
Manuscript submitted to The Econometrics Journal , pp. 1–17.

Identification in Simple Binary Outcome Panel Data
Models1
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Summary This paper first reviews some of the approaches that have been taken to
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1. GENERAL SETUP

It is natural to model decisions made by individuals in terms of the information available
to them when the choice is made. This motivates a general panel data setup in which
the distribution of a dependent variable (or vector) in time period t, yit, can be modelled
as a function of its own past values, yt−1i = {yis}s<t, a vector of explanatory variables
up to time t, xti = {xis}s≤t, and an unobserved individual-specific characteristic, αi.
Consequently,

yit ∼ f
(
·|xti, yt−1i , αi; θ

)
, (1.1)

where f is the distribution of yit conditional on xti, y
t−1
i , and αi, and θ is the vector of

parameters. Throughout this paper, we treat αi as a “fixed effect” in the sense that its
distribution is allowed to depend on the explanatory variables in an arbitrary way.

In specification (1.1), the explanatory variable is allowed to be predetermined so that
future realizations of x may depend on the realization of y in the current period. This is
attractive from an economic point of view when y is the outcome of a choice as indicated
above. An individual makes a decision, yit, based on her information at that point. The
information set contains the covariates that she has observed until now, xti, her past
choices, yt−1i , and her time-invariant characteristics, αi (which are unobserved to the
econometrician).

While it is possible to allow for predetermined explanatory variables in models where
the fixed effect, αi, enters linearly or multiplicatively on the outcome variable, yit, we are
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not aware of any results that allow for this in panel data discrete response models where
the distribution of αi is left unrestricted. We therefore maintain throughout the stronger
modelling setup where explanatory variables are strictly exogenous and dependence on
the whole sequence of covariates is considered:

yit ∼ f
(
·|xTi , yt−1i , αi; θ

)
. (1.2)

The additional restrictions embedded in (1.2) rule out that individuals choose x in time
period t in response to the outcomes of y in periods prior to t. As mentioned above,
this will sometimes make it unattractive in economic applications. However, (1.2) makes
it possible to make probability statements on the whole sequence (over time) of yit
conditional on the whole sequence of the explanatory variables.

It is important to recognize that knowing θ in (1.1) or (1.2) is typically not sufficient
for calculating counterfactual distributions or marginal effects. Those will depend on the
distribution of αi as well as on θ and they are typically not point-identified even if θ is.
For a discussion of this see, for example, Chernozhukov et al. (2013). On the other hand,
it seems that point- or set-identifying and estimating θ is a natural first step if one is
interested in bounding, say, average marginal effects.

In Section 2 of this paper, we first review some approaches for estimating univariate
binary outcome versions of (1.1). The traditional approach is to find a sufficient statistic
for the fixed effects and then proceed by conditional maximum likelihood (conditioning
on the sufficient statistic). This approach dates back to Rasch (1960, 1961), and a recent
example includes Aguirregabiria et al. (2020). When it is not possible to find a sufficient
statistic for the fixed effects, it is sometimes possible to construct moment equality condi-
tions which must be satisfied at the true parameter value. See Johnson (2004) and Honoré
and Weidner (2020) for an early and recent example, respectively. Significant progress
has also been made by employing moment inequality conditions. See for example Man-
ski (1987) and, more recently Pakes and Porter (2016) or Pakes et al. (2021). Section 3
discusses bivariate binary outcome models. We first describe some recent advances for
reduced form models, and we then analyse a simple panel data version of an entry game.
Section 4 concludes.

2. THE INCIDENTAL PARAMETERS PROBLEM

It is well understood that estimating the individual-specific effects, {αi}, along with the
common parameter, θ, typically (though not always) leads to inconsistent estimation of
θ in a panel where the number of time periods is fixed and to asymptotic bias in “large”
panels, where both the number of time periods and the number of micro-units increase.
This is known as the incidental parameters problem. See Neyman and Scott (1948).

There are many papers that attempt to eliminate the asymptotic bias in “large” pan-
els. These include Hahn and Newey (2004), Arellano and Bonhomme (2009), Dhaene and
Jochmans (2015), and Fernández-Val and Weidner (2016). These papers consider pro-
cedures that are justified asymptotically as the number of time periods grows with the
number of number of individuals. See, for example, Fernández-Val and Weidner (2018)
for a review of this literature. A different set of papers tries to construct methods that
work when the panel contains observations for a large number of micro-units observed in
a few time periods. This is the situation that we consider in this paper. Specifically, in
this section, we briefly review three alternative approaches for dealing with individual-
specific parameters in standard binary response models that have been explored in the
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literature: conditional likelihood, construction of moment conditions, and moment in-
equalities. This list is by no means exhaustive. For example, a number of papers have
explored the usefulness of restricting the relationship between individual-specific effects
and one of the explanatory variables. This includes papers like Chen et al. (2016). A
different set of papers places restrictions on the distribution of the fixed effects. For ex-
ample, Bonhomme and Manresa (2015) assume that its marginal distribution is discrete
with a finite number of points of support.

2.1. Conditional Likelihood

The traditional approach for obtaining consistent estimators of the common parameters
in a parametric model with incidental parameters is to condition on a set of sufficient
statistics for the individual-specific parameters. This was proposed by Rasch (1960, 1961)
and studied in detail by Andersen (1970). Suppose that the distribution of yTi conditional
of xTi and the individual-specific effects has been specified as a function of the common
parameter, θ. The idea behind conditional likelihood is that if there exists a (possibly
vector-valued) function of the data for individual i, Si, such that (a) the distribution of
yi conditional on (Si, xi, αi) does not depend on αi (i.e., Si is a sufficient statistic for
αi), and (b) the distribution of yi conditional on (Si, xi, αi) depends on θ, then one can
estimate θ by maximum likelihood using the conditional distribution of the data given
(Si, xi). Andersen (1970) shows that the conditional maximum likelihood estimator is
consistent and asymptotically normal under mild regularity conditions.

The main limitation of the conditional likelihood approach is that in binary response
settings, it is typically not possible to find a statistic, Si, with the properties described
above. The main exceptions include a number of logit models, some of which are discussed
below.

2.1.1. Simple Examples: Logit Models Rasch (1960, 1961) considered a static panel
data version of the standard logit model,

P
(
yit = 1|xTi , yt−1i , αi

)
=

exp (x′itβ + αi)

1 + exp (x′itβ + αi)
= Λ (x′itβ + αi) , (2.3)

where Λ (·) is the logistic cumulative distribution function.
In this case, the distribution of (yi1, . . . , yiT ) conditional on (xi1, . . . , xiT ) and on Si =

T∑
t=1

yit does not depend on αi. If T ≥ 2 it nonetheless does depend on β:

P

(
{yit}Tt=1 = {cit}Tt=1

∣∣∣ {xit}Tt=1 , αi,
T∑
t=1

yit =
T∑
t=1

cit

)
=

exp
(∑T

t=1 citx
′
itβ
)

∑
dt∈Bi

exp
(∑T

t=1 dtx
′
itβ
) ,

where cit ∈ {0, 1} and

Bi =

{
(d1, ..., dT ) : dt ∈ {0, 1} ,

T∑
t=1

dt =
T∑
t=1

cit

}
.

As a result, the conditional likelihood can be used to identify and estimate β in the
static panel data logit model. Unfortunately, this does not generalize to other simple
models such as the probit model. Indeed, Chamberlain (2010) showed that in a model
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of the form P
(
yit = 1|xTi , y

t−1
i , αi

)
= F (x′itβ + αi), regular root-n estimation of β with-

out additional assumptions is only possible if F is the logistic cumulative distribution
function.

The conditional likelihood approach can also be used to estimate some simple panel
data autoregressive logit models. See, for example, Chamberlain (1985) and Magnac
(2000). Consider the simple model

P
(
yit = 1|yt−1i , αi

)
=

exp (yit−1γ + αi)

1 + exp (yit−1γ + αi)
, for t = 2, ..., T. (2.4)

Since (2.4) models an outcome in terms of its past value, we only insist that it applies
starting in the second time period. The first observation, yi1, is usually referred to as the
initial condition.

Conditional on Si =

(
yi1,

T∑
t=1

yit, yiT

)
, the distribution of (yi1, . . . , yiT ) does not de-

pend on αi. However, for T ≥ 4, it does depend on γ when yi1 6= yi4. The corresponding
conditional likelihood can therefore be used to identify and estimate γ.

This approach has been extended to an AR(2) model:

P
(
yit = 1|yt−1i , αi, γi1

)
=

exp (γi1yit−1 + γ2yit−2 + αi)

1 + exp (γi1yit−1 + γ2yit−2 + αi)
. (2.5)

In this model there are two fixed effects, γi1 and αi, and when the coefficient on yit−2 is
0, the model corresponds to a Markov switching model with individual-specific transition
probabilities. Here, the initial conditions are yi1 and yi2.

The sufficient statistic for (γi1, αi) in (2.5) with T ≥ 6 is (yi1, yi2, si1, si11, yiT−1, yiT ),

where si1 =
T∑
t=1

yit and si11 =
T∑
t=2

yityit−1, and the corresponding conditional likelihood

can be used to estimate γ2.1 Magnac (2000) showed that this generalizes to AR(p) panel
data logit models. In a model like (2.5), with p lags rather than 2, it is possible to find
a vector of sufficient statistics, Si, such that the distribution of (yi1, . . . , yiT ) conditional
on Si does not depend on (αi, γi1, ..., γip−1), but for T sufficiently large, it does depend
on γp. The corresponding conditional likelihood can therefore be used to identify and
estimate γp with no assumptions made on (αi, γi1, ..., γip−1).

While the model in (2.5) illustrates the usefulness of the conditional likelihood ap-
proach, it also illustrates its limitation. Suppose that one is willing to assume that γi1 is
homogeneous (so γi1 = γ1 for all i) so

P
(
yit = 1|yt−1i , αi, γi1

)
=

exp (γ1yit−1 + γ2yit−2 + αi)

1 + exp (γ1yit−1 + γ2yit−2 + αi)
. (2.6)

In this case, the numerical calculations in Honoré and Kyriazidou (2019b) suggest
that (γ1, γ2) is identified for T ≥ 5. Specifically, Honoré and Kyriazidou (2019b) assume
values of γ1 and γ2 and a distribution for αi conditional on the initial conditions, yi1 and
yi2. This implies a distribution, P̃ , for (yi3, yi4, yi5) conditional on yi1 and yi2. For a fine
grid of potential values of γ1 and γ2, they then ask whether one can find a heterogeneity

1The conditional likelihood approach can also be used to estimate models where the coefficient γ2
differs depending on the value of yit−1. This is, for example, relevant if one does not want to tie the
parameters that govern the transition out of employment to the parameters that govern the transition
out of non-employment.



Binary Outcome Panel Data Models 5

distribution (conditional on the initial conditions) that produces the probabilities, P̃ ,
using the values on the grid. They find numerically that this is only possible when γ1
and γ2 take the true values. This suggests that γ1 and γ2 are both point identified.
However, they also note that it seems that conditioning on any statistic that eliminates
αi in a conditional likelihood will also eliminate γ1. This suggests that even in a simple
model like (2.6) where conditioning that eliminates αi is possible, there is additional
information not captured by the conditional likelihood approach. We turn to this in the
next subsection.

2.2. Moments

The observation that (γ1, γ2) appears to be identified in (2.6) is the inspiration for a
recent paper by Honoré and Weidner (2020). The approach in that paper is to try to
construct moment conditions that depend on (γ1, γ2), but do not depend on the individual
specific effects, αi. To do this, Honoré and Weidner (2020) follow the general approach in
Bonhomme (2012). Bonhomme (2012) points out that models for discrete data generally
cannot be dealt with using his approach. It is therefore “trial and error” to see whether
it can be applied to models like (2.6).

To find a moment condition for (γ1, γ2) in (2.6) with T = 5, one needs to find functions,
m, of the data and the parameters such that

E(γ1,γ2) [m (yi1, yi2, yi3, yi4, yi5, γ1, γ2)| yi1, yi2, αi] = 0 (2.7)

for all values of αi, and hence

E(γ1,γ2) [m (yi1, yi2, yi3, yi4, yi5, γ1, γ2)| yi1, yi2] = 0

no matter what the true values of (γ1, γ2) are in the data generating process. The sub-
script (γ1, γ2) on the expectation is a reminder that the expectation is a function of γ1
and γ2.

Since (yi3, yi4, yi5) can take eight values, (2.7) can be written as a sum over eight terms,∑
(d3,d4,d5)∈{0,1}3

P(γ1,γ2)

(
yi3 = d3, yi4 = d4, yi4 = d5

∣∣ yi1 = d1, yi2 = d2, αi
)

×m (d1, d2, d3, d4, d5, γ1, γ2) = 0. (2.8)

Honoré and Weidner (2020) approaches this and related problems by first fixing d1,d2,γ1,
and γ2 at a particular value and αi at q values for some q. At that point the probabilities
are numbers, and the question becomes whether one can solve the q equations for the
eight2 unknown (the m’s) without making them all zero. If this is not possible, then there
is no hope of finding an appropriate moment function, m.

After experimenting with various values for γ1, γ2, and the q values of αi, Honoré and
Weidner (2020) conclude numerically that for each combination of the initial conditions,
one can find a non-trivial moment condition. They obtain these analytically by solving
(2.8) for a set of specific values of αi and then verifying that the obtained solution satisfies

2Actually, there are seven unknowns, since any multiple of a solution will also be a solution.
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(2.8) generically. The moment conditions are

m(0,0)(0, 0, d3, d4, d5, γ) =


1 if (d3, d4, d5) = (0, 1, 0),
e−γ1 if (d3, d4, d5) = (0, 1, 1),
−1 if (d3, d4) = (1, 0),
0 otherwise,

m(0,1)(0, 1, d3, d4, d5, γ) =


−1 if (d3, d4) = (0, 1),
eγ2−γ1 if (d3, d4, d5) = (1, 0, 0),
eγ2 if (d3, d4, d5) = (1, 0, 1),
0 otherwise,

m(1,0)(1, 0, d3, d4, d5, y, γ) =


eγ2 if (d3, d4, d5) = (0, 1, 0),
eγ2−γ1 if (d3, d4, d5) = (0, 1, 1),
−1 if (d3, d4) = (1, 0),
0 otherwise,

and

m(1,1)(1, 1, d3, d4, d5, γ) =


−1 if (d3, d4) = (0, 1),
e−γ1 if (d3, d4, d5) = (1, 0, 0),
1 if (d3, d4, d5) = (1, 0, 1),
0 otherwise.

where the subscripts on m denote the initial values of y1 and y2.
The functions m(0,0) andm(1,1) are both strictly monotone in γ1 if (d3, d4, d5) = (0, 1, 1)

or = (1, 0, 0), respectively, and constant otherwise. It is therefore clear that as long as ei-
ther P (yi1 = 0, yi2 = 0) > 0 or P (yi1 = 1, yi2 = 1) > 0, γ1 is identified from the moment
conditions implied by either E

[
m(0,0)

∣∣ yi1 = 0, yi2 = 0
]

or E
[
m(1,1)

∣∣ yi1 = 1, yi2 = 1
]
.3

Once γ1 has been identified, γ2 will be identified from E
[
m(0,1)

∣∣ yi1 = 0, yi2 = 1
]

or

E
[
m(1,0)

∣∣ yi1 = 1, yi2 = 0
]

provided that either P (yi1 = 1, yi2 = 0) > 0 or P (yi1 = 0,
yi2 = 1) > 0.4 In other words, if every combination of the initial conditions (yi1, yi2)
has positive probability, (γ1, γ2) is overidentified in the sense that there are four moment
conditions (one corresponding to each of the initial conditions) and two parameters to
be estimated. This partly solves the puzzle in Honoré and Kyriazidou (2019b) discussed
above.

The strategy of looking for moment conditions developed in Bonhomme (2012) and
explained above can be used for a number of other models. Honoré and Weidner (2020)
present explicit expressions for such moment functions for AR(p) (for p = 1, 2, and 3)
panel data logit models with strictly exogenous explanatory variables of the type

P
(
yit = 1|yt−1i , xTi , αi, γi1

)
=

exp

(
p∑
j=1

γjyit−j + x′itβ + αi

)

1 + exp

(
p∑
j=1

γjyit−j + x′itβ + αi

) . (2.9)

In this case, the moment functions will be functions of xTi , so the approach will yield

3Formally, this assumes that P (yi3 = 0, yi4 = 1, yi5 = 1|yi1 = 1, yi2 = 1) > 0 and/or P (yi3 = 1, yi4 =
0, yi5 = 0|yi1 = 1, yi2 = 0) > 0. This will be true as long as αi take finite values with positive probability.
4This follows because m(0,1) and m(1,0) are both monotone in γ2.
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conditional moment conditions, which can be turned into unconditional moment condi-
tions for the purpose of estimation.While the conditional moment restrictions in Honoré
and Weidner (2020) will not always point-identify the common parameters, β and the
γj ’s, the paper presents conditions under which the conditional moments can be turned
into a finite number of unconditional moments which do identify the common param-
eters. Generalized method of moments estimation will deliver a root-n consistent and
asymptotically normal estimator in that case.5

When T = 4 and p = 1, the moment functions in Honoré and Weidner (2020) yield
moment conditions which are transformations of moment conditions that had previously
been discovered by Kitazawa (2013, 2016). To apply the moment conditions, one needs
a total of T ≥ 2 + 2p periods of observations. Of these, the first p correspond to the
initial conditions, and one therefore only needs to observe the explanatory variables in
the last 2 + p periods. Based on numerical calculations for various combinations of T
and p, Honoré and Weidner (2020) conjecture that for each of the 2p combinations of
the initial conditions, there are 2T−p − (T + 1− 2p) 2p linearly independent conditional
moment conditions. For example, for an AR(2) panel data logit model with 10 time
periods (two of which would provide the initial conditions), there are 228 conditional
moment conditions. Intuitively, this implies that the model contains a lot of information
about the parameters. However, the large number of moments also implies that one
should be careful about blindly applying generalized method of moments estimation.

2.3. Inequalities

As mentioned above, Chamberlain (2010) shows that in a binary response model of the
form P

(
yit = 1|xTi , y

t−1
i , αi

)
= F (x′itβ + αi), where F is a known cumulative distribu-

tion function, regular root-n estimation of β is only possible if F is the logistic cumulative
distribution function. This suggests that it is also not possible to construct root-n con-
sistent estimators for dynamic models like (2.9) if one deviates from the logit model.
Of course, this does not imply that it is not possible to construct useful consistent es-
timators or informative bounds for the common parameters in non-logit models. In this
subsection, we discuss some of the progress that the literature has made in this direction.

Consider the panel data discrete choice model

yit = 1 {x′itβ + αi + εit ≥ 0} t = 1, 2; i = 1, ..., n (2.10)

where, conditional on (xit, xis, αi), εit and εis are identically distributed with unknown
distribution function F(xit,xis,αi). This is a strict exogeneity assumption on the explana-
tory variables and a stationarity assumption of the errors. When F is the logistic distri-
bution, this is the logit model studied by Rasch (1960, 1961). See Equation (2.3). Manski
(1987) observed that if F(xit,xis,αi) has support equal to the real line, then this implies
that

P (yit = 1|xit, xis) > P (yis = 1|xit, xis)⇐⇒ x′itβ > x′isβ. (2.11)

The key property is that the left hand side does not depend on αi and can be identified
from the data, while the right hand side is a constraint on β.

5Honoré and Kyriazidou (2000) provide conditions under which a conditional likelihood approach can
be used to estimate models like (2.9). In order to achieve root-n consistency, that approach requires
that there is positive probability that the explanatory variables are the same in two time periods. The
sufficient conditions in Honoré and Weidner (2020) are weaker than that.
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Equation (2.11) allowed Manski (1987) to define a conditional maximum score estima-
tor,

β̂ = arg max
b

n∑
i=1

sgn (yi2 − yi1) sgn ((xi2 − xi1)′b) .

With random sampling and assumptions on the support of the explanatory variables,
this estimator is consistent, but its rate of convergence is n−1/3.6

Honoré and Kyriazidou (2000) use Manski’s insight to construct an estimator for a
version of (2.10) that also has a lagged y as an explanatory variable. They assume that
the errors are independent and identically distributed - and not just stationary as in
Manski (1987) - and that the researcher has access to a sample with at least four time
periods for each individual.7 In order to get point identification, Honoré and Kyriazidou
(2000) had to make the strong assumption that the vector xi4 − xi3 has support in a
neighborhood of 0.

Other papers have been able to obtain bounds without the assumption that xi4 − xi3
has support in a neighborhood of 0. For example, Aristodemou (2020) also considers a
version of (2.10) that has a lagged y as well as strictly exogenous regressors as explana-
tory variables. Consider an individual for whom yit is observed in three time periods.
Aristodemou (2020) observes that if the errors in periods two and three are independent
of the explanatory variables conditional on the initial yi1, then

P (yi2 = 1, yi3 = 0|xi2, xi3, yi1 = 0) (2.12)

= P (x′i2β + αi + εi2 ≥ 0, x′i3β + γ + αi + εi3 < 0|xi2, xi3, yi1 = 0)

≤ P
(

(xi2 − xi3)
′
β + (yi1 − 1) γ > − (εi2 − εi3)

∣∣xi2, xi3, yi1 = 0
)

= F εi3−εi2|yi1
(
(xi2 − xi3)

′
β − γ

)
and

1− P (yi2 = 0, yi3 = 1|xi2, xi3, yi1 = 0) (2.13)

= 1− P (x′i2β + αi + εi2 < 0, x′i3β + αi + εi3 ≥ 0|xi2, xi3, yi1 = 0)

≥ 1− P
(

(xi2 − xi3)
′
β < − (εi2 − εi3)

∣∣xi2, xi3, yi1 = 0
)

= F εi3−εi2|yi1
(
(xi2 − xi3)

′
β
)
.

For simplicity, suppose that xit is one-dimensional and that β is normalized to 1 with-
out loss of generality. Then each value, w, in the support of xi2 − xi3, (2.12) provides a
lower bound on F εi2−εi1|yi0 (w − γ) while (2.13) gives an upper bound on F εi2−εi1|yi0 (w).
This gives a bound on γ.

More recently, Khan et al. (2020) characterize the identified region for (γ, β) under
the weaker assumptions that the errors are stationary conditional on the sequence of
explanatory variables and on the individual specific effect. Like Aristodemou (2020), this
paper does not maintain the strong assumption on the explanatory variables needed by
Honoré and Kyriazidou (2000). Interestingly, Khan et al. (2020) show that it is sometimes

6Imposing additional smoothness assumptions, Horowitz (1992) shows that one can im-

prove the rate of convergence by defining a smoothed maximum score estimator as β̂ =

arg maxb
∑n

i=1 sgn (yi2 − yi1)H
(

(xi2−xi1)
′b

hn

)
, where H is a cumulative distribution function which

plays the same role as a kernel in nonparametric estimation.
7The first observation provides the initial condition. The model is not required to hold in this period.
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possible to point-identify (γ, β) with as few as three time periods (including the initial
condition).

3. BIVARIATE MODELS

As mentioned in Section 1, it is desirable to allow for predetermined – as opposed to
strictly exogenous – explanatory variables in economic panel data settings. While doing
this is an unsolved problem in general, it is possible to get results like those discussed
above for a variety of models where a dependent variable and an explanatory variable
are modelled jointly. We first illustrate this in a reduced form setting where two binary
variables are modelled jointly. We next turn to a setting where they are the outcome of
a simple game.

3.1. Reduced Form Bivariate Models

Following Schmidt and Strauss (1975), who propose a cross-sectional bivariate binary
response model, Honoré and Kyriazidou (2019a) considered the bivariate panel data
model for two outcomes (y1,it, y2,it)

P
(
y1,it = 1| y2,it, yt−11,i , y

t−1
2,i , x

T
1,i, x

T
2,i, α1,i, α2,i

)
= Λ

(
α1,i + x′1,itβ1 + ρy2,it

)
,(3.14)

P
(
y2,it = 1| y1,it, yt−11,i , y

t−1
2,i , x

T
1,i, x

T
2,i, α1,i, α2,i

)
= Λ

(
α2,i + x′2,itβ2 + ρy1,it

)
.

Honoré and Kyriazidou (2019a) show that in this case β1, β2, and ρ are identified with
T = 2.

Honoré and Kyriazidou (2019a) also consider a vector autoregressive version of the
simultaneous logit model in (3.14):

P
(
y1,it = 1| y2,it, yt−11,i , y

t−1
2,i , α1,i, α2,i

)
= Λ (α1,i + y1,it−1γ11 + y2,it−1γ12 + ρy2,it) ,

P
(
y2,it = 1| y1,it, yt−11,i , y

t−1
2,i , α1,i, α2,i

)
= Λ (α2,i + y1,it−1γ21 + y2,it−1γ22 + ρy1,it) .

(3.15)

When ρ = 0, this corresponds to the probabilities in the model proposed by Narendran-
than et al. (1985):

y1,it = 1 {y1,it−1γ11 + y2,it−1γ12 + α1,i + ε1,it ≥ 0}
y2,it = 1 {y1,it−1γ21 + y2,it−1γ22 + α2,i + ε2,it ≥ 0} ,

where ε1,it and ε2,it are logistic random variables that are independent of each other
and independent over time. Narendranthan et al. (1985) show that all parameters in
this model are identified with a total of T = 4 periods. Honoré and Kyriazidou (2019a)
generalize this result by showing that (γ11, γ12, γ21, γ22) is identified in the model given
in (3.15) with at least four time periods.8 However, the conditioning argument that leads
to the identification eliminates the parameter ρ along with the heterogeneity terms α1,i

and α2,i. On the positive side, this implies that one can allow the parameter ρ in (3.15)
to be individual-specific. On the other hand, ρ may be the parameter of interest in many

8Honoré and Kyriazidou (2019a) also discuss how one can generalize the identification results in Naren-
dranthan et al. (1985) and Honoré and Kyriazidou (2019b) to achieve identification if one also allows for
strictly exogenous explanatory variables. The identification argument mimics that in Honoré and Kyri-
azidou (2000) and using the empirical counterpart for estimation will lead to estimators that converge
at a rate slower than the usual

√
n if the strictly exogenous variables are continuously distributed.



10 Honoré and de Paula

applications. This makes it problematic that the conditioning argument eliminates it
along with α1,i and α2,i. The calculations in Honoré and Kyriazidou (2019b) suggest that
ρ might be identified, despite the fact that it drops out when one pursues a conditional
likelihood approach to eliminate α1,i and α2,i. It would be interesting to know whether
the results in Honoré and Weidner (2020) can be used to derive moment conditions that
can be used to identify ρ the same way one can identify γ1 in (2.6).

3.2. Panel Data Games

The model in equations (3.14) and (3.15) is a natural generalization of classic linear si-
multaneous equations model to a logit framework. On the other hand, it is not straight-
forward to give a behavioral interpretation to the model. This is in contrast to single
equation logit or probit models which can be interpreted in terms of threshold-crossing
or utility maximization. We therefore turn to an alternative panel data version of the
bivariate binary response models that are more inspired by economics.

Consider a game with two players i = 1, 2, each of whom takes a binary action,
y ∈ {0, 1}, at instance t according to the best-response function:

y1t = 1 {x′1tβ − γy2t + α1 + ε1t > 0} (3.16)

y2t = 1 {x′2tβ − γy1t + α2 + ε2t > 0} ,

where ε1t and ε2t are error terms. Except for the α terms, this is the canonical model
considered in Tamer (2003). If players are firms contemplating their presence in a partic-
ular market, it is natural to assume that γ > 0. One can envision observing their entry
decisions across different periods for the same market or over distinct geographic mar-
kets. Our aim is to study identification and estimation of β and γ in panel data versions
of this model with the α’s being firm-market specific effects.9

The econometric model above can also be seen as a dyadic network formation model
defining directed connections between (i, j) pairs of individuals, households, firms, or
countries. Here t indexes node pairs and yit indicates whether person i sends a link to
person j. The individual effect αi would in turn encode the ‘gregariousness’ of individual
i. Charbonneau (2017), for example, considers such a model for directed networks with
γ = 0 and an additional individual effect for the ‘target’ node j, which can be interpreted
as this node’s ‘attractiveness’. See also Graham (2017). A specification with γ < 0 would
in turn allow for i to have a tendency to reciprocate the link decision of its counterpart
j (see footnote 5 in de Paula (2020)). For expositional ease, we nevertheless assume that
γ ≥ 0 for the remainder of this section and refer to players as firms and the game as a
market.

It is well understood that the model in (3.16) is incomplete in the sense that there is
no unique mapping from (x1t, x2t, α1, α2, ε1t, ε2t) to (y1t, y2t). For example, when γ > 0,
certain realizations for (x1t, x2t, α1, α2, ε1t, ε2t) are consistent with (y1t, y2t) = (1, 0) or
(y1t, y2t) = (0, 1) as depicted in Figure 1, and this leads to difficulties in the conventional
panel data manipulations discussed so far. It is easiest to explain our ideas in a setting
where the errors are stationary, independent of (x1t, x2t, α1, α2) , and independent over

9If the same two firms interact repeatedly in the same market or across several different geographic
markets, it is plausible that their actions are related through time in a dynamic game or across space
in a larger game. We view the considerations here as starting points for the analysis of more complex
dynamic or spatial games with individual effects, which remain an interesting avenue for research.
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Figure 1. Nash Equilibria in −ε1 ×−ε2 space

time, but the derivations below suggest that these assumptions can be relaxed consid-
erably. Clearly, it would be interesting to allow for dynamics (i.e., lagged dependent
variables) in the model. To illustrate the main idea, we will nonetheless abstract from
dynamics, but combining the insights from the literature discussed previously (as well as
the possibility of forward looking behavior discussed later) would be an important angle
on which to expand the ideas delineated below.

3.3. Identification of β

In this subsection, we discuss the potential for identifying the β in (3.16) when the
distribution of (ε1, ε2) left unspecified.

Letting N t be the number of entrants in a market in period t, conventional calculations
(see de Paula (2013)) deliver:

P
(
N t = 2

∣∣ {x1s, x2s}2s=1 , α1, α2

)
= F (x′1tβ − γ + α1, x

′
2tβ − γ + α2) ,

where F is the cumulative distribution function of (−ε1,−ε2). Note that the probability
above is monotone in (x′1tβ, x

′
2tβ).

Suppose there are two time periods or instances, and that x is market-specific, so
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x1t = x2t = xt. Then

P
(
N t = 2

∣∣ {xs}2s=1 , α1, α2

)
= F (x′tβ − γ + α1, x

′
tβ − γ + α2) ,

which is increasing in x′tβ. Consequently,

P
(
N1 = 2

∣∣ {xs}2s=1 , α1, α2

)
T P

(
N2 = 2

∣∣ {xs}2s=1 , α1, α2

)
(3.17)

if (and only if) x′1β T x′2β.

Now condition on the event that N t equals 2 in exactly one of the two periods. A
maximum score argument like that in Manski (1987) (see above) applied to the event
N1 = 2 with x′1 − x′2 as the explanatory variables can then be used to identify and
estimate β (up to scale).10

More specifically, conditional on {xs}2s=1 , α1, α2 and 1(N2 = 2) 6= 1(N1 = 2), the
variable 1(N2 = 2) − 1(N1 = 2) is a Bernoulli random variable with the median given
by

sgn

(
P (N2 = 2, N1 6= 2| {xs}2s=1 , α1, α2)− P (N2 6= 2, N1 = 2| {xs}2s=1 , α1, α2)

P (1(N2 = 2) 6= 1(N1 = 2)| {xs}2s=1 , α1, α2)

)
= sgn

(
P (N2 = 2, N1 6= 2| {xs}2s=1 , α1, α2)− P (N2 6= 2, N1 = 2| {xs}2s=1 , α1, α2)

)
= sgn

(
P (N2 = 2| {xs}2s=1 , α1, α2)− P (N1 = 2| {xs}2s=1 , α1, α2)

)
= sgn ((x2 − x1)′β) .

The last equality follows since P
(
N1 = 2

∣∣ {xs}2s=1 , α1, α2

)
T P

(
N2 = 2

∣∣ {xs}2s=1 , α1,

α2

)
if (and only if) x′1β T x′2β. Then, under the assumptions delineated in Manski

(1987), one obtains that β = argmaxbE[sgn((x2 − x1)′b)(1(N2 = 2) − 1(N1 = 2))] as
established in that paper and discussed previously. Note also that this will work even
if γ is market- and/or player-specific. On the other hand, it is crucial for the argument
that β is the same for the two players. Using a similar argument, we can also recover β
by conditioning on the event N1 = 0 or N2 = 0, but not both.

When the xs are not market-specific, we can use the same argument by conditioning
on x21 = x22 = x2 (i.e., player 2 has the same x in two periods; needless to say, this
assumes that x21 − x22 has support in a neighborhood around 0). In that case,

P
(
N t = 2

∣∣ {x1s, x2s}2s=1 , α1j , α2

)
= F (x′1tβ − γ + α1, x

′
2β − γ + α2) ,

so that

P
(
N1 = 2

∣∣ {x1s, x2s}2s=1 , α1, α2

)
T P

(
N2 = 2

∣∣ {x1s, x2s}2s=1 , α1, α2

)
if (and only if) x′11β T x′12β. As a result, we can identify and estimate β by conditioning

on markets where N1 = 2 or N2 = 2, but not both.

10Since F is not specified, there is no scope for identifying the scale of (β, γ).
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3.4. Bounds on γ

Even if the distribution of (ε1t, ε2t) in Tamer (2003) is known, the model’s incompleteness
does not allow us to represent the probability distribution of (y1t, y2t) conditional on
(x1t, x2t, α1, α2) as a function of (β, γ) (see Figure 1). On the other hand, the model does
provide bounds on the probabilities for each outcome as a function of (β, γ) (conditional
on (x1t, x2t, α1, α2)) and, analogously, bounds on the probabilities for each outcome as a
function of (β, γ) conditional on (x1t, x2t). See, for example, Tamer (2003).

For a given period t we can establish that

P
(

(y1t, y2t) = (1, 1)| {x1s, x2s}2s=1 , α1, α2

)
= F (x′1tβ − γ + α1, x

′
2tβ − γ + α2) ,

P
(

(y1t, y2t) = (0, 0)| {x1s, x2s}2s=1 , α1, α2

)
= 1− F (x′1tβ + α1)− F (x′2tβ + α2)

+F (x′1tβ + α1, x
′
2tβ + α2) ,

whereas

P
(

(y1t, y2t) = (0, 1)| {x1s, x2s}2s=1 , α1, α2

)
(3.18)

≤ 1− P
(

(y1t, y2t) = (1, 1)| {x1s, x2s}2s=1 , α1, α2

)
−P

(
(y1t, y2t) = (0, 0)| {x1s, x2s}2s=1 , α1, α2

)
and

P
(

(y1t, y2t) = (0, 1)| {x1s, x2s}2s=1 , α1, α2

)
(3.19)

≥ 1− P
(

(y1t, y2t) = (1, 1)| {x1s, x2s}2s=1 , α1, α2

)
−P

(
(y1t, y2t) = (0, 0)| {x1s, x2s}2s=1 , α1, α2

)
−P

(
(ε1, ε2) ∈ ×i=1,2[x′itβ − γ + αi, x

′
itβ + αi]| {x1s, x2s}2s=1 , α1, α2

)
,

and similarly for (y1t, y2t) = (1, 0). Since (ε1t, ε2t) is independent across time, one can

thus obtain probability bounds on ((y11, y21), (y12, y22)) (conditional on ({x1s, x2s}2s=1 , α1

, α2)) by taking products of the above bounds. Finally, to obtain probability bounds con-

ditional on {x1s, x2s}2s=1 one can integrate the above equalities and inequalities against

the distribution H(α1, α2| {x1s, x2s}2s=1) for α1 and α2. An identified set for the unknown
parameters11 is then the set of parameters that is consistent with the above bounds (for

some admissible distribution H(α1, α2| {x1s, x2s}2s=1)). For example,

P
(

(y11, y21) = (1, 1) and (y12, y22) = (1, 1)| {x1s, x2s}2s=1

)
= (3.20)∫

F (x′11β − γ + α1, x
′
21β − γ + α2)

F (x′12β − γ + α1, x
′
22β − γ + α2) dH(α1, α2| {x1s, x2s}2s=1)

11If the data generating process satisfies the assumptions that one needs to apply maximum score above,
then one needs only search over γ. If not, it is necessary to search over both γ and β.
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Since the support of ((y11, y21), (y12, y22)) has sixteen points, there are thus two probabil-
ity equalities (for the events ((y11, y21), (y12, y22)) = ((1, 1), (1, 1)) and ((y11, y21), (y12, y22
)) = ((0, 0), (0, 0))) and twenty-eight inequalities, two for each of the remaining fourteen
events (given covariates). To operationalize this, we would need to compute those restric-
tions across all possible distributions, H, for the individual specific (“fixed”) effects. If
the data generating process satisfies the assumptions that one needs to apply maximum
score above, then one only needs to bound γ using the inequalities in (3.18) and (3.19).
If not, then one could combine the restrictions implied by the inequalities in (3.18) and
(3.19) with, for example, (3.17), to obtain bounds for β and γ. The same approach can
be used if the γ’s are different for units one and two.

The approach for bounding the model parameters above can be combined with para-
metric assumptions on the distribution H. Since the model is not dynamic, this will not
lead to potential internal inconsistencies. Alternatively, one can proceed more nonpara-
metrically. For example, Honoré and Tamer (2006) approximate the distribution of the
individual-specific effects by a discrete distribution with many points of support. To de-
termine whether a particular parameter value belongs to the identified set, they use linear
programming to check whether there exists a distribution of the individual-specific effects
such that the probability distribution calculated from the econometric model matches the
probability distribution in the data. This approach seems reasonable when the individual
specific effect is one-dimensional and one does not need to condition on additional co-
variates. On the other hand, when that is not the case, the necessary number of support
points is likely to be unreasonably large. Theorem 2.1 in Winkler (1988), on the other
hand, implies that to match m probabilities (adding to 1), there is no loss of generality
in considering discrete distributions with m+ 1 points of support. This or similar results
have been used in statistics and econometrics (see, e.g., Lindsay (1995), Chernozhukov
et al. (2013), d’Haultfoeuille and Rathelot (2017)). Winkler’s result suggests a hybrid
algorithm where one searches over the location of the points of support using nonlinear
methods and then solves for the implied probabilities using linear programming. The
result, that there is no loss of generality in considering a discrete distribution for the
unobservable, is similar to a result in Honoré and Lleras-Muney (2006), except that in
that instance, the structure of the problem determined their location. Here, searching
over those locations will be part of the computational challenge.

3.5. Generalizations

The argument above combines the setup in (3.16) with simple static panel data insights.
In most economic applications, it will be important to also allow for dynamics. One may
consider “non-structural (myopic) dynamics” as in, for example, Honoré and Kyriazidou
(2000) as well as “structural dynamics” as in Aguirregabiria et al. (2020), where utility
maximizing agents realize that their choice today has an effect on their utility tomor-
row. In addition, one may explore the econometric consequences of restricting how the
equilibrium selection mechanism evolves over time.

4. CONCLUSIONS

Much of the literature on nonlinear panel data models has been inspired by standard cross
sectional models. Historically, these models have been made dynamic by including lagged
dependent variables as explanatory variables. While this is natural in some settings, it
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is important to recognize that it has implications if one wants to interpret the estimated
model in terms of some implicit underlying economic model. For example, if one wants
to motivate a logit model with lagged dependent variables in terms of a random utility
model in which the utility of an option in one period depends on the choice in the previous
period, then one typically implicitly rules out that the agents are forward looking. In a
recent paper, Aguirregabiria et al. (2019) demonstrates that in a particular example, it
is possible to adapt some of the conditioning arguments for logit models to more natural
economic models. Investigating whether this is true for panel data discrete choice models
with fixed effects more generally is an interesting topic for future research.
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