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ABSTRACT

In this paper, we present a quantization scheme that reconstructs
the state of switched linear systems with a prescribed exponential
decaying rate for the state estimation error. We show how to use the
Lyapunov exponents and a geometric object called Oseledets’ filtra-
tion to design such a quantization scheme. Then, we prove that this
algorithm works at an average data-rate close to the estimation en-
tropy of the given system. Furthermore, we can choose the average
data-rate to be arbitrarily close to the estimation entropy whenever
the switched linear system has the so-called regularity property.
We show that, under the regularity assumption, the quantization
scheme is completely causal in the sense that it only depends on
information that is available at the current time instant. Finally,
we present simulation results for a Markov Jump Linear System, a
class of systems for which the realizations are known to be regular
with probability 1.
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1 INTRODUCTION

Nowadays, most dynamic systems found in engineering applica-
tions have distributed components, such as sensors, controllers,
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and actuators. For these components to transmit information to
each other, we need to use communication channels. Those com-
munication channels, by their turn, impose constraints on the data
rate that can be transmitted. Therefore, it is natural to ask what
is the minimum data rate needed for us to satisfy the application
requirements, such as being able to reconstruct the system’s state
or stabilize the system.

The answers to the previous questions are invariably related
to some definition of entropy. We can understand entropy as the
rate at which a system generates information related to the studied
problem. Because of that, many authors have proposed several
entropy definitions for each different task, see e.g. [5, 8, 12, 13, 15,
17]. In the present paper, we are interested in estimating the state
of a switched linear system with a prescribed exponential decay
rate of a > 0 for the estimation error. The entropy concept we use
is called estimation entropy, and its description first appeared in
[10] for generic autonomous nonlinear systems. We can, therefore,
think about the estimation entropy as a rate at which the system
generates uncertainty about the state. However, obtaining the value
of the estimation entropy is only half of the story, because it does
not tell us how to design the coding-estimator scheme to solve
the original problem. The goal of the present paper is to address
this issue. We show how to construct a coding-estimator scheme
that operates with an average data-rate arbitrarily close to the
estimation entropy for switched linear systems.

The research in entropy notions for switched systems has drawn
the attention of several authors in recent years. Thus, a brief liter-
ature review might be helpful to explain the contributions of the
present work and its context. The first paper to explicitly present
an entropy notion for switched systems, related to the estimation
entropy defined in [10], was [18]. Afterward, several distinct meth-
ods were developed to obtain bounds for the value of the entropy
of switched linear systems, see, for instance, [3, 21-24]. Among
these works, [21] provides an inequality that relates Lyapunov ex-
ponents with the estimation entropy, and those authors show that
that expression holds with equality for a large class of switched
linear systems called regular. It should be remarked that a similar
relationship appears in several places in the dynamical systems
literature, often under the name Pesin entropy formula [14, 16, 20],
as well as in control and estimation theory on compact manifolds
[9, 19]. Another relevant work for our discussion is [4]. There, the
authors use entropy notions to describe an algorithm that stabilizes
a switched linear system with an average data-rate arbitrarily close
to the minimal. However, the algorithm presented in [4] requires
us to know an a priori upper bound for the entropy, which might
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not be realistic if we want a causal algorithm, as discussed in the
present paper.

In the context above, the current paper can be considered as
extending the work in [21] by providing a constructive and causal
algorithm that builds a state estimate for a switched linear system
with a prescribed exponential decaying rate @ > 0 for the estimation
error with an average data-rate as close as desired to the estimation
entropy. Moreover, we advocate in favor of the role of regularity
because it allows us to build a quantizer using only what is known
up to a given time instant. Furthermore, the regularity assumption
is fulfilled by several systems of practical interest, such as those
modeled as Markov Jump Linear Systems, as shown in [21].

This paper has the following structure: In section 3, we motivate
our study through an example where the current methods perform
worse than our method presented here. Then, in section 1, we study
the concept of estimation entropy, which will be related to our algo-
rithm’s average data-rate for a particular choice of the algorithm’s
parameters, giving it an upper bound. Also, that upper-bound is
the exact value of the estimation entropy under the Lyapunov reg-
ularity assumption. Further, we study the concepts of Lyapunov
exponents and Oseledets’ filtration that will be useful when we
discuss our quantization algorithm. In section 5, we present our
algorithm in its most general framework. Then, by utilizing the
Oseledets’ filtration and Lyapunov exponents we show that we
can operate at an average data-rate close to the estimation entropy
when we make specific choices in our algorithm. Furthermore, we
present how to make the algorithm reach the minimal average data-
rate in a more realistic setting for practical applications. Following,
in section 6, we present simulation results for the example-system
of section 3. Finally, in section 7, we draw our conclusions and
propose future works.

Notations: Unless otherwise stated, we denote by ||-|| the infinity-
norm in a finite dimensional vector space. Let R = (—c0, 00), let
Zso = {0,1,...} the nonegative integers, and let N = {1,2,...}
the set of natural numbers. For any set E, we denote by #E its
cardinality. For subsets of R9 we denote vol(E) the volume of the
set (its Lebesgue measure). Further, we denote by diam(E), where
E C RY the set’s diameter according to the metric induced by the
norm || - ||. We also denote by dim(V) the dimension of a linear
vector space V. Also, for any x > 0, logx is the logarithm with
base e and, for b > 0, logy, x is the logarithm with the base b.
Additionally, we denote by (v, w), where v € R and w € Rd, the
usual canonical inner product of R%. Furthermore, we say that a
basis {Ui};i:l for a finite dimensional vector space V is orthonormal
if for every i € {1, . .A,d} and j € {l, .. .,d} we have that ||v;|| = 1
and (v;,0) =0 fori # j.

We denote by M(d,R) the set of all d X d matrices over the
reals. We denote det(A) the determinant of the matrix A. Further,
I; € M(d,R) is the identity matrix. Additionally, consider the
parallelepiped defined by {x;v; : k; € [0, 1]}, where {Ui}]le c R4
is a linearly independent set of vectors. We denote the k-th volume
of the parallelepiped by vol (vy, - - - , vx) and its numerical value is
given by +/det (VTV), where V is the d X k matrix with columns

;!

!Notice that interchanging the order of the columns does not change the k-th volume.
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2 PRELIMINARIES

Consider the following switched linear system model
X(t) = Ag(r)x(1), (1)

where x(t) € RY, o : Rso — X is a switching signal and ¥
is a finite cardinality set, and A,(;) € M(d,R). We denote by
D(t,tg) the state-transition matrix of (1), i.e. the solution of the
ODE £@(t,t9) = Ay(y®(t, to) with (to, to) = I; and to being
the initial time. Furthermore, we will make the assumption that
o is constant on intervals of the type [t;,t;4+1) for i € Z>¢, where
(ti)iez,, is a strictly increasing sequence of positive times such
that limsup;_,, t; = 0. The elements of the sequence (t;);¢z,,
are called switching times. We also need to define an increasing se-
quence of sampling times (i) ez, With 7 = kT, forall k € Z»
and some T}, > 0.

Then, we can rewrite the model described in equation (1) using
its exact discrete-time model, defined by:

X1 = ApXr, @)
where (xg)gez, , is the state at the sampling times 7, i.e. xg = x(7¢),
and Ap = ®(7p41, 7x). We are slightly abusing the notation by using
A for both the continuous and discrete time matrices, but will make
clear which of the models, (1) or (2), we are using in the text.

Consider the following definitions of coder-estimator scheme,
see for instance [13, 15]. Let {7x }xcz,, be the aforedescribed se-
quence of sampling times. Also, let {C"}, ¢z, be a sequence of
alphabets with uniformly bounded cardinality, i.e. 3M > 0, #C* <
M,Vi € Zx¢. We call the elements g of a finite alphabet symbols.

Furthermore, let {yn}, 7., be a sequence of functions such that

Yn: H;’:_Ol CixRA(M) 5 O1 where yy, is called the coder mapping
at time n. We can write the coder mapping in the following more
explicit way?

Yo : x(70) = qo,
Yn: (qu .. ~,C]n—1,x(T0), .- .,X(Tn)) = qn,

where g, € C" foralln € Zxy .
The average data-rate of a coder-estimator scheme is defined as

]/

b := lim sup tl i“ log (#C") ‘ (3)
f J i=0

3 EXAMPLE

In this section, we motivate our work through a randomly switched
system example. In this example, we show that the average data-rate
for state estimation taking the switched system dynamics into ac-
count is lower than the one obtained by using the optimal quantizer
for each mode separately whenever that mode is active.

0(.)9 0.33 1(.)1 0.;)2] be the
modes of our discrete-time switched system. Notice that the mode
By is unstable. Therefore, applying the conventional quantization
scheme [7] that reaches the minimum average data-rate for each

Example 3.1. Let By = ] and By = [

*Notice that, since qo = yo(x(7)), one could define ¥ (x(%),x(71)) =
Y1 (yo(x(7)), x(79),x(71)). Then, one could define y, (x(7),...,x(7,)) recur-
sively in a similar way. Making the explicit dependence of the quantized value on the
previous symbols is a matter of keeping the argumentation clear.
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mode separately will use a positive average data-rate. Nonetheless,
we will show that, with probability 1, if our switch comes from
the Markov chain defined by the matrix of transition probabilities
P= g; g?], where P;j is the transition probability from mode i
to mode j, then there exists an algorithm that reconstructs the state
using an average data-rate equal as close to the estimation entropy
as desired with probability 1 in the aforedescribed situation.

In this paper, we will present a quantization scheme that operates
at an average data-rate equal to the estimation entropy for a large
class of switching signals called regular switchings. It so happens
that, with probability 1, the switching signals generated by Markov
Jump Linear Systems, like the one in this example, are in this class.

4 ESTIMATION ENTROPY

In this section, we introduce Lyapunov exponents, Lyapunov reg-
ularity, estimation entropy, and related concepts. Also, we state
a theorem that gives an upper bound for the estimation entropy
of discrete-time switched systems using the Lyapunov exponents.
Furthermore, the theorem states that the upper bound is the ac-
tual value of the estimation entropy when we assume Lyapunov
regularity. The definitions presented here were adapted from the
references [11], Chapter 2 of [2], and Chapter 3 of [1].

Throughout this document, given a sequence of invertible matri-
ces (An)nen C M(d,R), we denote the discrete-time state-transition
matrix of the system (2) by

O, = Ay - A 4

We assume that K C Rd, the set of possible initial conditions, is
a compact set with nonempty interior. Further, the solution of (2) at
time step n with initial condition x € R¥ is given by £(x, n) = ®px,
where the matrix sequence is given by the matrices on the right-
hand side of (2).

For the next definition, pick an @ > 0, and let T € Z5¢ be the
time horizon.

Definition 4.1. For every € > 0, we call a finite set of functions
X = {#1(),....&n()}, from {0,...,T -1} to R%, a (T, ¢, a, K)-
approximating set if for every initial condition x € K, there exists
#; € X such that ||£(x, n) — %i(n)|| < ee~®™, Vne{o,...,T -1}

Let sest (T, €, @, K) be the minimum cardinality of a (T, €, o, K)-
approximating set. We define the estimation entropy as

hest(a, K) := lim lim sup 1 log sest(T, €, 2, K).
€20 T o0 T
Definition 4.2. A Lyapunov index is a function A : RY 5 RU
{—o0} with the following properties:
e A(xv) = A(v), for every real k # 0
e A(v+w) = max {A(v), A(w)}
e A(0) = —o0

A Lyapunov index A(-) can take at most d distinct real values,
see e.g. [2]. (Note that —oco, which is the value of A(0), is not a real
value.)

Definition 4.3. The Lyapunov exponent associated with a se-
quence of matrices (Ap), ey is the following Lyapunov index>:

3Note that the function does not change if we change the norm.
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1
A(v) = lim sup - log (]|®nol]),

n—oo

for v € R4\ {0}. Also, we define 1(0) := —co.

Note that the Lyapunov exponent, A(-), is a particular Lyapunov
index, see e.g. [2]. Therefore, it can attain at most d distinct values.
We denote these values by y;, fori = 1,...,q, where g < d, and
we index them according to the increasing order for real numbers,
ie y1 <+ < yq-Wecall 3,1 =1,...,q the Lyapunov exponent
values.

Definition 4.4. A filtration (or flag) on R? is a family of vector
subspaces V = (Ei)?:()’ with ¢ < d, such that {0} = Ey € E; C
- CEq= RY. Further, we call V = {ui};.i:l a normal basis of the
filtration V if it is a basis for Rd, and for every j > 1, the subset of
dim(E;)

V given by {vi},_; is a basis for Ej;.

A special type of filtration that will be used in the text, and in
our quantization algorithm in section 5, is the Oseledets’ filtration,
which we define next.

Definition 4.5. A filtration V) associated with the sequence of
invertible matrices (Ap),en such that E; = {v eRY:A(v) < )(i},
where A(-) is the Lyapunov exponent for the sequence, and y; are
the Lyapunov exponent values of the sequence previously defined,
is called an Oseledets’ filtration. Also, the subspaces E; € V) are
called Oseledets’ subspaces. In addition, the following dim(E;) —
dim(E;—1) is called the multiplicity of the Lyapunov exponent value
xi. Ift dim(E;) —dim(E;—1) = 1 forevery i € {1,...,q}, we say that
the Lyapunov exponents are simple. Finally, define A = {/1 j}j=1
as an ordered list with repetition where for every j = 1,...,d,
there exists some i € {1,...,q} such that A; = y;, and for every
i=1,...,q, yi appears dim(E;) — dim(E;_1) times in A. The order
in A can be any total order relation in the set A chosen among those
for which Ay < -+ < A4. We call the elements A; € A the Lyapunov
exponents with multiplicity of (An)pen-

It is important to remark that the Oseledets’ filtration depends
on the entire sequence (Ap),en- To see that, consider the following
example.

and notice

0 0
Example 4.6. Let A = ] and B = [

1
0 4 1 0
that the sequence A}, = Aforalln € N, and the sequence A, = A for
n € N\ {N}and AN = B for some N € N, have the same Lyapunov
exponents, but different Oseledets’ filtrations. For the Oseledets’s

filtration of the first sequence is E; = span { [ 1 0 ]T} CE

in

R? and the filtration of the second is E; = span “ 0 1 ]T}
E; =RZ

Definition 4.7. A sequence (Ap),cy is called tempered if

1
lim —log||An||=0
n—oon

“Equivalently, we could say that d = q.
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Notice that, if a sequence (Ap), ey belongs to a compact set,
then it is tempered. A particular case is the one in which (Apn),en
has finitely many values. It is worth mentioning that temperedness
does not imply that the growth rate of @, is sub-exponential. To see
why, take A;,, = n, which is tempered because lim,_, lOglgn) =0,
and notice that &, = n!, which grows faster than any exponential.

Example 4.8 (Example 3.1 revisited.). This is a good moment
for us to revisit our Example 3.1. Denote by a;;(n) the element
in the i-th row and j-th column of the matrix A,, and denote,
analogously, by ¢;j(n) the elements of ®,. Further, denote by
mi(n) = X7 T(a,), 0nAr=B; ((An)pen), where I4(x) = 1ifx € A
and I4(x) = 0, otherwise. We should think of m;(n) as how many
time instants mode i was active until time n. Note that, ¢11(n) =
0_9m1(n)1.1m2(n), ¢22(n) = 1, and ¢12(n) = aj1(n)dr2(n — 1) +
aiz2(n) for n > 1 with initial conditions ¢;; = 1 and ¢;; = 0if i # j.
Now, let {eq, e} be the canonical basis for R%. Then, the Lyapunov
exponents of the sequence (A,), ey are given by

1 1
A(e1) = limsup — log(||@pe;|]) = limsup — log(0.9m1(") 1.1m2(n))
n n

n—oo n—oo
= lim sup ml_(n) log(0.9) + mz_(n) log(1.1).
n—oo n n

Recall that the fraction of time that a Markov chain stays on mode
i is given, with probability 1, by the probabilities ; obtained by
solving 7 = #P and 212:1 i = 1, where (my, m2) = n. For this
example, we get that 71 = my = 1/2. Thus, with probability 1, a
specific realization will have the fractions mi,g") converging to the
probabilities 7;, where i € {1,2}. Hence, A(e1) = %10g(0.99) < 0.
Finally, we notice that ¢12(n) = aj1(n)di12(n — 1) + aj2(n) is a
scalar linear time-varying system with an input aj2(n). Therefore,
if H;’zl a11(j) < 1 and aj2(n) are bounded, we prove that ¢12(n)

is bounded. Indeed, aj2(n) is always bounded and the product
H?zl a11(j) = 0.9M (M1 1m2(n) can be upper bounded 1. To see
that, take the logarithm of the product and divide it by n so that
we get < log ( [T}, an())) = mlT(") log(0.9) + mZT(") log(1.1) < 0.
From which we conclude that H?:l a11(j) < 1 and that @12 is
bounded with probability 1. Now, we can calculate A(e3) by noticing
that ||®pez|| = max {¢12(n), 1} is bounded, hence A(ez) = 0 with
probability 1.

Furthermore, we notice that the filtration E; = span{e;} ¢ Ez = R?
is the Oseledets’ filtration. Moreover, we see that {e, ez} form a
normal basis for this filtration.

We remark that, although the sequence (Ay),, .y comes from a
stochastic process, we calculated the values of the Lyapunov expo-
nents for a generic realization. Thus, we always choose a specific
realization, as in the deterministic case. Nonetheless, we use the
Markov chain’s properties to show that our result holds for almost
all realizations of the random process.

Definition 4.9. A sequence (Ay), ¢y is called (Lyapunov) regular
if
1 d
Jim_ ~log (|det (®n)]) = Z]A

We call a system given by equation (2) regular, if its associated
matrix sequence is regular.
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The following examples, 4.10 and 4.11, should help illustrate the
concept of regularity.

p

Example 4.10. Let p > 1. Also, let By = [O p91 and By =

_1 . .
[po 2}.Consider the sequence A, = By ifn € {21, R L l},

for i odd, and A, = By otherwise. Note that det (|®,|) = 1 for
all possible sequences (Apn),en- Denote by {ey, e} the canonical
basis. Further, consider the subsequence with indices n; = 2k
for k € N. Then, one can show by induction that ”‘an (el)“ =

log|(||®y,. (e1)
P Coellen@l) oy (g

(—1)’<2—k) log(p), after the change of varibles £ = —i + k + 1. Now,
looking at the subsequence with indices nj = 2k with k even, we
show that this subsequence has a positive limit because:

~ S (DR Thys

k
1
Jlim ;(—nf“(zr" log(p) + (~1)*2 ¥ log(p) = ; log(p) > 0.

Hence, by the fact that the limit superior is larger than all sublimits,
we conclude that A(e1) > 0, because it is the limit superior. We can
show the analogous result A(ez2) > 0 by considering the odd values
of k. Therefore, the original sequence cannot be regular.

Example 4.11. Let By and By be as in Example 4.10. Consider
the sequence A, = By whenever n is divisible by 4, and A, = B
otherwise. Also let {eq, e2} be the canonical basis for R%. Then one
can check that A(e;) = —% log p and A(ez) = % log p. Therefore,
the sequence is regular and {ej, ez} is a basis for the Oseledets’
filtration.

In Example 4.10, the limit superior in Definition 4.3 of Lyapunov
exponent cannot be replaced by a limit, but in Example 4.11, where
the matrix sequence is regular, it can. This fact is not a coincidence,
as shown by the second bullet of Lemma 4.12, which implies that
the limit exists when the sequence is regular.

The following lemma was extracted from Chapters 3 and 7 of
[2] and it presents equivalent characterizations for regularity that
will be used in this article.

LEMMA 4.12. Given a tempered sequence (Ap),en of invertible
matrices, let {v1,- - ,vq} be any normal basis for the Oseledets’ fil-
tration of the sequence (Ap)pen, and let I C {1,---,d} be any set of
indices. Further, let A; be the Lyapunov exponents with multiplicity of
the sequence (An),en- Then, the following conditions are equivalent

o limy—sc0 5 log (|det (@5)]) = S, Ai;

o limy_,co 2 log (vol ({®nv; :i € T})) = Yjer i
1

e The matrix limp—co (CI);IFCI)n)E exists.

Now, we state the main Theorem of this section.

THEOREM 4.13. Leta > 0. Let (An) ,en be a tempered sequence of
invertible matrices. Let K C R? be a set of possible initial conditions
with a nonempty interior. Denote by A;, withi =1,--- ,d, the Lya-
punov exponents with multiplicity of (An)nen. Then, the estimation
entropy of the discrete switched system (2) satisfies:

d
hest(e, K) < )" max {0, 4; + a}, )

i=1
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with equality if the system is regular.
A proof of this theorem can be found in [21].

REMARK 4.1. It seems logical to draw a parallel between the bound
presented above and the bounds presented in [24]. The bounds obtained
in that paper rely on the individual modes and their activation times.
On the other hand, the result in Theorem 4.13 uses information about
the entire switching signal given by the Lyapunov exponents. That is
why the bounds in Theorem 4.13, although much harder to compute,
are generally tighter than the ones presented in [24].

Example 4.14. [Example 3.1 revisited] Now, we can analyse Ex-
ample 3.1 again. From our calculations in section 2, we saw that
the Lyapunov exponents of our system are A(e1) = % log(0.99) < 0
and A(ez) = 0 with probability 1. From this, we conclude that the
system’s estimation entropy satisfies the inequality hest(a, K) <
max {% log(0.99) + «, 0} + max {a, 0} with probability 1.

5 QUANTIZATION ALGORITHM

In this section, we describe the quantization algorithm. This algo-
rithm’s goal is to estimate the state of system (2), with a desired ex-
ponential decay rate for the estimation error, using quantized mea-
surements. The algorithm works by giving an over-approximation
to the reachable set that depends on a few parameters such as the set
of possible initial conditions, the switching signal, and the desired
exponential decay for the estimation error. Also, we need to pro-
.,vé}, Jj € Zxg for RY. Using this
family, the proposed algorithm generates an over-approximation
for the reachable set. Then, we show that by using a proper choice
of family (V;) jez., the algorithm’s average data-rate can be made
as close to the estimation entropy of our system as desired. Finally,
we present a way of generating a family (V) J€Zso that makes the
algorithm achieve an average data-rate arbitrarily close to the esti-
mation entropy online, assuming that the switching signal is known.
Also, throughout this section, we will let T, > 0 be a sampling time
and the sequence (Ay), e corresponds to the exact discrete-time
model of some continuous-time model described by equation (1),
ie. Ap = ®(Tpn, Tp(n - 1)).

vide a family of bases V; = {0{ S

5.1 The Algorithm

In this Subsection, we describe a quantization scheme for switched
linear systems under the assumption that we know o(t) for all
values of t € Rx¢. Under the hypothesis that model (2) holds, the
previous assumption becomes the hypothesis of knowing the se-
quence (Ap),en- We also assume that we are given an arbitrary
family of orthonormal® bases V/ for R?. After our scheme’s de-
scription, we show that, under a particular choice of the family
VJ, our algorithm can operate at an average data-rate arbitrarily
close to the upper bound for the estimation entropy obtained in
Theorem 4.13, i.e. szzl {A; + a,0}. Moreover, for the case where
our system is known to be regular, again because of Theorem 4.13,
the algorithm can operate at an average data-rate arbitrarily close
to the estimation entropy.

Before we provide an informal description of the algorithm, we
need to define some concepts. First, we define ¢ to be a positive

SWe omit the orthonormal from this point onward.

HSCC 21, May 19-21, 2021, Nashville, TN, USA

integer that we call block length. Second, let j be a positive integer
that indexes our algorithm’s iteration. Also, we need to mention
that our informal description is only valid for time ¢ greater than
zero since the initial case is slightly different because of how we
initialize the algorithm. Nonetheless, the logic is essentially the
same. In words, the algorithm does the following: Let the initial
state x be inside the region B/~1, a parallelepiped in RY. Given a

basis {Z){ }d . from the family V7, build a new parallelepiped B/
i=

with sides parallel to the v{ ’s that contains B/~1. Now, we flow
BJ forward using @ je+1 and denote it by BJ. More preceisely, we
define B/ = @ jg+1(1§j ). Note that, since x belongs to B/~ and
B/~ ¢ B/, we have that the state at the current time Jjt+1,ie.
&(x, j + 1), belongs to B/. Inside the set B/, we have quantization
subregions, each corresponding to a distinct quantization symbol.
We denote by ¢/ the quantization symbol corresponding to the
quantization subregion that contains &(x, j¢ + 1). Next, we flow the
previous quantization subregion, that corresponds to the symbol
¢/, backwards by ® je+1 and define the result to be BJ. Finally, we
repeat the procedure.

We emphasize that the bases {vlj }d . with j € Zx are, in prin-
ciple, arbitrary. By that, we mean that our quantization algorithm
works for any choice of the family of bases at the possible cost
of working at a higher average data-rate. However, we show in
Corollary 5.2 and Theorem 5.3 how to choose those bases so that
the average data-rate will approach the estimation entropy. Further,
it is worth emphasizing that we build our estimates using measure-
ments that happen only at time instants t = j¢ + 1 with j € Zx¢
and at the initial time ¢ = 0. The idea of using the block length
was borrowed from the block coding approach®, and it allows the
average data-rate to approach the estimation entropy arbitrarily
close in some specific cases.

In what follows, we assume that R? is endowed with the canoni-
cal inner product (-, -).

Quantizer algorithm

Initialization: Let K be the set of possible initial conditions,
x € K be the true initial condition, € > 0 a prescribed precision,
T, >0 the sampling time, and ¢ € N be the block length. Also,

consider the sequence (Ap),cn, Where? A, = O(Tpn, Tp(n - 1))
and ®, = A, ...A;. Further, let V; = {v{,...,vil},j € Z>¢ be
a family of orthonormal bases for R?. We define FI.O = 1 for all

i € {1,...,d}. If the system is known to be regular, set I‘l.j =

maXpe(o, . ¢-1} thﬂ_kv{ , otherwise
Fij — max!  max ”@jf-kv{ L Tp(itd)jE Ty (A+6) ((j-1)6+1)
ke{0,...e-1}

for a prescribed § > 0 and® A; := lim SUPj 00 % log (||<I>]u{||) Also,
let & > 0 be the prescribed exponential decay rate for the estimation

error.
Step 0:

®See e.g. Chapter 5 of [6].

"Note that (A,) ,eny € M(d,R) might be an infinite set in general.

8Notice that these A;’s are not the same as the Lyapunov exponents with multiplicity
since the Ui ’s are not a normal basis for the Oseledets’ filtration in principle.
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In this step, we define an estimate x(0) for £(x,0) = x.
e Define B® = {Zflzl )/iv r< <vyi <K; } wherelc andK are

such that B® is the smallest set of such type that contains
the initial set K.
e Write £(x,0) = Zil ﬁ?v?, Then, the symbol related to the

quantized value of £(x, 0) is given by ¢° = (q(l), . ,,qg), con-

—=0 0
structed as follows. Define Clp = {l, R {d K e*l ” We de-
fine q?, foreveryi e {1,...,d},asthek € C? such that
B e [0+ S - 1) + k)
holds true.
e Denote ﬂ? = 5? + § (q? - 1/2). Our estimate for the state
at the moment t = 0 is

CEDSETTREE

We could describe this step 0 in words as follows. B is divided
into cubic boxes with sides of length €/d; q? encodes the position
of the box in the i-th dimension that contains x; and x(0) is the
center of this box.

Step 1:

In this step, we define an estimate %(¢) for £(x, t) with 1 <
t < ¢. Notice that we generated a box

d

_ . .

0._ {Zukv}i :£2+ E(qz -1) < g <Ez+ an}
k=1

at the end of Step 0 and that x € B. Now, in this step, we

generate the smallest box aligned with the new basis {Ull }f:
that contains B°. This box takes the form

{Zy, LK <)/1<’<1}

—1 —vd
To compute the bounds Ei and x;, lety = 2, pkuz be an

1

arbitrary point in B°. Thus, its coordinate relative to each 0}

is J
vi= O meops ,>—Zuk<vk, v;
k=1

Hence, to find the smallest such box, we need to take

d
1. 0,1
K;j '=min { Z Hivg, 0;) ¢
k=1

§2+§(q2—1) < g sE2+§q2, k=1,....d},
for every i € {1,...,d} Notice that this is a linear program-

ming problem. Therefore, the solution will occur at the
boundary. Moreover, this set of inequalities forms a box,
and we only need to check its vertices to find the optimal
value. The upper bounds, fll are defined similarly but with
max instead of min. Finally, we define the box
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by flowing the box B! forward by ®;. We can write the
procedure of this step in the following itemized way.

Define B! := {Z?zl yi®1o} :5} <y < Ell} where 5} is ob-

tained as described above, and E} is obtained in an analogous
fashion by changing min by max.
Write £(x,1) = Zle ﬂilcblvg. Then, the symbol related to

the quantized value of &(x, 1) is given by ¢! = (q%, e q(li)
Define Cl.l = { {drl TpatZitti K’ K ” We define q1 for

every i€ {1,...,d},asthek € Cl.l such that

~Tyat ~Tyat
1 ee’r L, €er
ﬂi S +E - (k—l),Eiﬁ-E r,l
1 1
holds true. .
A ~Tpe
Denote by ! = k] + 5¢€ r’; (g} = 1/2). Our estimate for

the state at the moments 1 <t < fis

d
#(t) = Z plasol.
i=1

Step j+1:

In this step, we define an estimate x(¢) for &(x, t) with jf+1 <
t < (j + 1)¢. Notice that we generated a box

. d . . Tpajf ;
B = {Zukvi o+ +5 (g -1 <
k=1 k
i€ e—TPajt’
Hie < Ky + 3 Fj qk}

k

at the end of Step j and that x € B/. Now, in this step,
we generate the smallest box aligned with the new basis

T d .
{01 H}. ) that contains B/. We define this smallest box as
i=

13
+1 j+l j+1
BT = {ZY“] K] <y <K }
i=1

and obtain E{ *! and E{ *1in an analogous manner as we
obtained 5} and E} in step 1. Observe that the box B/*! con-
tains the initial state x by construction. Finally, we define the
box B/*! as the box obtained after flowing B/*! forward by
® 1. We describe the procedure in the following itemized
way.

Define

J+1 {Z qu)jf‘*'lv

where

1<y <Kj 1},

~Tpajt

d
JHL Jo gty E€ J
K; = min {Z AR P o (qk - 1) <
k=1 k

B j EeTpaﬂ
llk—Ek"'E

l"j qk,k d}
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E{ *!is obtained in an analogous fashion by changing min
by max.
o Write &(x, jt+1) = Zfl lﬂj 1<I>]g+1v . Then, the symbol

related to the quantized value of &(x, j¢ + 1) is given by

@t = (g ) Lt

_]+l ]+1
Cij+1 — { ’VdeTpa(]+1)(1—~j+1 —K “} )

€

We define q{ " asthek e Cl.j *1 such that

) ) ~Tya(j+1)¢ e~ Tpa(j+1)e
€e P P
B e [E{H o k- 1), &/ a' 1 )
I; I;
holds true. ettt
1 _ j¥l ~Tpa(i+ j+1
e Denote by ﬂ] ] + dT( g™ —1/2). Then, our

state estimate for the'time instants j£+1 <t < (j+ 1)l is
2(1) = X4, o]

The following Theorem 5.1 shows that our algorithm from sec-
tion 5.1 generates a coding scheme that allows us to reconstruct a
state estimate with an exponentially decaying error, and gives an
upper bound on the average data-rate that the algorithm uses.

THEOREM 5.1. Let (Ap)pen be a sequence of matrices that comes
from the exact discretization of the system (1) with sampling time
Tp > 0. Then, the algorithm from section 5.1 gives a sequence of
estimates (X(t));ez,, such that ||%(t) - &(x, t)|| < 5 e~ 1p% Fyrther,
the average data-rate of the agorithm from section 5. 1 is given by b =
limsup;_,q, ﬁ Zt.: log (#CJ) with CJ = ]_[?:1 Cl.] and #CJ =

i+
b )@i’ o)

]_[d #Cj where#C]Jrl eTrat L ’-

and#Cl-o < [ddiamT(Bo)-‘.

}forj € Zxo

Proor. Step 0:

Recall that }ﬂA? - ﬁ?‘ < €/2d by construction. Then,
d

(B - A0

i=1

[1%(0) = &(x, 0)[| =

€
< -
2

and #C? = {d E(’);E?} < [d diame(BO) -‘ Finally, notice that x € B°.
Step 1:
We need to show that
Dy (BO) = {Zd: inDlzz? ‘E? + g(q? -1 <y < E? + gq?} c Bl.
i=1

Take y € B and write it as y = ZZ:I ykuz and 52 +
ykSK dqo fork € {1,.

d d
y:Z(Zyk@zwb)vz,
i=1 k=1

we can check that 5} < (Zzzl yk(vg, vll)) < E} by definition. This
implies that @; (B°) c Bl

a(@ -1 <

., d}. Now, rewriting
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Now, we need to find an estimate for #Cl.l, First, let (yi, . y{li) be

any argument of the minimum corresponding to the minimization
used to define E}’ and let ()7% . )721) be any argument of the maxi-

mum corresponding to the maximization used to define E}. Next, no-
. =1 _ A |sd (51 1) (0 1 e yd 0 1
tice that iKi _Ei| = ‘Zk:l (yk _Zk) (uk,Ul.)| < G Xey (00 )),

because |)711< - yllc‘ < €/d by definition. Thus,

d
r}elrat Z \(uz, U})l“
k=1

Further, by the definition of ,[?ll and ﬂll we have that )/3)11 - B} <

#C} <

~Tpar
%e F’;a .Then,for1 <t < ¢
d € d q)[Ul
2 5l 1 1 ~Tyat i
— = =0 < — P _
() = £Ge 0l = | (B = B ool | < e |5 —
i=1 i=1 i
< Ee—TPat

where the last inequality comes from the facts that < 1land

1 < t < ¢. Finally, notice that x € B! because Z‘l.izl [311011 € B! by
construction.

Step j+1:

By our induction hypothesis, we have that x € B/. We need to
show that

. Tp ajt j
Djrr1 (Bj) {Z }’zq)]HlU Kf + E (ql 1)<y
i
“Tpajt . .
< Kj + S8 glcpin,
d rJ !
-Tpa. i
Take y € B/ and write it as y = Zk 1 ykv and K +5 lff o (q;c _

) it
1) <y < E{( + se lf’jaj q{c for k € {1,...,d}. Now, rewriting

d d
v= 2 ( D whal ™)l

i=1 k=1

we can check that KJ+1 ( Zk 1 Yk <Uj J 1)) <%/t by definition.
This implies that ;41 BJ ) c B+,

Now, we need to find an estimate for #Cl.j +1

<
. First, let (y{”, el

y{;l) be any argument of the minimum corresponding to the mini-

1 —j+l —j+l
: ,and .let (y{ v ¥ .) b? any argu-
ment of the maximum corresponding to the maximization used to

mization used to define 5{ +

define Ej+1. Next, notice that ‘E{H - jH = |ZZ . (—i“ _ yi“)
]+1 o did —j+1 j+1
(Uk, ;) <5 T k=1 (Uk, , because |y -y 7| <
~Tpaje ; J
s% by definition. Thus, #Ciﬁ'1 < {ng‘” f_f ‘(UJ J+1 w
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Further, by the definition of ﬁ{ *1 and ﬂl] *1 we have that

e e—Tra(+1)e

2d I-‘-j+1

1

pj+1 j+1
|87 - | <

Then, for je+1<t < (j+1)¢

d
. A+l j+1 j+1
%) = £G 0l = || 3 (B = B )@ <
i=1
d Jj+1
£ e Tpatie ||y ®ro; € That
2d L4 pj+ 2
i=1 i
@ U.i+l
where the last inequality comes from the facts that || —Z—|| <
r/
and je+1 < t < (j + 1)¢. Finally, notice that x € B/*! because
Z‘ii:l ﬂ{“v?“ € B/*! by construction. O
It is important to remark that, if V = {v1,...,04} is a nor-
mal basis for the Oseledets’s filtration of a tempered matrix se-

J

quence (Aj)jeN and Vj = V,ie v; =v; for j € Z¢ and every

i€{1....d}. Then, ¢_ (o], 0]"")

=1land 4; =limsup;_,

%log (HCDJUIJH) = limsup;_,, % log (||<I>jviH), ie. A;’s will be the
Lyapunov exponents with multiplicity. We know that for every n >
0, there exists N € N such thatVj > {% + l] andalli € {1,...,d},
we have that ||¢,0;]| < eTp(AitMt < eTp(Ai+d+M for 4]l t > N and
this § is the same as the one used in the definition of l"ij in the algo-

rithm from section 5.1. Further, we know that for > 0 sufficiently

small, ; +§+n < 0forall A; + 6 < 0 withi € {1,...,d}. There-

fore, for j > [¥ + 1] we have that max, _, 1} {”¢jt’—k0iH} <

max {eTP(/li+5+l7)jf’ T (Ai+8+m) ((j-1)£+1) }

Hence, for all i € {1,...,d}, if A; + § < 0, we have that Fij =
eTp(/li+5)((j—1)f+l)’ Vi > {# + 1] and rij - eTp(Ai+6)jt” Vi >
|-¥ + 1-|, otherwise. Note that for A; + § > 0, we have

eTp(Ai+5—q)jt’ < rij < eT,,(/l,»+5+17)jt’

and that

Tp Aird-m (=06 ¢ 1 < Ty Ordn) (G-De+)

) r/* ) .
if A; + & < 0. Therefore, we have that ;—] < eTp(litd+2ml jnde-

pendently of the sign of A; + §. Thus, b}l/ Theorem 5.1, we have
that #Ci]+1 < [eTP(A”M&z”)[-‘, Vj = {# +1] and every i €
{1,...,d}. We conclude, by showing that the first [% + 1] +1
terms of the sum in the definition of b go to zero and that #C/ <

]_[flzl[eTPM”M‘S””)q forall j > {% + 1], that?
1 Zd (Ai+a+o+2n)
T, (Ai+a+d+2n)€

b < Tyt 2 log[e » 1

9These steps are similar to those used in the proof of the entropy’s upper bound in
Theorem 4.13.
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Also, because 1 can be arbitrarily small, we have that

d
1 .
by ;bg[e%uﬁm)q'

Finally, by choosing ¢ large enough, b can get as close to!°

d
Zmax{li +a+9,0}
i=1

as desired.

Following analogous steps, we can prove a similar result for the
case when the system is known to be regular. To see this, note that,
under the regularity assumption, for every > 0 there exists N € N
such that e’» (4=t < ||¢,0;]| < ep(4i+M? for all t > N. Then, we
notice that for A; > 0, we have e»(li—mJjt < Fl.j < el (itmit apd
that eTp (=M (=D& < 1T < Tp(Aitm (G=DED f ); < 0. Next,

j+1
we get the inequality r}J—J < eTp(lir2mt independently of the sign
of ;. Now, we replace this inequality in our previous argument to
get that

d
1
b<— log[eTPu"m){-‘,
Tpt ;

and by choosing ¢ large enough, b can get as close to
Z?zl max {A; + @, 0} as desired. These results are summarized in
the next Corollary 5.2.

COROLLARY 5.2. Let§ > 0, 2 0, and ¢ € N. If V; =V for all
J € Zxo, whereV is a normal basis for the Oseledets’ filtration, then

b < ﬁ Z?zl log[eTP(’lim)[‘ if the system is known to be regular

andb < ﬁ Z?;l log[eTPMiJ’““S)[I, otherwise. Furthermore, b can
be made as close as desired to hegt(at, K) by choosing ¢ large enough
in case the system is known to be regular, or b can be made as close
as desired to 2?21 max {A; + a + 6, 0}, otherwise.

Online

5.2 Finding (V))

In many practical cases, a priori knowledge of a family (V) j€Zso
that gives us an average data-rate close to the estimation entropy,
such as normal bases for the Oseledets’ filtration as in Corollary
5.2, is unrealistic. Recall that, because of the limit superior in the
Definition 4.3 of Lyapunov exponent, we need to know the entire
sequence (A,),en beforehand to calculate its exponents. Also, no-
tice that a similar thing happens to the Oseledets’ filtration. Further,
both Examples 4.6 and 4.10 should help making these claims clearer.

Fortunately, one can estimate (V;) by using the switching

J€Z>o

J€Zxo
signal. However, knowledge of the entire switching signal is also

unrealistic. In this Subsection, we assume that only the switching
signal’s restriction, from the beginning to the current moment, is
known and that the system is known to be regular. Based on this
new assumption, we show how to estimate the basis V;. This will
give us a causal algorithm to estimate this family and will allow us
to work under a more realistic set of hypotheses.

10This follows from the fact that x <  log ([£x1) < L log (e +1) < x + E@ jf
x is positive, and 0 < § log ([£x1) < } log (2) if x is negative.
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L
THEOREM 5.3. Assume that (An)pep is regular. Let Q; = (dJTCIJj) “

for j € Zxo and let its eigenvalues be e D, wherei € {1,...,d}
and eP'U) < ... < ePaU) Also, let V; = { {

thonormal basis that diagonalizes Q;, with an order mduced by the

} be an or-

order on their corresponding eigenvalues ePi (). Then the average
data-rate of the algorithm from section 5.1 is upper bounded by

Z?zl max {a + A+ ﬁ, 0}, if the Lyapunov exponents are simple,

or 2?21 max {a + A+ %, 0}, otherwise.

ProoF. Our goal is to find an upper bound for #Cij for j large
enough. For that purpose, we will use the upper bound obtained in
Theorem 5.1. So, we need to find upper bounds or expressions for

¢ |0l o) and L

l

and
r/

i

First, we show that A; = limsup;_,, % log thjvlJH which appear
in the definition of the algorithm from section 5.1 for i € {1,...,d},
are the Lyapunov exponents with multiplicity, and that they are
givenby 4; = lim; e p;(j). To see that, notice that ij{ = eri()
and that

Ai —hmsup—logHtlJJv “ = hmsup log((v )T<I>T(I> 01)1/2 =

Jj—ooo

lim sup — log((UJ) szvj)l/z = lim sup p; (j),

j—oo j—oo

where the second equality comes from the fact that the Euclidean
norm and the infinity norm are equivalent. Also, the last equal-
ity comes from the fact that any basis that diagonalizes Q; also
diagonalizes Q?j .

As a consequence of regularity, by the third bullet of Lemma
4.12, Q;j has a limit. Therefore, its eigenvalues, ePi (j), have a limit
as well. Hence, we conclude that A; = limj . pi(j), because the
limit on the right exists.

Second, because the sequence is regular, we have that Q; con-
verges. We denote this limit by Q := lim;_,c Q;. Because Lyapunov
exponents are simple, there exists Ny € N such that for all j > Ny
the eigenvalues of Q; are simple as well. Now, a symmetric matrix
with simple eigenvalues has a unique, up to a change of signs and
subject to the order indicated in the theorem statement, orthonor-

mal basis that diagonalizes it. This implies that for any 11 > 0, there
exists N1 € N such that ZZ=1 |(vi !H)‘ <1+4+nforallj > Ny
and i € {1,...,d}. To see this, denote by {uy, ...,

vy} a basis that
diagonalizes Q. Now, we can change the signs of u{ ,

vé} if nec-
essary, so that u{ converges to v;, and notice that changing the sign
does not change the absolute value of the inner products mentioned

above. Because these are orthonormal bases, there exists Ny € N
such that, for every i € {1,...,d}, we have |<Z}J J+1}| < ni/dif

k # iand |(vj j+1)| < 1+n1/dif k = i, and we proved this claim.

< Vd for

.,d} always hold, even without SImphcity.

j+1

Notice, however, that the inequalities »d 1 )(v
every i € {1,.
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Third, again because of regularity, for 7 > 0 such that A;+n2 < 0
for all A; < 0, but otherwise arbitrary“, there exists N € N
such that for all j > Ny and all i € {1,...,d} we have that A; —

n2 < pi(j) £ Ai + n2. Thus, l"l.] = MaXge(o,. r—1} qujf—kf’,!

maXge(o,.. r-1) Hepi (ﬂ_k)‘ . Then, we arrive at the inequalities

elp (Aimm2)jt < l"ij < elp(itm2)jt if A; > 0, and

eTp(Aimm) (G-D0+1) < 1 < Tp(Aitn2) (G-DED i A. < 0. Then
<I < 5 . )

J+1
FF_ < elpit2m)l for j > Ny andi € {1,...,d}.

Now, recall the definition of average data-rate

b =lim sup — Z Z log(#Cj

t—o0 ] 0 i=

Denote N := max {N, Ng}. For j > N we have that
#Cl.j < [eTP(“+’1i+2’72)[(1 + ;71)].

Further, define M = Z Z
the average data-rate by

1 log (#C j’ ). We can upper-bound

W

t

b < lim sup ﬁ(M+ Z Zlog([eTp(aMﬁzUz)f(l + ’71)1))‘
P

t—00 P =N i=1

Notice that log([x]) < max {log(x) + 1, 0}. To see that, we study
two cases. If x > 1, then 2x > x+1 and log(2x) = log(2) +log(x) =
1+1log(x) > log(x + 1) > log([x]). If x < 1, then log([x]) = 0.
Therefore, we can derive the upper bound

log("eTp(a+Ai+Zr]z)f(l + ’71)‘|) <
max {Tp(a +Ai+2m)0(1+n1) + 1,0} .
Thus,

d
b< hiri)s‘gp m (M+(t-N) ; max {Tp (a + A; + 2n2) £+
log(1+n1) + 1,0} )

and since M and N are constants, we conclude that

b< Zmax{(x+/1i+2172+

log(1 + r;l) 1 0}
i=1

Since 1 > 0 and 52 > 0 can be chosen to be arbitrarily small,
we have that

1
b<Zmax{a+/1, [0}'
i=1 p

Finally, if we drop the simplicity assumption, we could replace
log(1 + 11) by log(Vd) and obtain

IA
1M
8

1
ax a+Ai+M,O 3
Tyt

Notice that 17, can be chosen to be as small as desired.
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and, therefore, in both cases, by choosing ¢ sufficiently large, the
upper bound on b can be made arbitrarily close to the estimation
entropy hest (@, K) as given by the last statement of Theorem 4.13.

|

REMARK 5.1. It is important to remark what still holds without reg-
j+1>
l

ularity and simplicity. First, it is always true that ZZ:1 ‘(vi v’ <

\/Efor everyi € {1,...,d}. Second, without regularity, we have that

F?H-l )
for every ny > 0, there exists N € N such that }—J < eTp(Aitd+2m2)e

for all for j > N, where § > 0 is the same that appears in the defini-
tion ofl"i] in the algorithm from section 5.1. Furthermore, from t

inequalities, we conclude that#CiJ < [eTP(O‘M”MZ’“)Z‘/fj‘fOrj ;

andi € {1,...,d}. Using this upper bound for #Cl.j and following
steps of the proof above, we conclude that

log(Vd) +1 O}

d
bSZmax{(a+/1i+5)+ T2
i= P

i=1
Observe that these A;’s aren’t the Lyapunov exponents with multiplic-
ity. These A;’s are the upper growth rates of the singular values of Q
as j goes to infinity, see e.g. Chapter 6 of [2]. Also, it is well-known
that these A;’s are smaller than or equal to the Lyapunov exponents
when we don’t have regularity. For that reason, this algorithm might
work at an average data-rate smaller than the entropy’s upper bound
obtained in Theorem 4.13.

Furthermore, note that, without the regularity assumption, we
need to have a priori knowledge either of the A;’s, or an upper
bound to them. Both hypothesis are unreasonable if we want to
have a completely causal algorithm, since the A/s depend on the
entire sequence (4y), N

Another important observation is that the simplicity of the Lya-
punov exponents is a generic property, and we expect that most
systems will have it. See e.g. Chapter 8 of [20].

6 SIMULATION RESULTS

In this section, we implement the algorithm from section 5.1 us-
ing the family of bases constructed in Theorem 5.3 to reconstruct
the state of the Markov Jump Linear System in Example 3.1. It is
important to mention that such systems, although random, have
realizations that are regular with probability 1, see [21]. Also, we
refer to that work for results concerning more general sufficient
conditions for regularity.

Example 6.1 (Example 3.1 revisited). Since the realizations of
the system presented in Example 3.1 are regular with probability
1, the upper bound found in Example 4.14 was actually the real
value of the estimation entropy for our system, i.e. hegt (@, K) =
max {% log(0.99) + «, 0} + max {, 0} nats/sample or, equivalently,
hest(a, K) = log, (e) (max {% log(0.99) + a, 0} +max {a,0})
bits/sample with probability 1. We can now apply the previous algo-
rithm to a randomly chosen realization of our example system. The
parameters chosen were & = 0.05, € = 0.01, and the time horizon for
our simulation was 140 time units. Further, K = [0.5, 1.5] X[1.5, 2.5],
x(0) = (1.102,2.104) T. Notice that, for this @, we get hest(0.05,K) =
0.137 bits/sample.

Guilherme S. Vicinansa and Daniel Liberzon

One can see the simulation results of the estimation error in
Figure 1 for block lengths £ = 1 in blue, £ = 3 inred, and £ = 5 in
yellow. We can see that the error is upper bounded by the purple
curve ee~%! /2 for all values of ¢. Further, the empirical average
data-rate, i.e. # Z§:1 log (Clj ), is portrayed in Figure 2, where we
can see that the data rate decreases as the block length increases, as
expected. Nonetheless, the average data-rate is far from the upper
bound derived in Theorem 5.3. That happens because the result in
Theorem 5.3 is only asymptotic.
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Figure 1: Evolution of error for several block lengths
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Figure 2: Evolution of the empirical average data-rate for
several block lengths

7 CONCLUSION AND FUTURE WORKS

In this paper, we addressed the problem of designing a quantization
scheme for exponentially fast state reconstruction that operates at
an average data-rate arbitrarily close to the estimation entropy for
regular switched systems. Furthermore, we showed how to make
the algorithm work only using information that is known up to
the current time. Moreover, we showed that our algorithm works
even if the underlying system is not regular. As future research
directions, we propose to use a modified version of the present
algorithm to perform state estimation for nonlinear systems with
minimum average data-rate. Also, we plan on addressing the control
of switched linear systems with the optimal data rate as well.
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