σ . In this section, we first prove that the entropy of a switched linear system
is independent of the choice of the initial set and provide standard constructions of
spanning and separated sets based on a notion of grid. Second, we present a result for
the non-switched case. Finally, we construct upper and lower bounds for the entropy
of a general switched linear system.

3.1 Initial set and grid

Proposition 2 The topological entropy of the switched linear system (14) is indepen-
dent of the choice of the initial set K .

Proof For every initial state x ∈ R
n , the solution to (14) satisfies

ξσ (x, t) = Φσ (t, 0) x ∀t ≥ 0,
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where the state-transition matrix Φσ (t, 0) is independent of the initial state x .
First, we prove that the entropy of (14) is invariant under translation and uniform

scaling of the initial set. Let K1 ⊂ R
n be an initial set, and define the translated and

uniformly scaled set K2 := {sx + v : x ∈ K1} for some scalar s > 0 and vector
v ∈ R

n . Given a time horizon T ≥ 0 and a radius ε > 0, let E1 be a minimal (T , ε)-
spanning set of K1. For each x2 ∈ K2, the point x1 := (x2 − v)/s ∈ K1; thus there
is a point x̂1 ∈ E1 such that ‖ξσ (x1, t) − ξσ (x̂1, t)‖ = ‖Φσ (t, 0)(x1 − x̂1)‖ < ε

for all t ∈ [0, T ]. Then, the point x̂2 := sx̂1 + v satisfies ‖ξσ (x2, t) − ξσ (x̂2, t)‖ =
‖Φσ (t, 0)(x2 − x̂2)‖ = s‖Φσ (t, 0)(x1 − x̂1)‖ < sε for all t ∈ [0, T ]. Therefore,
the set E2 := {sx̂ + v : x̂ ∈ E1} is a (T , sε)-spanning set of K2. As |E2| = |E1|,
we have S(Aσ , sε, T , K2) ≤ S(Aσ , ε, T , K1) and thus h(Aσ , K2) ≤ h(Aσ , K1).
Replacing s and εwith 1/s and sε in the analysis above, we obtain S(Aσ , sε, T , K2) ≥
S(Aσ , ε, T , K1) and thus h(Aσ , K2) ≥ h(Aσ , K1). Hence h(Aσ , K2) = h(Aσ , K1).
Therefore, the entropy of (14) is invariant under translation and uniform scaling of
the initial set.

Second, we establish that the entropy of (14) is independent of the choice of the
initial set. Let K ⊂ R

n be an initial set. As K is a compact set with nonempty interior,
there exist closed balls B1, B2 ⊂ R

n such that B1 ⊂ K ⊂ B2; thus h(Aσ , B1) ≤
h(Aσ , K ) ≤ h(Aσ , B2) by construction. As the entropy of (14) is invariant under
translation and uniform scaling of the initial set, we have h(Aσ , B1) = h(Aσ , B2).
Hence h(Aσ , B1) = h(Aσ , K ) = h(Aσ , B2). Therefore, the entropy of (14) is inde-
pendent of the choice of K .

Following Proposition 2, we omit the initial set and denote by h(Aσ ) the entropy of
the switched linear system (14). For convenience and concreteness, we take the initial
set to be the closed unit hypercube at the origin, that is, K := {x ∈ R

n : ‖x‖ ≤ 1}
(recall that we take ‖ · ‖ to be the ∞-norm; see Remark 1) in computing the entropy
of (14).

Next, given a time horizon T ≥ 0 and a radius ε > 0, we provide standard
constructions of (T , ε)-spanning and (T , ε)-separated sets based on a notion of grid.
Given a vector θ = (θ1, . . . , θn) ∈ R

n
>0 which may depend on T and ε, we define the

following grid on the closed unit hypercube K at the origin:

G(θ) := {(k1θ1, . . . , knθn) ∈ K : k1, . . . , kn ∈ Z} . (15)

Simple computation yields that the cardinality of the grid G(θ) satisfies

|G(θ)| =
n∏

i=1

(2�1/θi� + 1) .

For a point x̂ ∈ G(θ), let R(x̂) be the open hyperrectangle with center x̂ and sides
2θ1, . . . , 2θn in K , that is,

R(x̂) := {x ∈ K : |x1 − x̂1| < θ1, . . . , |xn − x̂n| < θn
}
. (16)
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Then, the points in G(θ) adjacent to x̂ are on the boundary of the closure of R(x̂), and
the union of all R(x̂) covers K , that is,

K =
⋃

x̂∈G(θ)

R
(
x̂
)
.

By comparing the hyperrectangle R(x̂) to the open ball BAσ (x̂, ε, T ) defined by (3),
we obtain the following result; the proof can be found in “Appendix B”.

Lemma 2 Consider the switched linear system (14).

1. If the vector θ is selected so that R(x̂) ⊂ BAσ (x̂, ε, T ) for all x̂ ∈ G(θ), then the
grid G(θ) is (T , ε)-spanning. Additionally, if

lim
ε↘0

lim sup
T→∞

n∑

i=1

log(θi )

T
= 0, (17)

then

h(Aσ ) ≤ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T
. (18)

2. If the vector θ is selected so that BAσ (x̂, ε, T ) ⊂ R(x̂) for all x̂ ∈ G(θ), then the
grid G(θ) is (T , ε)-separated. Additionally, if (17) holds, then

h(Aσ ) ≥ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T
. (19)

3.2 Entropy of linear time-invariant systems

Before analyzing the entropy of the switched linear system (14), we present here a
result for the non-switched case. Consider a linear time-invariant (LTI) system

ẋ = Ax (20)

with a matrix A ∈ R
n×n . The following well-known result provides a formula for

the entropy h(A) of (20). The proof is along the lines of those of the corresponding
discrete-time results (e.g., [4, Th. 15] and [35, Th. 4.1]) and thus omitted here; a
complete proof can be found in [36, Ch. 4].

Lemma 3 The topological entropy of the LTI system (20) satisfies

h(A) =
∑

λ∈spec(A)

max{Re(λ), 0}. (21)
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3.3 Entropy of general switched linear systems

In this subsection, we construct upper and lower bounds for the entropy of the general
switched linear system (14). The upper bound is formulated in terms of a notion of
matrix measure for the system matrices of individual modes, and the lower bound is
formulated in terms of their traces.

Following [11, p. 30], for an induced matrix norm ‖ · ‖, the matrix measure μ :
R
n×n → R is defined by

μ(A) := lim
t↘0

‖I + t A‖ − 1

t
. (22)

For standard norms, there are explicit formulae for the matrix measure; for example,
for the ∞-norm, the matrix measure satisfies

μ(A) = max
1≤i≤n

(

aii +
∑

j �=i

|ai j |
)

for a matrix A = [ai j ] ∈ R
n×n . For all induced matrix norms ‖ · ‖ on R

n , we have
[11, Th. 5, p. 31]

Re(λ) ≤ μ(A) ≤ ‖A‖ ∀A ∈ R
n×n,∀λ ∈ spec(A). (23)

Moreover, an upper bound for the norm of the solution to the switched linear system
(14) can be constructed in terms of the matrix measures of Ap, which is a direct
consequence of [11, Th. 27, p. 34].3

Lemma 4 For every initial state x ∈ R
n, the solution to the switched linear system

(14) satisfies
‖ξσ (x, t)‖ ≤ e

∑
p∈P μ(Ap) τp(t)‖x‖ ∀t ≥ 0

with the active times τp defined by (8).

Theorem 1 The topological entropy of the switched linear system (14) is upper-
bounded by4

h(Aσ ) ≤ max

{

lim sup
t→∞

∑

p∈P
nμ(Ap)ρp(t), 0

}

(24)

and lower-bounded by

h(Aσ ) ≥ max

{

lim sup
t→∞

∑

p∈P
tr(Ap)ρp(t), 0

}

(25)

with the active rates ρp defined by (9).

3 We can apply [11, Th. 27, p. 34] to the switched linear system (14) as the switching signal σ is piecewise
constant.
4 Following (23), the upper bound (24) is tighter than the one in the previous result [43, eq. (19)].
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Note that the value of the matrix measure depends on the induced norm ‖ · ‖ in
the definition (22). Therefore, the upper bound (24) can be improved by taking the
infimum over all induced norms on R

n×n . See Remark 5 below for additional upper
bounds (31) and (32) that are more conservative but require less information on the
switching.

Proof of Theorem 1 First,we establish the upper bound (24). For all initial states x, x ′ ∈
K , the corresponding solutions to (14) satisfy

‖ξσ (x ′, t) − ξσ (x, t)‖ = ‖ξσ (x ′ − x, t)‖ ≤ e
∑

p∈P μ(Ap) τp(t)‖x ′ − x‖ ∀t ≥ 0,

where the inequality follows from Lemma 4. Given a time horizon T ≥ 0 and a radius
ε > 0, we have

max
t∈[0,T ] ‖ξσ

(
x ′, t

)− ξσ (x, t)‖ ≤ emaxt∈[0,T ]
∑

p∈P μ(Ap) τp(t)‖x ′ − x‖. (26)

Consider the grid G(θ) defined by (15) with

θi := e−maxt∈[0,T ]
∑

p∈P μ(Ap) τp(t)ε, i ∈ {1, . . . , n},

and the corresponding hypercubes R(x̂) defined by (16). Comparing (16) and (26) to
(3), we see that R(x̂) ⊂ BAσ (x̂, ε, T ) for all x̂ ∈ G(θ). Then, Lemma 2 implies that
G(θ) is (T , ε)-spanning and, as all θi are decreasing in T , the upper bound (18) yields

h(Aσ ) ≤ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T

= lim sup
T→∞

1

T
max
t∈[0,T ]

∑

p∈P
nμ(Ap) τp(t) + lim

ε↘0
lim sup
T→∞

n log(1/ε)

T

= lim sup
T→∞

1

T
max
t∈[0,T ]

∑

p∈P
nμ(Ap) τp(t).

Then, the upper bound (24) follows from (13) with ap = nμ(Ap) in (11) and (12).
Second, we establish the lower bound (25) via volume-based analysis. For every

initial state x ∈ K , the solution to (14) satisfies

ξσ (x, t) = Φσ (t, 0) x ∀t ≥ 0

with the state-transition matrix defined by

Φσ (t, s) := eAσ(tNσ (t,s))(tNσ (t,s)+1−tNσ (t,s)) · · · eAσ(t0)(t1−t0), t ≥ s ≥ 0,

where t1 < · · · < tNσ (t,s) is the sequence of switches on (s, t], and t0 := s and
tNσ (t,s)+1 := t . Given a time horizon T ≥ 0 and a radius ε > 0, the open ball
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BAσ (x, ε, T ) defined by (3) satisfies

BAσ (x, ε, T ) ⊂ {x ′ ∈ K : ‖ξσ

(
x ′, T

)− ξσ (x, T )‖ < ε
}

= {x ′ ∈ K : ‖Φσ (T , 0)
(
x ′ − x

) ‖ < ε
} =

{
Φσ (T , 0)−1v + x ∈ K : ‖v‖ < ε

}
.

Hence its volume satisfies (recall that we take ‖ · ‖ to be the ∞-norm; see Remark 1)

vol
(
BAσ (x, ε, T )

) ≤ det
(
Φσ (T , 0)−1

)
(2ε)n

= e
−∑Nσ (T ,0)

i=0 tr
(
Aσ(ti )

)
(ti+1−ti )

(2ε)n

= e−∑p∈P tr(Ap) τp(T )
(2ε)n ,

where the first equality follows from Liouville’s formula [6, Prop. 2.18, p. 152]. Com-
bining the upper bound above with (4), we conclude that for all (T , ε)-spanning sets
E ⊂ K , we have

vol(K ) ≤
∑

x̂∈E
vol
(
BAσ

(
x̂, ε, T

)) ≤ |E |e−∑p∈P tr(Ap) τp(T )
(2ε)n .

Therefore, the minimal cardinality of a (T , ε)-spanning set satisfies

S(Aσ , ε, T , K ) ≥ e
∑

p∈P tr(Ap) τp(T )
vol(K )/(2ε)n,

which, combined with (5), implies

h(Aσ ) ≥ lim
ε↘0

lim sup
T→∞

1

T
log
(
e
∑

p∈P tr(Ap) τp(T )
vol(K )/(2ε)n

)

= lim sup
T→∞

∑

p∈P

tr(Ap) τp(T )

T
+ lim

ε↘0
lim sup
T→∞

log(vol(K )/(2ε)n)

T

= lim sup
T→∞

∑

p∈P
tr(Ap)ρp(T ),

where the last equality follows partially from the definition (9) of the active rates ρp.
The proof of (25) is completed by recalling that h(Aσ ) ≥ 0.

In general, there is a gap between the upper bound (24) and lower bound (25)
in Theorem 1 (e.g., consider an LTI system with a matrix with one positive and one
negative eigenvalue). The formula (21) for the entropy of an LTI system, together with
the property (23), implies that max{tr(Ap), 0} ≤ h(Ap) ≤ max{nμ(Ap), 0} for all
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p ∈ P , and thus

max

{

lim sup
t→∞

∑

p∈P
tr(Ap)ρp(t), 0

}

≤ lim sup
t→∞

∑

p∈P
h(Ap)ρp(t)

≤ max

{

lim sup
t→∞

∑

p∈P
nμ(Ap)ρp(t), 0

}

.

However, for a general switched linear system, due to the lack of “alignment” between
eigenspaces of individual modes, the relation between h(Aσ ) and
lim supt→∞

∑
p∈P h(Ap)ρp(t) is undetermined (examples where the former is

smaller can be found in Example 3 below; an example where the former is larger
can be seen from the unstable switched linear system generated by Hurwitz matrices
in [26, p. 26]). In Sections 4–6, we will consider switched linear systems generated
by matrices with various commutation relations, and establish formulae and improved
upper bounds for the topological entropy.

4 Entropy of switched scalar systems

In this section, we consider the case of switched linear systems with scalar-valued
state. Then, each Ap is a scalar ap ∈ R, and (14) becomes the switched scalar system

ẋ = aσ x (27)

with the family of scalars {ap : p ∈ P}. In this case, tr(ap) = ap = μ(ap) for all
p ∈ P , and thus the upper bound (24) and lower bound (25) in Theorem 1 coincide
and become the following formula for the entropy h(aσ ).

Corollary 1 The topological entropy of the switched scalar system (27) satisfies

h(aσ ) = max{â, 0} (28)

with the asymptotic weighted average â defined by (11).

Based on the formula (28), we construct upper bounds for the entropy h(aσ ) that
require less information; the proof can be found in “Appendix C”.

Corollary 2 The topological entropy of the switched scalar system (27) is upper-
bounded by

h(aσ ) ≤
∑

p∈P
h(ap)ρ̂p (29)

with the asymptotic active rates ρ̂p defined by (10), and also by

h(aσ ) ≤ max
p∈P

h(ap), (30)
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Table 1 Entropy values and
bounds for the switched scalar
systems in Example 2

(ρ̂1, ρ̂2) (28) (29) (30)

σ0 (1, 0) 2 2 2

σ1 (0.5, 0.5) 1.5 1.5 2

σ2 (0.9, 0.9) 1.9 2.7 2

where h(ap) denotes the topological entropy of the p-th mode and satisfies (21), i.e.,
h(ap) = max{ap, 0}. Moreover, if the limits limt→∞ ρp(t) exist and ap ≥ 0 for all
p ∈ P , then (29) holds with equality.

Remark 3 1. For a fixed family of scalars {ap : p ∈ P}, compared with the formula
(28), the upper bound (29) depends only on the asymptotic active rates ρ̂p; the
upper bound (30) is independent of switching.

2. The upper bounds (29) and (30) are both useful in the sense that neither is more
conservative than the other, as illustrated in the following example.

Example 2 Consider the index set P = {1, 2} and the scalars a1 = 2 and a2 = 1. We
construct switching signals σ0, σ1, and σ2 as follows (see also footnote 2):

– σ0 with no switch: Let σ0(t) := 1 for all t ≥ 0. Simple computation yields the
asymptotic active rates ρ̂1 = 1 and ρ̂2 = 0.

– σ1 with periodic switches: For k ∈ N , let tk := k. Simple computation yields that
ρ̂1 = ρ̂2 = 0.5.

– σ2 with constant set-points: Let t1 := 1. For k ≥ 1, let t2k := min{t > t2k−1 :
ρ2(t) ≥ 0.9} and t2k+1 := min{t > t2k : ρ1(t) ≥ 0.9}. Simple computation yields
tk = 9k−1 + 9k−2 for k ≥ 2 and ρ̂1 = ρ̂2 = 0.9.

The values of h(aσ0), h(aσ1), and h(aσ2) computed using the formula (28) and their
upper bounds computed using (29) and (30) are summarized in Table 1. In particular,
h(aσ2) can be computed as follows:

h(aσ2) = lim sup
t→∞

(
a1ρ1(t) + a2(1 − ρ1(t))

) = a2 + (a1 − a2)ρ̂1 = 1.9.

Remark 4 When the scalarsap are complex and state space is extended fromR toC, the
results in this section still hold after replacing each ap with its real part Re(ap) in (11)
and (12) and noticing that (21) implies h(ap) = max{Re(ap), 0}. More specifically,
this can be seen from the fact that for all initial states x, x ′ ∈ K , the corresponding
solutions to (27) satisfy |ξσ (x ′, t)−ξσ (x, t)| = e

∑
p∈P Re(ap) τp(t)|x ′ −x | for all t ≥ 0.

Remark 5 Comparing the upper bound (24) and lower bound (25) to the formula (28),
we conclude that the entropy of the general switched linear system (14) is upper- and
lower-bounded by those of the switched scalar systems (27) with ap = nμ(Ap) and
with ap = tr(Ap), respectively. Consequently, Corollary 2 implies that the entropy
of (14) is upper-bounded by

h(Aσ ) ≤
∑

p∈P
max

{
nμ(Ap)ρ̂p, 0

}
, (31)
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which only depends on the asymptotic active rates ρ̂p defined by (10), and also by

h(Aσ ) ≤ max
p∈P

max{nμ(Ap), 0}, (32)

which is independent of switching.

5 Entropy of switched commuting systems

In this section, we consider the case of switched linear systems with pairwise com-
muting matrices, that is, the family of matrices {Ap : p ∈ P} in (14) satisfies

Ap Aq = Aq Ap ∀p, q ∈ P.

We call such a set of pairwise commuting matrices a commuting family.
The following result shows that there exists a (possibly complex) simultaneous

change of basis under which every matrix in the commuting family {Ap : p ∈ P} can
be written as the sum of a diagonal part and a nilpotent part, and these diagonal and
nilpotent parts are pairwise commuting.

Lemma 5 For the commuting family {Ap : p ∈ P}, there exists an invertible matrix
Γ ∈ C

n×n such that
Γ ApΓ

−1 = Dp + Np ∀p ∈ P,

where all Dp ∈ C
n×n are diagonal, all Np ∈ C

n×n are nilpotent, and {Dp, Np : p ∈
P} is a commuting family.

Proof Lemma 5 is a consequence of [17, Cor. 2.4.6.4, p. 115]. An alternative proof
based on the Jordan–Chevalley decomposition can be found in [41].

In view of Lemma 5 and Remark 1, we assume, without loss of generality, that
every matrix in the commuting family {Ap : p ∈ P} satisfies Ap = Dp + Np with a
diagonal matrix Dp := diag(a1p, . . . , a

n
p) ∈ C

n×n , that is, aip is the i-th diagonal entry
of Dp, and a nilpotent matrix Np ∈ C

n×n , and that {Dp, Np : p ∈ P} is a commuting
family.5 Then (14) becomes the switched commuting system in Cn defined by

ẋ = (Dσ + Nσ ) x (33)

with the commuting family of diagonal and nilpotent matrices {Dp, Np : p ∈ P}.
Theorem 2 The topological entropy of the switched commuting system (33) satisfies

h (Dσ + Nσ ) = lim sup
T→∞

n∑

i=1

āi (T ) (34)

5 In particular, for each p ∈ P , the diagonal entries aip are also the eigenvalues of the original system
matrix Ap [17, Th. 2.4.8.1, p. 117].
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with

āi (T ) := 1

T
max
t∈[0,T ]

∑

p∈P
Re
(
aip
)

τp(t), i ∈ {1, . . . , n} , (35)

where the active times τp are defined by (8).

Here, the functions āi are the component-wise maximal weighted averages of the
real parts of eigenvalues.Hence, the entropyh(Dσ +Nσ ) is independent of the nilpotent
matrices Np in (33).

To prove Theorem 2, we first formulate upper and lower bounds for the effect of
the nilpotent matrices Np; the proof can be found in “Appendix D”.

Lemma 6 Consider the commuting family of nilpotent matrices {Np : p ∈ P}. For
each δ > 0, there exists a constant cδ > 0 such that for all v ∈ C

n, we have

c−1
δ e−δt‖v‖ ≤

∥
∥
∥e
∑

p∈P Npτp(t)v

∥
∥
∥ ≤ cδe

δt‖v‖ ∀t ≥ 0 (36)

with the active times τp defined by (8).

Proof of Theorem 2 For all initial states x, x ′ ∈ K , as {Dp, Np : p ∈ P} is a commut-
ing family, the corresponding solutions to (33) satisfy (see, e.g., [26, p. 31])

‖ξσ

(
x ′, t

)− ξσ (x, t)‖ =
∥
∥
∥e
∑

p∈P (Dp+Np) τp(t)
(
x ′ − x

) ∥∥
∥

=
∥
∥
∥e
∑

p∈P Npτp(t)e
∑

p∈P Dpτp(t)(x ′ − x)
∥
∥
∥ ∀t ≥ 0.

Given a time horizon T ≥ 0 and a radius ε > 0, Lemma 6 with δ = ε and v =
e
∑

p∈P Dpτp(t)(x ′ − x) implies that there is a constant cε > 0 such that

c−1
ε e−εt

∥
∥
∥e
∑

p∈P Dpτp(t)(x ′ − x)
∥
∥
∥ ≤ ‖ξσ (x ′, t) − ξσ (x, t)‖

≤ cεe
εt
∥
∥
∥e
∑

p∈P Dpτp(t)(x ′ − x)
∥
∥
∥ ∀t ≥ 0,

in which
∥
∥
∥e
∑

p∈P Dpτp(t)(x ′ − x)
∥
∥
∥ = max

1≤i≤n
e
∑

p∈P Re(aip) τp(t)|x ′
i − xi |

as Dp are diagonal (recall that we take ‖ · ‖ to be the ∞-norm; see Remark 1). Taking
the maximum over t ∈ [0, T ], we obtain

c−1
ε max

1≤i≤n
e(āi (T )−ε) T |x ′

i − xi | ≤ max
t∈[0,T ] ‖ξσ (x ′, t) − ξσ (x, t)‖

≤ cε max
1≤i≤n

e(āi (T )+ε) T |x ′
i − xi | (37)

with āi defined by (35).
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First, consider the grid G(θ) defined by (15) with

θi := e−(āi (T )+ε) T ε/cε, i ∈ {1, . . . , n} ,

and the corresponding hyperrectangles R(x̂) defined by (16). Comparing (16) and the
upper bound in (37) to (3), we see that R(x̂) ⊂ BDσ +Nσ (x̂, ε, T ) for all x̂ ∈ G(θ).
Then Lemma 2 implies that G(θ) is (T , ε)-spanning and, as all θi are decreasing in
T , the upper bound (18) yields

h(Dσ + Nσ ) ≤ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T

= lim sup
T→∞

n∑

i=1

āi (T ) + lim
ε↘0

nε + lim
ε↘0

lim sup
T→∞

n log(cε/ε)

T

= lim sup
T→∞

n∑

i=1

āi (T ).

Second, consider the grid G(θ) defined by (15) with

θi := e−(āi (T )−ε) T εcε, i ∈ {1, . . . , n},

and the corresponding hyperrectangles R(x̂) defined by (16). Comparing (16) and the
lower bound in (37) to (3), we see that BDσ +Nσ (x̂, ε, T ) ⊂ R(x̂) for all x̂ ∈ G(θ).
Then, Lemma 2 implies that G(θ) is (T , ε)-separated and, as (17) holds, the lower
bound (19) yields

h(Dσ + Nσ ) ≥ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T

= lim sup
T→∞

n∑

i=1

āi (T ) − lim
ε↘0

nε − lim
ε↘0

lim sup
T→∞

n log(cεε)

T

= lim sup
T→∞

n∑

i=1

āi (T ).

Based on the formula (34), we establish upper bounds for the entropy h(Dσ + Nσ )

that require less information.
First, we construct an upper bound in terms of the entropy in each individual scalar

component.

Proposition 3 The topological entropy of the switched commuting system (33) is
upper-bounded by

h (Dσ + Nσ ) ≤
n∑

i=1

max
{
âi , 0

}
(38)
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with
âi := lim sup

t→∞

∑

p∈P
Re
(
aip
)

ρp(t), i ∈ {1, . . . , n} , (39)

where the active rates ρp are defined by (9). Moreover, if the limits limt→∞ ρp(t)
exist6 for all p ∈ P , then (38) holds with equality.

Here the constants âi are the component-wise asymptotic weighted averages of the
real parts of eigenvalues. Combining (38) with (28) and Remark 4, we conclude that
the entropy of the switching commuting system (33) is upper-bounded by the sum of
the entropy of the switched scalar system (27) with ap = aip for each i ∈ {1, . . . , n}.
For the case where all the active rates ρp converge, as (38) holds with equality, (21)
implies that h(Dσ +Nσ ) equals the entropy of the LTI system (20) with the asymptotic
weighted average matrix A :=∑p∈P (Dp + Np) limt→∞ ρp(t).

Proof of Proposition 3 Following (34) and the subadditivity of limit suprema, we have

h(Dσ + Nσ ) = lim sup
T→∞

n∑

i=1

āi (T ) ≤
n∑

i=1

lim sup
T→∞

āi (T ) =
n∑

i=1

max
{
âi , 0

}
,

where the last equality follows from (13) with ap = Re(aip) in (11) and (12). For the
case where the limits limt→∞ ρp(t) exist for all p ∈ P , the inequality in the derivation
above becomes an equality due to the additivity of limits.

Second, we construct an upper bound in terms of the entropy of each individual
mode.

Proposition 4 The topological entropy of the switched commuting system (33) is
upper-bounded by

h(Dσ + Nσ ) ≤ lim sup
t→∞

∑

p∈P
h
(
Dp + Np

)
ρp(t) (40)

with the active rates ρp defined by (9), where h(Dp + Np) denotes the topological
entropyof the p-thmodeand satisfies (21)with A = Dp+Np.Moreover, if Re(aip) ≥ 0
for all i ∈ {1, . . . , n} and p ∈ P , then (40) holds with equality.

Combining (40)with (28),we conclude that the entropy of the switching commuting
system (33) is upper-bounded by the entropy of the switched scalar system (27) with
ap = h(Dp + Np). For the case where all the eigenvalues of system matrices aip have
nonnegative real parts, the general lower bound (25) coincides with (40) and thus also
holds with equality.

Proof For each p ∈ P , let

āip := max
{
Re(aip), 0

}
, i ∈ {1, . . . , n} .

6 For example, when the switching signal σ is periodic; see [36, Sec. 3.2.1] for more conditions.
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Following (21), the entropy of the p-thmode of (33) satisfies h(Dp+Np) =∑n
i=1 ā

i
p;

see also footnote 5. Consequently, (34) and (35) imply

h(Dσ + Nσ ) = lim sup
T→∞

n∑

i=1

1

T
max
t∈[0,T ]

∑

p∈P
Re
(
aip
)

τp(t)

≤ lim sup
T→∞

n∑

i=1

1

T

∑

p∈P
āip τp(T ) = lim sup

t→∞

∑

p∈P

(
n∑

i=1

āip

)

ρp(t)

= lim sup
t→∞

∑

p∈P
h(Dp + Np)ρp(t).

For the case where Re(aip) ≥ 0 for all i ∈ {1, . . . , n} and p ∈ P , the inequality in the
derivation above becomes an equality as āip = Re(aip).

The upper bounds (38) and (40) can be further relaxed to obtain the following upper
bounds for h(Dσ + Nσ ); the proof is along the lines of that of Corollary 2 and thus
omitted here.

Corollary 3 The topological entropy of the switched commuting system (33) is upper-
bounded by

h (Dσ + Nσ ) ≤
∑

p∈P
h
(
Dp + Np

)
ρ̂p (41)

with the asymptotic active rates ρ̂p defined by (10), and also by

h (Dσ + Nσ ) ≤ max
p∈P

h
(
Dp + Np

)
, (42)

where h(Dp +Np) denotes the topological entropy of the p-th mode and satisfies (21)
with A = Dp + Np. Moreover, if the limits limt→∞ ρp(t) exist and Re(aip) ≥ 0 for
all i ∈ {1, . . . , n} and p ∈ P , then (41) holds with equality.

The relations between the formula in Theorem 2 and the upper bounds in Proposi-
tions 3 and 4 and Corollary 3 are summarized in Fig. 2 and Remark 6, and illustrated
numerically in Example 3.

Remark 6 1. Unlike the formula (34) and the upper bound (38), the upper bounds
(40), (41), and (42) are independent of the order of eigenvalues (i.e., in which
scalar component each eigenvalue of the system matrices Dp is), and thus can be
computed for a switched linear system with pairwise commuting matrices without
knowledge of the simultaneous change of basis in Lemma 5.

2. For a fixed family of matrices {Dp : p ∈ P}, compared with the formula (34),
the upper bound (38) depends only on the component-wise asymptotic weighted
averages âi ; the upper bound (40) depends onlyon the asymptoticweighted average
of the entropy of each individual mode h(Dp+Np); the upper bound (41) depends
only on the asymptotic active rates ρ̂p; the upper bound (42) is independent of
switching.
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(34)
(C)
=⇒ (40) =⇒ (42)

=⇒ (A)

=⇒ (B)

(38)
(D)
=⇒ (41)

Simultaneous change
of basis needed

Simultaneous change
of basis not needed

Fig. 2 Relations between the formula (34) and the upper bounds (38), (40), (41), and (42). The implications
(A) and (B) become equivalences if all the active rates ρp converge; the implication (C) becomes an
equivalence if all the eigenvalues of system matrices aip have nonnegative real parts; the implication (D)
becomes an equivalence if both of these conditions hold. The relations between these upper bounds that are
not specified in this diagram are undetermined

Table 2 Entropy values and
bounds for the switched
commuting systems in
Example 3

(ρ̂1, ρ̂2) (34) (38) (40) (41) (42) (24) (25)

σ0 (1, 0) 2 2 2 2 3 4 1

σ1 (0.5, 0.5) 1.5 1.5 2.5 2.5 3 5 1.5

σ2 (0.9, 0.9) 2.79 4.3 2.9 4.5 3 5.8 1.9

3. The upper bounds (38) and (40) are both useful in the sense that neither is more
conservative than the other; the same holds for the upper bounds (41) and (42).

Example 3 Consider the index set P = {1, 2} and the switching signals σ0, σ1, and
σ2 defined in Example 2. As the entropy of the switched commuting system (33) is
independent of its nilpotent part, we consider the diagonal matrices

D1 =
[−1 0
0 2

]

, D2 =
[
3 0
0 −1

]

.

The values of h(Dσ0), h(Dσ1), and h(Dσ2) computed using the formula (34) and their
upper bounds computed using (38), (40), (41), and (42), as well as the general upper
and lower bounds (24) and (25), are summarized in Table 2. For the case with σ2, the
computation using (38), (40), (24), and (25) is along the lines of computing h(aσ2) in
Example 2; see “Appendix E” for the computation using (34).

6 Entropy of switched triangular systems

In this section, we consider the case of switched linear systems with simultaneously
triangularizable matrices, that is, there exists a (possibly complex) change of basis
under which the matrices Ap in (14) are all upper triangular.7 Hence and in view of

7 A sufficient condition for simultaneous triangularizability is that thematrices Ap are pairwise commuting
(see, e.g., [17, Th. 2.3.3, p. 103]). More sufficient conditions can be found in [25]. A necessary and sufficient
condition is that the Lie algebra {Ap : p ∈ P}L A is solvable (see, e.g., [18, pp. 10, 16]). More necessary
and sufficient conditions can be found in [13,31].
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Remark 1, we assume, without loss of generality, that every Ap is upper triangular,
and denote it by

Up :=

⎡

⎢
⎢
⎢
⎢
⎣

a1p b1,2p · · · b1,np

0 a2p
. . .

...

...
. . .

. . . bn−1,n
p

0 · · · 0 anp

⎤

⎥
⎥
⎥
⎥
⎦

∈ C
n×n .

Then, (14) becomes the switched triangular system in Cn defined by

ẋ = Uσ x (43)

with the family of upper-triangular matrices {Up : p ∈ P}.
Theorem 3 The topological entropy of the switched triangular system (43) is upper-
bounded by

h(Uσ ) ≤ lim sup
T→∞

(

nā1(T ) +
n∑

i=2

(n + 1 − i) d̄i (T )

)

(44)

with

ā1(T ) := 1

T
max
t∈[0,T ]

∑

p∈P
Re(a1p) τp(t) (45)

and

d̄i (T ) := 1

T
max
t∈[0,T ]

∑

p∈P
Re
(
aip − ai−1

p

)
τp(t), i ∈ {2, . . . , n} , (46)

where the active times τp are defined by (8), and also by

h (Uσ ) ≤ max
{
â1, 0

}+
n∑

i=2

max
1≤ j≤i

max
p∈P

max
{
Re(a j

p), 0
}

(47)

≤
n∑

i=1

max
1≤ j≤i

max
p∈P

max
{
Re(a j

p), 0
}

(48)

with
â1 := lim sup

t→∞

∑

p∈P
Re
(
a1p
)

ρp(t), (49)

where the active rates ρp are defined by (9).

Here the function ā1 is the maximal weighted average of the real parts of the
eigenvalues in the first scalar component, the functions d̄i are the maximal weighted
averages of the differences between the real parts of the eigenvalues in adjacent scalar
components, and the constant â1 is the asymptotic weighted average of the real parts
of the eigenvalues in the first scalar component. Hence the upper bounds (44), (47),
and (48) are independent of the off-diagonal entries bi, jp of the matrices Up in (43).
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To prove Theorem 3, we first establish a formula for the solution to the switched
triangular system (43) and two upper bounds for its norm, which are also of indepen-
dent interest (e.g., the upper bound (53) is used to establish a stability result in Sect. 7);
the proofs can be found in Appendices F and G. Here we denote by ξ kσ (x, t) the k-th
scalar component of the solution ξσ (x, t).

Lemma 7 For every initial state x ∈ R
n and k ∈ {1, . . . , n}, the k-th scalar component

of the solution ξσ (x, t) to (43) satisfies

ξ kσ (x, t) = eηk (t)

(

xk +
n∑

l=k+1

(
l−k∑

i=1

Ψ (t, Ck,l,i )
)

xl

)

∀t ≥ 0 (50)

with
ηi (t) :=

∑

p∈P
aipτp(t), i ∈ {1, . . . , n} , (51)

the sets

Ck,l,i :=
{
(c0, . . . , ci ) ∈ N

i+1 : k = c0 < c1 < · · · < ci−1 < ci = l
}

(52)

for l ∈ {k + 1, . . . , n} and i ∈ {1, . . . , l − k}, and

Ψ (t, Ck,l,i ) :=
∑

(c0,...,ci )∈Ck,l,i

∫ t

0

∫ s1

0
· · ·
∫ si−1

0

i∏

j=1

(
b
c j−1,c j
σ(s j )

eηc j (s j )−ηc j−1 (s j )ds j
)

.

Lemma 8 For every initial state x ∈ R
n, the solution ξσ (x, t) to (43) satisfies

‖ξσ (x, t)‖ ≤ eRe(η1(t))
n∑

i=1

(
(bMt + 1)i−1 e

∑i
j=2 d̄ j (t) t |xi |

)
∀t ≥ 0 (53)

and also

‖ξσ (x, t)‖ ≤ eRe(η1(t))|x1|+
n∑

i=2

(
(bMt+1)i−1emax1≤ j≤i maxp∈P Re(a j

p) t |xi |
)

∀t ≥ 0

(54)
with bM := maxp∈P, 1≤i< j≤n |bi, jp |, and η1 and d̄i defined by (51) and (46), respec-
tively.

From Lemma 8 and the proof of Theorem 3 below, we will see that the terms
related to the off-diagonal entries bi, jp of the matricesUp in (43) are absorbed into the
polynomials (bMt + 1)i−1, and thus do not appear in the bound (44).
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Proof of Theorem 3 Following Lemma 8, for all initial states x, x ′ ∈ K , the corre-
sponding solutions to (43) satisfy

‖ξσ (x ′, t)−ξσ (x, t)‖ ≤ eRe(η1(t))
n∑

i=1

(
(bMt + 1)i−1 e

∑i
j=2 d̄ j (t) t |x ′

i − xi |
)

∀t ≥ 0

and also

‖ξσ

(
x ′, t

)− ξσ (x, t)‖ ≤ eRe(η1(t))|x ′
1 − x1|

+
n∑

i=2

(

(bMt + 1)i−1 e
max1≤ j≤i maxp∈P Re

(
a j
p

)
t |x ′

i − xi |
)

∀t ≥ 0.

Given a time horizon T ≥ 0 and a radius ε > 0, following the definition (45) of ā1
and the fact that bM ≥ 0 and d̄i (t) t ≥ 0 are increasing in t for all i ∈ {2, . . . , n}, we
obtain

max
t∈[0,T ] ‖ξσ (x ′, t) − ξσ (x, t)‖ ≤

n∑

i=1

(

(bMT + 1)i−1e

(
ā1(T )+∑i

j=2 d̄ j (T )
)
T |x ′

i − xi |
)

(55)
and also

max
t∈[0,T ] ‖ξσ (x ′, t) − ξσ (x, t)‖ ≤ eā1(T ) T |x ′

1 − x1|

+
n∑

i=2

(
(bMt + 1)i−1emax1≤ j≤i maxp∈P max{Re(a j

p), 0} T |x ′
i − xi |

)
. (56)

First, consider the grid G(θ) defined by (15) with

θi := e
−
(
ā1(T )+∑i

j=2 d̄ j (T )
)
T
ε/(n (bMT + 1)i−1), i ∈ {1, . . . , n} ,

and the corresponding hyperrectangles R(x̂) defined by (16). Comparing (16) and (55)
to (3), we see that R(x̂) ⊂ BUσ (x̂, ε, T ) for all x̂ ∈ G(θ). Then, Lemma 2 implies
that G(θ) is (T , ε)-spanning and, as all θi are decreasing in T , the upper bound (18)
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yields

h(Uσ ) ≤ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T

= lim sup
T→∞

n∑

i=1

⎛

⎝ā1(T ) +
i∑

j=2

d̄ j (T )

⎞

⎠+ lim sup
T→∞

n(n − 1) log(bMT + 1)

2T

+ lim
ε↘0

lim sup
T→∞

n log(n/ε)

T

= lim sup
T→∞

(

nā1(T ) +
n∑

i=2

(n + 1 − i) d̄i (T )

)

,

where in the last step, we change the order of summation by grouping terms in the
same scalar component.

Second, consider the grid G(θ) defined by (15) with

θ1 := e−ā1(T ) T ε/n

and

θi := e−max1≤ j≤i maxp∈P max{Re(a j
p), 0} T ε/(n(bMT + 1)i−1), i ∈ {2, . . . , n},

and the corresponding hyperrectangles R(x̂) defined by (16). Comparing (16) and (56)
to (3), we see that R(x̂) ⊂ BUσ (x̂, ε, T ) for all x̂ ∈ G(θ). Then, Lemma 2 implies
that G(θ) is (T , ε)-spanning and, as all θi are decreasing in T , the upper bound (18)
yields

h(Uσ ) ≤ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T

= lim sup
T→∞

ā1(T ) +
n∑

i=2

max
1≤ j≤i

max
p∈P

max
{
Re(a j

p), 0
}

+ lim sup
T→∞

n(n − 1) log(bMT + 1)

2T
+ lim

ε↘0
lim sup
T→∞

n log(n/ε)

T

= max
{
â1, 0

}+
n∑

i=2

max
1≤ j≤i

max
p∈P

max
{
Re(a j

p), 0
}

,

where the last equality follows partially from (13) with ap = Re(a1p) in (11) and (12).
Hence (47) holds, and (48) follows from the definition (49) of â1 as

â1 = lim sup
t→∞

∑

p∈P
Re(a1p)ρp(t) ≤ max

p∈P
Re(a1p).
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Based on the upper bounds (44), (47), and (48), we establish additional upper
bounds for the entropy h(Uσ ) that are more conservative but require less information.

First, we construct an upper bound in terms of the entropy in the first scalar com-
ponent and the entropy differences between adjacent scalar components; the proof is
along the lines of that of Proposition 3 and thus omitted here.

Proposition 5 The topological entropy of the switched triangular system (43) is upper-
bounded by

h(Uσ ) ≤ nmax{â1, 0} +
n∑

i=2

(n + 1 − i)max{d̂i , 0} (57)

with
d̂i := lim sup

t→∞

∑

p∈P
Re(aip − ai−1

p )ρp(t), i ∈ {2, . . . , n} (58)

and â1 defined by (49), where the active rates ρp are defined by (9).

Here, the constants d̂i are the asymptotic weighted averages of the differences
between the real parts of the eigenvalues in adjacent scalar components.

Second, we construct two upper bounds in terms of two entropy-related quantities
of each individual mode; the proof is along the lines of that of Proposition 4 and thus
omitted here.

Proposition 6 The topological entropy of the switched triangular system (43) is upper-
bounded by

h(Uσ ) ≤ lim sup
t→∞

∑

p∈P
h̃(Up)ρp(t) (59)

≤ lim sup
t→∞

∑

p∈P
h̃S(Up)ρp(t) (60)

with

h̃(Up) := nmax
{
Re(a1p), 0

}
+

n∑

i=2

(n + 1 − i)max
{
Re(aip − ai−1

p ), 0
}

,

h̃S(Up) := max
(λ1,...,λn)∈S(spec(Up))

(

nmax
{
Re(λ1), 0

}

+
n∑

i=2

(n + 1 − i)max
{
Re
(
λi − λi−1

)
, 0
}
)

(61)

for p ∈ P , where the active rates ρp are defined by (9), and S(a1p, . . . , a
n
p) denotes

the set of permutations of {a1p, . . . , anp}.
The upper bounds (47), (48), (57), (59), and (60) can be further relaxed to establish

the following upper bounds for h(Uσ ); the proof is partly along the lines of that of
Corollary 2 and partly straightforward, and thus omitted here.
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Fig. 3 Relations between the
upper bounds (44), (47), (48),
(57), (59), (60), (62), (63), (64),
(65), and (66). The implications
(A), (B), and (C) become
equivalences if all the active
rates ρp converge; the
implication (D) becomes an
equivalence if the eigenvalues of
all the system matrices Up
satisfy
0 ≤ Re(a1p) ≤ · · · ≤ Re(anp);
the implication (E) becomes an
equivalence if both of these
conditions hold. The relations
between these upper bounds that
are not specified in this diagram
are undetermined

(47) =⇒ (48) =⇒ (66)

=⇒

(64) =⇒ (65)⇐
=

⇐
=

(44)
(D)
=⇒ (59) =⇒ (60)

=⇒ (A)

=⇒ (B)

=⇒ (C)

(57)
(E)
=⇒ (62) =⇒ (63)

Simultaneous change
of basis needed

Simultaneous change
of basis not needed

Corollary 4 The topological entropy of the switched triangular system (43) is upper-
bounded by

h(Uσ ) ≤
∑

p∈P
h̃(Up)ρ̂p (62)

≤
∑

p∈P
h̃S(Up)ρ̂p (63)

with the asymptotic active rates ρ̂p defined by (10), by

h(Uσ ) ≤ max
p∈P

h̃(Up) (64)

≤ max
p∈P

h̃S(Up), (65)

where the quantities h̃(Up) and h̃S(Up) are defined by (61), and also by

h(Uσ ) ≤ max
1≤i≤n

max
p∈P

max{nRe(aip), 0} = max
p∈P

max
λ∈spec(Up)

max{nRe(λ), 0}. (66)

The relations between the upper bounds in Theorem 3, Propositions 5 and 6, and
Corollary 4 are summarized in Fig. 3 and Remark 7, and illustrated numerically in
Example 4.

Remark 7 1. Unlike the upper bounds (44), (47), (48), (57), (59), (62), and (64), the
upper bounds (60), (63), (65), and (66) are independent of the order of eigenvalues
(i.e., in which scalar component each eigenvalue of the systemmatricesUp is), and
thus can be computed for a switched linear system with simultaneously triangular-
izable matrices without knowledge of a basis for simultaneous triangularization.

2. For a fixed family of matrices {Up : p ∈ P}, compared with the upper bound
(44), the upper bounds (47) and (57) depend only on the asymptotic weighted
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Table 3 Entropy bounds for the switched triangular systems in Example 4

(ρ̂1, ρ̂2) (44) (47) (48) (57) (59) (62) (64) (66) (24) (25)

σ0 (1, 0) 3 3 6 3 3 3 6 6 4 1

σ1 (0.5, 0.5) 2 4 6 2 4 4 6 6 6 1.5

σ2 (0.9, 0.9) 5.46 5.6 6 7.5 5.7 8.1 6 6 7.6 1.9

averages â1 and d̂i ; the upper bounds (59) and (60) depend only on the asymptotic
weighted averages of the entropy related quantites of each individual mode h̃(Up)

and h̃S(Up); the upper bounds (62) and (63) depend only on the asymptotic active
rates ρ̂p; the upper bounds (48), (64), (65), and (66) are independent of switching.

3. The upper bound (57) and (59) are both useful in the sense that neither is more
conservative than the other; this is also true for the upper bounds (62) and (64). The
same conclusion holds if the corresponding relaxed upper bounds (60), (63), and
(65) are taken into consideration. Moreover, the same conclusion holds between
the upper bounds (44) and (66), between the upper bounds (47) and (63), and
between the upper bounds (47) and (64).

Example 4 Consider the index set P = {1, 2}, the switching signals σ0, σ1, and σ2
defined in Example 2, and the upper-triangular matrices

U1 =
[−1 1
0 2

]

, U2 =
[
3 1
0 −1

]

.

The upper bounds for h(Uσ0), h(Uσ1), and h(Uσ2) computed using (44), (47), (48),
(57), (59), (62), (64), and (66), as well as the general upper and lower bounds (24)
and (25), are summarized in Table 3. For the case with σ2, the computation using (47),
(57), (59), (24), and (25) is along the lines of computing h(aσ2) in Example 2; see
“Appendix H” for the computation using (44).

7 Entropy and stability

In this section, we present stability conditions inspired by the upper bounds for topo-
logical entropy above. Suppose that the origin is a common equilibrium for all modes
of the switched system (2), that is, f p(0) = 0 for all p ∈ P . The switched system (2)
with switching signal σ is (Lyapunov) stable if for each ε > 0, there exists a δ > 0
such that for every initial state x ∈ R

n satisfying ‖x‖ ≤ δ, the corresponding solution
satisfy ‖ξσ (x, t)‖ ≤ ε for all t ≥ 0; it is globally exponentially stable (GES) if there
exist constants c, κ > 0 such that for all x ∈ R

n ,

‖ξσ (x, t)‖ ≤ ce−κt‖x‖ ∀t ≥ 0.

Clearly, stability implies that the entropy h( fσ , K ) = 0 for a small enough initial set
K , and GES implies h( fσ , K ) = 0 for all initial sets K .
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For the general switched linear system (14), both stability and GES imply h(Aσ ) =
0. However, it is possible that h(Aσ ) = 0 while (2) is unstable (with the uncertainty
about the state growing subexponentially); for example, the LTI system (20)—which
can be viewed as a switched system with a constant switching signal—with

A =
[
0 1
0 0

]

is unstable and yet h(A) = 0 following (21). The upper bound (24) inTheorem1 shows
that the entropy h(Aσ ) can be upper-bounded in terms of the asymptotic weighted
average of the matrix measures μ(Ap), which can also be used to establish GES.

Proposition 7 The switched linear system (14) is GES provided that the asymptotic
weighted average of the matrix measures μ(Ap) defined by (22) satisfies

lim sup
t→∞

∑

p∈P
μ(Ap)ρp(t) < 0. (67)

Proposition 7 implies that (14) is GES under arbitrary switching if the matrices
measures μ(Ap) are all negative.

Corollary 5 The switched linear system (14) isGES for all switching signalsσ provided
that the matrix measures defined by (22) satisfy μ(Ap) < 0 for all p ∈ P .

Proof of Proposition 7 Following (67), there exists a constant κ > 0 such that

κ < −1

2
lim sup
t→∞

∑

p∈P
μ(Ap)ρp(t).

Then, the limit supremum in (67) implies that there is a large enough Tκ ≥ 0 such that

∑

p∈P
μ(Ap)ρp(t) < κ + lim sup

s→∞

∑

p∈P
μ(Ap)ρp(s) < −κ ∀t > Tκ .

Hence for every initial state x ∈ R
n , Lemma 4 implies that the solution to (14) satisfies

‖ξσ (x, t)‖ ≤ e
∑

p∈P μ(Ap) τp(t)‖x‖ ≤ e−κt‖x‖ ∀t > Tκ .

Moreover, we have

‖ξσ (x, t)‖ ≤ e
∑

p∈P μ(Ap) τp(t)‖x‖
≤ eμmt‖x‖ ≤ emax{μm , 0} Tκ ‖x‖ ∀t ∈ [0, Tκ ]

with the constant μm := maxp∈P μ(Ap). Therefore,

‖ξσ (x, t)‖ ≤ e(max{μm , 0}+κ) Tκ e−κt‖x‖ ∀t ≥ 0,
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that is, (14) is GES.

Similar to Proposition 7, the asymptoticweighted averages used in the upper bounds
for topological entropy in Corollary 1 and Propositions 3 and 5 can also be used to
establish GES for the corresponding switched linear systems generated by matrices
with commutation relations.

Corollary 6 The switched scalar system (27) is GES provided that the asymptotic
weighted average â defined by (11) satisfies â < 0.

Proposition 8 The switched commuting system (33) is GES provided that âi defined
by (39) satisfy âi < 0 for all i ∈ {1, . . . , n}.

Proposition 8 implies that the switched commuting system (33) is GES for all
switching signals σ if the diagonal matrices Dp are all Hurwitz; thus it generalizes
the well-known result that a switched linear system generated by a finite family of
pairwise commuting Hurwitz matrices is GES under arbitrary switching (see, e.g.,
[26, Th. 2.5, p. 31]). In particular, it is possible that all âi < 0 while none of Dp is
Hurwitz.

Proof of Proposition 8 The proof is established by combining Lemma 6 with similar
arguments to those in the proof of Proposition 7. For every initial state x ∈ R

n , as
{Dp, Np : p ∈ P} is a commuting family, the solution to (33) satisfies

‖ξσ (x, t)‖ =
∥
∥
∥e
∑

p∈P (Dp+Np) τp(t)x
∥
∥
∥ =

∥
∥
∥e
∑

p∈P Npτp(t)e
∑

p∈P Dpτp(t)x
∥
∥
∥ ∀t ≥ 0.

As âi < 0 for all i ∈ {1, . . . , n}, there exists a constant κ > 0 such that κ < −âi/3 for
all i ∈ {1, . . . , n}. Then, the limit suprema in (39) imply that there is a large enough
Tκ ≥ 0 such that

∑

p∈P
Re(aip)ρp(t) < âi + κ < −2κ ∀t > Tκ ,∀i ∈ {1, . . . , n}.

Hence Lemma 6 with δ = κ and v = e
∑

p∈P Dpτp(t)x implies that there is a constant
cκ > 0 such that

‖ξσ (x, t)‖ ≤ cκe
κt
∥
∥
∥e
∑

p∈P Dpτp(t)x
∥
∥
∥ = cκe

κt max
1≤i≤n

e
∑

p∈P Re(aip) τp(t)|xi |

≤ cκ max
1≤i≤n

e

(
κ+∑p∈P Re(aip)ρp(t)

)
t‖x‖ < cκe

−κt‖x‖ ∀t ≥ Tκ ,

where the equality follows from the fact that Dp are diagonal. Moreover, we have

‖ξσ (x, t)‖ ≤ cκe
(am+κ) t‖x‖ ≤ e(max{am , 0}+κ) Tκ ‖x‖ ∀t ∈ [0, Tκ ]

with the constant am := maxp∈P, 1≤i≤n Re(aip). Therefore,

‖ξσ (x, t)‖ ≤ cκe
(max{am , 0}+2κ) Tκ e−κt‖x‖ ∀t ≥ 0,
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that is, (33) is GES.

Proposition 9 The switched triangular system (43) is GES provided that â1 and d̂i
defined by (49) and (58) satisfy â1 < 0 and d̂i < 0 for all i ∈ {2, . . . , n}.

Proof The proof is established by combining Lemma 1 and the upper bound (53) in
Lemma 8 with similar arguments to those in the proof of Proposition 7. As â1 < 0,
there exists a constant κ > 0 such that κ < −â1/(n + 2). Then, the limit supremum
in (49) implies that there is a large enough T ′

κ ≥ 0 such that

∑

p∈P
Re(a1p)ρp(t) < â1 + κ < −(n + 1) κ ∀t ≥ T ′

κ .

Also, following (13) with ap = Re(aip − ai−1
p ) in (11) and (12) for i ∈ {2, . . . , n},

the maximal weighted averages d̄i defined by (46) satisfy

lim sup
t→∞

d̄i (t) = max{d̂i , 0} = 0 ∀i ∈ {2, . . . , n},

in which the limit suprema imply that there is a large enough T ′′
κ ≥ 0 such that

d̄i (t) < κ ∀t > T ′′
κ ,∀i ∈ {2, . . . , n}.

Finally, there is a large enough Tκ ≥ max{T ′
κ , T ′′

κ } such that

(bMt + 1)n−1 < eκt ∀t > Tκ .

Hence for every initial state x ∈ R
n , Lemma 8, together with the definition (51) of η1,

implies that the solution to (43) satisfies

‖ξσ (x, t)‖ ≤ e
∑

p∈P Re(a1p) τp(t)
n∑

i=1

(
(bMt + 1)i−1e

∑i
j=2 d̄ j (t) t |xi |

)

≤ (bMt + 1)n−1e

(∑
p∈P Re(a1p)ρp(t)+∑n

j=2 d̄ j (t)
)
t

n∑

i=1

|xi |

< ne−κt‖x‖ ∀t ≥ Tk .

Moreover, we have

‖ξσ (x, t)‖ ≤ (bMt + 1)n−1e

(
a1m+∑n

j=2 d
j
m

)
t

n∑

i=1

|xi |

≤ n(bMTk + 1)n−1e

(
max{a1m , 0}+∑n

j=2 max{d j
m , 0}

)
Tk‖x‖
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for all t ∈ [0, Tκ ] with the constants a1m := maxp∈P Re(a1p) and dim :=
maxp∈P Re(aip − ai−1

p ) for i ∈ {2, . . . , n}. Therefore,

‖ξσ (x, t)‖ ≤ n(bMTk + 1)n−1e

(
max{a1m , 0}+∑n

j=2 max{d j
m , 0}+κ

)
Tκ e−κt‖x‖ ∀t ≥ 0,

that is, (43) is GES.

Remark 8 Aside from the proofs above, Propositions 7, 8, and 9 can also be established
using the destabilizing-perturbationmethod proposed in [44]. More specifically, they
can be proved by combining the corresponding upper bounds (24), (38), and (57) with
[44, Th. 5.1], respectively. The proofs presented here are more direct, whereas the
results in [44] lead to additional upper bounds for topological entropy and additional
stability conditions, such as those for the case with general matrices and slow switch-
ing. In particular, Proposition 9 does not generalize the standard result that a switched
linear system generated by upper-triangular Hurwitz matrices is GES under arbitrary
switching, which is achieved in [44, Cor. 5.3]. Alternatively, this standard result can
be proved by combining the upper bound (54) in Lemma 8 with similar arguments to
those in the proof of Proposition 9, or by combining the upper bound (66) with [44,
Th. 5.1].

8 Conclusion

In this paper, we studied a notion of topological entropy for switched systems. For
general switched linear systems, we proved that the topological entropy is independent
of the set of initial states, and constructed upper and lower bounds in terms of the mea-
sures and the traces of systemmatrices of individual modes, respectively. For switched
linear systems with scalar-valued state and those with pairwise commuting matrices,
we established formulae for the topological entropy in terms of the eigenvalues of
systems matrices of individual modes. For the more general case with simultaneously
triangularizable matrices, we constructed upper bounds for the topological entropy
that only depend on the eigenvalues, their order in a simultaneous triangularization,
and the active time of each individual mode. In each case above, we also established
upper bounds that are more conservative but require less information on the system
matrices or on the switching. Furthermore, we presented stability conditions inspired
by the upper bounds for topological entropy.

The notion of topological entropy proposed in this paper depends on the switching
signal. For switched systems with an uncertain switching signal, a different entropy
notion is needed to capture the additional uncertainty about the trajectory and to quan-
tify the extra information needed for stabilization. Sufficient data rates for feedback
stabilization of switched linear systems were established in [27,42]. A similar data-
rate bound for state estimation was formulated in [39]. These data-rate bounds should
be upper bounds for the entropy notion to be defined.

Another topic for future research is to reconcile the switching characterizations for
entropy computation and for control design. More specifically, the entropy computa-
tion in this paper is based on the notion of active time (i.e., the accumulated time in
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which an individual mode is active). Such a quantity is rarely seen in the literature
of switched control systems, and incorporating it into the control design procedure
may lead tomore precise data-rate bounds. Some preliminary results on entropy-based
stability conditions can be found in [44].

Acknowledgements Thework ofG.Yang and J. P.Hespanhawas supported by theOffice ofNavalResearch
under theMURI Grant N00014-16-1-2710, and by the National Science Foundation under the Grants CNS-
1329650 and EPCN-1608880. The work of D. Liberzon was supported by the National Science Foundation
under the Grant CMMI-1662708, and by the Air Force Office of Scientific Research under the Grant
FA9550-17-1-0236. The authors thank Raphaël M. Jungers for his comments on a preliminary version of
the paper.

A Proof of Lemma 1

Asadirect consequence of the definition (12), themaximalweighted average ā satisfies

ā(T ) ≥ max

{
1

T

∑

p∈P
apτp(T ), 0

}

= max

{∑

p∈P
apρp(T ), 0

}

∀T > 0,

and thus lim supT→∞ ā(T ) ≥ max{â, 0}.
It remains to prove that the reverse inequality holds as well. The definition (11) of

the asymptotic weighted average â implies that for each δ > 0, there is a large enough
T ′

δ ≥ 0 such that
∑

p∈P apρp(t) < â + δ for all t > T ′
δ . For a T > T ′

δ , let

t∗(T ) := argmaxt∈[0,T ]
∑

p∈P
apτp(t).

Then,
∑

p∈P apτp(t∗(T )) ≥ 0. If t∗(T ) ∈ (T ′
δ , T ], then

ā(T ) = 1

T

∑

p∈P
apτp(t

∗(T )) ≤ 1

t∗(T )

∑

p∈P
apτp(t

∗(T ))

=
∑

p∈P
apρp(t

∗(T )) < â + δ.

Otherwise t∗(T ) ∈ [0, T ′
δ ], and thus

ā(T ) = 1

T

∑

p∈P
apτp(t

∗(T )) ≤ amt∗(T )

T
≤ max{am, 0} T ′

δ

T

with the constant am := maxp∈P ap. Combining the two cases above yields

ā(T ) ≤ max{â + δ, max{am, 0} T ′
δ/T } ∀T > T ′

δ .
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Hence

ā(T ) ≤ max{â, 0} + δ ∀T > Tδ := max{T ′
δ , max{am, 0} T ′

δ/δ}.

As δ > 0 is arbitrary, we have lim supT→∞ ā(T ) ≤ max{â, 0}.

B Proof of Lemma 2

1. As R(x̂) ⊂ BAσ (x̂, ε, T ) for all x̂ ∈ G(θ), we have

K =
⋃

x̂∈G(θ)

R(x̂) ⊂
⋃

x̂∈G(θ)

BAσ (x̂, ε, T ).

Then, (4) implies that the grid G(θ) is (T , ε)-spanning, and thus

log S(Aσ , ε, T , K ) ≤ log |G(θ)| =
n∑

i=1

log(2�1/θi� + 1) ≤
n∑

i=1

log(2/θi + 1).

Consequently, the definition of entropy (5) implies

h(Aσ ) ≤ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(2/θi + 1)

T

= lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T
+ lim

ε↘0
lim sup
T→∞

n∑

i=1

log(2 + θi )

T
,

where the last term equals 0 if (17) holds.
2. For all distinct points x̂, x̂ ′ ∈ G(θ), as x̂ ′ /∈ R(x̂) and BAσ (x̂, ε, T ) ⊂ R(x̂), we

have x̂ ′ /∈ BAσ (x̂, ε, T ). Then, (6) implies that the grid G(θ) is (T , ε)-separated,
and thus

log N (Aσ , ε, T , K ) ≥ log |G(θ)|

=
n∑

i=1

log(2�1/θi� + 1) >

n∑

i=1

log(max{2/θi − 1, 1}).

Consequently, the definition of entropy (5) implies

h(Aσ ) ≥ lim
ε↘0

lim sup
T→∞

n∑

i=1

log(max{2/θi − 1, 1})
T

= lim
ε↘0

lim sup
T→∞

n∑

i=1

log(1/θi )

T
+ lim

ε↘0
lim sup
T→∞

n∑

i=1

log(max{2 − θi , θi })
T

,
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where the last term equals 0 if (17) holds.

C Proof of Corollary 2

First, the definition (11) of â and the subadditivity of limit suprema imply

â ≤
∑

p∈P
lim sup
t→∞

apρp(t) ≤
∑

p∈P
max{ap, 0} lim sup

t→∞
ρp(t) =

∑

p∈P
h(ap)ρ̂p;

which, combinedwith (28), implies the upper bound (29). For the casewhere the limits
limt→∞ ρp(t) exist and ap ≥ 0 for all p ∈ P , the inequalities in the derivation above
becomes equalities due to the additivity of limits and max{ap, 0} = ap. Second, the
definition (11) of â implies

â ≤ lim sup
t→∞

(

max
p∈P

ap

)∑

p∈P
ρp(t) = max

p∈P
ap ≤ max

p∈P
h(ap),

which, combined with (28), implies the upper bound (30).

D Proof of Lemma 6

First, we establish the upper bound in (36). For each p ∈ P , as Np is nilpotent, there

is a positive integer kp such that N
kp
p = 0. Let ks := ∑p∈P kp, which is finite as the

index set P is finite. Define the weighted average matrix over [0, t] by

N (t) :=
∑

p∈P
Npρp(t) ∈ C

n×n .

For all t ≥ 0, as {Np : p ∈ P} is a commuting family, we have (N (t))ks = 0. Also,
‖N (t)‖ ≤ ηM := maxp∈P ‖Np‖. Hence for all v ∈ C

n , we have

∥
∥eN (t) tv

∥
∥ =

∥
∥
∥
∥

(ks−1∑

k=0

(N (t))k tk

k!

)

v

∥
∥
∥
∥ ≤

(ks−1∑

k=0

ηkMtk

k!

)

‖v‖

≤ cδ

(ks−1∑

k=0

δk tk

k!

)

‖v‖ ≤ cδe
δt‖v‖ ∀t ≥ 0

with cδ := max{(ηM/δ)ks−1, 1} > 0.
Second, we establish the lower bound in (36). As ‖−N (t)‖ = ‖N (t)‖ ≤ ηM for

all t ≥ 0, the proof above also implies that for all v ∈ C
n , we have

‖v‖ = ∥∥e−N (t) t eN (t) tv
∥
∥ ≤ cδe

δt
∥
∥eN (t) tv

∥
∥,
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that is, ‖eN (t) tv‖ ≥ c−1
δ e−δt‖v‖ for all t ≥ 0.

E Computation of h(D�2) using (34) in Example 3

Recall from footnote 2 that σ = 1 on [t2k, t2k+1) and σ = 2 on [t2k+1, t2k+2), where
t0 = 0, t1 = 1, and tk = 9k−1 + 9k−2 for all k ≥ 2. Hence

{
τ1(t) = t − 0.9t2k, τ2(t) = 0.9t2k, t ∈ [t2k, t2k+1),

τ1(t) = 0.9t2k+1, τ2(t) = t − 0.9t2k+1, t ∈ [t2k+1, t2k+2),
(68)

and thus

a11τ1(t) + a12τ2(t) = 3τ2(t) − τ1(t) =
{
3.6t2k − t, t ∈ [t2k, t2k+1),

3t − 3.6t2k+1, t ∈ [t2k+1, t2k+2)

a21τ1(t) + a22τ2(t) = 2τ1(t) − τ2(t) =
{
2t − 2.7t2k, t ∈ [t2k, t2k+1),

2.7t2k+1 − t, t ∈ [t2k+1, t2k+2).

Then, ā1 and ā2 in (34) satisfy

ā1(T ) = 1

T
max
t∈[0,T ] a

1
1τ1(t) + a12τ2(t)

=
{
2.6t2k/T , T ∈ [t2k, t2k+1 + 8t2k/3),

3 − 3.6t2k+1/T , T ∈ [t2k+1 + 8t2k/3, t2k+2)

ā2(T ) = 1

T
max
t∈[0,T ] a

2
1τ1(t) + a22τ2(t)

=
{
1.7t2k+1/T , T ∈ [t2k+1, t2k+2 + 4t2k+1),

2 − 2.7t2k+2/T , T ∈ [t2k+2 + 4t2k+1, t2k+3).

Hence

ā1(T ) + ā2(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

17.9t2k/T , T ∈ [t2k+1, t2k+1 + 8t2k/3),

3 − 1.9t2k+1/T , T ∈ [t2k+1 + 8t2k/3, t2k+2),

25.1t2k+1/T , T ∈ [t2k+2, t2k+2 + 4t2k+1),

2 − 0.1t2k+2/T , T ∈ [t2k+2 + 4t2k+1, t2k+3).

Therefore,

h(Dσ2) = lim sup
T→∞

ā1(T ) + ā2(T ) = max{1.99, 2.79} = 2.79.
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F Proof of Lemma 7

We regard (43) as a family of scalar differential equations (recall that here ξ kσ denotes
the k-th scalar component of ξσ ):

ξ̇1σ = a1σ ξ1σ + b1,2σ ξ2σ + · · · + b1,nσ ξnσ ,

ξ̇2σ = a2σ ξ2σ + b2,3σ ξ3σ + · · · + b2,nσ ξnσ ,

...

ξ̇n−1
σ = an−1

σ ξn−1
σ + bn−1,n

σ ξnσ ,

ξ̇nσ = anσ ξnσ ,

and prove Lemma 7 by mathematical induction. For brevity, let

ψi, j (t) := bi, jσ(t)e
η j (t)−ηi (t), i, j ∈ {1, . . . , n} .

Then, Ψ in (50) can be written as

Ψ
(
t, Ck,l,i

) =
∑

(c0,...,ci )∈Ck,l,i

∫ t

0

∫ s1

0
· · ·
∫ si−1

0

i∏

j=1

(
ψc j−1,c j (s j )ds j

)
. (69)

F.1 The basis of induction

For the n-th scalar differential equation ξ̇nσ = anσ ξnσ , the state-transition function is
defined by

φn(t, s) := eηn(t)−ηn(s), t ≥ s ≥ 0.

Hence the n-th scalar component of ξσ (x, t) satisfies ξnσ (x, t) = eηn(t)xn , that is, (50)
holds for k = n.

F.2 The inductive step

For an arbitrary m ∈ {1, . . . , n − 1}, suppose that ξ kσ (x, t) satisfy (50) for all k ∈
{m + 1, . . . , n}. For the m-th differential equation

ξ̇mσ = amσ ξmσ +
n∑

k=m+1

bm,k
σ ξ kσ ,

the state-transition function is defined by

φm(t, s) := eηm (t)−ηm (s), t ≥ s ≥ 0.
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By variation of constants, the m-th scalar component of ξσ (x, t) satisfies

ξmσ (x, t) = eηm (t)

(

xm +
n∑

k=m+1

∫ t

0
e−ηm (s1)bm,k

σ(s1)
ξ kσ (x, s1) ds1

)

= eηm (t)

(

xm +
n∑

k=m+1

∫ t

0
ψm,k(s1)

(

xk +
n∑

l=k+1

l−k∑

i=1

xlΨ
(
s1, Ck,l,i

)
)

ds1

)

= eηm (t)

(

xm +
n∑

k=m+1

xk

∫ t

0
ψm,k(s1)ds1

+
n∑

k=m+1

n∑

l=k+1

l−k∑

i=1

xl

∫ t

0
ψm,k(s1)Ψ (s1, Ck,l,i )ds1

)

.

Based on the definition (52) of Ck,l,i and the formula (69) of Ψ , we have

∫ t

0
ψm,k(s1)ds1 = Ψ (t, Cm,k,1)

and ∫ t

0
ψm,k(s1)Ψ

(
s1, Ck,l,i

)
ds1

=
∑

(c1,...,ci+1)∈Ck,l,i

∫ t

0

∫ s1

0
· · ·
∫ si

0
ψm,k(s1)

i+1∏

j=2

(
ψc j−1,c j (s j )ds j

)
ds1

=
∑

(c0,...,ci+1)∈{m}×Ck,l,i

∫ t

0

∫ s1

0
· · ·
∫ si

0

i+1∏

j=1

(
ψc j−1,c j (s j )ds j

)

= Ψ (t, {m} × Ck,l,i ).
Changing the order of summation, we obtain

n∑

k=m+1

n∑

l=k+1

l−k∑

i=1

xlΨ (t, {m} × Ck,l,i ) =
n∑

l=m+2

l−1∑

k=m+1

l−k∑

i=1

xlΨ
(
t, {m} × Ck,l,i

)

=
n∑

l=m+2

l−m∑

i ′=2

l−i ′+1∑

k=m+1

xlΨ
(
t, {m} × Ck,l,i ′−1

)
,

where in the last step we also let i ′ = i + 1. Next, we prove that the family of sets
{{m} × Ck,l,i ′−1 : k = m + 1, . . . , l − i ′ + 1} forms a partition of Cm,l,i ′ .

– For all (c1, . . . , ci ′) ∈ Ck1,l,i ′−1 and (c′
1, . . . , c

′
i ′) ∈ Ck2,l,i−1 with k1 �= k2, as

c1 = k1 �= k2 = c′
1, we have (c1, . . . , ci ′) �= (c′

1, . . . , c
′
i ′). Hence the sets in

{{m} × Ck,l,i ′−1 : k = m + 1, . . . , l − i ′ + 1} are pairwise disjoint.
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– For all (c1, . . . , ci ′) ∈ Ck,l,i ′−1, as c1 = k ≥ m + 1 and ci ′ = l, we have

(m, c1, . . . , ci ′) ∈ Cm,l,i ′ . Hence
⋃l−i ′−1

k=m+1{m} × Ck,l,i ′−1 ⊂ Cm,l,i ′ .
– For all (c0, . . . , c′

i ) ∈ Cm,l,i ′ , as c1 ≥ c0 + 1 = m + 1 and c1 ≤ ci ′ − (i ′ − 1) =
l − i ′ + 1, we have k := c1 satisfies m + 1 ≤ k ≤ l − i ′ + 1 and (c0, . . . , ci ′) ∈
{m} × Ck,l,i ′−1. Hence Cm,l,i ′ ⊂⋃l−i ′−1

k=m+1{m} × Ck,l,i ′−1.

Therefore,

n∑

l=m+2

l−m∑

i ′=2

l−i ′+1∑

k=m+1

xlΨ
(
t, {m} × Ck,l,i ′−1

) =
n∑

l=m+2

l−m∑

i ′=2

xlΨ
(
t, Cm,l,i ′

)
.

Combining the results above, we obtain

ξmσ (x, t) = eηm (t)

(

xm +
n∑

l=m+1

l−m∑

i=1

xlΨ
(
t, Cm,l,i

)
)

,

that is, (50) holds for k = m. Therefore, mathematical induction implies that (50)
holds for all k ∈ {1, . . . , n}.

G Proof of Lemma 8

For every k ∈ {1, . . . , n}, following the formula (50) and the triangle inequality, the
k-th scalar component of ξσ (x, t) satisfies

|ξ kσ (x, t)| ≤ eRe(ηk (t))|xk | +
n∑

l=k+1

(
l−k∑

i=1

eRe(ηk (t))|Ψ (t, Ck,l,i )|
)

|xl |.

First, following the definitions (46) of d̄i and (51) of ηi , we have

Re (ηi (t)) ≤ Re (ηi−1(t)) + d̄i (t) t ∀t ≥ 0,∀i ∈ {2, . . . , n} .

Hence

|Ψ (t, Ck,l,i )| ≤
∑

(c0,...,ci )∈Ck,l,i
biM

∫ t

0

∫ s1

0
· · ·
∫ si−1

0

i∏

j=1

(
eRe(ηc j (s j )−ηc j−1 (s j ))ds j

)

≤
∑

(c0,...,ci )∈Ck,l,i
biM ti

i∏

j=1

(

max
s j∈[0,T ] e

Re
(
ηc j (s j )−ηc j−1 (s j )

))

=
∑

(c0,...,ci )∈Ck,l,i
biM ti e

∑i
j=1 d̄c j (t) t

≤
∑

(c0,...,ci )∈Ck,l,i
biM ti e

∑l
j=k+1 d̄ j (t) t ,
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where the last inequality follows partially from the definition (52) of the sets Ck,l,i . As
biMti and

∑l
j=k+1 d̄ j (t) t are independent of the choice of (c0, . . . , ci ) ∈ Ck,l,i and

the latter is also independent of the choice of i ∈ {1, . . . , l − k}, and the set Ck,l,i can
be characterized by the combinations of i − 1 increasing integers from k + 1 to l − 1,
we have

l−k∑

i=1

eRe(ηk (t))|Ψ (t, Ck,l,i )| ≤
(

l−k∑

i=1

|Ck,l,i |biMti
)

eRe(ηk(t))+
∑l

j=k+1 d̄ j (t) t

=
(

l−k∑

i=1

(
l − k − 1

i − 1

)

biMti
)

eRe(ηk (t))+
∑l

j=k+1 d̄ j (t) t

≤ (bMt + 1)l−keRe(ηk (t))+
∑l

j=k+1 d̄ j (t) t ,

where the last inequality follows partially from the binomial formula. Hence

|ξ kσ (x, t)| ≤ eRe(ηk (t))|xk | +
n∑

l=k+1

(
(bMt + 1)l−keRe(ηk (t))+

∑l
j=k+1 d̄ j (t) t |xl |

)

≤ eRe(ηk (t))
n∑

l=k

(
(bMt + 1)l−ke

∑l
j=k+1 d̄ j (t) t |xl |

)
.

Note that the upper bound for |ξ kσ (x, t)| above is decreasing in k. Indeed, the upper
bound for |ξ k−1

σ (x, t)| satisfies

eRe(ηk−1(t))
n∑

l=k−1

(
(bMt + 1)l−k+1e

∑l
j=k d̄ j (t) t |xl |

)

≥ eRe(ηk−1(t))+d̄k(t) t
n∑

l=k

(
(bMt + 1)l−ke

∑l
j=k+1 d̄ j (t) t |xl |

)

≥ eRe(ηk (t))
n∑

l=k

(
(bMt + 1)l−ke

∑l
j=k+1 d̄ j (t) t |xl |

)
.

Hence we obtain (53) by taking the upper bound for |ξ1σ (x, t)| (recall that we take ‖ · ‖
to be the ∞-norm; see Remark 1).

Second, recall c0 = k and ci = l, and let s0 := t and

aim := max
p∈P

Re(aip), i ∈ {1, . . . , n}.

Following the definition (51) of ηi , we have

Re(ηi (t)−ηi (τ )) =
∑

p∈P
Re(aip)(τp(t)−τp(τ )) ≤ aim(t−τ) ∀t ≥ τ ≥ 0,∀i ∈ {1, . . . , n}.
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Hence

eRe(ηk (t))|Ψ (t, Ck,l,i )| ≤
∑

(c0,...,ci )∈Ck,l,i
biM

∫ s0

0
· · ·
∫ si−1

0
eRe(ηci (si ))

i∏

j=1
(
eRe(ηc j−1 (s j−1)−ηc j−1 (s j ))ds j

)

≤
∑

(c0,...,ci )∈Ck,l,i
biM

∫ s0

0
· · ·
∫ si−1

0
ea

ci
m si

i∏

j=1

(
ea

c j−1
m (s j−1−s j )ds j

)

≤
∑

(c0,...,ci )∈Ck,l,i
biMemax0≤ j≤i a

c j
m t
(∫ s0

0
· · ·
∫ si−1

0

i∏

j=1

ds j

)

≤
∑

(c0,...,ci )∈Ck,l,i
biM ti emaxk≤ j≤l a

j
m t ,

where the last inequality follows partially from the definition (52) of the sets Ck,l,i .
As biMti and maxk≤ j≤l a

j
mt are independent of the choice of (c0, . . . , ci ) ∈ Ck,l,i and

the latter is also independent of the choice of i ∈ {1, . . . , l − k}, and the set Ck,l,i can
be characterized by the combinations of i − 1 increasing integers from k + 1 to l − 1,
we have

l−k∑

i=1

eRe(ηk(t))|Ψ (t, Ck,l,i )| ≤
(

l−k∑

i=1

|Ck,l,i |biMti
)

emaxk≤ j≤l a
j
m t

=
(

l−k∑

i=1

(
l − k − 1

i − 1

)

biM ti
)

emaxk≤ j≤l a
j
m t

≤ (bMt + 1)l−k emaxk≤ j≤l a
j
m t ,

where the last inequality follows partially from the binomial formula. Hence

|ξ kσ (x, t)| ≤ eRe(ηk (t))|xk | +
n∑

l=k+1

(
(bMt + 1)l−kemaxk≤ j≤l a

j
m t |xl |

)
.

Note that the upper bound for |ξ kσ (x, t)| above is decreasing in k. Indeed, the upper
bound for |ξ k−1

σ (x, t)| satisfies
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eRe(ηk−1(t))|xk−1| +
n∑

l=k

(
(bMt + 1)l−k+1emaxk−1≤ j≤l a

j
m t |xl |

)

≥ ea
k
mt |xk | +

n∑

l=k+1

(
(bMt + 1)l−kemaxk≤ j≤l a

j
m t |xl |

)

≥ eRe(ηk (t))|xk | +
n∑

l=k+1

(
(bMt + 1)l−kemaxk≤ j≤l a

j
m t |xl |

)
.

Hence we obtain (54) by taking the upper bound for |ξ1σ (x, t)| (recall that we take ‖ · ‖
to be the ∞-norm; see Remark 1).

H Computation of an upper bound for h(U�2) using (44) in Example 4

Following (68) in “Appendix E”, we have

a11τ1(t) + a12τ2(t) = 3τ2(t) − τ1(t)

=
{
3.6t2k − t, t ∈ [t2k, t2k+1),

3t − 3.6t2k+1, t ∈ [t2k+1, t2k+2)
(
a21 − a11

)
τ1(t) +

(
a22 − a12

)
τ2(t) = 3τ1(t) − 4τ2(t)

=
{
3t − 6.3t2k, t ∈ [t2k, t2k+1),

6.3t2k+1 − 4t, t ∈ [t2k+1, t2k+2).

Then, ā1 and d̄2 in (44) satisfy

ā1(T ) = 1

T
max
t∈[0,T ] a

1
1τ1(t) + a12τ2(t)

=
{
2.6t2k/T T ∈ [t2k, t2k+1 + 8t2k/3);
3 − 3.6t2k+1/T , T ∈ [t2k+1 + 8t2k/3, t2k+2)

d̄2(T ) = 1

T
max
t∈[0,T ](a

2
1 − a11) τ1(t) +

(
a22 − a12

)
τ2(t)

=
{
2.3t2k+1/T , T ∈ [t2k+1, 2t2k+2 + 5t2k+1/3);
3 − 6.3t2k+2/T , T ∈ [2t2k+2 + 5t2k+1/3, t2k+3).

Hence

2ā1(T ) + d̄2(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

25.9t2k/T , T ∈ [t2k+1, t2k+1 + 8t2k/3);
6 − 4.9t2k+1/T , T ∈ [t2k+1 + 8t2k/3, t2k+2);
49.1t2k+1/T , T ∈ [t2k+2, 2t2k+2 + 5t2k+1/3);
3 − 1.1t2k+2/T , T ∈ [t2k+2 + 5t2k+1/3, t2k+3).
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Therefore,

h(Uσ2) = lim sup
T→∞

2ā1(T ) + d̄2(T ) = max{2.88, 5.46} = 5.46.
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