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Dark-field differential dynamic microscopy†

Alexandra V. Bayles, Todd M. Squires and Matthew E. Helgeson*

Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dynamics of

colloidal and complex fluid motion using optical microscopy in systems that would otherwise be difficult

to measure using other methods. To date, DDM has successfully been applied to linear space invariant

imaging modes including bright-field, fluorescence, confocal, polarised, and phase-contrast microscopy

to study diverse dynamic phenomena. In this work, we show for the first time how DDM analysis can be

extended to dark-field imaging, i.e. a linear space variant (LSV) imaging mode. Specifically, we present a

particle-based framework for describing dynamic image correlations in DDM, and use it to derive a

correction to the image structure function obtained by DDM that accounts for scatterers with non-

homogeneous intensity distributions as they move within the imaging plane. To validate the analysis,

we study the Brownian motion of gold nanoparticles, whose plasmonic structure allows for nanometer-

scale particles to be imaged under dark-field illumination, in Newtonian liquids. We find that diffusion

coefficients of the nanoparticles can be reliably measured by dark-field DDM, even under optically

dense concentrations where analysis via multiple-particle tracking microrheology fails. These results

demonstrate the potential for DDM analysis to be applied to linear space variant forms of microscopy,

providing access to experimental systems unavailable to other imaging modes.

Introduction
Several techniques have been developed to measure passively
and actively-driven dynamics in soft matter. On optical length
scales, statistical analysis has been employed to infer particle
dynamics from temporal and spatial intensity fluctuations of
light directed at samples. Well-developed techniques include:
multiple particle tracking microrheology (MPT),1–3 particle image
velocimetry (PIV),4–6 diffusing wave spectroscopy (DWS),7,8 fluores-
cence correlation spectroscopy (FCS),9,10 and dynamic light scatter-
ing (DLS, also known as photon correlation spectroscopy).11 Each of
these techniques has its own advantages and disadvantages, making
certain techniques better suited to measure specific material
systems and dynamics than others.

Multiple particle tracking microrheology,1–3 for example, is
well-suited to measure dynamics of individual colloids in both
heterogeneous and scarce materials. Particles between nano-
meters and microns in size can be directly visualized using
different types of microscopy. From video micrographs, the

position of particles can be determined to sub-pixel resolution
by fitting different intensity masks over the micrograph and
their dynamics correlated by tracking the centers as a function
of time. It is possible to characterize spatially heterogeneous
samples using MPT by examining particle movement at differ-
ent locations within a micrograph.

Dynamic light scattering, on the other hand, is well-suited to
measure average, ensemble dynamics across multiple length
scales. In DLS, light from a collimated source is directed onto a
sample and the light scattered at a particular angle y (or wave
vector q) is recorded by a detector. Fluctuations in the scattered
light arise when scatterers in the sample move within (and
pass into and out of) the incident beam. Based on the time
correlations of these fluctuations at different values of y, it is
possible to extract the dynamics of the scatterers at multiple
length scales.

Unfortunately, neither MPT nor DLS are well-suited to
measure the dynamics of dense samples. In MPT, particles
have to be optically isolated to be tracked, limiting the use of
MPT to samples with dilute, easily identified scatterer centers
such as high-contrast tracer particles dispersed in a solvent.
In DLS, multiple scattering convolutes intensity fluctuation
correlations. DWS and fiber optic quasi-elastic light scattering
can be used to overcome this limitation by directly analysing the
multiply scattered light.8,12 However, these techniques require
specialized equipment that is not as common as that used
for MPT or DLS.
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Recently, differential dynamic microscopy (DDM), a type of
digital Fourier microscopy analysis,13,14 was developed15 based on
the same principles of MPT and DLS. The technique measures
sample dynamics by reconstructing dynamic scattering patterns
from both temporal and spatial variations in micrograph image
intensities. As a hybrid, DDM combines many of the advantages
of MPT and DLS. Specifically, DDM (1) can characterize spa-
tially heterogeneous and concentrated samples; (2) can extract
dynamics from micrographs that bear little resemblance to the
actual sample (e.g. weak scatterers or optically dense samples);
(3) requires small sample volumes and (4) uses unmodified
microscopes already present in most academic and industrial
labs. With this unique combination of advantages, DDM has
great potential to complement existing techniques like DLS and
MPT that are widely used to characterize soft matter. As such, it
is worthwhile to further develop different aspects of DDM, and,
in particular, extend it to different forms of microscopy as we
endeavour to do here.

Before describing our contribution to the development of
DDM, we provide an overview of the mechanics of the technique
and the current state of the DDM field. Those interested in a
more detailed description can refer to a recent review article by
Giavazzi and Cerbino.13 DDM was first developed to measure the
dynamics of colloidal and complex fluid motion using intensity
fluctuations of simple video micrographs.15 From DDM, it is
possible to obtain the same autocorrelation function measured
in dynamic light scattering as a function of wave vector (q) space
in systems that are not compatible with DLS, and using smaller
sample volumes. Since its original development, DDM has
been successfully used to measure particle diffusivity,16 particle
velocity,17 colloidal aggregation and gelation kinetics,18,19 bacterial
motility,20–23 hydrodynamic factors in concentrated colloidal
dispersions,21 viscoelasticity of liquid crystals,24 and anisotropic
particle motion.25 It has also been adapted for use in texture
analysis microscopy.26

Much like in MPT, the first step of DDM is to collect a series
of images of material in motion using a microscope. The video
micrograph series is analysed by first computing the change in
intensity of each pixel I(x,t) between two micrographs separated
by time step Dt. The 2D Fourier transform of the resulting
difference image DÎ(q,Dt) is a convolution of the visual repre-
sentation of scattering centers and the displacement of scattering
centers over Dt. It is possible to decouple these two contributions
by analyzing the expectation value of the Fourier power spectrum
of the difference images, defined as the dynamic image structure
function, D(q,Dt)

D(q,Dt) ! h|DÎ(q,Dt)|2i (1)

In a seminal text, Giavazzi and coworkers showed that in linear
space invariant forms of microscopy (which will be discussed
shortly), the dynamic image structure function decomposes
analytically into three sub-functions:27

D(q,Dt) = A(q)[1 " g(q,Dt)] + B(q) (2)

In eqn (2), the function A(q) is a convolution of the particle
scattering properties, the optical transfer function of the
imaging optics, and the material structure factor. B(q) is related
to the imaging noise and incoherent scattering. For uncorrelated
image noise, B(q) is a constant that is independent of q. In the
analysis below, we will show that g(q,Dt), is equivalent to the
intensity autocorrelation function measured by DLS.

In systems where scatterer motion is spatially isotropic
(e.g. Brownian motion), radially symmetric scattering patterns
are produced if averaged over a sufficiently large time. In such
cases, the dynamic image structure function is radially aver-
aged and subsequently analysed in terms of two independent
variables, Dt and q, the magnitude of the wavevector q. The
image structure function D(q,Dt) can be fit to eqn (2) for lines of
constant q provided that a suitable model for g(q,Dt) can be
can be found for a particular material system. In addition to
A(q) and B(q), this provides wave vector dependent values of
the parameters chosen in the model for g(q,Dt). For instance,
in the case where the intensity autocorrelation function decays
according to

g(q,Dt) = e"Dt/t(q) (3)

q dependent values of t are obtained.
To date, differential dynamic analysis has been successfully

applied to bright-field,16–19,22,28 fluorescence,16 confocal,21

polarised,24 and phase-contrast20,23,25 forms of microscopy.
One widely used imaging mode that is not included in this list
is dark-field microscopy, the illumination system for which is
depicted in Fig. 1a. In dark-field microscopy, direct light is
blocked such that only the light scattered by the sample enters
the objective and is recorded by the camera. This form of
illumination provides a better signal-to-noise ratio in many
samples with strong scattering but insufficient contrast to be
observed in other imaging modes. For example, dark-field
microscopy is commonly used to image unstained biological
samples,29–31 crystal grain boundaries,32 and nanoparticles.33

Fig. 1b shows the enhanced signal obtained using dark-field
microscopy to image gold nanoparticles compared to bright-
field imaging, in this case due to the strong surface plasmon
resonance of the nanoparticles.34 Since dark-field microscopy
provides a better signal-to-noise ratio for specific soft matter
classes than other illumination systems, applying DDM to
dark-field micrographs instead of poorer images obtained in
other illumination systems has the potential to yield high
quality dynamic statistics, as well as applicability to material
systems that are incompatible with other imaging modes.
This is illustrated in Fig. 1d where we measure the image
structure function from dark-field and bright-field micrographs
of dilute 100 nm Au nanoparticles undergoing Brownian
motion in aqueous sucrose solutions. The dark-field image
structure function has a strong exponential dependence, allow-
ing for precise measurement of t(q), whereas the bright-field
image structure function is essentially just a measurement of
the camera noise.

Differential dynamic analysis has not yet been applied to
dark-field micrographs because dark-field is a linear space
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variant (LSV) imaging system. In linear space variant illumina-
tion systems, the intensity distribution projected by a scatterer
onto a micrograph varies as the scatterer traverses the x–y
sample plane. This effect is captured in Fig. 2.

The sub-function decomposition derived by Giavazzi et al.27

(eqn (2)) and employed in nearly every subsequent application
of DDM begins by assuming that the illumination system is
linear space invariant. Specifically, the micrograph intensity at
time t, I(x,t) is described according to the Nemoto–Streibl
model of imaging optics35,36

Iðx; tÞ ¼ I0 þ
ððð

dx0dz0Kðx" x0;"z0Þcðx0; z0; tÞ (4)

In eqn (4), I0 is the background intensity, and x0 and z0 are
coordinates within the three dimensional sample. K(x " x0, "z0)

is the optical transfer function, and c(x0, z0, t) is the concen-
tration distribution of the scatterers. Implicit in the kernel of
eqn (4) is that the described illumination system is linear space
invariant. That is, a scatterer’s intensity profile remains the
same when the scatterer moves in x0.

We hypothesize that DDM can still provide valuable infor-
mation about fluid dynamics in dark-field imaging despite its
linear space variance (this is already suggested by the data
presented in Fig. 1d). In a recent review, Giavazzi and Cerbino13

suggested this although it has not been verified experimentally
or theoretically. In this work, we demonstrate the opportunities
and limitations of using DDM (and other linear space variant
illuminations systems) using theory, simulations and experi-
ments. Specifically, we revisit the original theoretical justifica-
tion of DDM analysis27 developed from the point-spread
function of a microscope. Since it is difficult, if not impossible
in many cases, to measure a linear space variant microscope’s
point-spread function, we recast the theoretical development in
terms of the displacements of scatterers that project arbitrary
intensity profiles in the micrograph plane. We simulate micro-
graphs of particles undergoing 2D random walks in LSV
imaging systems. Finally, we verify this analysis by measuring
the dynamics of nanoparticle suspensions in different New-
tonian fluids.

Theory
Our objective here is to provide a framework for determining
the mechanism by which the LSI DDM formalism fails in LSV

Fig. 2 Linear space variance in dark-field microscopy. (a) Dark-field micro-
graph of 100 nm Au nanoparticles deposited on a glass slide. The same glass
slide is imaged under dark-field as it is translated horizontally. (b) Compila-
tion of the translated images, i.e. the trajectories of the particles, as they
move in (x) but remain at a constant (y,z). Intensity variation across the
image is primarily due to linear space variance.

Fig. 1 Higher signal-to-noise ratio in dark-field imaging yields improved DDM statistics. (a) In dark-field illumination, light that is normally incident
directly on the objective is blocked by an opaque stop. The remaining light is focused on the sample using a condenser lens. Light scattered by the
sample is captured by the objective, while the direct light is outside of the objective view. (b) Dark-field and (c) bright-field micrographs of 100 nm Au
nanoparticles dispersed in a Newtonian fluid (30 wt% sucrose solution) at f = 5.4 ' 10"8. Due to surface plasmon resonance, Au nanoparticles scatter
large amounts of light, which is recorded well using dark-field microscopy. Comparison of the dark-field and bright-field micrographs shows the higher
fidelity of dark-field imaging. Scale bars are 10 mm. (d) Image structure function of the Au nanoparticle dispersion imaged under dark-field microscopy
(open symbols) and bright-field microscopy (closed symbols). Experimental dark-DDM image structure function fits well to the linear space invariant
decomposition, eqn (6). Inset shows that the bright-DDM image structure function exhibits no exponential time dependence other than the increased
spread at long times, which reflects that fewer difference images contribute to the ensemble average at long times.
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forms of microscopy. As an archetypal case study, we consider
Brownian motion of non-interacting scatterers in a Newtonian
fluid. Readers interested in system with more complicated dynamics
(e.g. non-Newtonian dispersions, concentrated dispersions, etc.)
can use the same theoretical approach to determine regimes
where standard LSI analysis holds.

Brownian motion of generic scatterers in linear-space invariant
systems: a scatterer displacement approach

Consider a 2D micrograph taken of a sample containing
scatterers in motion. Let I(x,t) be the intensity of the micro-
graph at the position x at a particular time t. After some time
step Dt, the scatterers in the sample move to a new position and
the background intensity iB(x,t) fluctuates due to noise in the
detector and illumination source.

The change in intensity after Dt is simply DI(x,Dt) = I(x,t + Dt)"
I(x,t). Statistical analysis of the time-dependent differences in
intensity gives information about the dynamics of the sample.
The expectation value of the Fourier power spectrum of DI(x,Dt)
is defined as the image structure function, D(q,Dt)15

D(q,Dt) ! h|DÎ(q,Dt)|2i (5)

The image structure function contains information about
movement of the scatterers, their contribution to changing
the micrograph intensity, and fluctuations in the background
intensity. As shown by Giavazzi and Cerbino et al.,27 it is
possible to deconvolute these contributions in LSI imaging
systems. The image structure function can thus be broken into
three independent functions:

D(q,Dt) = A(q)[1 " g(q,Dt)] + B(q) (6)

To explicitly relate these functions and the physical system,
we will consider the system in terms of a generic intensity
profile projected by scatterers onto the micrograph. Let the
total intensity of each image be the sum of the signals produced
by scatterers in the sample plane, iS(x,t) and the background
intensity, iB(x,t)

I(x,t) = iS(x,t) + iB(x,t) (7)

Let us assume the intensity profile of a single scatterer is
not influenced by other scatterers. As such, the analysis can
be limited to a single scatterer that, when centered at the
origin, projects an intensity profile iLSI(x) onto the plane of
the micrograph. In this case, the total micrograph intensity is
I(x,t) = iLSI(x,t) + iB(x,t). Time manifests as a change in location
of the scatterer center to a position xi. In LSI imaging systems,
the functional form of the intensity profile does not change as
the scatterer moves within the sample plane. Consequently, the
scatterer’s intensity profile can be written in terms of the shift
x " xi(t) and the total micrograph intensity becomes

I(x,t) = iLSI(x " xi(t)) + iB(x,t) (8)

The Fourier transform of the micrograph intensity is

Î(q,t) = FT[iLSI(x " xi(t)) + iB(x,t)] = î(q)e"jxi(t)(q + îB(q,t) (9)

where î(q) is the Fourier transform of iLSI(x " xi(t)) when the
scatterer is centered at the origin. Let the scatterer be centered
at x0 at t. After a time Dt, the scatterer moves to position x1, for a
displacement dx = x1 " x0. The resulting change in micrograph
intensity is

DÎ(q,Dt) = î(q)(e"jq(x1 " e"jq(x0) + îB(q,t + Dt) " îB(q,t)
(10)

The image structure function is determined by finding the
expectation value of the square modulus of the change in
intensity, DÎ*(q,Dt)DÎ(q,Dt). Analytically, the expectation value
of the quantity( ( (is defined as

h( ( (i = hh( ( (itiV (11)

The symbol h( ( (it denotes the average over time

h( ( (it ¼
ð1

"1
dðdxÞ½pðdx;DtÞ ( ( (* (12)

where p(dx,Dt) is the probability that the scatterer will move by
an amount dx during the time Dt. The functional form of
p(dx,Dt) varies depending on the dynamics of the scatterers.
For the archetypal case of 2D Brownian motion of dilute, non-
interacting scatterers, p(dx,Dt) is

p(dx,Dt) = (4pDSelfDt)"1e"dx2/4DSelfDt (13)

where DSelf is the self-diffusivity of the scatterer.37 Study of more
complex systems (e.g. concentrated suspensions) requires
replacement of p(dx,Dt) with an appropriate probability
distribution. The symbol h( ( (iV denotes the average over the
sample volume

h( ( (iV ¼
ðlx

"lx
d x0ð Þ

ðly

"ly
d y0ð Þ p x0; y0ð Þ ( ( (½ * (14)

where lx and ly are the dimensions of the sample volume
imaged. For the case of a uniform initial distribution of
scatterers, p(x0,y0) is

p x0; y0ð Þ ¼ 1

4lxly
(15)

Combining eqn (10)–(15) gives

h|DÎ(q,Dt)|2i = 2h|î(q)|2i[1 " e"Dt/t(q)] + h|DîB(q,Dt)|2i (16)

The material relaxation time t is equal to

tðqÞ ¼ 1

q2DSelf
(17)

Comparing eqn (16) to eqn (6), we see that the three indepen-
dent functions are

A(q) = 2h|î(q)|2i (18)

g(q,Dt) = e"Dt/t(q) (19)

B(q) = h|DîB(q,Dt)|2i (20)

In eqn (18)–(20) A(q) depends only on the intensity profile of the
scatterer, g(q,Dt) depends only on the dynamics of the scatterer,
and B(q) is solely related to the background fluctuations.
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Note that B(q) is not an explicit function of Dt since the
fluctuations in the background are assumed to be random on
the time scale of Dt. We also note that if we consider a system of
N scatterers with additive intensity profiles as done by Reufer
et al.,25 A(q) = 2h|î(q)|2iNS(q). S(q) is the static structure factor of
the material, which is equal to 1 for simple dilute dispersion of
scatterers in a Newtonian fluid. Under the physically dilute
conditions studied here, we find that it is reasonable to assume
intensity profiles are additive (see Fig. S1 and S2, ESI†).

It is useful to analyse the empirically obtained D(q,Dt) signal
in terms of eqn (6). In practice, the signal D(q,Dt) is first radially
averaged in q = (qx,qy) space such that it is a function of the
scalar q, where q = (qx

2 + qy
2)1/2. Then, each curve of constant

wavevector, q, in D(q,Dt) is fit as a function of time such that
there are three independent parameters, A, t and B. Doing so
allows the structure relaxation time t(q) to be extracted without
prior knowledge of the functional form of A(q). In the following
section, we demonstrate how the same analytical approach can
be used to analyse LSV micrographs within specified experi-
mental limits.

Brownian motion of generic scatterers in linear space variant
systems

Here, we use the same scatterer displacement approach to
derive a decomposed form of the image structure function in
LSV imaging systems. Specifically, we show that in LSV systems,
the image structure function can be approximated as

D(q,Dt) E A(q)[1 " g(q,Dt) + V(q,Dt)] + B(q) (21)

Again, let the total intensity of each image be the sum of the
signal produced by scatterers in the sample plane, iS(x,t) and
the background intensity, iB(x,t) as written in eqn (7). Let us
then assume that a scatterer centered at the origin of the
sample projects an intensity profile, iLSV(x), onto the plane of
the micrograph. In this case, the micrograph’s intensity will be
I(x,t) = iLSV(x,t) + iB(x,t). As in the LSI imaging system, time
manifests as a change in position of the scatterer center, xi.
However, in the LSV imaging system, the scatterer’s intensity
profile changes as it moves within the sample plane. In many
LSV imaging systems, it is the absolute intensity of the intensity
profile, but not the functional form, that changes as the object
shifts, as depicted in Fig. 3. In such a system, the intensity
profile can be approximated by an absolute intensity multi-
plicative factor, a(xi), altering the space invariant functional
form, iLSI(x " xi(t)):

iLSV(x,t) = a(xi)iLSI(x " xi(t)) (22)

As such, the total micrograph intensity is

I(x,t) = a(xi)iLSI(x " xi(t)) + iB(t) (23)

The Fourier transform of the micrograph intensity is

Î(q,t) = FT[iLSV(x " xi(t)) + iB(x,t)]

= a(xi)îLSI(q)e"jxi(t)(q + îB(q,t) (24)

where îLSI(q) is the Fourier transform of the LSI portion when
the object is centered at the origin. Let the scatterer be centered
at x0 at t. After a time Dt, the scatterer moves to position x1, for a
displacement dx = x1 " x0. The resulting change in micrograph
intensity is

DÎ(q,Dt) = îLSI(q)(a(x1)e"jq(x1 " a(x0)e"jq(x0) + îB(q,t + Dt) " îB(q,t)
(25)

Ensemble averaging of DÎ(q,Dt) will eventually involve integra-
tion of a(xi). To do so without a priori knowledge of its functional
form, we employ a Taylor expansion to approximate changes
in a(xi)

a(x1) E a(x0) + (x1 " x0)(ra|x0
+ O((dx(r)2a) (26)

a(x1) E a(x0) + (dx)(ra|x0
+ O((dx(r)2a) (27)

where O((dx(r)2a) denotes higher order terms. Substituting
the Taylor expansion into eqn (25) gives

Di(q,Dt) E îLSI(q)(a(x0)(e"jq(x1 " e"jq(x0) + (dx)(r(a)|x0
e"jq(x1)

+ îB(q,t + Dt) " îB(q,t) + O((dx(r)2a) (28)

The image structure function is determined by finding the
expectation value of the square modulus of the change in
intensity, DÎ*(q,Dt)DÎ(q,Dt) and employing eqn (10)–(15). Doing
so gives

DÎðq;DtÞ
"" ""2
D E

+ 2 a x0ð Þ2
D E

îðqÞ
"" ""2
D E

1" e"Dt=tðqÞ
h i

þ 2 a x0ð Þ2
D E

îðqÞ
"" ""2
D E rajx0

# $2% &

a x0ð Þ2
D E DSelfDt

þ DîBðq;DtÞ
"" ""2
D E

þO ðdx (rÞ2a
' (2# $

(29)

where ha(x0)2i is the average square magnitude of the intensity
amplitude, a, of scatterers over the micrograph and h(ra|x0

)2i is
the average square of the magnitude of the gradient of the

intensity over the micrograph. The term
rajx0
# $2% &

a x0ð Þ2
D E quantifies

the first effect of the degree of linear space variance in an

Fig. 3 Mathematical approximation used for linear space variance.
(a) Dark-field micrograph of Au nanoparticles traversing the (x,y) plane
illustrates the spatial dependence of the magnitude of the intensity profile.
(b) Magnitude of Gaussian intensity profile changes as scatterers move in x.
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illumination system. We define a new variable, w, as the linear
field variance factor:

w !
rajx0
# $2% &

a x0ð Þ2
D E

0

BB@

1

CCA

1=2

(30)

Comparing eqn (29) to eqn (21), we see that the four indepen-
dent functions in the LSV decomposition are

A(q) = 2ha(x0)2ih|î(q)|2i (31)

g(q,Dt) = e"Dt/t(q) (32)

B(q) = h|DîB(q,Dt)|2i (33)

V(q,Dt) = w2DSelfDt (34)

Examining these equations, it is clear that A(q), g(q,Dt) and B(q)
have the same physical dependence as they did in the LSI
imaging system. The additive LSV correction, V(q,Dt) accounts
for the effects of linear space variance, and is shown here for the
case of Brownian motion of dilute scatterers. To determine
V(q,Dt) for more complex dynamics, one would need to employ
a different equation for p(dx,Dt) in the framework developed here.

For the case of Brownian motion, V(q,Dt) depends on two
parameters, w and DSelf. Casting the image structure function in
terms of dimensionless quantities shows the relative effect of
V(q,Dt) on D(q,Dt) across all possible experimental parameters
(q, set by the magnification and Dt set by the frame rate). Fig. 4
plots the normalized LSV image structure function

DÎðq;DtÞ
"" ""2
D E

2 a x0ð Þ2
D E

îðqÞ
"" ""2
D E + 1" e"Dtq

2DSelf þ w
q

) *2

Dtq2DSelf (35)

as a function of dimensionless time Dtq2DSelf with B(q) = 0. We
see that the LSV image structure can be physically understood

in terms of two time scales, the material relaxation time t(q)
and the so called LSV time scale tLSV, which is the characteristic
time required for the scatterer to experience a significant
change in intensity due to the LSV field gradient. For the
case of Brownian motion, these time scales are (q2DSelf)

"1 and
(w2DSelf)

"1 respectively. The value of the image structure func-
tion at any time step will be the sum of intensity differences due
to pure scatterer displacement and due to intensity variation
across the field. When Dt { t(q), the normalized image structure
function approaches

DÎðq;DtÞ
"" ""2
D E

2 a x0ð Þ2
D E

îðqÞ
"" ""2
D E , Dt

tðqÞ 1þ w
q

) *2
 !

(36)

when w { q linear space variance does not contribute signifi-
cantly to the image structure function, and the LSI decomposi-
tion should fit the experimental LSV image structure function
at very short times. This implies that the shortest q (i.e. the
longest distance) that can be accurately fit to the LSI decom-
position is limited by gradient in a(xi).

On the other hand, when Dt c t(q), the normalized image
structure function approaches

DÎðq;DtÞ
"" ""2
D E

2 a x0ð Þ2
D E

îðqÞ
"" ""2
D E , 1þ w

q

) *2 Dt
tðqÞ
, 1þ w2DSelfDt (37)

At long times, there are significant deviations from the LSI
image structure function when Dt B (w2DSelf)

"1 or larger. In our
experimental system, w/q r 0.01. Referring back to Fig. 4, the
contribution from LSV at this ratio is nearly imperceivable,
particularly if one were to consider noise in a real experimental
system. Furthermore, at this ratio the contribution from LSV
should be less than the contribution due to intensity changes
when the particle moves into and out of the focal plane. 3D
motion can cause a change not only in the magnitude of the
scatterer intensity, but also the spread or fringe spacing of the
profile. In LSI systems, the error associated with neglecting
contributions due to 3D motion are frequently assumed to be
negligible.27 Considering all of these factors, fitting empirical
image structure functions to the LSI decomposition eqn (6)
and the LSV decomposition should give identical measures of
the diffusivity within acceptable margins of error.

This analysis indicates that it is practically reasonable to use
the LSI decomposition to analyse LSV micrographs when q c w.
It is advantageous to use the LSI decomposition over the LSV
decomposition since the LSI decomposition does not require a
measurement of the value of w a priori. We test this claim using
simulations and experiments described in the next section.

Experimental
Simulated micrographs

2D random walk trajectories were computed in MATLAB, and
simulated particle intensities were generated in both LSI and
LSV imaging systems. Random walk trajectories were simulated
by first initializing 49 point particles on a square lattice within

Fig. 4 The theoretical image structure function for scatterers undergoing
Brownian motion in linear space variant imaging systems. Deviation from
the linear space invariant case (solid black line) increases with increasing
magnitude of space variance, quantified by the factor w normalized by q.
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a 490 ' 490 pixel2 space. For each time step, a new particle
coordinate was determined by selecting the direction from a
random number generator and selecting the length of the
diffusion step by sampling a Gaussian distribution of displace-
ments. The Gaussian distribution was based on a self-diffusivity
of 0.5 pixel2 per frame.

To form each micrograph, the intensity over the 490 '
490 pixel2 space was calculated by centering a 2D Gaussian
beam at each of the particle centers. The magnitude of the
Gaussian beam, a, varies according to the location of the particle
center xi depending on the illumination system being simulated.
Explicitly, a particle centered at xi produces the intensity profile

iGauss xjxið Þ ¼ a xið Þ exp
" x" xið Þ2

2s2

 !

(38)

where a(xi) is the magnitude of the Gaussian profile as a
function of particle center, xi, and s is the standard deviation
of the Gaussian. Noise was not added to the intensity distribu-
tions nor to the background of the image. These simulated
intensity distributions were saved as images and analysed using
the same DDM algorithm described in the Image processing
section. To be consistent with the experiments conducted, each
simulated micrograph series was 900 frames long. The physical
duration of the simulations were varied by changing the
sampling interval. Simulations that mimic the real experiments
were sampled at Dt = 1 frame; simulations that are 10' as long
as an experiment were sampled at Dt = 10 frames.

Gold nanoparticle dispersion sample preparation

Three Newtonian fluids comprised of aqueous sucrose solu-
tions were prepared at 29.92, 40.05 and 50.03 wt% sucrose
(EMB Millipore) in deionized H2O. Hereafter we refer to these
solutions as 30 wt%, 40 wt%, and 50 wt% respectively. The
viscosities of the solutions (see Fig. S3, ESI†) were measured
using an Anton Paar vibrational density meter with an inline
falling ball viscometer (DMA 4100 M). Citrate capped gold
nanoparticles (TEM diameter: 94.6 - 12.5 nm) were purchased
from NanoComposix, Inc. and used without further modifica-
tion. To prepare optically dilute samples, nanoparticles were
dispersed in the three sucrose solutions at 5.4 ' 10"6 vol% gold.
For the optically dense sample, nanoparticles were dispersed in
a different 50.00 wt% sucrose at 3.2 ' 10"3 vol% gold. At these
low volume fractions, it is reasonable to assume that both the
optically dilute and optically dense dispersions are physically
dilute and that hydrodynamic interactions between particles
can be neglected.

Sample chambers for microscopy studies were fabricated
from glass slides and UV-initiated thiolene resin (Norland
Optical Adhesive, No. 81). Two glass spacers were first cut from
a cover glass slide (Fisherbrand 24 ' 50 mm " 1.5) to be
B5 mm in width. Thiolene resin was then applied on one side
of two separate spacers, and the spacers were set on a 25 ' 75'
1 mm microslide (Gold Seal), which serves as the top of the
chamber. The spacers were positioned such that there was
25 mm between them. The spacers and the glass slide were

then exposed to ultraviolet light (Spectrolinet, Model XX15A,
l = 365 nm) for B30 s. After the initial exposure, a line of resin
was applied to each of the top spacers and between the spacer
columns on one side. A coverslip (Fisher Scientific, 22 ' 50" 1)
was positioned on top of the spacers, and the entire chamber
cured for 5 minutes. The Au nanoparticle dispersions were
introduced through the remaining open side of the chamber
and sealed with the UV resin, forming an airtight glass chamber.

Dark-field and bright-field microscopy

A representative schematic of the dark field illumination
system is found in Fig. 1a. In the dark-field illumination system
used here, an inverted microscope (Olympus 1 ' 71) was outfit
with a high-resolution dark-field condenser illumination adap-
ter (CytoViva). The adapter contains an opaque stop that blocks
direct light from the illumination source and a condenser that
focuses the remaining light on the sample. Light scattered
by the sample was captured by 10' and 40' air objectives
(NA 0.25 and 0.75 respectively). Videos (512' 512 pixels2) of the
motion of the Au nanoparticles were recorded using an Andor
Clara CCD camera at 10.001 frames per second and an exposure
time of 1 ms. Videos were 900 frames in length and recorded as
multipage TIF files. The ambient temperature was measured
using a Fisher Scientific traceable thermometer throughout the
experiments.

The magnitude of the particle intensity profile as a function
of space was experimentally approximated by depositing
100 nm Au nanoparticles on a glass slide. A dark-field micro-
graph video was recorded as the glass slide was translated
horizontally and vertically. Projecting the maximum local inten-
sity of each frame of the micrograph video (i.e. the center of
each intensity profile) gave the field variance (see Fig. 2b).
Smoothing this image using ImageJ software gave an approx-
imate measurement of a(xi) (see Fig. 3a). The measured value of
w in the smoothed micrograph was 1.4 ' 10"2 mm"1, which is
artificially high since the particle trajectories produce streaking
that is not representative of the true value of a(xi). Nevertheless,
the measurement provides an extreme maximum bound on the
value of w.

Bright-field micrographs were recorded using identical
exposure, resolution, frame rate and magnification settings as
used for the dark-field micrographs.

Image processing

A DDM analysis algorithm was written and executed in MATLAB.38

Each video was first separated into individual frames. Frames
separated by time step Dt were subtracted from one another,
and the resulting difference image was fast Fourier trans-
formed. In q = (qx,qy) space, the transformed intensity was
radially averaged with q = (qx

2 + qy
2)1/2. The ensemble average

was taken over all frames separated by Dt, giving D(q,Dt). At
minimum, 100 image differences contributed to each average
to ensure adequate statistics.

For each q value, D(q,Dt) is fit to match the form in eqn (6)
with A(q), B(q) and t(q) as fitting parameters using MATLAB’s
trust-region reflective fitting algorithm (see ESI† for a more
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detailed description of the fitting procedure). Thresholds and
initialization parameters were chosen to minimize fit rejection
over the q range. Fits with R2 correlation values less than 95%
were excluded from further analysis of t(q) to eliminate cases
where eqn (6) did not fit the empirical D(q,Dt). Fits that were
rejected were nearly exclusively in regions of low q (typically
q o 0.2 mm"1) where the video was too short for the image
structure function to reach an appreciable plateau, and in
regions of high q (typically q 4 3 mm"1) where the frame rate
was too slow to measure dynamics.

In order to directly evaluate the accuracy of measuring the
motion of dilute particles using d-DDM, multiple particle
tracking microrheology was used to analyse the same videos
used for DDM. A more detailed description of the algorithms
used for multiple particle tracking, a widely employed tech-
nique, can be found elsewhere.1–3 Briefly, MPT extracts particle
dynamics by first isolating the center of distinct particles to
subpixel resolution in each frame of a video. As the particles
move from frame to frame, their centers displace. Linking
centers of the same particle between frames forms a particle
trajectory, from which the displacement of each particle can be
calculated as a function of time step Dt. For Brownian motion
of non-interacting particles, the ensemble-averaged mean squared
displacement is related to Dt by

r2D
2ðDtÞ

+ ,
¼ 4l2 " 4

3
DSelf tE

) *
þ 4DSelfDt (39)

where DSelf is the particle self-diffusivity, l the localization error,
and tE the exposure time.39,40 Particle isolation and trajectory
construction were performed in MATLAB using algorithms made
freely available by Kilfoil and coworkers.41 In these algorithms,
thresholds for distinct particles, including both the maximum
diameter and minimum intensity of the particle are chosen by
the user to minimize effects of static and dynamic particle
tracking error. Diffusivities were extracted by fitting the measured
mean squared displacement to eqn (39) and calculating the
localization uncertainty according to the methods described
by Michalet.39,40

Results and discussion
Analyzing simulated micrographs using DDM

To test the accuracy of using the LSI decomposition analysis in
a controlled LSV imaging system, we simulated micrograph
series of particles undergoing 2D Brownian random walks in
different illumination systems. Fig. 5 shows the simulated
illumination systems and micrograph series. Three illumina-
tion systems were studied: (1) a LSI imaging system where
a = 255 across the entire image; (2) an LSV imaging system
with a linear gradient in a in one dimension; and (3) an LSV
imaging system with radially symmetric a variation. These three
systems closely resemble what is observed experimentally
in fluorescence microscopy, dark-field microscopy at high
magnification, and dark-field microscopy at low magnification,
respectively.

Fig. 6 shows select q of D(q,Dt) for each of the simulated
micrograph series. Substituting eqn (38) into eqn (16) and (29)
gives the analytical equations of D(q,Dt) for a single particle
undergoing Brownian motion in LSI and LSV imaging systems
respectively.

D(q,Dt)LSI = 2s4e"s
2q2
ha2(x0)i[1 " e"DSelfq

2Dt] (40)

D(q,Dt)LSV = 2s4e"s
2q2
ha2(x0)i[1 " e"DSelfq

2Dt + w2DSelfDt]
(41)

These functions are plotted (multiplied by the number of
particles simulated but with no other adjustable parameters)
along with the measured D(q,Dt) in Fig. 6. As seen in Fig. 6, both
the LSI and LSV functions quantitatively match the simulated
D(q,Dt) for Dt corresponding to those typically observed in
experiments. The effects of LSV are barely perceivable in the
simulated signal, and are only noticeable in the analytic func-
tion after multiple orders of additional time magnitude. Since
the functional forms of a(xi) in the simulations were specifically
chosen to accurately represent the experimental system, these
results suggest that in analyzing the experimental micrographs
and image structure functions, it is reasonable to use the LSI
decomposition in place of the LSV decomposition without any
significant loss of accuracy, e.g., for cases where w cannot be
directly measured. Simulations conducted for much longer
time than required to extract the diffusivity (Fig. S4, ESI†)
indeed show an increase in D(q,Dt) (Fig. S5, ESI†) at long times
that is modeled by eqn (41), illustrating that it captures the
first-order effects of LSV well.

Fig. 5 Brownian motion simulations in LSI and LSV imaging systems.
Rows correspond to three different illumination systems. Row (a) control,
LSI where w = 0. Row (b) LSV imaging system where w = 5 ' 10"3 pix"1.
Row (c) LSV imaging system with w = 6 ' 10"3 pix"1. Columns correspond
to aspects of the simulation. (i) Spatial dependence of the magnitude of the
particle intensity, a. (ii) Particles at t = 0. (iii) Particle trajectories.
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Measuring the diffusivity of optically dilute Au nanoparticles

To test the accuracy of using the LSI decomposition analysis in
a real LSV experimental system, we imaged Au nanoparticles
diffusing in viscous sucrose solutions under dark-field micro-
scopy. We then compared the diffusivity measured via DDM
analysis and MPT analysis of the micrographs. Fig. 7 shows
the linear space variance in the experimental system and the
micrographs collected. Au nanoparticles produce different

intensity profiles under different magnifications: Gaussian profiles
are observed under 10' magnification and profiles reminiscent of
Bessel–Gaussian beams are observed under 40' magnification.
Notably, the mechanics of DDM is identical during analysis of
the two magnifications since it conveniently requires no knowl-
edge of the scatterer intensity profiles a priori.

Fig. 1d provides one example of the image structure function
calculated from the dark-field micrographs at 10' magnification.

Fig. 6 Analyzing the image structure function of simulated micrographs. The calculated image structure functions in (a), (b), and (c) correspond
to simulations (a), (b), and (c) in Fig. 5. Dashed and solid lines correspond to the analytical LSV (eqn (41)) and LSI (eqn (40)) functions for Gaussian
particles respectively.

Fig. 7 Imaging the movement of Au nanoparticles dispersed in 40 wt% sucrose solutions using dark-field microscopy. Row (a) corresponds to
10' magnification; (b) corresponds to 40' magnification. (i) Spatial dependence of the magnitude of the particle intensity. (ii) Individual micrograph.
(iii) Projection of the maximum intensity of each frame of the micrograph video gives the particle trajectories. (iv) Closer examination of the micrographs
in (ii) show that nanoparticles produce Gaussian intensity profiles (inset) present under 10' magnification and Bessel–Gaussian beam-like intensity
profiles (inset) under 40' magnification. All scale bars are 10 mm.
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As expected based on the theoretical and simulation analysis,
the LSI decomposition fits the measured values well over the
course of the micrograph series. Fitting D(q,Dt) to eqn (6) gives
the relaxation time, t as a function of q. The same is seen for
the image structure functions calculated from micrographs at
40' magnification (see Fig. S6a, ESI†).

Fig. 8a and b give the material relaxation time obtained from
DDM and the mean squared displacement obtained from MPT
in each of the three sucrose solutions respectively. The material
relaxation time decreases as q"2 as predicted for Brownian motion
in all samples. The mean squared displacement is linearly propor-
tional to Dt as expected for Brownian motion. The diffusivities of
the particles are measured by fitting t and hr2D

2(Dt)i to eqn (17) and
(39) respectively. Table 1 gives the average diffusivity extracted from
the dark-field micrographs. We see good quantitative agreement
between the diffusivities calculated from DDM and MPT for
single movies, thus validating the use of LSI DDM analysis in
LSV imaging systems for sufficiently small w.

It is interesting to note the differences in error of the
diffusivity calculated at the two different magnifications in
Table 1. Specifically, the errors in DDM at 10' magnification

are generally lower than the errors at 40' magnification. This
reflects the fact that a larger population contributes to the
ensemble at a low magnification. In DDM, not only do more
particles contribute to the intensity fluctuations at higher
magnification, but additionally the analysis samples the statis-
tically valid q range (0.2–3 mm"1) at a higher frequency. This
can easily seen by the larger number of t(q) data points present
in Fig. 8a compared to those in Fig. S6b (ESI†).

By contrast, in MPT analysis, low magnification contributes
both beneficially and detrimentally to the measurement error. On
one hand, more particles are tracked at the low magnification,
which improves the statistics of the mean squared displacements
at long times (which is observed when comparing Fig. 8b to
Fig. S6c, ESI†). On the other hand, there is greater error in the
localization accuracy of the particle tracking algorithm, thereby
increasing both the static and dynamic tracking error, which
corrupts the mean squared displacement at short times.39,40

From a computational standpoint, the computation time of MPT
scales like BeN, where N is the number of particles tracked,
such that the computation time increases considerably at lower
magnification in order to achieve greater statistical precision.

Fig. 8 Measuring nanoparticle diffusivity via dark-field DDM and multiple particle tracking (10' magnification). (a) Relaxation time t(q) as a function of
wavevector q for 100 nm Au NP sucrose dispersions. Error bars in t are smaller than the markers. (b) Mean squared displacements of tracked 100 nm Au
NPs. Noise in hr2D

2(Dt)i at large Dt is due to the smaller number of trajectories that contribute to the average.

Table 1 Diffusivities of optically dilute 100 nm Au nanoparticles in aqueous sucrose solutions measured using d-DDM and MPT

Magnification Method

Diffusivity (mm2 s"1)

30 wt% 40 wt% 50 wt%

10' d-DDMa 1.5809 - 0.0006 0.8070 - 0.0006 0.373 - 0.001
MPTb 1.58 - 0.01 0.811 - 0.005 0.372 - 0.002
Stokes–Einsteinc 1.50 - 0.20 0.746 - 0.099 0.307 - 0.041

40' d-DDMa 1.56 - 0.01 0.803 - 0.005 0.3636 - 0.0008
MPTb 1.56 - 0.05 0.82 - 0.02 0.368 - 0.007
Stokes–Einsteinc 1.54 - 0.20 0.757 - 0.100 0.312 - 0.041

a sDDM calculated from scatter in t(q). b sMPT calculated using methods developed by Michalet.39 c sStokes"Einstein calculated based on Au NP
polydispersity (dia = 94.6 - 12.5 nm) and error in ambient temperature measurement (-0.2 1C).
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However, the computational time to conduct DDM is identical
for all magnifications. The absolute computational times of the
two methods depends on a multitude of factors (e.g. in DDM,
algorithms used, whether parallelization is employed,21 the
dimensions of the image; in MPT, algorithm used, displace-
ment of particles between frames, number of particles tracked);
as such, it is difficult to generalize whether one method is faster
than the other for all systems.

From this observation and discussion, we surmise that DDM
can be used to obtain potentially better statistics compared to
MPT, and moreover that improved statistical accuracy of DDM
can be obtained by switching to lower magnifications without
incurring any additional computational time. What remains to
be seen, however, is whether the absolute error is smaller using
MPT or DDM. In this work, we used an ad hoc method to
calculate error of the measured diffusivity (inversion of the
multi-parameter Jacobian fit matrix). In light of the extensive
work that has been done39,40 to understand static and localiza-
tion uncertainty in calculating the simple Brownian diffusivity
of particles using MPT, it is likely that calculation of the true
diffusivity error using DDM is as (if not more) complex as
calculating the error from MPT. Clearly, a more exhaustive error
analysis needs to be completed to elucidate relative accuracy of
the two techniques in the optically dilute limit.

Regardless of whether DDM or MPT is used to analyse the
micrographs, dark-field micrograph videos provide a substantial
improvement over bright-field micrograph videos. As illustrated
in Fig. 1, dark-field micrographs of optically dilute gold nano-
particles dispersed in sucrose are substantially higher fidelity
than bright-field micrographs of the same sample. The bright-
field micrographs are of such low fidelity that distinct particle
intensity profiles are not observed. Consequently, the particle
tracking algorithms could not identify any particles within the
micrograph series, rendering MPT useless.

Generally, one of the advantages of DDM is that it can be
used to extract dynamic information from micrographs where
distinct particle profiles are unobservable. Cerbino et al.15 and
He et al.16 have demonstrated that it is possible to measure the

diffusivities of 73 nm and 100 nm particles in Newtonian fluids
by analysing bright-field speckle patterns with DDM. In these
experiments, an exponential increase in D(q,Dt) is observed if
the volume fraction of particles is large enough to make A(q)
sufficiently greater than B(q).16 Since our dispersions (f B 10"8)
are more dilute than those previously studied15,16 (fB 10"2 and
f B 10"6 respectively), the collective intensity fluctuations due
to particle movement are negligible compared to the background
noise. D(q,Dt), dominated by B(q), therefore has no time dependence
as seen in Fig. 1d. This low concentration effect is ameliorated
through the use of dark-field imaging; |i(q)|darkfield

2 c |i(q)|brightfield
2,

making A(q)/B(q) sufficiently high even at low particle concen-
trations. Representative plots of A(q) and B(q) for the dark-field
experiments are given in Fig. S7 (ESI†).

Fig. 9 Optically dense dark-field micrographs. (a) Dark-field micrograph
of 100 nm Au nanoparticles in 50 wt% sucrose solutions at a hydrodyna-
mically dilute volume fraction, f = 3.2 ' 10"5. (b) Close-up of a portion of
the micrograph. Arrow designates a row of pixels whose intensity is plotted
in (c). The close proximity of the intensity profiles prevents accurate
particle tracking required in multiple particle tracking microrheology.

Fig. 10 Dark-DDM of optically dense micrographs. (a) The measured
image structure function displays the classic exponential plateau expected
for Brownian motion. Solid lines designate LSI fits. (b) Relaxation time t(q)
( ) as a function of wavevector q obtained from linear space invariance fit.
Solid line designates fit to q"2. Error bars in t are smaller than the markers
for q 4 0.16 mm"1.
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Measuring the diffusivity of optically dense Au nanoparticles

To further illustrate the utility of dark-field DDM, we measured
the diffusivity of Au nanoparticles that produce optically dense
micrographs. At a volume fraction of 3.2 ' 10"3 vol%, the
optically dense dispersion is still physically dilute in the sense
that it is expected that the nanoparticles do not interact hydro-
dynamically and therefore undergo independent Brownian
motion. However, at this concentration, they are optically dense
in that it is impossible to distinguish individual particles within
a dark-field micrograph. Fig. 9 shows a dark-field micrograph of
this sample. Examining the intensity profile (Fig. 9c) across one
small portion of the micrograph further illustrates that the
intensity contributions from individual particles are indistin-
guishable. As such, it is not possible to perform traditional MPT
on this micrograph to measure particle diffusivity. It is possible,
however, to measure the diffusivity using DDM.

Using the techniques developed here, DDM overcomes the
limitations of MPT in analysing the optically dense samples.
Fig. 10a shows the image structure function of the optically
dense sample. As expected, it displays the expected exponential
approach to a plateau characteristic of Brownian motion. Fitting
D(q,Dt) to eqn (6) gives the relaxation time, t as a function of q
which is plotted in Fig. 10b. The diffusivity measured from the
relaxation time is 0.3115 - 0.0006 mm2 s"1. The Stokes–Einstein
diffusivity calculated from the diameter of the nanoparticles
measured by TEM is DES = 0.32 - 0.04 mm2 s"1. The close
agreement suggests that (1) dark-DDM successfully measures the
diffusivity for optically dense samples and (2) dark-DDM can be
used to measure the hydrodynamic radius of a nanoparticle in
solution if the suspending medium viscosity is known.

Conclusions
We have demonstrated that differential dynamic analysis can
be applied to dark-field micrographs to extract dynamic infor-
mation in a similar manner as other imaging modes, illustrated
here for nanoparticle dispersions. By recasting the funda-
mental framework of DDM in a particle-displacement approach,
we showed that in linear space variant illumination systems, the
image structure function D(q,Dt) can be approximated by four
sub-functions: A(q), g(q,Dt), B(q) and V(q,Dt). V(q,Dt) accounts for
the contributions due to linear space variance, while the others
are identical to the linear space invariant analogues. We note
that the theoretical treatment developed here is equally valid for
any imaging system that produces a non-uniform optical illumi-
nation field. As such, we anticipate that our results should be
applicable to other imaging modes not yet explored by DDM,
such as total internal reflectance microscopy42,43 or Brewster
angle microscopy.44,45

Most importantly, our results show that DDM is quite robust
to the type and uniformity of illumination, provided that the
length scale for gradients in the illumination is small relative to
the probing length scale of DDM. For the specific case of Brownian
motion, our theoretical analysis suggests that in the limit where
the LSV length scale w { q, V(q,Dt) is significantly less than the

autocorrelation function g(q,Dt). In this case, traditional LSI
decomposition analysis can be used to analyse dark-field
micrographs. This claim was verified by conducting simple
simulations in different idealized illumination systems and
by experimentally measuring the diffusivity of Au nanoparticles
in sucrose solutions.

It is likely that different types of dynamics will result in
different forms of V(q,Dt) such that its dependence on the a(xi)
field has a significant effect on the image structure function,
unlike in the case of Brownian motion case discussed. However,
using the framework presented here, it is possible to derive
V(q,Dt) for different types of dynamics by simply replacing
the probability distribution of displacements p(dx,Dt) with an
appropriate model for the dynamics and subsequently deter-
mine whether the measured signal needs to be fit to different
functions to obtain accurate fitting and interpretation of D(q,Dt).

The utility of dark-field DDM was illustrated by measuring the
diffusivity of Au nanoparticles in an optically dense solution where
more traditional MPT analysis fails. Furthermore, it appears that
DDM may provide reduced error compared to MPT with regards to
obtaining accurate diffusivity measurements, and with greatly
reduced computational cost. Additionally, comparing DDM analysis
of bright-field micrographs of the same sample illustrates that
dark-DDM has a better signal-to-noise ratio than bright-DDM.
Given these benefits, we anticipate that dark-field DDM could
become a preferred method for characterizing the dynamics of
complex fluids whose features lie below the optical limit in
conventional projection imaging, but whose dynamical fluctua-
tions are still measurable in their scattering.
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