Modelchecking safety properties in randomized
security protocols

Matthew S. Bauer!, Rohit Chadha?, and Mahesh Viswanathan?®

! Galois Inc.
2 University of Missouri, Columbia
3 University of Illinois, Urbana-Champaign

Abstract. Automated reasoning tools for security protocols model pro-
tocols as non-deterministic processes that communicate through a Dolev-
Yao attacker. There are, however, a large class of protocols whose correct-
ness relies on an explicit ability to model and reason about randomness.
Although such protocols lie at the heart of many widely adopted systems
for anonymous communication, they have so-far eluded automated veri-
fication techniques. We propose an algorithm for reasoning about safety
properties for randomized protocols. The algorithm is implemented as an
extension of Stochastic Protocol ANalyzer (SPAN), the mechanized tool
that reasons about the indistinguishability properties of randomized pro-
tocols. Using SPAN, we conduct the first automated verification on several
randomized security protocols and uncover previously unknown design
weaknesses in several of the protocols we analyzed.

1 Introduction

As security protocols are vulnerable to design flaws, machine-aided formal analy-
sis is often utilized to verify their security guarantees. Such analysis must be car-
ried out in the presence of an attacker that can read, intercept, modify and replay
all messages on public channels, and potentially send its messages. The presence
of the attacker makes the analysis challenging. In order to aid automation, the
analysis is often carried out in the so-called Dolev- Yao model where messages are
modeled as terms in a first-order vocabulary, the assumption of perfect cryptog-
raphy is made. In the Dolev-Yao model, the attacker controls all communication,
non-deterministically schedule the participants, and non-deterministically inject
new messages, which are computed using the whole communication transcript.

Until recently, verification techniques in this domain have converged around
modeling and verifying protocols that are purely non-deterministic, where non-
determinism is used to model concurrency as well as the interaction between
protocol participants and their environment. In this setting, decades of work
have produced many sophisticated analysis tools [11,30,45,15,5]. There are,
however, a large class of protocols whose correctness depends on an explicit
ability to model and reason about randommness. With privacy goals in mind,
these protocols lie at the heart of many anonymity systems such as Crowds [41],
mix-networks [22], onion routers [34] and Tor [29]. Cryptographic protocols also

employ randomness to achieve fair exchange [10, 31], vote privacy in electronic
voting [42,21, 4, 44] and denial of service prevention [37]. The formal verification
of this class of protocols has thus-far received little systematic attention.

In the absence of a systematic framework, there have been primarily two ap-
proaches to verify randomized security protocols. Works such as [49] use proba-
bilistic model checkers [39, 27] to reason about probabilistic behavior in systems
like Crowds. These ad-hoc techniques fail to capture the Dolev-Yao attacker in
full generality and do not provide a general verification framework. Other works
in the symbolic model [28,38] simply abstract away essential protocol compo-
nents that utilize randomization, such as anonymous channels. By making these
simplifying assumptions, such analysis may miss key attacks. Indeed, we discov-
ered in our analysis an attack on the FOO electronic voting protocol [32] that
has long served as a key benchmark in the analysis of anonymity properties in
the Dolev-Yao model. Our attack emerges by realizing the perfectly anonymous
channels in the FOO by threshold-mixes and was missed by previous analysis. 4

The critical challenge in the formal verification of randomized security pro-
tocols is the subtle interaction between non-determinism and randomization. If
the attacker can base its non-deterministic computation on the results of private
coin tosses of the participants, then the analysis necessarily may yield false at-
tacks in correct protocols (see examples in [23, 13, 33,19, 16]). Thus, the attacker
behavior should be restricted to perform the same computation in any two proto-
col executions whose communication transcripts are indistinguishable to it. This
observation is at the heart of the first framework to analyze randomized security
protocols proposed in [9,43,17]. In this framework, the indistinguishability of
two traces is captured by the trace-equivalence from the applied 7-calculus [2].
The first-of-its-kind model-checking tool Stochastic Protocol ANalyer (SPAN)
for checking the indistinguishability of two protocols in this framework was pre-
sented in [8]. SPAN was used to verify the 3-ballot electronic voting protocol [44]
in [8].

Contributions. In this work, we describe an algorithm for analyzing the reachability-
based safety properties of randomized protocols that were implemented as an ex-
tension of SPAN. The algorithm follows the bounded model checking approach of
the equivalence checking in SPAN and assumes that the attacker sends messages
of bounded size. The problem of checking safety reduces to the problem of com-
puting reachability of acyclic finite state Partially-Observable Markov Decision
Processes (POMPDs). The analysis of finite POMDPs is, in general undecid-
able. However, since we deal with acyclic POMDPs, the problem of checking
reachability is decidable and can be computed by converting the POMDP into
a fully-observable belief Markov Decision Processes. Our algorithm exploits the
acyclicity of the POMDPs to construct the belief MDP on-the-fly by discovering
the states of the belief MDP using the Depth-First-Search strategy that is often
used to solve graph reachability problems.

4 A similar attack was also discovered by hand in [6] where the analysis of FOO
protocol is carried out in the computational model.

We use SPAN to conduct the first automated symbolic analysis of several
protocols including mix-networks [22], the FOO electronic voting protocol [32]
and Prét a Voter [42]. Our analysis shows that realizing perfectly anonymous
channels in the FOO protocol requires non-trivial modification to the protocol
design, which if not done carefully, can lead to errors. In addition, a bug in the
design of the Prét & Voter protocol was uncovered (see Section 2.2). In order to
fix the bug, we propose computing the cyclic offsets in the construction of Prét
a Voter using psuedorandom permutations instead of hash functions.

Related Work. Modeling cryptographic protocols in a process calculus allowing
operations for both non-deterministic and probabilistic choice was first proposed
in [36]. Unfortunately, the calculus did not capture many important properties
of the threat model, such as the ability for protocol participants to make pri-
vate coin tosses. As a result, properties of these processes are required to be
formulated through a notion of bisimulation too strong to capture many natural
properties. The calculus upon which our techniques are built first appeared in
[9], where the authors studied the conditions under which reachability proper-
ties of randomized security protocols are preserved by composition. In [43] the
composition framework was extended to handle equivalence properties. SPAN
was originally presented in [8], which discusses the design and implementation
of the algorithms for checking equivalence properties. For randomized security
protocols, the complexity of verifying reachability and equivalence properties
was studied in [17]. The material presented here also appears in the Ph.D. thesis
of Matthew S. Bauer (See [7]), and we refer the reader to the thesis for a detailed
discussion of the tool architecture and of experimental results.

2 Randomized Security Protocols

In what follows, we give the details behind several security protocols that uti-
lize randomization. These protocols will serve as running examples upon which
we demonstrate how our techniques can be used for modeling and automated
analysis.

2.1 Mix Networks

A mix-network [22] is a routing protocol used to break the link between a
message’s sender and receiver. The unlinking is achieved by routing messages
through a series of proxy servers, called mixes. Each mix collects a batch of
encrypted messages, privately decrypts each message, and forwards the result-
ing messages in random order. More formally, consider a sender Alice (4) who
wishes to send a message m to Bob (B) through mix (M). Alice prepares a
cipher-text of the form

aenc(aenc(m, ny, pk(B)), no, pk(M))

where aenc is asymmetric encryption, ng,n; are nonces and pk(M), pk(B) are
the public keys of the Mix and Bob, respectively. Upon receiving a batch of IV
such cipher-texts, the mix M unwraps the outer layer of encryption on each
message using its secret key and then randomly permutes and forwards the
messages. A passive attacker, who observes all traffic but does not otherwise
modify the network, cannot (with high probability) correlate messages entering
and exiting the mix M. Unfortunately, this simple design, known as a threshold
mix, is vulnerable to a straightforward active attack. To expose Alice as the
sender of the message aenc(m,nq, pk(B)), an attacker forwards Alice’s message
along with N—1 dummy messages to the mix M. In this way, the attacker
can distinguish which of M’s N output messages is not a dummy message and
hence must have originated from Alice. Although active attacks of this nature
cannot be thwarted completely, several mix-network designs have been proposed
to increase the overhead associated with carrying out such an attack.

2.2 Prét a Voter

Prét & Voter [42] is a mix-network based voting protocol that provides a simple
and intuitive mechanism by which a set of voters (V1, ..., V},) can carry out elec-
tions with the help of a set of honest tellers (71, ..., 7)) and an honest election
authority (A). Each teller has two public key pairs. Using these keys and a set
of random values, the authority creates a set of ballot forms with the following
properties. Each ballot has two columns; the left column lists the candidates in
a permuted order and the right column provides space for a vote to be recorded.
The bottom of the right column also holds an “onion” which encodes the per-
muted ordering (cyclic offset) for the candidates on the left-hand side of the
ballot.

The precise construction of a ballot is as follows. The authority first generates
a random seed,

seed := gg, g1, -, 92k —1

where each g; (for i € {1,...,2k — 1}), called a germ, is drawn from an appro-
priately sized field. For a candidate list of size v, the seed is used generate the

cyclic offset
2k—1

0 :=) di(mod v)
=0

where d; := hash(g;)(mod v). Each teller ¢ has public keys pk(T»;) and pk(T%;—1)
which are used to construct the onion

{{g2k—1, {{g26—1, ---{(90, Do) }pk(T0)) } pk(Tur—2)) Yok (Tor_1)

where Dy is a nonce uniquely chosen for each onion. Each layer D; 1 := {(gi, Di) } p(1;)
asymmetrically encrypts a germ and the previous layer of the onion.

The election authority generates a number of ballots which far exceed the
number of voters. In order to cast a vote, a voter authenticates with the authority,
after which a random ballot is chosen by the voter. In the voting booth, the voter

marks his/her choice on the right-hand side of the ballot and removes the left-
hand side for shredding. The values on the right side of the ballot (the vote
position and onion) are read by a voting device and then retained by the voter
as a receipt. Once read by the voting device, the values are passed to the tellers
that manipulate pairs of the form (ry;, Da;). The first teller receives the pair
(r, Do) where r is the vote position, and Dy, is the onion. Upon receiving such
a pair, each teller T;_; performs the following operations.

— Apply the secret key sk(T;—1) to Day; to reveal the germ go;—1 and the next
layer of the onion Dg;_1.

— Recover dgi_l = hash(ggi_l)(mod ’U) and obtain Tr2;—1 = (rgifdzi_l)(mod ’U).

— Form the new pair (ro;—1, Da;—1).

After applying this transformation for each pair in the batch it receives, teller
T;_1 performs a secret shuffle on the resulting transformed pairs. Teller T;_; then
repeats this process on the shuffled values using its second secret key sk(T5;_2)
to obtain a new set of pairs with the form (ro;_o, D2;—2). These pairs are shuffled
again and then passed to the next teller T;_5. The output of the last teller is the
value of ro which identifies a voter’s vote.

Our analysis of this version of the Prét a Voter protocol has uncovered a
previously unknown flaw in the protocol’s design. The error arises from the
assumption that the elements of the field from which the germs are drawn are
evenly distributed when their hash is taken modulo v. To understand this error
in more detail, let us consider the simple case when there are two candidates (0
and 1) and one teller. Let F' be a field with M elements and

F; ={g|g € F and hash(g)(mod 2) = j}

for j € {0,1}. There is no guarantee that Fy = F; and thus the probability
of the two cyclic offsets g = (£2)(£2) + (£1)(£) and 6; = 2(£2)(£2) in the
randomly chosen ballots may be different. This can give an attacker an advantage
in attempting to infer a vote from a ballot receipt: the attacker will guess that
cyclic shift is the one happens with higher probability. To fix this issue, the hash

function should be replaced by a pseudo-random permutation.

3 Randomized Applied w-Calculus

In this section, we present our core process calculus for modeling cryptographic
protocols with coin tosses. The presentation of the calculus is borrowed from [§],
and closely resembles the ones from [9,43,17]. As was first proposed in [36], it
extends the applied m-calculus by the inclusion of a new operator for probabilistic
choice.

3.1 Terms, equational theories and frames

A signature F contains a finite set of function symbols, each with an associated
arity and two special countable sets of constant symbols M and N representing

public and private names, respectively. Variable symbols are the union of two
disjoint sets X and X, used to represent protocol and frame variables, respec-
tively. The sets F, M, N, X and X, are required to be pairwise disjoint. Terms
are built by the application of function symbols to variables and terms in the
standard way. Given a signature F and J) C X U X,,,, we use T (F,)) to denote
the set of terms built over F and). The set of variables occurring in a term w
is denoted by vars(u). A ground term is one that contains no free variables. The
depth of a term t is defined to be the depth of the dag that represents t.

A substitution o is a partial function with a finite domain that maps variables
to terms, where dom(o) will denote the domain and ran(o) will denote the range.
For a substitution ¢ with dom(o) = {z1,...,21}, we will denote o as {z; —
o(x1),...,x, — o(xk)}. A substitution o is said to be ground if every term in
ran(co) is ground and a substitution with an empty domain will be denoted as
(). Substitutions can be extended to terms in the usual way and we write to for
the term obtained by applying the substitution ¢ to the term t.

Our process algebra is parameterized by an equational theory (F, E), where
F is a signature and E is a set of F-Equations. By an F-Equation, we mean
a pair u = v where u,v € T(F \ N, X) are terms that do not contain private
names.

Ezample 1. We can model primitives for symmetric encryption/decryption and
a hash function using the equational theory (Feenc, Fsenc) With signature Feene =
{senc/2, sdec/2, h/1} and equations Fgenc = {sdec(senc(m, k), k) = m}.

Two terms u and v are said to be equal with respect to an equational theory
(F,E), denoted u =g v, if E F u = v in the first order theory of equality.
For equational theories defined in the preceding manner, if two terms containing
private names are equivalent, they will remain equivalent when the names are
replaced by arbitrary terms. We often identify an equational theory (F, F) by
E when the signature is clear from the context. An equational theory E is said
to be trivial if w =g v for any terms u and v and, otherwise it is said to be non-
trivial. For the remainder of this work, we will assume equational theories are
non-trivial. Processes are executed in an environment that consists of a frame
¢ : Xy — T(F) and a binding substitution o : X — T (F).

Definition 1. Two frames o1 and @o are said to be statically equivalent in
equational theory E, denoted ¢1 =g 2, if dom(p1) = dom(y2) and for all
r1,72 € T(F\N, Xy) we have rio1 =g rop1 iff 1192 =g T2¢2.

Intuitively, two frames are statically equivalent if an attacker cannot distin-
guish between the information they contain. A term u € T (F) is deducible from
a frame ¢ with recipe r € T(F \ N,dom(y)) in equational theory E, denoted
¢ Fp u, if rp =g u. We often omit » and E and write ¢ - w if they are clear
from the context.

3.2 Process syntax

We assume a countably infinite set of labels £ and an equivalence relation ~
on £ that induces a countably infinite set of equivalence classes. For ¢ € L, [{]

denotes the equivalence class of £. Each equivalence class is assumed to contain
a countably infinite set of labels. Operators in our grammar will come with a
unique label from £, which, together with the relation ~, will be used to mask
the information an attacker can obtain about the actions of a process. When an
action with label ¢ is executed, the attacker will only be able to infer [¢].

Processes in our calculus are a finite parallel composition of roles, which in-
tuitively are used to model a single actor in a system/protocol. Please note that
we are modeling only a finite number of sessions. Hence we do not allow replica-
tion in our protocol syntax. Roles, in turn, are constructed by combining atomic
actions through sequential composition and probabilistic choice. Formally, an
atomic action is derived from the grammar

A = 0|vat|(z:=w)|[cr Ao A k)| in(2)* | out(u)

where £ € L,z € X and ¢; € {T,u = v} for all i € {1,...,k} where u,v €
T(F\ N,X). In the case of the assignment rule (z := u)‘, we additionally
require that & vars(u). A role is derived from the grammar

R := A|(R-R)|(R+! R)

where p € [0,1], £ € £ and z € X. The 0 process does nothing. The process
v’ creates a fresh name and binds it to = while (z := u)® assigns the term u
to the variable x. The test process [c1 A ... A ck]e terminates if ¢; is T or ¢; is
u = v where u =g v for all ¢ € {1,...,k} and otherwise, if some ¢; is u = v
and u #pg v, the process deadlocks. The process in(x)e reads a term u from
the public channel and binds it to 2 and the process out(u)* outputs a term on
the public channel. The processes R - R’ sequentially executes R followed by R’
whereas the process R +f> R’ behaves like R with probability p and like R’ with
probability 1 — p. Note that protocols in our formalism are simple; a protocol is
said to be simple if there is no principal-level nondeterminism [25].

We will use P and () to denote processes, which are the parallel composition
of a finite set of roles Ry, ..., R,, denoted Ry | ... | R,,. For a process Q, fv(Q)
and bv(Q) denote the set of variables that have some free or bound occurrence
in @, respectively. The formal definition is standard and is omitted for lack of
space. Processes containing no free variables are called ground. We restrict our
attention to processes that do not contain variables with both free and bound
occurrences. That is, for a process Q, fv(Q) Nbv(Q) = 0.

Definition 2. A process Q = Ry | ... | Ry, is said to be well-formed if the
following hold.

1. Every atomic action and probabilistic choice in @ has a distinct label.
2. If label £y (resp. £3) occurs in the role R; (resp. R;) fori,j € {1,...,n}

then i # j iff [(2] # [f2]-

For the remainder of this work, processes are assumed to be well-formed. Unless
otherwise stated, we will also assume that the labels occurring a role come from
the same equivalence class.

Remark 1. For readability, we will omit process labels when they are not relevant
in a particular context.

We now present an example illustrating the type of protocols that can be
modeled in our process algebra.

FEzxample 2. Using our process syntax, we model a simple threshold mix, as de-
scribed in Section 2.1. We will consider the situation when there two users Ag
and A; who want to communicate anonymously through a single mix server M
with users By and By, respectively. The protocol is built over the equational the-
ory with signature Faenc = {sk/1, pk/1, aenc/3, adec/2, pair/2, fst/1, snd/1}
and the equations F,enc given below.

adec(aenc(m,r, pk(k)),sk(k)) =m
fst(pair(mq,ms)) = my
snd(pair(mi, ma)) = mo

For generation of their pubic key pairs, the parties Ay, A1, By, B; and M will
hold private names ka,, ka,, kB,, kB,, and ks, respectively. The protocol will
also have private names ng,ni,ns, ... to model nonces. The nonces ng and n
are the messages that Ay and A; want to communicate. The behavior of each
user and the mix can be described by the roles below (where we use (,) in place
of pair for succinctness).

Ay = out(aenc(aenc(ng, na2, pk(kp,)), na, pk(kar)))
A; = out(aenc(aenc(ny,ns, pk(kp,)), ns, pk(kar)))
M =in(z) - in(z9)-
out((adec(z1,sk(knr)), adec(za, sk(kar)))+
(adec(z2, sk(kar)), adec(z1,sk(kar)))

1
2

3.3 Partially Observable Markov Decision Processes

POMDPs are used to model processes that exhibit both probabilistic and non-
deterministic behavior, where the states of the system are only partially observ-
able. Formally, a POMDP is a tuple M = (Z, z5, Act, A, O, 0bs) where Z is a
countable set of states, z, € Z is the initial state, Act is a countable set of actions,
A Z x Act — Dist(Z) is a partial function called the probabilistic transition
relation, O is a countable set of observations and obs : Z — O is a labeling of
states with observations. The POMDP M is said to be a fully observable MDP
if obs is an injective function. For a distribution p over Z, let support(p) = {z €
Z | u(z) > 0}. An ezecution p of the M is a finite sequence 25 — --- =™ 2,
such that zg = 2z and for each ¢ > 0, 2; RAET tit1 and z;11 € support(fiit1).
Such an execution is said to have length m, denoted |p| = m. The probability
an execution p in M is prob (p) = HLP:I(;l Az, aiq1)(z; + 1) and the set of all
executions will be denoted by Exec(M).

For each state in a POMDP, there is a choice amongst several possible prob-
abilistic transitions. The choice of which probabilistic transition to trigger is
resolved by an attacker. Informally, the process modeled by M evolves as fol-
lows. The process starts in the state z;. After i execution steps, if the process
is in the state z, then the attacker chooses an action « such that A(z,a) = p
and the process moves to state 2’ at the (i + 1)-st step with probability u(z’).
The choice of which action to take is determined by the sequence of observations
seen by the attacker.

For an execution p = zy — --- =™ 2,, we write tr(p) to represent the trace
of p, defined as the sequence obs(zp)ay - - - @yn0bs(2,,). The set of all traces is
Trace(M) = (O, Act)* - O and an attacker is a function A : Trace(M) — Act.
Let Exec (M) C Exec(M) be the smallest set such that z, € Exec(M) and if
p=p % z e Exec? (M) then p/ € Exect(M) and A(tr(p)) = a.

State-based safety properties Given a POMDP M = (Z, z5, Act, A, O, obs), a set
¥ C 7 is said to be a state-based safety property. An execution p = zg —
s 2y 2 of M satisfies W, written p = 4, if zj € Wioral 0 <j < m.
Otherwise p £ 1. We say that M satisfies ¥ with probability > p against
attacker A, denoted M# =, 1, if the sum of the measures in the set {p €
Exec(M) | p is a maximal and p = ¢} is > p. M is said to satisfy ¥ with
probability > p, denoted M |=, 9, if for all adversaries A, M4 |=, 1.

3.4 Process semantics

Given a process P, an extended process is a 3-tuple (P, p, o) where ¢ is a frame
and o is a binding substitution. Semantically, a ground process P over equational
theory (F, E) is a POMDP [P] = (ZU/{error}, zs, Act, A, O, obs) where Z is the
set of all extended processes z; = (P,0,0), Act = (T(F\N,X,)UT) x L/~
and A, O, obs are defined below. Let u - @ denote the distribution g such that
p1(P'yp,0) = u(P,p,0) if P'is P-@Q and 0 otherwise. The distributions u | Q
and @ | p are defined analogously. For a conjunct ¢; (i € {1,...,n}) in a test
process [c1 A ... A ¢,] and a substitution o we write ¢; = T when ¢; is T or ¢;
is u = v where vars(u,v) C dom(o) and uoc =g vo. We define A in Figure 1,
where we write (P, ¢,0) — u if A((P,¢,0),a) = u. For any extended process
(P,p,0) and action o € Act, if A((P,p,0),a) is undefined in Figure 1 then
A((P,p,0),) = Jerror- Note that A is well-defined, as roles are deterministic
and each equivalence class on labels identifies at most one role. For a frame ¢
and equational theory E, we write [¢] to denote the equivalence class of ¢ with
respect to the static equivalence relation =g. We use EQ to denote the set of all
such equivalence classes. Let O = EQ and define obs as a function from extended
processes to O such that for any extended process n = (P, ¢, o), obs(n) = [¢].

Definition 3. An extended process (P,p,0) preserves the secrecy of a term
u in the equational theory (F,E), denoted (P,p,0) =g u, if there is no r €
T(F\ N,dom(p)) such that ¢ b, uo. We write secret(u), to represent the set

Fig.1 Process semantics.

re T(F\N,X,) ¢t u z¢dom(o) x ¢ dom(c) n is a fresh name
IN NEW
. (r,14]) (7, [€])
(1n(a:)£, ©, U) — 6(0,¢,au{z}—>u}) (ngy @, U) I 5(O,<p,au{z}—>n})
wte) Cdomle) i=RomItL o QA0 @upo)
(out(u)£7 ®, U) — 6(0,¢U{w(i,[2])o—>ua},a) (QO . Ql, ®, U) i> e Ql
Vied{l,...,n},a; =T o
([Cl/\"'/\c’fb]£7§07a) %6(0,4/;,6) (O'Q07§070) i>u
vars(u) € dom x ¢ dom &
(u) C (((;)]) Z (0) ASGN (Qo,p,0) = 1 PAR,
((’T = u)év ®, U) — 6(0,(p,au{a:~—>uo}) (QO | Qlu ®, U) i) 12 | Ql
=T PROB ((Qh 2 U) — M PARy
(Q1 45 Q2,6,0) = 8(@1.0.0) T 0(Qarp.0) (Qo | Qu,0,0) = Qo |
of states of [P] that preserve the secrecy of u and secret({uy,...,u,}) to denote
secret(uy) N ... N secret(uy).
Remark 2. For a process P and terms u1, ..., u,, secret({uy,...,u,}) is a state-

based safety property of [P]. For a probability p, we will write P =g , secret(uq, . ..

if [P] [=p secret({u1, ..., un}).

Ezample 3. Consider the mix-net protocol P = Ag | A1 | M defined in Example
2. The protocol is designed to ensure that the messages output by the mix cannot
be linked to the original sends with high probability. That is, the adversary
should be able to do no better than “guess” which output message belongs
to which sender. This hypothesis is violated if, for an output of the mix, the
adversary can identify the sender of the message with probability > % We can
model this property in our framework by adding, for each i € {0,1}, a role

S; = in(z}) - [z} = aenc(n;, nis2, pk(kp,))] - out(s;)

to the process, where s; is a private name. The protocol P preserves the anonymity
of sender A; if (Ao | Ay | M | So | S1) g, 1 secret(s;).

4 Model Checking Algorithm

As seen in Section 3, analyzing randomized protocols requires reasoning about
their underlying semantic objects, POMDPs. In particular, we are interested in
finding an attacker for a given POMDP that maximizes the probability of reach-
ing a set of target (bad) states. Unfortunately, techniques for solving reachability
problems in POMDPs are far less efficient than those for Markov Decision Pro-
cesses (MDPs), the fully observable counterpart to POMDPs (where attackers
are a function from executions to actions). The reason for the added complexity
is that at any given point in the execution of a POMDP, the attacker only knows

a distribution over the current state. Further, an attacker for a POMDP needs to
define a consistent strategy across all executions that produce the same sequence
of observations. The actions chosen in one branch of an execution may affect the
actions that can be made in another branch of the same execution. By contrast,
when trying to maximize a reachability probability in an MDP, one can make
a local decision about which action maximizes the probability of reaching the
target states.

Several results [18,26] corroborate this story, showing that many key verifi-
cation problems for POMDPs are undecidable. Although various solution tech-
niques have been proposed [12], and there have been successful applications to
Al and planning [14], tractable reasoning about POMDPs typically relies on
approximation techniques or simplifications to the model (discounts). Compli-
cating matters further, randomized security protocols induce POMDPs that are
infinitely branching. At every transition corresponding to protocol input, an infi-
nite number of possible recipes can be supplied by a Dolev—Yao attacker. Taming
the state space explosion that results from this infinite branching on inputs is a
huge challenge, even in the non-randomized case. We adopt the philosophy of the
SATMC [5] tool, in that, we will search for bounded attacks. That is, our tool
answers the question; for a given input recipe depth k, what is the maximum
probability of reaching a set of target states? The assumption of bounded recipe
depth allows randomized security protocol to be modeled by POMDPs that are
finite branching.

One of the most successful techniques in the approximation of optimal at-
tackers for POMDPs is to translate a POMDP M into a fully observable belief
MDP B(M) that emulates it. One can then analyze B(M) to infer properties
of M. The states of B(M) are probability distributions over the states of M.
Further, given a state b of B(M), if states z1, 2o of M are such that b(z1),b(22)
are non-zero then z; and z; must have the same observation. Hence, by abuse of
notation, we can define obs(b) to be obs(z) if b(z) # 0. Intuitively, an execution
p="bo -5 b 2 ... 2% b, of B(M) corresponds to the set of all executions
p' of M such that tr(p’) = obs(bg)aiobs(by)ag - - - apobs(by,). The measure of
execution p in B(M) is exactly prob ,,(obs(bg)ai0bs(b)as - - - amobs(by,)).

The initial state of B(M) is the distribution that assigns 1 to the initial state
of M. Intuitively, on a given state b of B(M) and an action «, there is at most one
successor state b*° for each observation o. The probability of transitioning from
b to b*° is the probability that o is observed given that the distribution on the
states of M is b and action « is performed; b*°(2) is the conditional probability
that the actual state of the POMDP is z. The formal definition follows.

Definition 4. Let M = (Z, z5, Act, A, O, 0bs) be a POMDP. The belief MDP
of M, denoted B(M), is the tuple (Dist(Z), .., Act, AB) where AP is defined as
follows. For b € Dist(Z), action o € Act and o € O, let

o= X0 (X AGaE).

z€Z z'€Z Nobs(z")=o0

AB(b,) is the unique distribution such that for each o € O, if Db,a,0 7 0 then
AB(b,a)(b°) = pp.a.0 where for all 2’ € Z,

Loz b(2)-A(z,a) (2 .
ba,o(zl) _ 2 £Z pb),a,o()(=) Zf ObS(Z,) =0 -
0 otherwise

This definition results in a correspondence between the maximal reachability
probabilities in a POMDP M and the belief MDP B(M) it induces. The follow-
ing proposition, due to Norman et al. [40], makes this correspondence precise.
In the result below, for a POMDP (resp. MDP) M and a set of observations O
(resp. states T'), we write prob’y{*(O) (resp. prob’’{*(T")) to denote the maxi-
mum probability with which M# reaches states with observations in O (resp.
states from T) for any adversary A.

Proposition 1. Let M = (Z,zs,Act, A, O,0bs) be a POMDP, O C O and
To = {b € Dist(Z) |Vz € Z.(b(z) > 0 = obs(z) € O)}. Then prob\{*(0) =
probis () (To).

In general, belief MDPs are defined over a continuous state space; even simple
POMDP models can yield an infinite number of distributions on states. It is this
continuous state space that makes belief MDPs difficult to analyze. Fortunately,
the calculus from Section 3.2 doesn’t include an operator for replication. This
means that protocol executions are of a fixed length and can be encoded as
acyclic POMDPs that reach a set of finite absorbing states after a bounded
number of actions. However, even for acyclic POMDPs, the number of reachable
belief states can grow much larger than the number of states in the original
POMDP.

Let @ be a randomized security protocol such that [Q] = (Z, zs, Act, A, O, obs).
Define [Qq] = (Z, zs, Actq, Agq, O, obs) where every a € Acty is such that depth(a) <
d and for all z € Z, Ay(z,a) = A(z,a) if a € Acty and otherwise Ay(z, @) is
undefined. For a security protocol), probability p and safety property ¢, the
bounded model checking problem for depth d is to determine if [Qq] E, ¥. As
described above, [Qg] can be translated into a finite acyclic fully observable be-
lief MDP B([Qq4]). By analyzing B([Q4]), one can generate an attacker for [Qq]
that optimizes the probability of reaching a target set of states Z \ ¢. These
optimal reachability probabilities can be computed using Algorithm 1, where we
assume a finite set of absorbing states B,ps. The algorithm works by recursively
computing the maximum probability of attack by exploring states in a depth-
first fashion. Such an approach can avoid exploring many redundant portions of
the state space.

The correctness of our algorithm, which follows from Proposition 1, is given
below.

Theorem 1. Let @ be a protocol and d € N be such that [Qg] = (Z, zs, Actg, A, O, obs).
For a given probability p and state-based safety property ¢ C Z, if [Qa] Ep ¥ iff
MAXATTACK(d,, Z \) < 1 —p for the belief MDP B([Q4]).

Algorithm 1 On-the-fly model checking of safety properties in finite-length belief
MDPs.

1: procedure MAXATTACK (beliefState b, targetStates T')

2: p<+0

3: if b € B,ps then

4: for z € support(b) do
5: if z € T then

6: p + p+b(z)

7 return p

8: for a € Act do

9: for o € O do

10: p < max(p, MAXATTACK (b*°,T))
11: if p==1 then
12: return 1

13: return p

5 Tool Description and Evaluation

The algorithm for checking safety in randomized security protocols is imple-
mented in the tool, SPAN. We refer the reader to [7] for a detailed discussion
of the implementation and evaluation of SPAN. We describe the salient features
briefly.

Implementation. As described in Section 4, the fundamental routine of SPAN
translates a randomized security protocol into a belief MDP. Each translation
step requires operations from term rewriting as well as solving the static equiv-
alence and deduction problems on protocol frames. Currently, SPAN supports
two external engines for solving the static equivalence and deduction questions:
Kiss [3] and AKiss [15]. Kiss tool supports sub-term convergent theories, while
the AKISS tool supports more general optimally reducing theories and the AC
operation XOR. SPAN implements its own unification algorithm for convergent
equational theories for its term-rewriting engine. For rewriting in the presence
of AC operations, support for integration with Maude [30,24] is also included.
Because attacks on randomized protocols are trees (as opposed to sequences)
attacks are exported to DOT format, which can be rendered visually using the
graphviz framework [1].

Evaluation. We evaluated SPAN on a variety of protocols. Our experiments were
conducted on an Intel core i7 dual quad-core processor at 2.67GHz with 12GB of
RAM. The host operating system was 64 bit Ubuntu 16.04.3 LTS. The examples
that we verified were sender anonymity in Dining Cryptographers-Net [35, 20],,
threshold mixes [22] and pool mixes [46—48], and vote privacy in FOO voting
protocol [32] and Prét & Voter protocol [42]. We attempted to verify all protocols
with a recipe depth of 10; however, for some examples, SPAN did not terminate
within a reasonable time-bound. In such cases, we report the time for a recipe

Table 1 FExperimental results for safety properties. Columns 1-5 describe the
example under test, where column 2 is the number of users in the protocol,
column 3 is maximum recipe depth, column 4 is the maximum attack probability
and column 5 is the security threshold: if the value of column 4 exceeds the
value of column 5, then an attack was found. Columns 6 and 7 give the running
times (in seconds) under the Kiss and Akiss, respectively. Column 8 reports the
number of belief states explored during the model checking procedure. All test
were conducted using Maude 2.7.1 as the term rewriting engine. For protocols
with requiring equational theories with XOR we write n/s (not supported) for
the Kiss engine.

1 2 3 4 5 6 ‘ 7 8
ProOTOCOL PARTIES| DEPTH| ATTACK | THRESHOLD TIME (s) BELIEFS
w/ Kiss|w/ AKISs

DC-net 2 10 1/2 1/2 n/s 23 110

Threshold Mix 4 10 1 1/4 22 70 49
Cascade Mix 2 5 1 1/2 917 2832 55303
Pool Mix 3 5 2/3 1/3 1824 6639 26273
FOO 92 (corrected) 2 10 3/4 3/4 321 918 1813
Prét & Voter 2 10 7/8 3/4 n/s 288 103

depth of 5. As mentioned above, mixes are vulnerable to active attacks, and
our tool was able to capture these attacks. For the FOO voting protocol, we
implemented the anonymous channels using threshold mixes. In the previous
automated analysis of FOO voting protocol (See [15], for example), perfectly
anonymous channels are assumed to exist. This abstraction misses possible at-
tacks. For example, if a threshold mix is used to implement the FOO protocol,
then SPAN found an attack on vote privacy that exploits the flooding attack on
mixes. A similar attack has also been previously reported in [6], which carries
out the analysis of FOO voting protocol in the computational model, and was
discovered by hand. We propose corrections to the FOO protocol to avoid such
attacks. Finally, in order to capture the attack on Prét a Voter protocol de-
scribed above, we assumed that the sum of two hashes is even with probability
% and odd with probability %.

6 Conclusion

We present a bounded model checking algorithm to verify safety properties of
acyclic randomized security protocols. As randomized security protocols are nat-
urally modeled as POMDPs, we adapt the belief MDP construction from POM-
PDP literature in the design of the algorithm. The algorithm exploits the acyclic
nature of the protocols considered and constructs the belief MDP by traversing
the belief MDP in a Depth First Search fashion. The algorithm is implemented

as an extension of SPAN. Our experiments demonstrate the effectiveness of the
tool in uncovering previously unknown attacks in protocols.

We plan to investigate the use of partial order reduction and symmetry re-
duction techniques to combat the state explosion problem. We also plan to inves-
tigate the verification of randomized security protocols without any restriction
of recipe sizes. Another line of investigation that we plan to pursue is the veri-
fication of cyclic randomized security protocols.

Acknowledgements. Andre Scedrov’s foundational work on formal analysis of
security protocols has been an unmistakable inspiration for us, and we thank
him for his mentorship. Rohit Chadha thanks Andre Scedrov for introducing
him to the exciting and challenging field of security protocol analysis, and his
invaluable counsel.

Rohit Chadha was partially supported by grants NSF 1553548 CNS and
NSF CCF 1900924. Mahesh Viswanathan was partially supported by NSF CCF
1901069.

References

1. Graphviz. https://www.graphviz.org/.

2. Martin Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In Aecm Sigplan Notices, volume 36, pages 104-115. ACM, 2001.

3. Martin Abadi and Véronique Cortier. Deciding knowledge in security protocols
under equational theories. Theoretical Computer Science, 367(1):2 — 32, 2006.
Automated Reasoning for Security Protocol Analysis.

4. Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium,
volume 17, pages 335-348, 2008.

5. Alessandro Armando and Luca Compagna. SAT-based model-checking for security
protocols analysis. International Journal of Information Security, 7(1):3-32, Jan
2008.

6. Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal analysis of vote pri-
vacy using computationally complete symbolic attacker. In 23rd European Sympo-
sium on Research in Computer Security, ESORICS, volume 11099 of Lecture Notes
in Computer Science, pages 350-372. Springer, 2018.

7. Matthew S. Bauer. Analysis of randomized security protocols. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 2018.

8. Matthew S. Bauer, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan.
Model checking indistinguishability of randomized security protocols. In Computer
Aided Verification - 30th International Conference, CAV, volume 10982 of Lecture
Notes in Computer Science, pages 117-135. Springer, 2018.

9. Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan. Composing protocols
with randomized actions. In Principles of Security and Trust, pages 189-210, 2016.

10. Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair proto-
col for signing contracts. IEEE Transactions on Information Theory, 36(1):40-46,
1990.

11. Bruno Blanchet, Martin Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. The Journal of Logic and Algebraic
Programming, 75(1):3-51, 2008.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Darius Braziunas. POMDP solution methods. University of Toronto, 2003.

Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier
Pereira, and Roberto Segala. Task-structured probabilistic I/O automata. In
Discrete Event Systems, 2006.

Anthony R Cassandra. A survey of POMDP applications. In Working notes of
AAAI 1998 fall symposium on planning with partially observable Markov decision
processes, volume 1724, 1998.

Rohit Chadha, Vincent Cheval, Stefan Ciobaca, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols. ACM Transac-
tions on Computational Logic, 17(4), 2016.

Rohit Chadha, A Prasad Sistla, and Mahesh Viswanathan. Model checking con-
current programs with nondeterminism and randomization. In Foundations of
Software Technology and Theoretical Computer Science, pages 364-375, 2010.
Rohit Chadha, A Prasad Sistla, and Mahesh Viswanathan. Verification of random-
ized security protocols. In Logic in Computer Science, pages 1-12. IEEE, 2017.
Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. What is decidable
about partially observable Markov decision processes with omega-regular objec-
tives. Journal of Computer and System Sciences, 82(5):878 — 911, 2016.
Konstantinos Chatzikokolakis and Catuscia Palamidessi. Making random choices
invisible to the scheduler. Information and Computation, 2010, to appear.

David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65-75, 1988.

David Chaum, Peter YA Ryan, and Steve Schneider. A practical voter-verifiable
election scheme. In Furopean Symposium on Research in Computer Security, pages
118-139. Springer, 2005.

David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-90, 1981.

Ling Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud University of Nijmegen, 2006.

Manuel Clavel, Francisco Durdn, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet,
José Meseguer, and José F Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2):187-243, 2002.

Véronique Cortier and Stéphanie Delaune. A method for proving observational
equivalence. In Computer Security Foundations, pages 266-276, 2009.

Luca de Alfaro. The verification of probabilistic systems under memoryless partial-
information policies is hard. Technical report, 1999.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.
A storm is coming: A modern probabilistic model checker. In Computer Aided
Verification, pages 592-600. Springer, 2017.

Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. Journal of Computer Security, 17(4):435-487,
2009.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. In Foundations of Security
Analysis and Design, pages 1-50. Springer, 2009.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637-647, 1985.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In International Workshop on the Theory and
Application of Cryptographic Techniques, pages 244—251. Springer, 1992.

Flavio D Garcia, Peter Van Rossum, and Ana Sokolova. Probabilistic anonymity
and admissible schedulers. arXiv preprint arXiv:0706.1019, 2007.

David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing
information. In Workshop on Information Hiding, pages 137-150, 1996.

Philippe Golle and Ari Juels. Dining cryptographers revisited. In Theory and
Applications of Cryptographic Techniques, pages 456—473. Springer, 2004.

Jean Goubault-Larrecq, Catuscia Palamidessi, and Angelo Troina. A probabilistic
applied pi—calculus. In Asian Symposium on Programming Languages and Systems,
pages 175-190, 2007.

Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh S. Venkatesh. DoS
protection for reliably authenticated broadcast. In Network and Distributed System
Security, 2004.

Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the
applied pi calculus. In FEuropean Symposium on Programming, pages 186—-200.
Springer, 2005.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Computer Aided Verification, pages 585-591.
Springer, 2011.

Gethin Norman, David Parker, and Xueyi Zou. Verification and control of partially
observable probabilistic systems. Real-Time Systems, 53(3):354—-402, May 2017.
Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66-92, 1998.

Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
Prét a voter: A voter-verifiable voting system. IFEE Transactions on Information
Forensics and Security, 4(4):662-673, 2009.

Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan. Modular verification
of protocol equivalence in the presence of randomness. In Furopean Symposium on
Research in Computer Security, pages 187-205, 01 2017.

Altair O Santin, Regivaldo G Costa, and Carlos A Maziero. A three-ballot-based
secure electronic voting system. Security and Privacy, 6(3):14-21, 2008.

Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated anal-
ysis of Diffie-Hellman protocols and advanced security properties. In Computer
Security Foundations, pages 78-94, 2012.

Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In International Workshop on Information
Hiding, pages 36-52. Springer, 2002.

Andrei Serjantov and Richard E Newman. On the anonymity of timed pool mixes.
In International Information Security Conference, pages 427-434. Springer, 2003.
Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based
anonymity systems. In European Symposium on Research in Computer Security,
pages 116-131. Springer, 2003.

Vitaly Shmatikov. Probabilistic analysis of anonymity. In Computer Security
Foundations, pages 119-128. IEEE, 2002.

