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Abstract Given a set of n points in the plane, and a parameter k, we consider
the problem of computing the minimum (perimeter or area) axis-aligned rect-
angle enclosing k points. We present the first near quadratic time algorithm
for this problem, improving over the previous near—O(n5/ 2)-time algorithm by
Kaplan et al. [24]. We provide an almost matching conditional lower bound,
under the assumption that (min, +)-convolution cannot be solved in truly sub-
quadratic time. Furthermore, we present a new reduction (for both perimeter
and area) that can make the time bound sensitive to k, giving near O(nk)
time. We also present a near linear time (1 + ¢€)-approximation algorithm to
the minimum area of the optimal rectangle containing &k points. In addition, we
study related problems including the 3-sided, arbitrarily oriented, weighted,
and subset sum versions of the problem.

1 Introduction

Given a set P of n points in the plane, and a parameter k, consider the problem
of computing the smallest area/perimeter axis-aligned rectangle that contains
k points of P. (Unless stated otherwise, rectangles are axis-aligned by default.)
This problem and its variants have a long history. Eppstein and Erickson [19]
studied an exhaustive number of variants of this problem for various shapes.

A preliminary version of this paper appeared in SoCG 2019 [12].

Timothy M. Chan

Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana,
IL, 61801, USA.

E-mail: tmc@illinois.edu

Sariel Har-Peled

Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana,
IL, 61801, USA.

E-mail: sariel@illinois.edu



2 Timothy M. Chan, Sariel Har-Peled

For the minimum perimeter variant, the first work on this problem seems
to be Aggarwal et al. [1], who showed a brute force algorithm with running
time O(n?). Recently, Kaplan et al. [24] gave an algorithm with running time
O(n5/?1og® n) that works for both minimum perimeter and area.

Several works derived algorithms with running time sensitive to k, the
number of points in the shape. Aggarwal et al. [1] showed an algorithm for
the minimum perimeter with running time O(k?nlogn). This was improved
to O(nlogn + k*n) by Eppstein and Erickson [19] or alternatively by Datta
et al. [18]. Kaplan et al’s algorithm [24] for the k-insensitive case, coupled
with these previous techniques [19,18], results in an O(nlogn + nk3/?log? k)
running time, which is currently the state of the art.

Known techniques [19,18] reduce the problem to solving O(n/k) instances
of size O(k). These reductions work only for the perimeter case, not the area
case — in particular, there are incorrect attributions in the literature to results
on the minimum area rectangle — see the introduction of de Berg et al. [6] for
details. de Berg et al. described an algorithm with running time O(n log® n +
nk?logn) for minimum area. Both de Berg et al. [6] and Kaplan et al. [24]
left as an open question whether there is a reduction from the minimum-area
problem to about O(n/k) instances of size O(k), where O hides! polynomial
factors in logn and 1/e. Such a reduction would readily imply an improved
algorithm.

Our results. We revisit the above problems and provide significantly improved
algorithms:

(A) Exact smallest k-enclosing rectangle. In Section 2.1, we describe an al-
gorithm for the minimum k-enclosing rectangle (either area or perime-
ter) with running time O(n?logn) (see Theorem 1). It is based on a
new divide-and-conquer approach, which is arguably simpler than Kaplan
et al.’s algorithm. Known reductions mentioned above then lead to an
O(nlogn + nklogk)-time algorithm for computing the minimum perime-
ter rectangle.

(B) k-sensitive running time for smallest area. In Section 2.2, we describe a re-
duction of the minimum-area problem to O(7 log %) instances of size O(k)
(see Theorem 2). Our reduction uses shallow cutting for 3-sided rectangular
ranges [23] (see Appendix A) and is conceptually simple.

Plugging this the aforementioned new O(n?logn)-time algorithm leads
to O(nklog % log k)-time algorithm for computing the minimum area k-
enclosing rectangle (see Corollary 2). Thus, our new result strictly im-
proves upon both Kaplan et al.’s and de Berg et al.’s results for all &k, from
constant to ©(n).

The smallest enclosing rectangle problem is amenable to sampling. Kaplan
et al. used samples in an approximation algorithm, with running time O(n/k),

1 We reserve the right, in the future, to use the O to hide any other things we do not like.
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that computes a rectangle containing at least (1 — &)k points of a prescribed
perimeter, where k is the maximum number of points in any such rectangle.
Similarly, using relative approximations [22], de Berg et al. [6] showed an algo-
rithm that computes, in 5(71) time, a rectangle containing > (1 — ¢)k points,
where k is the maximum number of points in any rectangle of a prescribed
area. The “dual” problem, of approximating the minimum area rectangle con-
taining k points seems harder, since sampling does not directly apply to it.

(C) Approximating the area of the smallest k-enclosing rectangle. In Section 2.3,
we present an approximation algorithm that computes, in O(nlogn) ex-
pected time, a rectangle containing k points of area < (1 + €)a*, for a
constant € € (0,1), where o* is the smallest-area of such a rectangle (see
Theorem 3).

We next present a flotilla of related results:

(D) 3-sided smallest k-enclosing rectangle. In Section 3.1 we (slightly) speed
up the exact algorithm for the 3-sided rectangles case (i.e., rectangles
that must have their bottom edge on the z-axis). The running time is
O(n2/29(\/@))7 and is obtained using known results on the (min,+)-
convolution problem [8,29] (see Theorem 4).

(E) Arbitrarily oriented smallest k-enclosing rectangle. In Section 3.2 we briefly
consider the variant where the rectangle may not be axis-aligned. We show
that this problem can be solved in O(n? log n+n3k/20(‘/m)) time, slightly
improving a previous result of O(n®k) [17] when k is not too small.

(F) Minimum-weight k-enclosing rectangle. In Section 3.3 we show how to ex-
tend our O(n?logn)-time algorithm to the related problem of finding a
minimum-weight rectangle that contains k points, for n given weighted
points in the plane (see Theorem 5).

(G) Subset sum for k-enclosing rectangle. In Section 3.4, we study the problem
of finding a rectangle that contains k points and has a prescribed weight
W (or as close as one can get to it). The running time of the new algorithm
is O(n®?logn) (see Theorem 6).

(H) Conditional lower bound. In Section 3.5, we prove that our near quadratic
algorithm for exact minimum (perimeter or area) k-enclosing rectangle is
near optimal up to an arbitrarily small polynomial factor, under a “popu-
lar” conjecture that the (min,+)-convolution problem cannot be solved in
truly subquadratic time [16].

2 Smallest k-enclosing rectangle
2.1 An exact near-quadratic algorithm

Our O(n?logn)-time algorithm for minimum k-enclosing rectangles is based
on divide-and-conquer. It has some similarity with an O(n?)-time divide-and-
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conquer algorithm by Barbay et al. [5] for a different problem (finding the
minimum-weight rectangle for n weighted points in the plane, without any
k-enclosing constraint), but the new algorithm requires more ingenuity.

We start with a semi-dynamic data structure for a 1D subproblem:

Lemma 1 Given a set P of n points in 1D with ¢ marked points, and an
integer k, we can maintain an O(q?)-space data structure, with O(nlogn+ngq)
preprocessing time, that supports the following operations:

e report the shortest interval containing k points of P in O(q) time;
e delete a marked point in O(q) time;
e unmark a marked point in O(q) time.

Proof Sort the points of P from left to right and let py, ..., p, be the resulting
order. Consider the (implicit) matrix of differences M = 17P — P71, where
1=(1,...,1) € R™ and P is interpreted as a row vector in R™. Formally, the
entry M;; is p; —p; (we are interested only in the top right part of this matrix)
— such an entry can be computed in O(1) time directly from the sorted point
set. The optimal quantity of interest is the minimum on the kth diagonal; that
is, a(M) = min; M; ;45—1. When a marked point gets deleted, this corresponds
to deleting a row and a column of M — the quantity of interest remains the
minimum along the kth diagonal. Such a deletion, as far as a specific entry of
the top right of the matrix is concerned, either (i) removes it, (ii) keeps it in
its place, (iii) shifts it one diagonal down as it moves left, or (iv) keeps it on
the same diagonal as it shifts both up and left (see Figure 2.1).

In particular, any sequence of at most ¢ deletions of elements can shift
an entry in the matrix at most ¢ diagonals down. This implies that we need
to keep track only of the k, ...,k + g diagonals of this matrix. To do better,
observe that if we track the elements of an original diagonal of interest, the
deletions can fragment the diagonal into at most O(gq) groups, where each
group still appear as contiguous run of the original diagonal.

To this end, let a fragment of a diagonal be either (i) a singleton entry that
appears in a row or column of a marked point, or (ii) a maximum contiguous
portion of the diagonal which does not touch any singleton entries from (i).
It is easy to verify that the kth diagonal of the matrix at any given point in
time is made out of a sequence of at most 3k fragments, where each fragment
is an original fragment of one of the diagonals in the range k,...,k + q.

As such, instead of storing all the elements of a fragment, we only main-
tain the minimum entry of the fragment (together with the information of
what pairs of points it corresponds to). After this compression, a diagonal of
interest can be represented as a linked list of O(g) fragment summaries. In
the preprocessing stage, the algorithm computes this representation for the k
to k + g diagonals (using this representation). This requires O(q?) space, and
O(nq) time.

A deletion of a marked point then corresponds to taking a contiguous
block of linked fragments at the ith list and moving it to list ¢ — 1, doing this
surgery for ¢ = k, ..., k+q. The blocks being moved start and end in singleton
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Fig. 2.1: Tllustration for the proof of Lemma 1.

entries that correspond to the deleted point. We also need to remove these
two singleton elements, and merge the two adjacent fragment summaries that
are no longer separated by a singleton. This surgery for all the ¢ + 1 lists of
interest can be done in O(q) time (we omit the tedious but straightforward
details).

A query corresponds to scanning the list of O(q) fragments that form the
kth diagonal and reporting the minimum value stored along it. An unmarking
operation corresponds to merging two fragment summaries and the singleton
separating them into a single fragment summary, and doing this for all the
g + 1 lists. Both operations clearly can be done in O(q) time. O

Theorem 1 Given a set P of n points in the plane and an integer k, one can
compute, in O(n?logn) time, the smallest-area or smallest-perimeter axis-
aligned rectangle enclosing k points.

Proof We do divide-and-conquer based on the y-coordinates of the points in
P. Given a set P of n points in the plane, and horizontal slabs ¢ and 7, each
containing ¢ points of P, we describe a recursive algorithm to find a smallest
axis-aligned rectangle containing k points of P, under the restriction that the
top edge is inside o and the bottom edge is inside 7. It is assumed that either
o is completely above 7, or o = 7. It is also assumed that all points above ¢ or
below 7 have already been deleted from P. There can still be a large number of
points in P\ (¢ UT) (recursion will lower ¢ but not necessarily n). We will not
explicitly store the points in P\ (c U7), but rather “summarize” the points in
an O(q?)-space structure. Namely, we assume that the z-coordinates of P are
maintained in the 1D data structure S of Lemma 1, where the marked points
are the O(g) points in PN (o UT).
The algorithm proceeds as follows:

0. If ¢ = 1, then report the answer by querying S in O(1) time. Else:

1. Divide o into two horizontal subslabs ¢; and o3, each containing ¢/2 points
of P. Likewise divide 7 into 7 and 5.

2. For each i,j € {1,2}, recursively solve the problem for the slabs ¢; and
T ;2 to prepare for the recursive call, make a copy of S, delete the (marked)

If 0 = 7, one of the four recursive calls is unnecessary.
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Fig. 2.2: Illustration of the proof of Theorem 1.

points in PN(oUT) above o; or below 7;, and unmark the remaining points
in PN(ocUT)\ (0;UT;), as shown in Figure 2.2. The time needed for these
O(q) deletions and unmarkings, and for copying S, is O(¢?) (we emphasize
that this bound is independent of n).

The running time satisfies the recurrence
T(n,q) =4T(n,q/2) + O(¢?),

with T'(n,1) = O(1), which gives T(n,q) = O(q*log q). Initially, ¢ = 7 is the
entire plane, with ¢ = n; the data structure S can be preprocessed in O(n?)
time. Thus, the total running time is O(n?logn). O

One can readily get an algorithm with k-sensitive running time for the
perimeter case, by reducing the problem into O(n/k) instance of size O(k).
This reduction is well known [19,18] in this case — approximate the smallest
enclosing disk containing k points in O(nlogn) time, partition the plane into
a grid with side length proportional to the radius of this disk, and then solve
the problem for each cluster (i.e., 3 x 3 group of grid cells) that contains at
least k points of P, using the algorithm mentioned above. We thus get the
following.

Corollary 1 Given a set P of n points in the plane and an integer k, one
can compute, in O(nlogn+nklogk) time, the smallest-perimeter azxis-aligned
rectangle enclosing k points of P.

The O(nlogn) term can be eliminated in the word RAM model, using a
randomized linear-time algorithm for approximate smallest k-enclosing disk
[21] (which requires integer division and hashing).

A similar reduction for the minimum-area case is more challenging, and was
left as an open problem in previous work [24]. The difficulty arises because the
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optimal-area rectangle may be long and thin, with side length potentially much
bigger than the radius of the minimum k-enclosing disk. Nonetheless, we show
that such a reduction is possible (with an extra logarithmic factor) in the next
subsection.

2.2 k-sensitive running time for smallest area

Our starting point is a shallow cutting lemma for 3-sided ranges [23], which
we describe in detail in Appendix A for the sake of completeness. (It can
be viewed as an orthogonal variant of Matousek’s shallow cutting lemma for
halfspaces [25].)

Lemma 2 ([23]) Given a set P of n points in the plane, lying above a horizon-
tal line ¢, and a parameter k, one can compute a family F of at most 2 [n/k]
subsets of P, each of size at most 6k. The collection of sets can be computed
in O(n) time if the x-coordinates have been pre-sorted. For any axis-aligned
rectangle R with its bottom edge lying on £, that contains less than k points of
P, we have PN R C Q for some Q € F.

Definition 1 Let R be the set of all axis-aligned rectangles in the plane. A
scoring function is a function f : R — R, with the following properties:

(A) Translation invariant: Vp € R?, we have f(p + R) = f(R).
(B) Monotonicity: VR, R’ € R, such that R C R, we have that f(R) < f(R').

Observation Functions that satisfy the above definition include area, perime-
ter, diameter, and enclosing radius of a rectangle.

Definition 2 For a set U C R¢, let U = {(z,—y) | (x,y) € U} be the re-
flection of U through the z-axis. Similarly, let [U], = {(,y]) | (z,y) €U}
be the folding of U through the z-axis.

Lemma 3 Given a set P of n points in the plane, a parameter k, and a
scoring function f, let Ry be the minimum score axis-aligned rectangle that
contains k points of P, and intersects the x-axis. Then, one can compute a
family F of O(n/k) subsets of P, such that (i) each set of F is of size < 12k,
and (1) Rmin N P C Q, for some Q € F.

Proof Let P' = |P[, be the “folding” of P over the z-axis, and let 7’ be the
cover of P’ by sets of size < 12k, as computed by Lemma 2 for rectangles
containing at most 2k points. Let F be the corresponding family of sets for
P. We claim that F has the desired property.

Let R = \Rmin|y be the folding of Ry, and let R’ = JR see Figure 2.3.
Observe that f(R) = f(R') < f(Rmin) because of the translation invariance
of f, and monotonicity of f.

If |[RN P| > k then one can shrink it so that it contains only &k points of P,
but this would imply that R, is not the minimum, a contradiction. The case
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Rmin R

Fig. 2.3: A rectangle, its folding, and its reflection.

that |R' N P| > k leads to a similar contradiction. We conclude that R U R’
contains at most 2k points of P. This implies that the rectangle R = |Ruin| Y
contains at most 2k points of P’. As such, there is a set Q' € F’ that contains
RN P’. Now, let Q be the corresponding set in F to @’. Since Ry,jn € RUR/,
it follows that Ryin NP C (RUR')NP C Q, as desired. O

Lemma 4 Given a set P of n points in the plane, a parameter k, and a scoring
function f, let Ry, be the minimum score rectangle that contains k points of
P. One can compute, in O(nlogn) time, a family F of O(% log ) subsets of
P, such that (i) each subset of F is of size < 12k, and (ii) Rmin NP C Q, for
some @ € F.

Proof Find a horizontal line £ that splits P evenly, and compute the family
of Lemma 3. Now, recurse on the points above £ and the points below £. The
recursion bottoms out when the number of points is < 12k. The correctness
is by now standard — as soon as a recursive call picks a line that stabs the
optimal rectangle, the family generated for this line contains the desired set.
The z-coordinates need to be pre-sorted just once at the beginning. ad

Theorem 2 Let P be a set of n points in the plane, k be a parameter, f be
a scoring function for rectangles, and let alg be an algorithm that computes,
in Taig(m) time, the axis-aligned rectangle containing k points in a set of m
points that minimizes f. Then one can compute the rectangle containing k
points of P that minimizes f, in time O(n logn + Ty14(12k) 3 log %)

Proof Compute the family of sets F using Lemma 4, and then apply alg to
each set in this family. O

Combining Theorem 1 with Theorem 2 gives the following.

Corollary 2 Given a set P of n points in the plane and an integer k, one
can compute, in O(nklog 7 log k) time, the smallest-area axis-aligned rectangle
enclosing k points of P.

For the case when t = n — k is very small (i.e., finding the smallest enclos-
ing axis-aligned rectangle with t outliers), there is an easy reduction (for both
perimeter and area) yielding O(n + Ta4(4t)) time [27,2], by keeping the t left-
most /rightmost /topmost /bottommost points. Immediately from Theorem 1,
we get O(n + t?logt) running time.
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2.3 An approximation algorithm for smallest area

In this subsection, we give an approximation algorithm for the smallest-area
k-enclosing rectangle problem. The case of smallest perimeter is relatively
straightforward to approximate, by grid rounding, but the area case is tougher,
again because the optimal rectangle may be long and thin.

Fig. 2.4: A laminar family of rectangles

Definition 3 A laminar® family of 3-sided rectangles is a collection R of
axis-aligned rectangles with the bottom edges lying on the z-axis, such that
for every pair of rectangles [a,b] x [0,¢] and [a’,0'] x [0,¢/] in R, one of the
following is true:

e [a,b]N[a’, V] =0, or

e [a,b] Cla’,b] and ¢ > ¢, or

o [a/,V] Cla,b] and ¢ > c.
See Figure 2.4 for an example.

Standard range trees can answer orthogonal range counting queries (count-
ing the number of points inside rectangular ranges) in logarithmic time per
query (this has been improved to O(y/logn) in the offline setting by Chan
and Patragcu [14]). The following lemma shows how to achieve constant time
per query in the offline laminar special case, which will be useful later in our
approximation algorithm.

Lemma 5 Let P be a set of n points, and let R be a laminar family of O(n)
3-sided rectangles in the plane. Suppose that we are given a designated point
on the top edge of each rectangle in R, and the x- and y-coordinates of all the
designated points and all the points of P have been pre-sorted. Then we can
count, for each rectangle R € R, the number of points of P inside the rectangle,
in O(n) total time.

3 This definition of laminar family of sets is somewhat non-standard.
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Proof We describe a sweep algorithm, with a horizontal sweep line £ moving
downward. Let X denote the set of z-coordinates of all points of P and all
designated points of the rectangles of R. Consider the union of R N ¢ over
all R € R; it can be expressed as a union of disjoint intervals. Let Z; be
the z-projection of these disjoint intervals. Store the following collection I
of disjoint sets in a union-find data structure [28]: for each interval I € Z,
define the set X NI, and for each a € X not covered by Z,, define the singleton
set {a}. Create a linked list L, containing these sets in Iy ordered by x. For
each set in Iy, we store a count of the number of points of P below ¢ with
z-coordinates inside the set.

Fig. 2.5: Merging intervals during the sweeping.

Suppose that the sweep line ¢ hits the top edge of a rectangle R with
x-projection [a,b]. By definition of a laminar family, any interval in Z, that
intersects [a, b] must be contained in [a,b]. We find the set in I, that contains
the z-coordinate of the designated point of R. From this set, we walk through
the list Ly in both directions to find all sets contained in [a,b], and replace
these sets with their union in Iy and L,. The count for the new set is the sum
of the counts of the old sets; this also gives the output count for the rectangle
R.

Next, suppose that the sweep line ¢ hits a point p € P. We find the set in
I'y that contains the x-coordinate of p, and decrement its count, see Figure 2.5.
(For example, if the set is a singleton, its count changes from 1 to 0.)

The entire sweep performs O(n) union and find operations. Gabow and
Tarjan [20] gave a linear-time union-find algorithm for the special case where
the “union tree” is known in advance; their algorithm is applicable, since the
union tree here is just a path of the elements ordered by z. O

We first solve the approximate decision problem:

Lemma 6 Given a set P of n points in the plane, a value «, and parameters
k and € € (0,1), one can either compute a k-enclosing azis-aligned rectangle
R’ such that area(R') < (1+ O(e))a, or conclude that the smallest-area k-
enclosing azis-aligned rectangle has area greater than «. The running time of
the algorithm is 0(8_3 loge™! - nlog n)
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Proof 1t is sufficient to solve the problem for the case where the rectangle must
intersect a horizontal line £ in O((1/¢)3log(1/¢)-n) time, assuming that the -
and y-coordinates of the given points P have been pre-sorted. Then standard
divide-and-conquer by y-coordinates gives an O((1/¢)?log(1/e) - nlogn)-time
algorithm for the general problem. Pre-sorting needs to be done only once at
the beginning.

Without loss of generality, assume that ¢ is the x-axis. Suppose there exists
a rectangle R* intersecting ¢ that contains at least k£ points and has area at
most a. By symmetry, we may assume that R* has greater area above ¢ than
below, and that the top edge passes through some input point p = (pz, py) € P.
Then the height h* of R* is between p, and 2p,, and the width w* is at most
a/py.

Without loss of generality, assume that all z-coordinates are in [0,1/3].
Define a one-dimensional quadtree interval (also known as a dyadic interval)
to be an interval of the form [, Z5FL]. Tt is known that every interval of length
w < 1/3 is contained in a quadtree interval of length O(w) after shifting the
interval by one of two possible values s € {0,1/3} (this is a special case
of a shifting lemma for d-dimensional quadtrees [7,10]). Thus, suppose that
[ps — @/py,pe + a/py] is contained in the interval [ + s, 5L 4 5], where
the length Qi is equal to the smallest power of 2 greater than ca/p,, for some
constant c. (Note that ¢ is a nondecreasing function of p,.) Without loss of
generality, assume that 1/¢ = 2F for an integer E. Define a family of O(1/e%)
canonical rectangles of the form

(2 + 2de +s, 2+ ke +5] x [—5"epy, py]

over all possible indices j, j’, j” € {0,...,1/e} such that p, € [5 + 2% +
s, 5+ zfﬁ + s].

By rounding, R* is contained in a canonical rectangle R’ with height at
most h* 4+ O(e)py < (14 O(e))h* and width at most

w* + O(e)a/py < (1+O0(e))a/h*,

and thus area at most (1 + O(g))a. So, it suffices to count the number of
points inside each canonical rectangle and return the smallest area among
those rectangles containing at least k& points.

To speed up range counting, observe that for canonical rectangles with the
same j,j’, 5", the same s € {0,1/3}, and the same value for (i mod E), the
portion of the rectangles above (resp. below) ¢ forms a laminar family. This is
because: (i) in the z-projections, if a pair of intervals intersects, one interval
must be contained in the other; (ii) as the height of the 3-sided rectangle
increases, p, increases, and so ¢ can only increase (or stay the same), and so
the width of the rectangle can only decrease (or stay the same). Thus, we can
apply Lemma 5 to compute the counts of the points inside each rectangle,
for all canonical rectangles with a fixed j,j’,5”,s and (i mod E), in O(n)
time (for each canonical rectangle, we can use a point (ps,p,) € P on the
top edge, and a corresponding point (ps, —j”ep,) on the bottom edge, as
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the designated points). The number of choices for j,j', 7", s and (i mod E) is
O((1/¢)* log(1/e)). O

Theorem 3 Given a set P of n points in the plane, and parameters k and
e € (0,1), one can compute a k-enclosing rectangle R’ such that area(R’) <
(1+¢)-opt(P, k), where opt(P, k) is the area of the smallest axis-aligned rect-
angle containing k points of P. The expected running time of the algorithm is
O((1/e)®log(1/¢) - nlogn).

Proof We can use known techniques for reducing optimization problems to
decision problems. We give a self-contained description of one approach based
on Chan’s randomized technique [11].

Let b be a sufficiently large constant. Divide the plane into b columns
(vertical slabs) each containing n/b points. Similarly divide the plane into b
rows (horizontal slabs) each containing n/b points. These steps take linear
time by invoking a selection algorithm O(b) times. For each quadruple 7 =
(c,c/,r,r") where ¢ and ¢’ are columns (with ¢ left of ¢ or ¢ = ¢/) and r and
r’ are rows (with r below ' or r = r’), consider the subproblem of finding
the smallest-area rectangle containing k points of P, subject to the extra
constraints that the left edge of the rectangle lies in ¢, the right edge lies in ¢/,
the bottom edge lies in r, and the top edge lies in 7/. To solve this subproblem,
it suffices to consider the at most 4n/b points in P N (cU ¢ Ur Ur'). To
ensure that the extra constraints are satisfied, we add 4n/b copies of the four
intersection points formed by the right boundary of ¢, the left boundary of ¢/,
the top boundary of r, and the bottom boundary of r’; and we add 16n/b to
k. (Straightforward modifications can be made in the special case when ¢ = ¢/
or r = r'.) Let P, be the resulting point set of size at most 20n /b points, and
kr be the resulting value of k. We thus have

opt(P, k) = minopt(P;, k).

To compute an approximation to the minimum, we consider the at most b*
quadruples in random order 11,72, ... and keep track of an approximate mini-
mum « with the invariant that « < min{opt(Ps,, k-, ),...,opt (PTF1 , knfl)} <
(1+¢)a after the (i — 1)th iteration. Let €’ be such that (1+¢)? = 1+ ¢; note
that ¢’ = ©(eg). At the ith iteration, we run the approximate decision proce-
dure for Py, twice, at values o and «/(14¢’), which allows us to conclude one

of the following:

e opt(Py,,kr,) > . In this case, we can continue to the next iteration and
the invariant is maintained.

o a/(1+¢") <opt(Pr,, kr,) < (14¢&')a. In this case, we reset « to o/(1+¢’)
and the invariant is maintained.

e opt(Py,, kr,) < . In this case, we recursively compute an approximation
a; to opt(Pr,, kr,), satisfying o; < opt(Pr,, kr,) < (1+¢€)a;. We reset a to

«; and the invariant is maintained.
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We land in the third case only if opt(FPr,, k;,) is the smallest among the i

values opt(Pr,, kr, ), - .., opt(Pr,, kr,), which happens with probability at most

1/i. Thus, the expected number of recursive calls is bounded by the (b*)th
4

harmonic number E?:l 1/i < In(b*) + 1. The expected running time satisfies

the recurrence

T(n) < (4Inb+1)T(20n/b) + O((1/)*log(1/e) - nlogn),

which gives T'(n) = O((1/e)®log(1/e) - nlogn) when b = 1000, for example.
O

3 Extensions
3.1 3-sided smallest k-enclosing rectangle

In this subsection, we give a slightly faster algorithm for the 3-sided variant of
the problem, finding the smallest-area/perimeter rectangle enclosing k points,
under the restriction that the bottom edge lies on the z-axis. The improvement
uses the latest result on the (min,+)-convolution problem, and is interesting
in view of a reduction in Section 3.5 in the reverse direction, establishing
essentially an equivalence of the 3-sided problem to (min,+)-convolution.

Problem 1 (min,+)-Convolution. Given sequences of numbers ag, ..., a,_1,
and b, ...,b,_1, compute

14
¢ = I_Ili(I)l(ai +bo—;)
1=

forall £=0,...,2n — 2.

Let Teonvol(n) be the time complexity of the (min,+)-convolution problem.
As observed by Bremner et al. [8], the problem can be reduced to (min,+)-
matrix multiplication, and using the current best result by Williams [29] (de-
randomized by Chan and Williams [15]), Teonver(n) = O(n?/292(V108™)) We
use (min,+)-convolution to speed up the preprocessing time of the 1D data
structure from Section 2.1.

Lemma 7 The preprocessing time in Lemma 1 can be reduced to

O((n/q)Tconvol(Q) + q3).

Proof Divide the n xn matrix M vertically into n/q submatrices My, ..., M, /q
each of dimension n X ¢. For each submatrix M;, we consider the portions of
the diagonals k, . .., k+ ¢ that are within M; — each such portion will be called
a chunk. We precompute the minimum of the entries in each chunk. For a
fixed 4, this is equivalent to computing ming«;<qqi+1)(Pj+e—1 — p;) for all
¢ e{k,...,k+ q}. Notice that after some massaging of the sequence (specif-
ically, negating, reversing, and padding the sequence), this computation can
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be reduced to (min,+)-convolution over O(q) elements, and can thus be done
in O(Teonvol(¢)) time. The total time over all i is O((n/q)Tconvol(q))-

Recall that in the preprocessing algorithm in Lemma 1, we need to compute
the minimum of each fragment in the &, ..., k+¢q diagonals. Each fragment can
be decomposed into some number of disjoint chunks plus O(q) extra elements.
Over all O(q) diagonals, there are O(q?) fragments and O(n/q - q) = O(n)
chunks in total. Thus, we can compute the minima of all fragments in O(q? -
q+n/q-q) = O(¢® +n) time, after the above precomputation of the minima
of all chunks. O

Theorem 4 Given a set P of n points in the plane and integer k, one can
compute, in O(nQ/QQ(m)) time, the smallest-area/perimeter axis-aligned
rectangle enclosing k points of P, under the restriction that the bottom edge
lies on the x-axis.

Proof Divide the plane into n/q horizontal slabs each containing ¢ points, for
some parameter q to be set later.

Take such a slab o. We solve the subproblem of finding a smallest k-
enclosing axis-aligned rectangle under the restriction that the top edge is in
o and the bottom edge is on the z-axis. To this end, we first delete all points
above o or below the z-axis. We build the 1D data structure S in the lemma
for the z-coordinates of the surviving points, where the marked points are
the ¢ points in o. The preprocessing time is O((n/q)Teonvol(q) + ¢°). Then for
each point p € o, we can compute a smallest k-enclosing axis-aligned rectangle
where the top edge has p’s y-coordinate and bottom edge is on the z-axis, by
making a copy of S, deleting all points in ¢ above p, and querying S. The time
needed for the O(q) deletions, and for copying S, is O(g?). The total time over
all p € o is O(¢%).

We return the minimum (by area or perimeter) of all the rectangles found.
The overall running time over all n/q slabs o is

O((n/q) - (/@) Teonvor (@) + ¢%))-

With Teonvoi(q) = O(q?/27(V1080)) we can set ¢ = n'/3, for example, and
obtain the final time bound O(n?/2%(Vleg ), O

For k-sensitive bounds, we can apply the shallow cutting technique from
Section 2.2 (which is easier for 3-sided rectangles) and obtain an O(nlogn +
nk/29(1gk)) time bound.

3.2 Arbitrarily oriented smallest k-enclosing rectangle

We briefly consider the problem of computing a smallest-area/perimeter arbi-
trarily oriented rectangle (not necessarily axis-aligned) enclosing k points. The
optimal rectangle is defined by 5 points, with one edge containing 2 points p}
and p3. Given a fixed choice of p and p3, we can use a rotation and transla-
tion to make pjps lie on the x-axis and thereby obtain a 3-sided axis-aligned
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rectangle problem, which can be solved in O(n log n+nk/2?(V1°eF)) time. Ex-
haustively trying all pairs pip} then gives O(n3logn + n?k/29(VIgk)) total
time.

3.3 Minimum-weight k-enclosing rectangle

Our O(n?logn)-time algorithm can be adapted to solve the following related
problem. (Without the k constraint, the problem has an O(n?)-time algorithm

[5].)

Theorem 5 Given a set P of n points in general position in the plane each
with a real weight, and an integer k, one can compute, in O(n?logn) time, the
azis-aligned rectangle enclosing exactly k points minimizing the total weight of
the points inside.

Proof We follow the same approach as in Section 2.1, with the following dif-
ferences from the data structure of Lemma 1. For every fragment we maintain
the minimum weight solution. Using prefix sums, the entry M; ; in the matrix
contains the total weight of the elements from 7 to j. As before, we break
the ¢ + 1 diagonals of entry into fragments, where each fragment summary
maintains the minimum weight encountered.

A deletion of a marked point p of weight w would result in an insertion of
a fixup entry, of value —w into a linked list of a diagonal where p appeared
as a singleton (when crossing a column of p), and a fixup entry of value +w
when encountering the row column of p. The real value of a fragment is the
value stored in the fragment plus the total sum of the fixups appearing before
it in the linked list of its diagonal. As such, during query the real value can
be computed in O(q) time overall, as this list is being scanned. When we
merge two adjacent fragments separated by a singleton, we should increase the
later fragment by the fixup value at the singleton before taking the minimum.
Clearly, all the operations can be implemented in O(q) time.

Now, we can use the divide-and-conquer algorithm in the proof of Theo-
rem 1 with no change. a

Note that in the above problem, when the weights are all positive, there is
no difference between an optimal rectangle enclosing at least k points with an
optimal rectangle enclosing exactly k points (assuming general position).

As an application, we can solve the following problem: given n points in the
plane each colored red or blue, and an integer k, find an axis-aligned rectangle
enclosing exactly k& points minimizing the number of red points inside. This is
a special case of the problem in the above theorem, where the red points have
weight 1 and blue points have weight 0, and can thus be solved in O(n?logn)
time.

Similarly, we can solve for other variants of the red/blue problem, for ex-
ample, finding a k-enclosing rectangle maximizing (or minimizing) the number
of red points, or finding a k-enclosing rectangle with exactly a given number £,
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of red points. (For the latter, the following observation allows us to reduce the
1D subproblem to querying for the maximum and minimum: given a set P of
red/blue points in 1D and a value k, let K. denote the set of all possible values
k. for which there exists an interval containing k points of P and exactly k,
red points; then K, forms a contiguous range of integers, and thus contains
all numbers between min(K,) and max(K,).)

Another interesting application is finding the rectangle containing exactly k
points of minimum discrepancy. Specifically, the task is to compute a rectangle
that contains k points, such that the absolute difference in the number of
red and blue points is minimized. This problem can be solved by a similar
approach. (In the 1D subproblem, we want an interval containing k point
of P with the number of red points closest to k/2; this reduces to querying
for the maximum/minimum number of red points, again because K, forms a
contiguous range of integers.)

An interesting open problem is to provide near linear time approximation
algorithms for the above variants.

3.4 Subset sum for k-enclosing rectangle

A more challenging variant of the weighted problem is to find a rectangle
enclosing exactly &k points with total weight exactly W (similar to subset sum),
or more generally, find an axis-aligned rectangle enclosing exactly & points with
total weight closest to W.

We use a different approach, using a 1D data structure that is static but
can “plan for” a small number of deletions.

Lemma 8 Given a set P of n points in 1D and integers k and q, we can build
a static data structure, with O(nglogn) preprocessing time, that supports the
following type of queries in O(qlogn) time: for any subset D C P of at most
q points and any weight W, find an interval containing k points of P\ D with
weight closest to W.

Proof Asin the proof of Lemma 1, we sort P and consider the (implicit) matrix
M =17P — PT1. For each i € {k,...,k+q}, we store the elements in the ith
diagonal in a data structure supporting 1D range predecessor/successor queries
— ie., finding the predecessor/successor to any value among the elements in
any contiguous sublist of a given list — in O(logn) time, after O(nlogn) pre-
processing time. (See [30] for the latest result on the range successor problem;
for simplicity, we will ignore improvements in the logarithmic factors here.)
The total preprocessing time for all ¢ + 1 diagonals is O(nglogn).

To answer a query, we imagine deleting the columns and rows associated
with the elements in D, from the matrix M. We want to search for W in
the kth diagonal in the modified matrix. This diagonal corresponds to O(q)
fragments from the k,... k + ¢ diagonals in the original matrix. Namely,
as we trace the diagonal in the original matrix from left to right, whenever
we hit a deleted column, we move to the diagonal one unit up, and whenever
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we hit a deleted row, we move the diagonal one unit down. We can search
for W in each fragment by a range predecessor/successor query in a diagonal
in O(logn) time. We return the closest point found. The total query time is
O(qlogn). O

Theorem 6 Given n points in general position in the plane each with a real
weight, and given a real number W and an integer k, one can compute, in
O(n°/?log n) time, an azis-aligned rectangle enclosing exactly k points with
total weight closest to W.

Proof Divide the plane into n/q horizontal slabs each containing ¢ points, for
some parameter g to be set later.

Take a pair of horizontal slabs ¢ and 7. We solve the subproblem of find-
ing a k-enclosing axis-aligned rectangle with weight closest to W, under the
restriction that the top edge is in o and the bottom edge is in 7. To this end,
we first remove all points strictly above o and strictly below 7. We build the
1D data structure in Lemma 8 for (the z-coordinates of) the surviving points
in O(nglogn) time. Then for each pair of points p, € ¢ and p, € 7, we can
search for a k-enclosing axis-aligned rectangle with weight closest to W, un-
der the restriction that the top edge has p,’s y-coordinate and the bottom
edge has p,’s y-coordinate, by performing a query to the 1D data structure in
O(qlogn) time for the subset D of (the a-coordinates of) the points above p,
in o and the points below p, in 7. The total query time over all O(q?) pairs
of points (p,,p,) is O(q®logn).

We return the closest answer found. The total running time over all the
O((n/q)?) pairs of slabs (o,7) is

O((n/q)? - (nqlogn + ¢°logn)).
We set ¢ = v/n. |
We can further improve the running time for small k:

Theorem 7 Given n points in general position in the plane each with a real
weight, and given a real number W and an integer k, one can compute, in
O(nQ\/E log k) time, an azis-aligned rectangle enclosing exactly k points with
total weight closest to W.

Proof We first consider the variant of the problem where the rectangle is con-
strained to intersect a fixed vertical line ¢. Here, we can follow essentially the
same algorithm as in Theorem 6 (with minor modifications to the data struc-
ture in Lemma 8), but when considering the subproblem for the two slabs o
and 7, we can further remove more irrelevant points: among the points strictly
between o and 7, it suffices to keep only the k points immediately to the left
of £ and the k points immediately to the right of /. It may be too costly to
compute these O(k) points from scratch, but given such points for (¢/,7) for
the predecessor slab ¢’ of o, we can generate the new O(k) points for (o, 7),
by invoking a selection algorithm on O(k + ¢) elements in O(k + ¢) time. The
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number of points in the subproblem is now reduced to O(k). As a consequence,
the overall running time becomes

O((n/q)? - (kqlogk + ¢*log k).

We set ¢ = v/k. This gives an O(n?*Vk log k)-time algorithm for the restricted
problem with the vertical line £.

We can solve the original problem now via standard divide-and-conquer by
z-coordinates, with running time given by the recurrence

T(n, k) =2T(n/2,k) + O(n*Vklogk),
which solves to T'(n, k) = O(n®Vklogk). 0

As an application, we can solve the following problem: given n colored
points in the plane with d different colors, and integers ki, ..., kg, with k; +
-+« + kg = k, find an axis-aligned rectangle enclosing exactly k; points of the
ith color. The problem was proposed by Barba et al. [4], who gave an O(n2k)-
time algorithm. (It may be viewed as a geometric variant of the jumbled or
histogram indexing problem for strings [13].) It is a special case of the problem
from Theorem 6: we can give points with color i a weight of M? for a sufficiently
large M, e.g., M = n + 1, and set the target to W = Zle k;M?. Since
weights require O(dlogn) bits, each addition has O(d) cost, and so the running
time becomes O(dn?vklog k). The weights can be reduced to O(logn) bits by
randomized hashing (for example, by randomly selecting M from {0,...,p—1}
and working with numbers modulo p for an O(logn)-bit prime p), since there
are only polynomially (i.e., O(n?)) many combinatorially different rectangles.
This way, the running time can be reduced to O(n?vklogk) — this improves
the result of Barba et al..

3.5 Conditional lower bounds

We prove that the smallest-perimeter k-enclosing axis-aligned rectangle prob-
lem does not have truly subquadratic (i.e.,O(n?7°%)) algorithms, under the
conjecture that (min,+)-convolution does not have a truly subquadratic algo-
rithm. Our proof holds for the 3-sided version of the problem, which comple-
ments nicely with our upper bound in Section 3.1 using (min,+)-convolution.

We describe a reduction from the following decision problem, which Cygan
et al. [16] showed does not have a truly subquadratic algorithm under the
(min,+)-convolution conjecture.

Problem 2 (min,+)-Convolution Decision. Given three sequences of real num-
bers ag,...,an_1,b0,...,bn_1, and cq, ..., c,_1, decide whether

Ve : ¢ < min (a; +b;).
ce < min (a; +bj)
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Theorem 8 If there is a T(n)-time algorithm for computing the smallest-
perimeter/area azis-aligned rectangle enclosing k points for a given set of n
points in the plane and a given number k (with or without the constraint that
the bottom edge lies on the x-awis), then there is an O(T(O(n)))-time algo-
rithm for Problem 2.

Proof Consider an instance of Problem 2. Without loss of generality, assume
a;,bj,ce € (0,1). We create an instance of the minimum-perimeter k-enclosing
rectangle problem with 3n points

{(=i—a:, 00} U{G+b;,0)} ) U{0n—t—c)}, ),
plus M extra copies of (—ag,0) and M extra copies of (by,0), and k = n+2+
2M , where M is a sufficiently large number, e.g., M = 2n.

For L={(4,7,0) | i+ 1)+ (j+ 1)+ (n—€)+2M = k}, the optimal peri-
meter is
min 2(t+a;+j+bj+n—~C—c) = min  2(n+a; +b; — cp),
o 7 0= A i)
which is at least 2n if and only if min; j.;1;=¢(a; + b;) > ¢, for every £.
For minimum area, the reduction is similar, except that we replace n—¢—cy

with —— +C . The optimal area is
) i+a;+j+b; . C+4a; +b;
min —_ = min ——=
i,5,0: (i+1)+(G+1)+(n—0)+2M =k +cy i liiti=¢ L+ cp
which is at least 1 if and only if min; j.;4,;=¢(a; + b;) > ¢¢ for every £. O

A similar reduction holds for the minimum-weight k-enclosing rectangle
problem from Theorem 5:

Theorem 9 If there is a T'(n)-time algorithm for computing the minimum-
weight axis-aligned rectangle enclosing k points for a given set of n weighted
points in the plane and number k (with or without the constraint that the
bottom edge lies on the x-azis), then there is an O(T(O(n)))-time algorithm
for Problem 2.

Proof The reduction is similar. Assume a;, bj, ¢, € (0,1). We create an instance
of the minimum-weight k-enclosing rectangle problem with 3n weighted points

. 1 -1 -1
{(—Z,O;al a;_ 1)}” U { 7,0;b; — b )};L:O U {(O,n—ﬁ; —cp+cor1) Z:O,
plus M extra copies of the points (—1,0;0) and (1,0;0), and k = n+ 2+ 2M,
where M is a sufficiently large number, e.g., M = 2n. The third coordinate
after the semicolon of each point denotes its weight. (And a_; =b_1 = ¢, =
0.)

The minimum weight over all rectangles with k£ points is equal to

m‘,e:(z‘+1)+(j][+nll>m+<n74)+2M:k(az by =) m,g?ilfj:e(a’ by = o),

which is nonnegative if and only if min; j.;4j=¢(a; + b;) > ¢, for every £. O
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A near-quadratic conditional lower bound for the minimum-weight rectan-
gle problem without the &k constraint was given by Backurs et al. [3] (under
a different “popular” conjecture about the complexity of maximum-weight
clique).

We can similarly prove that the subset-sum variant of the k-enclosing rect-
angle problem from Theorem 6 (or its 3-sided variant) does not have truly sub-
quadratic algorithms, under the conjecture that the convolution-3SUM prob-
lem (given real numbers ag, . .., @p—1,b0, .., bn—1,Coy - . ., Cn—1, decide whether
¢ = a; + by_; for some i and £) does not have a truly subquadratic algorithm
(which is known to be true under the conjecture that 3SUM for integers does
not have a truly subquadratic algorithm [26]).
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A Shallow cutting for points and 3-sided rectangles

Here, we prove a shallow cutting lemma due to Jgrgensen and Larsen [23] — we provide the
full details for the sake of completeness.

Let P be a set of n points in general position (i.e., no two points share x or y values),
let ¢ be a horizontal line below all the points of P, and let k£ be a parameter. For simplicity
of exposition we assume £ is the z-axis. We generate m = O(n/k) subsets Q1,...,Qm of
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P, each of size O(k), such that any axis-parallel rectangle R that has its bottom edge on ¢,
and contains at most k points of P, its associated subset of P is contained in one of these
subsets.

To this end, we sweep horizontally upward from £. At any point in time, the z-range
is going to be split into interior disjoint intervals (the two extreme ones are rays). For an
interval I = [z1, z2], its weight at time ¢ is n(I,t) = |P(I,t)|, where P(I,t) = PN (I x [0,¢])
is the active set of points associated with I. As soon as the weight of some active interval
J becomes 2k, say at time ¢, we stop the sweep and split J into two intervals, by picking a
value m € J between the kth rank and (k+ 1)th rank z-coordinates of the points of P(I,t),
and breaking I at m into two intervals. See Figure A.1. Let I—,IT be the two intervals
adjacent to I just before this split. We store the point p; = (m,t) into a set of splitting
points S. Let R(pt) = (I~ UIUIT) x[0,t] be the rectangle associated with this split point,
and add the set P(I- UIUIT,t) = PN R(pt) to the collection of subsets being computed.

For every two consecutive intervals J, K in the final partition in the end of the sweeping,
we add the set P(I U J,400) to the collection. Let F be the resulting family of sets.
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Fig. A.1: An illustration of Lemma 2. The last pane on the right shows the
point set associated with the last interval being split.
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nalysis.Observe that every time we insert a point p into S, we are splitting a set o
Analysis.Ob that t t t p into S litt t of 2k
points into two sets of k points, Since there are n points overall, this can happen at most
n/k times. This readily implies that |F| < 2n/k.

Lemma 9 Let R be any rectangle having its bottom edge on £, such that |[RN P| < k.
Then, there exists a set Q@ € F, such that RN P C Q. Furthermore, each set of F contains
at most 6k points.

Proof Let Ir be the projection of R to the z-axis. Let I be the last active interval that
contains Ir. If I is one of the final intervals, then all the points in [ strip are contained in
the set that corresponds to I and its adjacent neighbor, and the claim immediately holds.
So, let t be the critical time, where I was split, and let p be the splitting point. There
are several possibilities.
1. If p ¢ R, then R(pt) contains R — indeed, R(pt) z-axis extent contains I, which contains
IR, see Figure A.2. Now, RN P C R(pt) N P is in F, and the claim holds.

P

Ir

1
Fig. A.2: p is not in R.

II. If p € R, then consider the lowest point ¢ (in the y-direction) of S\ {p} such that its
z-axis coordinate is in Ip.

ILi. If ¢ does not exist, then I is contained in two consecutive final intervals, and the
claim readily holds.

t : R(p;)
Ip

1

Fig. A.3: The points p and ¢ are both in R.
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ILii. If ¢ € R, then the rectangle R’ = [z(p), z(q)] X [0,t(q)] C R contains k points of P
(since it is one of the sides of the split created by ¢ — which contains exactly k points
by construction), see Figure A.3. But that is a contradiction to the assumption that
|[RNP| < k.

t r R(p:)

1

Fig. A.4: The point p is in R, but ¢ is not.

ILiii. If ¢ ¢ R then when the upward sweep line hits ¢, the interval Ir is contained in
two consecutive intervals, where one of them is being split by ¢, see Figure A.4.
But then, R(q) is taller than R, and it spans these two intervals. We conclude that
R C R(q), which implies the claim.

As for the size, observe that a set in F is the union of at most three active sets, and
each of these active sets contains at most 2k points. We conclude that a set of F contains
at most 6k points. [}

The running time is dominated by O(n/k) queries, each of the following form: report the
lowest O(k) points inside a given vertical slab. This is a generalization of range minimum
queries, and known data structures [9] achieve O(k) query time after O(n) preprocessing
time, assuming that the points are given in x-sorted order. The total construction time is
O((n/k) - k) = O(n).

We thus get the following.

Restatement of Lemma 2 [23]. Given a set P of n points in the plane, lying above a
horizontal line £, and a parameter k, one can compute a family F of at most 2 [n/k] subsets
of P, each of size at most 6k. The collection of sets can be computed in O(n) time if the
x-coordinates have been pre-sorted. For any axis-aligned rectangle R with its bottom edge
lying on £, thal contains less than k points of P, we have PN R C @ for some Q € F.
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