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ABSTRACT

This paper studies topological entropy of switched nonlinear sys-
tems. We construct a general upper bound for the topological en-
tropy in terms of an average of the asymptotic suprema of the mea-
sures of Jacobian matrices of individual modes, weighted by the
corresponding active rates. A general lower bound is constructed in
terms of an active-rate-weighted average of the asymptotic infima
of the traces of these Jacobian matrices. For switched systems with
diagonal modes, we construct upper and lower bounds that only
depend on the eigenvalues of Jacobian matrices, their relative order
among individual modes, and the active rates. For both cases, we
also construct more conservative upper bounds that require less
information on the switching, with their relations illustrated by
numerical examples of a switched Lotka—Volterra ecosystem model.
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1 INTRODUCTION

In systems theory, topological entropy describes information gener-
ation rate in terms of the growth rate of the number of trajectories
distinguishable with a finite precision, or the complexity growth
rate of a system acting on a set with finite measure. Adler et al.
first defined topological entropy as an extension of Kolmogorov’s
metric entropy [17], quantifying the expansion of a map via the
minimal cardinality of a subcover refinement [1]. A different defini-
tion in terms of the maximal number of trajectories separable with
a finite precision was introduced by Bowen [5] and independently
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by Dinaburg [12]. An equivalence between these two notions was
established in [6]. Most existing results on topological entropy are
for time-invariant systems, as time-varying dynamics introduce
complexities that require new methods to understand [16, 18]. This
work on the topological entropy of switched systems aims at con-
tributing to our understanding of some of these complexities.

Entropy also plays a prominent role in control theory, where
information flow occurs between sensors and controllers for gen-
erating feedback controls. First, a notion of topological feedback
entropy was introduced for discrete-time systems [26], following
the construction in [1]. Its definition extended the classical entropy
concepts and described the growth rate of control complexity as
time evolves. Later, a notion of invariance entropy was proposed
for continuous-time systems [9], which is closer in spirit to the
trajectory-counting formulation in [5, 12]. An equivalence between
these two notions was established in [10]. Results from [9] were
extended from set invariance to exponential stabilization in [8].

This paper studies the topological entropy of continuous-time
switched nonlinear systems. Switched systems have become a pop-
ular topic in recent years (see, e.g., [19, 27] and references therein).
In general, a switched system does not inherit the stability proper-
ties of its individual modes. For example, a switched system with
two stable modes may still be unstable [19, p. 19]. It is well known
that a switched linear system generated by a finite family of pair-
wise commuting Hurwitz matrices is globally exponentially stable
under arbitrary switching (see, e.g., [19, Th. 2.5, p. 31]). This result
has been generalized to global uniform asymptotic stability for
switching nonlinear systems with pairwise commuting, globally
asymptotically stable modes [24, 33]. A simplest case of pairwise
commuting modes is when the system functions are simultaneously
diagonalizable. This motivates us to consider switched systems with
diagonal modes in addition to the general case.

Our interest in the topological entropy of switched systems is
strongly motivated by its relation to the data-rate requirements in
control problems. For a linear time-invariant control system, the
minimal data rate for feedback stabilization is given by the sum of
the positive real parts of eigenvalues of the system matrix [13] (or,
for discrete-time systems, the sum of their logarithms [13, 25, 30]),
which is equal to the topological entropy in open-loop [5, 9]. Data-
rate conditions and entropy notions for nonlinear time-invariant
control systems were established in [8, 22, 26]. For switched sys-
tems, however, neither the minimal data rate nor the topological
entropy are completely understood. Sufficient data rates for feed-
back stabilization of switched linear systems were established in
[21, 35]. Similar data-rate conditions were constructed in [28] by
extending the estimation entropy from [23]. In [36, 37], formulae
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and bounds for the topological entropy of switched linear systems
were constructed in terms of the active rates of individual modes,
an approach which is also adopted in the current work. Relations
between topological entropy and stability of switched linear sys-
tems were established in [34, 37]. For discrete-time switched linear
systems, the topological entropy under worse-case switching se-
quences was obtained based on Joint Spectral Radius [3], while
a formula for estimation entropy was derived under additional
regularity conditions [31].

For switched nonlinear systems, topological entropy has not
been explored so far. This paper’s main contribution is to construct
upper and lower bounds for the topological entropy of switched
nonlinear systems, which generalizes previous results for switched
linear systems in [36, 37]. In Section 2, we present the definition of
topological entropy for switched systems, and provide a standard
construction of spanning and separated sets using a notion of grid.
We also define switching-related quantities such as active rates of
individual modes, and construct upper and lower bounds for the
distance between two solutions and a lower bound for the volume
of a reachable set. These bounds are essential to the computation
of topological entropy, and are also of independent interest.

In Section 3, we construct a general upper bound for the topolog-
ical entropy of switched nonlinear systems, in terms of an average
of the measures of Jacobian matrices of individual modes, weighted
by the corresponding active rates and maximized over the w-limit
set. A general lower bound is constructed in terms of an active-
rate-weighted average of the traces of these Jacobian matrices,
minimized over the w-limit set. In Section 4, we consider the case
with diagonal modes (i.e., each scalar component of the nonlin-
ear system functions only depends on the corresponding scalar
component of the state), and construct improved upper and lower
bounds that only depend on the eigenvalues of Jacobian matrices,
their relative order among individual modes, and the active rates.
In both the general case and the case with diagonal modes, we also
construct upper bounds that are more conservative but require less
information on the switching, with their relations illustrated by
numerical examples of a switched Lotka—Volterra ecosystem model.
Section 5 concludes the paper with a brief summary and remarks
on future research directions.

Notations: Let R>g := [0, ), R>¢ := (0, ), and N := {0, 1, ...}.
Denote by I, the identity matrix in R™*"; the subscript is omitted
when the dimension is implicit. For a complex number a € C, denote
by Re(a) its real part. For a vector v € R", denote by v; its i-th scalar
component and write v = (vy,...,0,). For a matrix A € R™",
denote by tr(A), det(A), and spec(A) its trace, determinant, and
spectrum (as a multiset) respectively. For a finite set E, denote by
|E| its cardinality. For a set K ¢ R", denote by vol(K) and co(K) its
volume (Lebesgue measure) and convex hull, respectively. Denote
by ||v|le := maxi<i<p |v;| the co-norm of a vector v € R", and
by ||Alle = maxj<j<pn 27:1 |a;j| the induced co-norm of a matrix
A = [aj;] € R™". By default, all logarithms are natural logarithms.
For a function f : R™ x R" — RK, denote by Jy f(r,0) € RK*" the
Jacobian matrix of f(r, x) with respect to x at (r, ).
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2 PRELIMINARIES

Consider a family of continuous-time nonlinear dynamical systems

*=fp(x), peP (1)
with the state x € R", in which each system is labeled with an index
p from a finite index set P, and all functions ﬁ, : R?” — R" are
continuously differentiable. We are interested in the corresponding
switched system defined by

x = fo(x), )
where 0 : Ry¢9 — % is a right-continuous, piecewise constant
switching signal. We call the system with index p in (1) the p-th
mode of the switched system (2), and o(t) the active mode at time
t. We denote by &5 (t,x) the solution to (2) at time ¢ with initial
state x and switched signal o, which, under the above assumptions,
is absolutely continuous in t, differentiable in x, and satisfies the
differential equation (2) away from discontinuities of o, which are
called switching times, or simply switches. We assume that there
is at most one switch at each time, and finitely many switches
on each finite time interval (i.e., the set of switches contains no
accumulation point). We denote by Ny (¢, 7) the number of switches
on an interval (7, t].

2.1 Entropy definitions

In this subsection, we define the topological entropy of the switched
system (2) with a switching signal o and initial states drawn from
a compact set with nonempty interior K C R" called the initial
set. Let || - || be some chosen norm on R" and the corresponding
induced norm on R™". Given a time horizon T > 0 and a radius
& > 0, we define the following open ball in R" with center x:

By (x.e,T) = {ae R max 166(,%) = £ (4 )] < } 3)

We say that a finite set E C K is (T, €)-spanning if
K c U By (x,67T), (4)

x€E
or equivalently, for each ¥ € K, there is a point x € E such that
[|E(t, %) — E5(t,x)|| < eforallt € [0,T]. Let S(f, ¢, T, K) denote
the minimal cardinality of a (T, ¢)-spanning set, which is nonde-
creasing in T and nonincreasing in ¢. The topological entropy of
the switched system (2) with initial set K and switching signal o is
defined in terms of the exponential growth rate of S(fg, ¢, T, K) by

1
h(fs,K) := lim lim sup = log S(f5, ¢, T,K) > 0. (5)
eNO T—oo T

For brevity, we at times refer to A(f5, K) simply as the (topological)
entropy of (2).

Remark 2.1. In view of the equivalence of norms on a finite-
dimensional vector space, the values of h( fz, K) are the same for all
norms || - || on R™. In particular, the topological entropy is invariant
under a change of basis. Unless otherwise specified, we take || - ||
to be the co-norm on R” or the induced co-norm on R™",

Next, we provide an equivalent definition for the entropy of the
switched system (2). With T and ¢ given as before, we say that a
finite set E C K is (T, ¢)-separated if

X ¢ Bfg (x,6T) (6)
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for all distinct points x,x € E, or equivalently, there is a time
t € [0,T] such that ||E5(t, %) — E5(8,x)|| = e Let N(f, ¢ T,K)
denote the maximal cardinality of a (T, €)-separated set, which is
also nondecreasing in T and nonincreasing in ¢. The entropy of (2)
can be equivalently formulated in terms of the exponential growth
rate of N(fg, ¢, T, K); cf. [15, p. 110].

PROPOSITION 2.2. The topological entropy of the switched system
(2) satisfies

1
h(f5,K) = lim limsup = log N(f5,¢,T,K). (7)
N0 T—oo T

2.2 Standard spanning and separated sets

Given a time horizon T > 0 and a radius ¢ > 0, we provide a stan-
dard construction of (T, ¢)-spanning and (T, ¢)-separated sets by ex-
tending the notion of grid in [37]. Given a vector 6 = (61,...,6,) €
RZ ) which may depend on T and ¢, we define the following grid
on the initial set K:

G(0) = {(k101, ... knOn) €K : k1, ....kn € Z}. ®)

As K is a compact set with nonempty interior, there exist closed
hypercubes B; with radius r; > 0 and Bz with radius r > 0 such
that By ¢ K C By. Then the cardinality of the grid G(6) satisfies

(1[5 ]=roon=[1((5))

i=1

For a point x € G(0), let R(x) be the open hyperrectangle with
center x and sides 261, ..., 20,, that is,

R(x) = {X € R : %1 —x1]| < O1,...,|%n — Xn| < On}. (9

Then the points in G(6) adjacent to x are on the boundary of the
closure of R(x), and the union of all R(x) covers K, that is,

Kc U R(x).
xeG(0)
Comparing the hyperrectangle R(x) with the open ball B, (x,¢,T)
defined by (3), we obtain the following result, which extends [37,
Lemma 2]; the proof is along the same lines and thus omitted here.

Lemma 2.3. 1 Ifthe vector 0 € RZ is selected so that

R(x) c By, (x.&T) Vx e G(0), (10)
then the grid G(0) is (T, €)-spanning. If (10) holds for all T > 0 and
& >0, and all 0; are nonincreasing in T, then the topological entropy
of the switched system (2) satisfies'

h(f, K) < I{ln lim supZ log(1/6:) 11)

T—oo 5 T
2. If the vector 0 € RZ  is selected so that
By (x,6,T) C R(x) Vx e G(0), (12)

then the grid G(0) is (T, €)-separated. If (12) holds for all T > 0 and
€ > 0, and all 0; are nonincreasing in T, then the topological entropy
of the switched system (2) satisfies

log(1/6)

h(fr, K) > 1% lim sup Z - (13)

T—oo 557

! The upper bound (11) holds whenever the limit on the right-hand side exists, which
is always the case for the grids in this paper; the same holds for the lower bound (13).
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2.3 Active times and active rates

In this subsection, we introduce switching-related quantities that
are useful for computing the entropy of switched systems. The
active time of the p-th mode over an interval [0, ¢] is defined by

t
Tp(t) = / 1, (0(s)) ds, peEP (14)
0
with the indicator function
L o(s) =p,
1 s)) =
p(o(s)) {0, o(s) # p.
We also define the active rate of the p-th mode over [0, t] by
(D) =10/t pePp (15)

with py(0) := 1,(0(0)), and the asymptotic active rate of the p-th
mode by
Pp = limsup p, (¢), peP. (16)
t—o0

Clearly, the active times 7}, are nonnegative and nodecreading, and
satisfy Zpe? 1p(t) =t forall t > 0; the active rates p;, take values
in [0, 1] and satisfy X\,ep pp(t) = 1forall £ > 0. In contrast, due
to the limit supremum in (16), it is possible that }\,cp pp > 1 for
the asymptotic active rates pp, as illustrated in [37, Example 1].

In [37, Lemma 1], it was shown that for a family of scalars {c, €
R:p e P}, we have

1
limsup = max CpTp(t max ].lm Su; c t), 0
Taoop T tE[O,T]pZ p P( ) { t— pp;, pPp( ) }

Next, we present a technical lemma that generalizes this result to
the case with a family of integrable functions.

LEMMA 2.4. For a family {ap : p € P} of integrable functions
ap : R>o — R, we have

hmsup— max Z/ ap(s) 1p(a(s))ds

T—c T te [0,T]

= max{lim sup Z / ap(s) 1p(a(s))ds, 0} (17)

t—o00 pep

Moreover, the first term in the maximum on the right-hand side of
(17) satisfies

hm sup Z dppp(t) < 11m sup Z / ap(s) 1p(a(s))ds

peP peP
< lim sup Z appp(t) (18)
t—00
peP
with?
dp = liminf ap(t), dp:= limsup ap(t), peEP.

t—o0,0(t)=p t—o0,0(t)=p

Before proving Lemma 2.4, we note that the sum on the left-hand
side of (17) is in fact the integral of a, over [0, t], that is,

/O g (s)(s) ds = Z / ap(s) 1p(a(s)) ds. (19)

peP

Yf {t 2 0: 0(t) = p} is a bounded set, then the corresponding limit supremum and
limit infimum are taken to be 0.



HSCC 21, May 19-21, 2021, Nashville, TN, USA

PRrROOF OF LEMMA 2.4. For brevity, we define the following func-
tions ,a : R»9 — R and constant ¢ € R U {co}:

t
10= Y, [ a0 1)

peP

1
a(T) = = t),
a(T) Tt?[lfi)}]”()

with a(0) = max{a, ) (0), 0}, and
n(t)

a:=limsup —=.
t—o0

First, we establish (17), that is, lim supy_,, a(T) = max{a, 0}.
The definition of a implies a(T) > max{n(T)/T, 0} for all T > 0,
and thus lim supy_,, a(T) > max{d, 0} (in particular, if ¢ = co
then limsupy_,, @(T) = o). It remains to prove that when 4
is finite, the reverse inequality holds as well. The definition of d
implies that for an arbitrary § > 0, there is a large enough ts > 0

such that
n(t) < (@a+o)t

For a time T > tg, let

Vit >ts.

t*(T) € argmaxn(t),
te[0,T]

which exists as the function 5 is continuous. Then 5(t*(T)) >
n(0) =0.If t*(T) € (ts, T], then

n(t" (M) _ (M) _ .
T = (T)
Otherwise t*(T) € [0, t5], and thus t*(T) = t*(t5) and
n(t*(T)) _ n(t*(ts))
T T

Combining the two cases above, we obtain

a(T) = +6.

a(T) =

P T C)

a(T) < max{ T

} VT > ts.

Hence
limsup a(T) < max{d+d, 0}.

T—o0

As § > 0 is arbitrary, we have

limsup a(T) < max{a, 0},

T—o0

and thus (17) holds.
Second, we establish (18), that is,

lim sup Z dppp(t) < a < limsup Z appp (1),
t—o0 t—o00
pPEP pEP
Recall that the index set % is finite. Following the definitions of @,

and dp, for an arbitrary 5 > 0, there is a large enough t 5 = 0such
that for all p € P, we have

(dp — 8) 1p(a(1)) < ap(1) Lp(a (1)) < (dp +8) Lp(a (1))

forallt >t 5 Therefore, we have

a < lim sy (dp +8)pp(t) = limsu dppp(t) +96,
p P P p p pPp

t—o0

peP peEP
@ > lim sup Z (ap - S)pp(t) = lim sup Z dppp(t) — 5.
r—o00 t—o0
pPEP peEP

Thus (18) holds as § > 0 is arbitrary. O
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2.4 Bounds for distance between solutions and
volume of reachable set

In preparation for the computation of topological entropy, we con-
struct upper and lower bounds for the distance between two solu-
tions to the switched system (2) and a lower bound for the volume
of its reachable set. For brevity, we denote by &5 (t, K) = {&5(t, x) :
x € K} the reachable set of (2) at time ¢ from initial set K.

Following [11, p. 30], for an induced norm || - || on R™ ", the
matrix measure ji : R™" — R is defined by
I+tA|[ -1
u(A) = lig AN
N0 t

For standard norms, there are explicit formulae for the matrix mea-
sure; for example, for the induced co-norm, we have

p(4) = max (an + )l j|) (20)
J#i
for a matrix A = [a;;] € R™". For all induced norms || - || on R™*",

the function y is convex and satisfies [11, Th. 5, p. 31]
—u(=A) < Re(d) < u(A) < ||A|l YA eR™" V] e spec(A).
(1)

PROPOSITION 2.5. For all initial states x, X € K, the corresponding
solutions to the switched system (2) satisfy

Loz — x|l < Eo(1.5) - & (b0 < oDl x| V20
(22)
with
t .
n (1) = p;ﬂ/o (vaof?f(ls,x)) —p(=Jxfp(©)) | 1p(a(s))ds,
t
(1) = jnax Z/O H(xfp(§5(s,0))) Lp(a(s)) ds.
peP
Also, the reachable set of (2) satisfies
vol(é4(t,K)) > e'* W vol(K)  Vt>0 (23)

with

t
o) = 3 | wUfptcatsom 1po) ds

Note that n , 7, and y, are in fact constructed in terms of the
~o

integrals of the measure (or its minimum) and the trace of the active
Jacobian matrix over [0, ¢], rewritten via the transformation (19).

PROOF OF PROPOSITION 2.5. Let’s consider a linear time-varying
(LTV) system
x=A(t)x (24)
with a piecewise continuous matrix-valued function A : R>9 —
R™" For all v € R”, its solution £(¢,v) with initial state v and
state-transition matrix ®4 (¢, 0) satisfy [11, Th. 27, p. 34]

t
eh THEAD A1 < 122, 0))|

t
= | ®a(t,0) 0] < e FAD o1 viso  (25)

and

t
det(Da(1,0)) = ebo Ay 5 g (26)
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(Liouville’s formula [7, Prop. 2.18, p. 152]).

First, we write the Jacobian matrix J, &4 (¢, v) of a solution &4 (¢, v)
to the switched system (2) as a matrix solution to the LTV system
(24) with an appropriate system matrix A(t), based on a common

procedure in nonlinear systems analysis (see, e.g., [20, Sec. 4.2.4]).

For allv € R", we have Jy£5(0,0) = and
tJxlo(t,0) = Jubo(£,0) = Jxfo(r) (Eo(t,0)) Jxbo(t,0)

for all t+ > 0 that are not switching times. Hence for each fixed
v € R", the Jacobian matrix Jx &5 (¢, 0) is the principal fundamental
matrix solution [7, Def. 2.12, p. 150] to the LTV system (24) with
the system matrix A(t) = Jxf5 (1) ({5 (¢ 0)), and is thus equal to
the state-transition matrix ®4(¢,0). Let v(p) = px + (1 — p) x
for p € [0,1]. Then v(p) € co(K) for all p € [0,1]. Hence the
upper bound in (25) with A(t) = Jx fo(s) (&5 (2, 0)) and D4(t,0) =
Jx&o(t,0) implies?

1o (1,%) — Eo (1, = 1o (1, v(1)) — £ (£, v(0))]
1
‘ /0 Jebo(1,v(p)) (%~ x) dp

< T —
< ax Jxéo (£,0) (X = x)l

< ( max el #UF(s) (€ (5.0)) ds) 1% = x|l = o Oz — x|
veco(K)

for all ¢ > 0, that is, the upper bound in (22) holds.

Second, we write the difference between two solutions &5 (t, X) —
&5 (¢, x) to the switched system (2) as a solution to the LTV system
(24) with an appropriate system matrix A(t), based on a similar
procedure to the one in the first part. Let 7(t, p) = p&s(t,%) +
(1 = p)és(t,x) for p € [0,1]. Then v(t,p) € co(és(t,K)) for all
pe€[0,1] and t > 0, and 9,7 (¢, p) = &5(t, X) — (2, x). Thus

9 (8o (1, %) = &6 (£, %)) = fo(r) (€6 (£, %)) = fo(z) (Eo (1, X))
= fo(r) (V(1, 1)) = fo (s (7(£,0))

1
- ( /0 Jefot (7(0,9)) dp | (0 (1.8) — Eo(1,5))

for all ¢ > 0 that are not switching times. Hence &5 (t, X) — &5 (8, x)
is the solution with initial state X — x to the LTV system (24) with

the system matrix A(t) := /01 Jxfo (1) (7(2, p)) dp. Thus the lower
bound in (25) implies*

t 1 _
160 (%) = Eo(t,x) || = eh #oh Fefoior (PP dp) dsy iz _

= eZoer Jy (=i Befp (W) dp) Tp (o)) ds iz _ oy

for all t+ > 0. Moreover, as the function y is convex, for all p € P,
we have

1 1
—u(—/o fop(V(t,p))dp) 2/0 —u(=Jxfp(#(t, p)) dp

> min —p(=Jx fp(0)) Vit >0.

veco(&x(1,K))
Hence the lower bound in (22) holds.

3The construction based on integrating J £ (¢, v) along the line segment connecting
x and X is inspired by similar ones in the proofs of [4, Th. 4.2] for time-invariant
systems with a compact state space and [29, Th. 1] for contractive systems.

4The construction based on integrating J, fi- (v) along the line segment connecting
&5 (t,x) and &5 (2, %) is inspired by a similar one in [32, Sec. 2.5] for time-varying
systems.
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Finally, Liouville’s formula (26) with A(t) = Jxf5(s) (§o(t,0))
and @ 4(t,0) = Jx&x(t,0) from the first part implies

vol(E5 (1K) = /K | det (o (1, 0))| do
> (mi;g | det(xéo v>>|) vol(K)

_ (mi;(1 o U (65 (50)) ds) vol(K) = (! vol(K)
VE

for all t > 0, that is, (23) holds. o

Additionally, we provide the following upper and lower bounds
for the distance between two solutions in terms of the active times
7p, which are more conservative than those in (22) but illustrate the
effect of switching and will be useful for establishing bounds for
the topological entropy of switched systems with diagonal modes.

COROLLARY 2.6. For all initial states x,x € K, the corresponding
solutions to the switched system (2) satisfy

* = x|l < ||&6(8,%) = & (1, x) |

(Zrer 1,05 (1)

< eZPEP ij(t)fp(t) ”)Z‘ — x” Vt>0 (27)
with
t) == i THT >
EP( ) se[O,t],U(S)BIB}EGCO@G(S’K)) HERRE) P
—_ p ¢ ’
t) = ’ ’
i, (1) se[(),t],o'(l?)aj;,UECO(K)y(]x.f“p(éy(s v)))

where the active times 1), are defined by (14).

Proor. The upper bound in (27) follows from the upper bound
in (22) and the property that

t
TRGESY /0 (Ug&);()u<fxﬁ<§o(s,v))))ﬂp<o(s)>ds

peEP
t
<> ﬁp(t)/o Ip(o(s)ds= Y Fy(rp(t) V=0,
peEP peEP

The lower bound in (27) follows from the lower bound in (22) and
the property that

t
n (1) 2 D Ep(t)[) Ip(o(s)ds= ) (D50 Vo

peP peP
]

Remark 2.7. Suppose the switched system (2) satisfies that

1. for each p € P, the measure of Jacobian matrix p(Jx fp(v))
has a global upper bound /_1;, or

2. the convex hull of initial set co(K) is a subset of a compact
positively invariant set S, and let ;7;; = maxyes f(Jxfp(0)).

Then (27) implies that for all initial states x, X € K, we have

I1E5(1,%) — £ (£, )| < eZer Fo D)z — x| Vi,

which is more conservative but simpler than the upper bounds
in (22) and (27). Similarly, a more conservative but simpler lower
bound than the ones in (22) and (27) can be constructed for the
cases with globally lower-bounded measures yi(Jx fp(2)), or with a
compact positively invariant set containing K. Similar results hold
for the lower bound (23). On the other hand, without a global bound
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for each p(Jx fp(v)) and without a compact positively invariant set,

the functions s Mo ,up, and ﬁp in (22) and (27) may be unbounded.

3 ENTROPY OF GENERAL SWITCHED
NONLINEAR SYSTEMS

In this section, we establish upper and lower bounds for the entropy
of the switching nonlinear system (2).

THEOREM 3.1. The topological entropy of the switched system (2)
is upper-bounded by

h(fs, K) < max{hm sup Z nfippp(t), 0} (28)

t—00 peSD
with

fpi= lmsup  max p(chy(Eo(s0),  pEP, (9

500, 57(s)=p VECO(

and lower-bounded by

h(f, K) > max{hm sup > fppp(t), 0} (30)

% pep

Xp = liminf mm tr(]xﬁ,(é'g(s 0))), peP, (31)

s—00,0(s)=p
where the active rates py, are defined by (15).
Proor. First, we prove the upper bound (28). Fix a time horizon

T > 0 and a radius £ > 0. The upper bound in (22) implies that for
all initial states x, ¥ € K, the corresponding solutions to (2) satisfy

max 7, (1)
max |5 (1, %) — & (4, x)[| < <17 llx—xll. (32)
e[o0,T]

Consider the grid G(0) defined by (8) with

- 7 (t
f;=e celor) Mo (1)

£, ie{l,...,n},
and the corresponding hypercubes R(x) defined by (9). Comparing

(9) and (32) to (3), we see that R(x) C By, (x, & T) for all x € G(0).

Then Lemma 2.3 implies that G(0) is (T, ¢)-spanning. As T > 0 and
€ > 0 are arbitrary, and all ; are nonincreasing in T, the upper
bound (11) implies

log(1/6;)
h(f5,K) < lim li S
o) < i 3
nlog(1/e)

1
= lim sup ? HESD;] nn (1) + li\r‘n lim sup T

T—00 te ENO T—oo

Z / ap(s) Lp(o(s)) ds

< lim sup — max
T—o0 tE [o. T]

with

aip(s) = pmax np(Jxfp(o(s,0))),  peP.

Then the upper bound (28) follows from (17) and the upper bound
in (18) with the functions a, () := a1p(t) for p € P.
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Second, we establish the lower bound (30) using volume-based
arguments. Fix a time horizon T > 0 and a radius ¢ > 0. The lower
bound (23) implies that the reachable set &5 (T, K) of (2) satisfies

vol(é4(T.K)) > ¥ (D) vol(K).
Let E be a minimal (T, €)-spanning set. Then (3) and (4) imply
EA(TK) ¢ | JizeR": 12— & (T, o) <e),
xeE

and thus the corresponding volumes satisfy (recall that we take
|| - || to be the co-norm; see Remark 2.1)

vol(&5(T,K)) < Z vol{x € R" : ||x — &5 (T, x)|| < &} = |E|(2¢)".
x€E
Therefore, the minimal cardinality of a (T, £)-spanning set satisfies

S(fy &, T.K) = |E| > vol(é(T.K))/(26)™ > €= (D) vol(K)/(2¢)",

which, combined with the definition of entropy (5), implies
h(fs, K) > lin lim sup = log(eY"(T) vol(K)/(2¢)")

T—oo
T 1 1(K)/(2¢)"
= lim sup —G( ) + lim lim sup —og(vo (K)/(2e)")
T— o0 ENO Tooo T
> limsup — Z / azp(s) Lp(a(s))ds
T—o0 pEP
with
a2p(3) = gél]r(l tr(]x]%(é’o(& 0))), peP.
Then the lower bound (30) follows from the lower bound in (18)

with the functions a, (t) := azy(t) for p € # and the property that
h(fs,K) > 0. O

Thinking of the non-switched case as a switched system with a
constant switching signal, Theorem 3.1 implies the following result
for the entropy of nonlinear time-invariant systems.

CoROLLARY 3.2. The topological entropy of the p-th nonlinear
time-invariant system in (1) is upper-bounded by

h(fp,K) < max{njip, 0} (33)
with the constant [i,, defined by (29), and lower-bounded by
h(fp,K) = max{yp, 0} (34)

with the constant Y, defined by (31).

Based on the upper bound (28), we construct the following upper
bounds for the entropy of (2) that require less information on the
switching signal.

COROLLARY 3.3. The topological entropy of the switched system
(2) is upper-bounded by

h(fo K) < ), max{nfip, 0}y (35)
peEP
with the asymptotic active rates pp defined by (16), and also by

h(fs, K) < maxmax{nf,, 0}, (36)
pPeEP

where the constants fi,, are defined by (29).
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Proor. First, the upper bound (28) and the subadditivity of limit
suprema imply

h(fs,K) < max{ Z lim sup nfip pp (1), 0}
t—o00

pPEP

< Z max{nflp, 0} lim sup p,(t) = Z max{nflp, 0}pp.
t—o0
peEP peP

Second, the upper bound (28) also implies

h(fs,K) < max{limsup (maxnﬁp) Z pp (1), O}
t—o0

Pep PeEP

= max{ maxnji,, 0} = max max{nf,, 0}. m]
{pe?’ Hp } vep {,Up }

Remark 3.4. Consider the case where all the functions f, in (2)
are linear, that is, there is a family of matrices {4, € R™" : p € P}
such that for all p € P, we have

fp(x) = Apx

Then the constants /i, and Y, defined by (29) and (31) satisfy

Vx e R"

fp = p(Ap),  ¥p =tr(Ap) Vpe®P.

Hence Theorem 3.1 generalizes [37, Th. 1], and Corollary 3.3 gen-
eralizes [37, Remark 5].

Remark 3.5. 1. The constants /i, and ¥, defined by (29) and
(31) only depend on the measure and the trace of each Jacobian
matrix Jx fp(v) over the w-limit set from the convex hull of initial
set co(K) and that from K, respectively, instead of over all reachable
points from co(K) and K, respectively. In particular, (28), (35), and
(36) will yield finite values for the case with unbounded Jacobian
matrices but a compact global attractor.

2. In view of Remark 2.7, if each p(Jx fp(v)) has a global upper
bound ﬁ; or an upper bound [}, over a compact positively invariant
set containing co(K), then the upper bounds (28), (35), and (36) hold
with /}Z in place of fip. Similarly, a more conservative but simpler
lower bound than (30) can be constructed for the case with globally
lower-bounded traces tr(Jxfp(v)), or with a compact positively
invariant set containing K.

3. For a fixed family of functions {f} : p € £}, compared with
the upper bound (28), the upper bound (35) depends on the asymp-
totic active rates p, instead of the active rates pp, and the upper
bound (36) does not involve active rates at all. If a global upper
bound ﬁ; is used in place of i, for each p, then (36) is independent
of switching.

4. The upper bound (28) is tighter than the upper bounds (35)
and (36). The upper bounds (35) and (36) are both useful in the sense
that neither is more conservative than the other, as it is possible
that 2\pep pp > 1. The relations between the upper bounds (28),
(35), and (36) are illustrated numerically in Example 3.6 below.

Example 3.6. Consider the following switched nonlinear system

in the nonnegative orthant RY | from [2]:

Xi :fdi(x) = (rf,+ Zaf,jxj)xi, ie{l,...,n} (37)

Jj=1
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with the state x € R;O, a switching signal o : Ry9 — #, and
a finite index set . Each individual mode p of (37) is a Lotka—
Volterra ecosystem model that describes the population dynamics of
n species in a biological community [14, Ch. 5], where x; denotes the

population density of the i-th species, rli, € R quantifies the intrinsic

growth rate of the i-th population, a;,i < 0 is a self-interaction term

justified by the limitation of resources in the environment, and
ag € R for j # i is an interaction term quantifying the influence of
the j-th population on the i-th one. Switching in (37) may be due
to seasonal changes or other environmental factors. Clearly, RY ; is
a positively invariant set for (37).

Consider the switched system (37) in R2>o with the index set
P = {1, 2}, the coefficients (rll,rlz) =(-1,2) and (rzl,rg) =(3,-1),
the self-interaction terms a%l = afz = a%l = agz = -1, and the
interaction terms a%z = a%l = a%z = agl = 0.1. Clearly, in Rzzo’
mode 1 has an attractor (0, 2) and a saddle point (0, 0) with the
stable manifold R X {0}, and mode 2 has an attractor (3,0) and a
saddle point (0, 0) with the stable manifold {0} X R>¢. Based on [2],
(37) is uniformly ultimately bounded (UUB) in R’;O and its w-limit
set is a subset of Q := [0,3.04] X [0,2.03]. Note that Q is not a
positively invariant set for (37).

We construct two switching signals o1 and o7 as follows (we
denote by 0 < t; < tp < --- the sequence of switching times and
let tp := 0, with 0 = 1 on [ty tyry1) and o = 2 on [fop4q, tapsn)):

e o with periodic switches: For k € N, let t; := 1000k. Then
simple computation yields p1 = p2 = 0.5.

e 0y with constant set-points: Let ¢; := 1. For k > 1, let ty =
min{t > fop_q : p2(t) > 0.9} and typyq = min{t > ty; :
p1(t) = 0.9}. Then simple computation yields t; = ok=1 4
9k=2 for k > 2 and p; = py = 0.9.

Typical trajectories of the individual modes 1 and 2 and the switched
system (37) with switching signals o1 and oy are plotted in Fig. 1
below.

The Jacobian matrices of individual modes of (37) are given by

_|=1-=201 +0.10y 0.101
Jxefi(0) = [ 0.10; 2+0.10; — 203 |°

_|3-2014+0.102 0.101
Jxfa(v) = [ 0.1, —-1+0.101 — 202"

As (37) is UUB and its w-limit set is a subset of Q, for all initial sets
K c RY, one can obtain upper bounds for the constants /i, defined
by (29) by replacing the limit suprema over {t > 0: o(s) = p} and

maxima over co(K) in (29) with maxima over Q. Hence

f1= limsup
t—o0,0(s)=17

= mag)zcmax{—l —1.907 +0.102, 2+ 0.107 — 1.903} < 2.31,
vE

g&%u(hﬁ(fa(t, 0))) < rgleagﬂ(fxﬁ(v))

g2 = limsup max p(Jxfa(és(t,0))) < Igleagﬂ(]xﬁ(v))

t—00, o(5)=2 vECO(K)

= mag))(max{3 —1.901 + 0.1v2, =1+ 0.1v1 — 1.902} < 3.21.
ve

The upper bounds for hA(f,, K) and h(fy,, K) computed using (28),
(35), and (36) for all K ¢ RY ;| are summarized in Table 1 below. In
particular, the upper bound (28) for h(fs,, K) can be computed as
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—e—mode 1 —s—mode 2

0 1 2 3 4 5
Ty
(a) Mode 1 (b) Mode 2
4 4
———mode 1 ——mode 1
—<—mode 2 —o—mode 2
3 3
g2 g2
1 1
|
0 0 g
0 1 2 3 4 0 1 2 3 4 5

x )
(c) Switching signal o7 (d) Switching signal o

Figure 1: Trajectories of the switched system (37) for (a) mode 1 with
initial states (4,3), (3,2), (3,0.1), and (3,0); (b) mode 2 with initial
states (4,3), (3,2), (0.1,2), and (0, 2); (c) switching signal o; with
initial states (4, 3), (3,0), (0, 2), and (0, 0); (d) switching signal o, with
initial state (4, 3). The circles mark the beginning of segments after
switching. The gray rectangle represents Q = [0, 3.04] x [0, 2.03].

follows:
h(fo,, K) < limsup (2/11p1(t) + 2/i2p2 (1))
t—o00
< limsup 2(2.31(1 — p2(1)) + 3.21p2(1))
t—o00

=2(2.31+ (3.21 - 2.31)p3) = 6.24.

The numerical results are consistent with the discussions on the re-
lations between the upper bounds (28), (35), and (36) in Remark 3.5.4.

Table 1: Upper bounds for the entropy of the switched system (37).

(pr.p2)  (28) (35) (36)

o1 (0.5,0.5) 5.52 5.52 6.42
o2 (0.9,09) 6.24 9.94 6.42

4 ENTROPY OF SWITCHED DIAGONAL
SYSTEMS

Consider the case where for each p € £ and i € {1,...,n}, the
i-th scalar component ﬁ; of the function f, only depends on the
corresponding scalar component x; of the state x. For brevity, we
consider _]2 as a function on R and denote by jz (x;) the i-th scalar
component of f,(x). Then (2) becomes the switched diagonal system
defined by

% = fL(x), ie{l,...,n}. (38)
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Clearly, the i-th scalar component of the solution &5 (t, x) also only
depends on the corresponding scalar component x; of the initial
state x. For brevity, we denote by £ (t, x;) the i-th scalar component
of the solution & (t, x), and by £ (t,K) := {£..(t,x;) : x € K} the
projection of the reachable set &5 (¢, K) onto the i-th dimension. In
this section, we establish upper and lower bounds for the entropy
of the switched diagonal system (38) that are generally tighter than
the results of simply applying the bounds from Section 3 to (38).

THEOREM 4.1. The topological entropy of the switched diagonal
system (38) satisfies

n
. 1 i
h;n_fgpz T o Z a,7p(t) < h(fo,K)
i=1 peP
n 1 .
<limsup ) = max a,tp(t) (39)
T—co ; T te[o,ﬂp;) re
with ) )
al = inf min N (v;),
P 520,0(s)=p v,eco(ga(sK))(ﬁ’) (@) (40)
@y=  sup  max () (& (s00)
r 520, 0(s)=p v€c0(K) P e
fori € {1,...,n} and p € P, where the active times 1, are defined

by (14); it is also upper-bounded by

h(fs,K) < Zmax{hm sup Z ppp(t) 0} (41)

peP
with
il = i 42
ay Hin;zlsr)) puencl(?; (fp) (&5(s,01)) (42)
fori e {1,...,n} and p € P, where the active rates p,, are defined
by (15).

Proor. Fix a time horizon T > 0 and a radius ¢ > 0. Applying
the upper and lower bounds (27) and the upper bound in (22) for
the distance between solutions to each scalar component of (38),
we obtain that for all initial states x,X¥ € K, the corresponding
solutions satisfy (recall that we take || - || to be the co-norm; see
Remark 2.1)

2 p L (D7p (1)

max etem peP |%; = xi| < max ||&x(t, %) — & (£, x) ||
1<i<n tefo,
max 3 71, (1)1 (1)
< max e'0Tlper ” |%; — xi (43)
1<i<n
with
f(t) = min (fy) (v1) > ab,
=P se[0.], a(s)=p, vi€co(&h (s K)) ’
t) = ma: DN (E (s,01)) <@
() se[O,t],a(s):);,veco(K)(f‘;)) (&5(s,0i)) <@,
forie {1,...,n}and p € P, and also
max ﬁi,(t)
max 1€ (8, %) = & (£, x)]| < max. eteloTl % — xil,  (44)

with

. t . .
y(0) = max h;‘» | @ o 1yt e
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forie{1,...,n}.
First, consider the grid G(0) defined by (8) with

- max 3 71 (07 (1)

0; = e *<T1p e, ie{1,...,n},

and the corresponding hyperrectangles R(x) defined by (9). Com-
paring (9) and (43) to (3), we see that R(x) C By, (x,&T) for all
x € G(0). Then Lemma 2.3 implies that G(0) is (T, ¢)-spanning. As
T > 0 and ¢ > 0 are arbitrary, and all §; are nonincreasing in T, the
upper bound (11) implies

log(1/6;)
h(f5,K) < lim limsu e
fU N0 T—)oop; T
n
. 1 nlog(1/e)
= h;n_f;pzll T I [oT Z ,up(t)rp(t) + l{ln lim sup —T

that is, the upper bound in (39) holds.

Second, following similar arguments to those in the first part
while considering

- max Z " L (D)7p (1)
0; = e cl0TIper g, ie{l,...,n},

we can show that G(0) is (T, ¢)-separated, and the lower bound
(13) implies the lower bound in (39).

Finally, following similar arguments to those in the first part of
the proof of Theorem 3.1 while considering

— max ﬁi,(t)
0; := e t<loTl £, ie{l,...,n},

we can show that G(0) is (T, ¢)-spanning, and the upper bound (11)
implies

h(fs, )<l1msupZ— max Z/ta;(s)ﬂp(a(s))ds
pep o

te[OT

= ; 1;n_§011p— t?[‘?’% Z _/ ap,(s) 1p(a(s)) ds
with
ap(s) = Ué?(i’;()(ﬁ)'(f},(s, i), peP,

where the last inequality is due to the subadditivity of limit suprema.
Then we obtain the upper bound (41) by applying (17) and the
upper bound in (18) in each scalar component with the functions
ap(t) = a;,(t) forp € P. O

Based on the upper bound (41), we construct the following upper
bounds for the entropy of (38) that require less information on the
switching signal; the proof is along the lines of that of Corollary 3.3
and thus omitted here.

COROLLARY 4.2. The topological entropy of the switched diagonal
system (38) is upper-bounded by

h(f, K) < Z (Zmax{a", o})pp (45)
i=1

peP
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with the asymptotic active rates p, defined by (16), and also by
n .
h(fs.K) < iy, 0}, 46
(forK) < max ( Z; max{a }) (46)

where the constants &;, are defined by (42).

Remark 4.3. Consider the case where all the functions flﬁ in (38)
are linear, that is, there is a family of diagonal matrices {D, =
diag(all,, e ag) € R™" : p € P} such that

ﬁ, (x) = Dpx

2;” and d;, defined by (40) and (42) satisfy

Vx e R, VpeP.
Then the constants Eé,,

a, =g;', =ay, = a), Vie{l,...,n},VpeP.
Hence Theorem 4.1 generalizes [36, Th. 7 and Prop. 8], and Corol-

lary 4.2 generalizes [36, Cor. 10].

Remark 4.4. 1. The constants g; and E;, defined by (40) de-

pend on the partial derivatives ( ];f)’ (v;) over the convex hull of
all reachable points from the initial set K and over all reachable
points from the convex hull co(K), respectively, whereas d;, de-
fined by (42) only depends on ( flf)’ (v;) over the w-limit set from
co(K). Their difference is due to the different constructions of the
upper and lower bounds in (22) and the upper bound in (27). In
particular, (41), (45), and (46) will yield finite values for the case
with unbounded partial derivatives but a compact global attractor.

2. In view of Remark 2.7, if each (];f)’(vi) has a global upper

bound d;,*, or an upper bound d;,* over a compact positively in-
variant set containing co(K), then the upper bound in (39) and
the upper bounds (41), (45), and (46) hold with a ”* in place of E;',
and 4 ap Similarly, a more conservative but 51mpler lower bound
than the one in (39) can be constructed for the case with globally
lower-bounded ( ];; )’ (v;), or with a compact positively invariant
set containing K.

3. For a fixed family of functions {f} : p € P}, compared with
the upper bound in (39) and the upper bound (41), the upper bound
(45) depends on the asymptotic active rates p, instead of the active
rates pp, and the upper bound (46) does not involve active rates at
all. I a global upper bound d;,* is used in place of d;, for each p and
i, then (46) is independent of switching.

4. The upper bound (41) is tighter than the upper bounds (28),
(45), and (46), while (45) and (46) are tighter than the upper bounds
(35) and (36), respectively. The upper bound in (39) and the upper
bound (41) are both useful in the sense that neither is more conser-
vative than the other, due to their difference explained in item 1;
however, if the w-limit set from co(K) contains all reachable points
from co(K), then the former is tighter than the latter. The same
conclusion holds between the upper bound in (39) and the upper
bounds (35) and (36). The upper bounds (45) and (46) are both useful
in the same sense, as it is possible that },,cp pp > 1. The relations
between the upper bounds (28), (41), (45), and (46), and the one in
(39) are illustrated numerically in Example 4.5 below.

Example 4.5. Consider the switched nonlinear system (37) in
the nonnegative orthant R? ; in Example 3.6. In this example, we
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consider the case where the interaction terms a;,] =0forall j#i

and p € P. Then (37) becomes the switched diagonal system

Xi = f;(xi) = (rcir + a?xi) Xi, ie{l,...,n}. (47)
Note that for each p € £ and i € {1,...,n}, we have ]f,f(xi) <0if
x;i > max{—r}i,/ag, 0}. Thus (47) is UUB in RY ) and its w-limit set
is a subset of the positively invariant set [2]

n 1
Q:= l_[ [O,max{max—r—g, OH
i=1 PP @,

Consider the switched diagonal system (47) in R2>0 with the
same index set and parameters as those in Example 3.6 except no
interaction terms. Clearly, the individual modes have the same
attractors and saddle points as those in Example 3.6, and the pos-
itively invariant set Q = [0, 3] X [0, 2]. Typical trajectories of the
individual modes 1 and 2 and the switched diagonal system (47)
with the switching signals o1 and o2 defined in Example 3.6 are
plotted in Fig. 2 below.

0 1 2 3 4
x] 1
(a) Mode 1 (b) Mode 2
4 4
—e—mode 1 —e—mode 1
—e—mode 2 —s—mode 2
3 = 3 e’
g2 g2
1 1
0e 0
0 1 2 3 4 0 1 2 3 4 5
st 1
(c) Switching signal oy (d) Switching signal o

Figure 2: Trajectories of the switched diagonal system (47) for (a)
mode 1 with initial states (4, 3), (3,2), (3,0.1), and (3,0); (b) mode 2
with initial states (4, 3), (3,2), (0.1,2), and (0, 2); (c) switching signal
o1 with initial states (4, 3), (3,0), (0, 2), and (0, 0); (d) switching signal
o, with initial state (4,3). The circles mark the beginning of seg-
ments after switching. The gray rectangle represents the positively
invariant set Q = [0,3] x [0, 2].

The Jacobian matrices of individual modes of (47) are given by

_[-1-20 0 [3-2v 0
K=, 202] Jefo(o) = [ R ¢
As (47) is UUB and its w-limit set is a subset of Q, for all initial
sets K € RY, one can obtain upper bounds for the constants fi,
and d;', defined by (29) and (42) by replacing the limit suprema over
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{t 2 0 : o(s) = p} and maxima over co(K) in (29) and (42) with
maxima over Q. Hence
f1 < max p(Jx fi(v)) = max max{—1 — 201, 2 — 203} = 2,
veQ veQ

fiz < max u(Jfs (0) = maxmax(3 - 201, —1 - 205} = 3,
veQ veQ
and
ﬁiSmax—l—Zvlz—l, ﬁ%SmaXZ—Zogzz,
vEQ vEQ
ﬁ;SmaXS—ZUIZS, ﬁ%Smax—l—ngz—l.
veQ vEQ

Moreover, as Q is a positively invariant set for (47), if K ¢ Q,
then one can obtain the same upper bounds for the constants E;J

defined by (40), that is, Ei < -1, Ef < 2, E; < 3, and Eg < -1.
The upper bounds for A(f5,, K) and h(fy,, K) computed using (28),
(41), (45), and (46) for all K ¢ RZ, as well as (39) for all K C Q,
are summarized in Table 2 below. For the case with o7, the upper
bounds (28) and (41) are computed along the lines of computing
(28) in Example 3.6; the upper bound in (39) is computed along
the lines of computing h(Dy,) in [37, Example 3 and Appendix E].
The numerical results are consistent with the discussions on the
relations between the upper bounds (28), (39), (41), (45), and (46) in

Remark 4.4.4.

Table 2: Upper bounds for the entropy of the switched diagonal
system (47).

K c R’;o KcQ
(28) (41) (45) (46)  (39)

o1 (0505 5 15 25 3 15
o2 (0.9,09) 58 43 45 3 279

(p1, p2)

5 CONCLUSION

We established upper and lower bounds for the topological entropy
of switched nonlinear systems, which generalized previous results
for switched linear systems in [36, 37] and furthered our under-
standing of how switching affects topological entropy. A feature
of most bounds presented here is that they only depend on the
Jacobian matrices of system functions over the w-limit set instead
of all reachable points, and thus will yield a finite value for the case
with unbounded Jacobian matrices but a compact global attractor.
Future research directions include analyzing the complexity of
computing the upper bounds for topological entropy in this paper,
studying the relation between these upper bounds and existing sta-
bility conditions for switched nonlinear systems, and establishing
bounds for the topological entropy of switched nonlinear systems
with more general commutation relations than diagonal modes.
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