

1 **Title:** Arbuscular mycorrhizal fungal community responses to drought and nitrogen fertilization in
2 switchgrass stands

3

4 **Authors:**

5 Sarah M. Emery^{1*}

6 Lukas Bell-Dereske²

7 Karen A. Stahlheber^{2,3}

8 Katherine L. Gross^{2,4}

9

10 **Institutions:**

11 ¹Department of Biology, University of Louisville, Louisville KY

12 ²W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI

13 ³Department of Natural and Applied Sciences; University of Wisconsin-Green Bay WI

14 ⁴Department of Plant Biology and Department of Plant Biology and Ecology, Evolution and
15 Behavioral Biology Graduate Program, Michigan State University, East Lansing, MI

16

17 *Contact information for corresponding author:

18 Department of Biology, University of Louisville

19 139 Life Sciences Bldg., Louisville, KY 40292

20 e-mail: sarah.emery@louisville.edu; Office phone: 502.852.5940

21

22

23

24

25 **Abstract:**

26 Anthropogenic global change is increasing the severity and frequency of abiotic stresses such as
27 drought that are likely to affect soil communities. Arbuscular mycorrhizal fungi (AMF) play
28 important roles in many soil processes, so it is important to understand how drought affects AMF
29 biodiversity. This is especially relevant in agricultural systems where crops rely on AMF
30 associations for water and nutrient uptake, and where management decisions such as crop
31 selection and fertilizer application may influence how the AMF community responds to drought.

32 In this study, we examined the effects of reduced precipitation and nitrogen fertilization on AMF
33 richness, community composition, and root and soil colonization in monocultures of two
34 cultivars of switchgrass (*Panicum virgatum*) grown for bioenergy feedstock. We conducted a
35 two-year field experiment using rain-out shelters to manipulate precipitation in mature stands of
36 switchgrass growing in a long-term nitrogen fertilization (0 or 56 kg N ha⁻¹) experiment at the
37 W.K. Kellogg Biological Station Long-Term Ecological Research site in Michigan, USA. We
38 expected that AMF richness and colonization would decrease due to drought, as predicted by the
39 stress exclusion hypothesis. Contrary to our expectations, we found that drought stress increased
40 AMF species richness in fertilized plots by 15%; there was no effect of drought on AMF richness
41 in unfertilized plots. Drought also significantly altered AMF community composition, primarily
42 due to increases in *Rhizophagus* taxa abundance, and reduced AMF root colonization in
43 switchgrass by 6%. We also found variation in AMF richness and colonization across
44 switchgrass cultivars as well as sampling dates. The changes in AMF richness and composition
45 that we observed in this study may have implications for perennial bioenergy feedstock selection
46 and management as changes in AMF communities may feedback to affect host plants.

47 **Key Words:** drought, nitrogen, arbuscular mycorrhizal fungi, biofuels, long-term ecological
48 research, sequencing

49

50 **Abbreviations:** AMF, Arbuscular mycorrhizal fungi; CBDE, Cellulosic Biofuels Diversity
51 Experiment; ERH, Extra-Radical Hyphae; KBS LTER, W.K. Kellogg Biological Station Long
52 Term Ecological Research; N, Nitrogen; NMS, Non-metric Multidimensional Scaling; OTU,
53 Operational Taxonomic Unit; PCR, polymerase chain reaction

54

55 **1. Introduction**

56 The severity and frequency of abiotic stresses on terrestrial systems from drought, heat,
57 salinity, and flooding are expected to increase in the future due to anthropogenic global change
58 (IPCC, 2014; Meehl and Tebaldi, 2004). Increased frequency and intensity of droughts is of
59 particular concern for agricultural systems, as crop yields are often drastically reduced in
60 response to drought (Wilhite, 2000). Many studies examining the effects of abiotic stress on
61 biodiversity of animal and plant communities (e.g., Kottawa-Arachchi and Wijeratne, 2017;
62 Vittoz et al., 2013) have not considered how belowground communities might respond to
63 increases in abiotic stress. Soil communities play important roles in soil processes, especially in
64 agricultural systems, because of their role in water purification, carbon sequestration, and
65 nutrient cycling (Bardgett and van der Putten, 2014). Thus, it is important to understand how
66 abiotic stresses associated with climate change, such as drought, might alter the composition and
67 functioning of belowground communities in agricultural systems.

68 Arbuscular mycorrhizal fungi (AMF) are a major component of soil biodiversity and are
69 known to form symbiotic associations with 80% of terrestrial plants (Smith and Read, 2008).
70 AMF can benefit host plants directly through increased nutrient uptake and indirectly through
71 increases in pathogen resistance and drought tolerance (Gosling et al., 2006; Harrier and Watson,
72 2004; Kivlin et al., 2013). AMF can also improve carbon storage and soil aggregation through
73 the production of extraradical hyphal networks (Olsson and Johnson, 2005). Several studies have
74 shown that drought and other abiotic stresses can alter the AMF-plant relationship (Kivlin et al.,
75 2013; Latef et al., 2016), but very few studies have addressed how AMF communities
76 themselves respond to abiotic stress. Soil microbial diversity often decreases in response to
77 drought (Fahey et al., 2020) and the stress exclusion hypothesis (Millar and Bennett, 2016)

78 predicts that AMF diversity should decrease due to abiotic stress filtering out less-tolerant AMF
79 species. However, this prediction has not been widely tested. Additionally, the responses of
80 AMF communities to stress are often closely linked to changes in the diversity of the host plant
81 community (Cotton, 2018) making it difficult to determine how AMF communities themselves
82 will directly respond to drought.

83 By studying the effects of drought on AMF communities in agricultural systems, it is
84 possible to isolate AMF responses from plant community responses, as the host plant community
85 composition is typically a monoculture, and particularly in perennial crops, is consistent over
86 time (Brussaard et al., 1997; Verbruggen and Kiers, 2010). Grower decisions, such as crop
87 selection and fertilizer application, can also affect AMF responses to drought. For example, in a
88 previous study (Emery et al., 2017), nitrogen fertilization decreased AMF diversity and
89 colonization associated with switchgrass, which may limit AMF community responses to
90 drought due to species filtering (De Boeck et al., 2018). Perennial agricultural systems, such as
91 bioenergy crops, may be particularly susceptible to drought because they are often planted on
92 marginal lands with low fertility and can be more dependent on AMF than annual crops (Liang et
93 al., 2012).

94 In this study, we investigated the effects of drought on AMF communities associated with
95 two cultivars of switchgrass (*Panicum virgatum*) grown in monocultures as a bioenergy
96 feedstock. Switchgrass, a native warm-season grass, is a leading lignocellulosic bioenergy crop
97 in the USA due to its perenniarity (10+ years of production) and efficient nutrient and water use
98 (Parrish and Fike, 2005). Synthetic fertilizers, in particular nitrogen (N), are often applied to
99 increase biomass production; however, fertilizer application comes with economic costs to
100 growers (an estimated \$37/ha; Hallam et al., 2001) and does not always deliver higher yields

101 (e.g., Garten et al., 2011). Drought can cause up to a 35% increase in the cost of biofuel
102 production from lignocellulosic bioenergy crops such as switchgrass due to reduced
103 aboveground biomass production (Morrow et al., 2014), and so represents a real threat to the
104 sustainability of these systems. Switchgrass also associates with AMF (Emery et al., 2018) and
105 reductions in AMF diversity or colonization may affect switchgrass growth as well as ecosystem
106 services associated with this perennial crop (Hoeksema et al., 2010). To better understand how
107 drought and management may affect AMF communities, we established a two-year drought
108 manipulation within a long-term experiment at W.K. Kellogg Biological Station Long Term
109 Ecological Research (KBS LTER) site in Michigan, USA and asked: 1) Does drought reduce
110 AMF richness, alter AMF community composition, or reduce AMF root and soil colonization in
111 switchgrass monocultures? 2) Does synthetic N-fertilization alter AMF community responses to
112 drought? And 3) Are these effects consistent in different cultivars of switchgrass? We expected
113 that drought would reduce AMF richness and colonization associated with switchgrass, in
114 support of the stress exclusion hypothesis (Millar and Bennett, 2016), while N-fertilization
115 would reduce overall AMF richness but stabilize AMF communities to make them less
116 responsive to drought stress (De Boeck et al., 2018). We did not expect AMF responses to vary
117 between the two cultivars of switchgrass in this study, as our previous work found no differences
118 in AMF communities associated with 12 different switchgrass cultivars (Emery et al., 2018).

119

120 **2. Methods**

121 *2.1. LTER cellulosic biofuel diversity experiment design*

122 To characterize the effects of drought on AMF communities associated with switchgrass,
123 we conducted a two-year study at the Cellulosic Biofuels Diversity Experiment (CBDE) at the

124 W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) site in southwest
125 Michigan USA ($42^{\circ}23'47''$ N, $85^{\circ}22'26''$ W). This site averages 810 mm yr^{-1} of precipitation and
126 soils are Kalamazoo series fine loamy, mixed, mesic Typic Hapludalfs (Muñoz and Kravchenko,
127 2011). The CBDE was established as part of the KBS LTER in 2008 (7 years prior to our
128 drought manipulation) to compare production of 12 different biofuel cropping systems varying in
129 species composition and nitrogen input. For this study we focused on four of the 12 systems,
130 which included four replicates each of two cultivars of switchgrass, (“Cave-in-Rock” and
131 “Southlow”; each planted in 2008 at a rate of $3.9 \text{ kg seeds ha}^{-1}$) grown at two levels of
132 fertilization ($56 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ and unfertilized).

133 Both Cave-in-Rock and Southlow are upland ecotypes of switchgrass, which are typically
134 better adapted to drier conditions and cold temperatures compared to lowland ecotypes, and are
135 recommended for planting in the upper Great Lakes region (Casler and Boe, 2003; Cassida et al.,
136 2005). Cave-in-Rock was developed using seed collected from a single native remnant prairie in
137 southern Illinois, while Southlow was developed from seeds collected from 11 native stands
138 growing in southwest Michigan. There has been no intentional selection on either cultivar as a
139 bioenergy feedstock, and both are commonly used for restoration of native grasslands as well as
140 for bioenergy production (Stahlheber et al., 2020). In previous studies of these two cultivars, we
141 found that Southlow can produce more root biomass than Cave-in-Rock and has a suite of
142 physiological traits that may make it more drought tolerant than Cave-in-Rock (Emery et al.,
143 2018; Stahlheber et al., 2020). The four switchgrass treatment combinations in this current
144 experiment were planted in $9 \text{ m} \times 27 \text{ m}$ plots, replicated four times in a randomized block design
145 interspersed with the other eight treatments. Fertilizer (28% N; Urea + Ammonium nitrate) was
146 applied to fertilizer treatment plots every year in the spring. Additional experiment details,

147 including switchgrass biomass responses, can be found in Emery et al. (2020) and at:

148 <https://lter.kbs.msu.edu/datasets/109>.

149

150 *2.2. Precipitation manipulation*

151 In May 2015, we established a precipitation reduction (“drought”) treatment in all of the
152 switchgrass plots, by installing subplots containing 3 m × 2.5 m × 1.8 m rainout shelters placed
153 in either the northwest or southwest corner of each plot (n = 16). The rainout shelters were based
154 on the design of Yahdjian and Sala (2002) and removed 80% of ambient rainfall. Details of the
155 design can be found in Emery et al. (2020). In the alternate west corner of each switchgrass plot,
156 a 3 m × 2.5 m “ambient” subplot was also established. Shelters were installed May through
157 October 2015 and 2016 and removed at the end of each growing season. Shelters reduced soil
158 moisture by ~40% on average (soil water tension: -39.5 vs. -28.2 centibars; paired *t*-test $t_{1,23} =$
159 11.68, $p < 0.001$; Emery et al. 2020). For more details on measures of water stress under shelters
160 see Emery et al. (2020).

161

162 *2.3. AMF community composition and richness*

163 To measure changes in the AMF community, we collected soil cores (2 cm diameter x 15
164 cm deep; 10 per subplot) on three dates (July 2015, July and October 2016) from near the centers
165 of each subplot. Cores from each subplot on each date were pooled, sieved through a 4mm sieve
166 to remove rocks and large roots, and then stored at 4 °C until processed. We extracted DNA from
167 0.25 g of fresh soil subsampled from the pooled soil core samples and processed these for AMF
168 community composition using methods for sequencing and bioinformatics detailed in Emery et
169 al. (2017). Briefly, we used Powersoil DNA Extraction kits to isolate DNA (MOBIO

170 Laboratories, Carlsbad, CA, USA) and the 28S rRNA was targeted using AMF specific fusion
171 primers [FLR3-FLR4, (Gollotte et al., 2004)]. PCR and MiSeq Illumina paired-end sequencing
172 was conducted by the Research Technology Support Facility Genomics Core at Michigan State
173 University, East Lansing, Michigan. Reads were assembled and quality filtered using
174 USEARCH8 (<http://drive5.com/usearch/>). Sequences were dereplicated, clustered chimera
175 checked, filtered, and clustered de novo into unique operational taxonomic units (OTUs, i.e.,
176 DNA sequences or amplicon types) based on 97% identity using the default settings in UPARSE
177 implemented in UEARCH9 (Edgar, 2013, 2016). USEARCH quality filtering, chimera checking
178 using UCHIME, and OTU clustering led to 554 OTUs and 8,517,983 reads. Representative
179 sequences were then classified using the RDP naïve Bayesian classifier against the Fungal LSU
180 training set 11 (Cole et al., 2014; Wang et al., 2007). Any sequences with bootstrap values below
181 60% match with Glomeromycota were removed from the dataset. Taxonomic filtering for AMF
182 specific sequences resulted in 243 OTUs and 4,763,846 reads. We transformed OTU tables using
183 variance stabilizing transformation (VST) in the DeSeq2 package (Love et al., 2014) in R (R
184 Core Team, 2016) to control for biases in PCR amplification and to avoid biases due to
185 rarefaction (McMurdie and Holmes, 2014). We used the vegan package in R (Oksanen et al.,
186 2019) to calculate Chao1 richness based on OTUs in the untransformed community matrix.
187

188 *2.4. AMF root and soil colonization*

189 To measure AMF colonization in plant roots, we extracted fine roots from 100 ml
190 subsamples taken from the pooled soil cores described above from each subplot using a wet-
191 sieve process [500 µm sieve (Milchunas, 2012)]. Roots were cleared with 10% KOH and stained
192 using a 5% vinegar-ink solution using methods modified after Vierheilig et al. (1998). Visual

193 estimation of percent root length colonization was made using 100 fields of view per sample
194 under 200x magnification. To quantify extra-radical hyphae (ERH) growth, we extracted ERH
195 from 20 ml subsamples taken from the pooled cores for each subplot. Soil subsamples were
196 suspended in water, then stained and vacuum filtered through a 45 μ m filter, following methods
197 described in Staddon et al. (1999). AMF hyphae were distinguished from other soil fungi based
198 on their generally aseptate hyphae with characteristic unilateral angular projections (Mosse,
199 1959). ERH length was estimated in 25 fields of view using the gridline intercept method at 100x
200 magnification (Giovannetti and Mosse, 1980).

201

202 *2.5 Data Analysis*

203 We evaluated the effects of drought, fertilization, and switchgrass cultivar on AMF
204 richness (Chao1 index) and AMF root and soil colonization using three-factor general linear
205 models with sample date and plot location as random block terms. These analyses were
206 performed using Systat v. 12 (SYSTAT Software Inc, 2007). We used three-factor
207 PERMANOVA (Anderson, 2001) with sample date and plot location as random block terms to
208 examine overall differences in soil AMF community composition (based on OTU abundance)
209 due to drought, fertilization, and switchgrass cultivar. To visualize differences in soil AMF
210 community structure we performed non-metric multidimensional scaling (NMS) ordinations
211 (McCune et al., 2002) with Bray-Curtis dissimilarity measures based on square-root transformed
212 AMF OTU abundance data. OTU singletons were excluded from the PERMANOVA and NMS
213 to improve resolution of analyses. PERMANOVA and NMS analyses were performed using
214 Primer v. 6 (Anderson et al., 2008).

215 Finally, we conducted an indicator species analysis (Dufrene and Legendre, 1997) to
216 identify any individual AMF OTUs that were uniquely associated with each significant treatment
217 group identified in the PERMANOVA. Monte-Carlo randomizations (999 permutations) were
218 used to test for indicator value significance. Indicator species analyses were conducted using the
219 “indicspecies” package v. 1.7.9 and “multipatt” function (Cáceres and Legendre, 2009) in R.
220

221 **3. Results**

222 *3.1. AMF Richness*

223 A total of 243 AMF taxa (OTUs) were identified from our soil samples. All of the OTUs
224 were from five genera in two families in the order Glomerales. The genus with the most OTUs
225 was *Rhizophagus* (102 OTUs), followed by *Septoglotus* (26 OTUs), *Funneliformis* (16 OTUs),
226 *Glomus* (15 OTUs), and *Claroideoglomus* (13 OTUs). An additional 71 OTUs could only be
227 identified to family (all Glomeraceae).

228 There were no main effects of fertilizer or cultivar on AMF OTU richness (Table 1).
229 Instead, the effects of drought on AMF OTU richness (Chao1) depended on both fertilization
230 treatment and switchgrass cultivar (Table 1). Drought did not have a significant ($p < 0.05$) effect
231 on the number of AMF OTUs in the non-fertilized plots; however, in the fertilized plots AMF
232 OTU richness increased by 15% in response to drought (Fig. 1a, Table S1). The effect of drought
233 on AMF richness differed among the two switchgrass cultivars also: there was no significant
234 effect of drought on AMF richness in Southlow, but a 14% increase in OTU richness in Cave-in-
235 Rock (Fig 1b, Table S1). AMF richness also varied significantly across our three sampling dates
236 (Table 1; Fig. S1), with richness 29-30% higher in July 2015 compared to the two later dates.

237 However, with only three sampling dates, we cannot evaluate causes of this observed variation in
238 AMF communities over time.

239

240 *3.2 AMF community composition*

241 AMF community composition differed significantly in response to drought, but these
242 responses varied in the two cultivars (Fig. 2). The indicator species analysis showed that several
243 *Rhizophagus* OTUs were significant indicators of the Cave-in-Rock drought treatment, and one
244 *Septogiomus* OTU and an unknown Glomeraceae OTU were significant indicators of the Cave-
245 in-Rock ambient precipitation treatment. There were no significant indicators of Southlow
246 drought treatment, while four unknown Glomeraceae OTUs and one *Rhizophagus* OTU were
247 significant indicators of Southlow under ambient conditions (Table 2).

248 The fertilizer treatment also altered AMF community composition, and this was
249 independent of cultivar or drought treatments (PERMANOVA: fertilizer pseudo-F = 1.7, p =
250 0.04). AMF communities became more similar to one another with fertilization (Fig. 2). The
251 indicator species analysis showed that 7 OTUs were significantly associated with fertilization (2
252 *Glomus*, 2 *Rhizophagus*, 1 *Septogiomus*, and 2 unknown Glomeraceae OTUs), while another 8
253 OTUs were significantly associated with the no fertilization treatment (1 *Septogiomus*, 1
254 *Rhizophagus*, 1 *Claroideoglomus*, and 5 unknown Glomeraceae OTUs) (Table 2).

255

256 *3.3. AMF root and soil colonization*

257 Neither fertilizer nor cultivar treatments had significant effects on AMF root colonization
258 (Table 1). The drought treatment had a significant direct effect on AMF root colonization in
259 switchgrass (Table 1, Table S1), and across all treatments drought reduced root colonization by

260 6% (Fig. 1c). Neither fertilization nor switchgrass cultivar affected this response (Table 1, Table
261 S1). There was no effect of any treatment on extra-radical hyphal length in soils associated with
262 switchgrass (Table 1, mean ERH = 161.5 cm g⁻¹ soil across all treatments).

263

264 **4. Discussion**

265 In this study, we found that drought can alter AMF community richness, composition,
266 and root colonization, though the magnitude and direction of these effects often depended on
267 fertilization and host plant cultivar. Surprisingly, drought increased AMF richness in fertilized
268 plots, especially for the Cave-in-Rock cultivar, which was counter to our predictions and
269 conflicts with results from the few other studies that have examined effects of drought on AMF
270 diversity (e.g., Deepika and Kothamasi, 2015; Wu et al., 2011). It is possible that AMF
271 communities sampled in our study had adapted to the N-fertilization treatment; at the time we
272 sampled these treatments had been in place for seven years. The long-term exposure to N-
273 fertilization may have selected for AMF that were better able to positively respond to drought
274 treatment as a secondary stress factor, as proposed by Millar and Bennett's (2016) stress
275 adaptation hypothesis. It is also possible that fertilization selected for more ruderal species that
276 are less competitive during times of increased environmental stress (Chagnon et al., 2013),
277 allowing other AMF taxa to establish and coexist during short-term drought. Drought effects on
278 AMF communities may have been stronger in Cave-in Rock compared to Southlow, as Southlow
279 was developed from populations in southern Michigan, and so may be better adapted to local
280 conditions than Cave-in-Rock (Durling et al., 2008). Notably, we detected significant changes in
281 AMF communities after only two years of a drought manipulation, while other studies have

282 suggested that it can take three or more years for AMF communities to respond to drought
283 (Deveautour et al., 2020).

284 The shift in AMF community composition in response to drought was primarily due to
285 increases in *Rhizophagus* taxa, especially associated with the Cave-in-Rock cultivar. Very little
286 is known about the functions of specific genera of AMF, in part due to continuing revisions in
287 the AMF phylogeny (Redecker et al., 2013). However, some research has demonstrated that
288 AMF taxa vary in their functional roles, including their ability to provide pathogen protection,
289 drought tolerance, or nutrient uptake, as well as life history traits, such as relative investment in
290 intra- vs. extra-radical biomass (Chagnon et al., 2013; Klironomos et al., 2001; Powell et al.,
291 2009). Taxa in Glomeraceae, including *Rhizophagus*, are common in agricultural systems (e.g.,
292 Borriello et al., 2012; Franke-Snyder et al., 2001) and are characterized as having a ruderal or
293 stress-tolerator life history strategy (Chagnon et al., 2013). Research by Lenoir et al. (2016)
294 showed that these taxa are tolerant to a wide range of abiotic stress, and a recent study in a
295 vegetable cropping system found that *Rhizophagus spp.* increased in drought conditions
296 compared to other taxa (Muller et al., 2019). However, further research into the stress tolerance
297 of individual AMF species is warranted.

298 Our finding that drought decreased AMF colonization in switchgrass roots is consistent
299 with findings from other studies, which have demonstrated that abiotic stresses often reduce root
300 colonization, especially arbuscule and vesicle formation (Lenoir et al., 2016; but see Staddon et
301 al., 2003). Drought also has been shown to reduce extraradical hyphae (ERH) elongation (Lenoir
302 et al., 2016). While we did not observe any effect of drought on AMF ERH, this may be because
303 species in Glomeraceae, which comprised the vast majority of taxa in our study, mostly produce
304 intra-radical, not extra-radical, hyphae (Aldrich-Wolfe et al., 2020).

305 Nitrogen fertilization altered AMF community responses to drought and had direct
306 effects on AMF community composition. While overall AMF OTU richness was not affected by
307 long-term fertilizer application, AMF communities were more similar across cultivar and
308 drought treatments in fertilized plots. Other studies have found that N-fertilization causes AMF
309 community convergence in grassland systems due to loss of rare taxa and increases in ruderal
310 taxa (Egerton-Warburton et al., 2007), and several AMF indicator taxa in our study are known to
311 associate with N-enriched soils (Egerton-Warburton and Allen, 2000). It is surprising that we did
312 not see a direct effect of N-fertilization on OTU richness itself. A number of other studies,
313 including our own previous work (Emery et al., 2017), have shown that AMF abundance and
314 diversity is reduced by nitrogen addition (Leff et al., 2015; Treseder, 2004; Zhang et al., 2018).
315 The lack of effect of N-fertilization on AMF in this current study may be a consequence of the
316 intensive agricultural land-use history of this site prior to the experiment (row-crop corn), which
317 may have already excluded rare and disturbance-sensitive AMF taxa (Millar and Bennett, 2016).

318 Finally, while not the main focus of this study, we detected significant temporal
319 variability in AMF communities across the three dates sampled in this experiment. Differences in
320 AMF community composition between 2015 and 2016 were greater than differences due to the
321 drought or fertilization treatments in each year, while we found no differences in AMF
322 communities between the two samples taken in 2015. This suggests that interannual (between
323 year) variation in climate could affect AMF communities more than intra-annual (seasonal)
324 variation in weather or plant phenology. With only two years of sampling, we cannot attribute
325 these differences to any specific climatic or environmental factor. However, the second year of
326 the study (2016), was somewhat hotter and drier than the first (2015), with moderate drought
327 conditions (D1) in July and August (National Integrated Drought Information System, 2008).

328 Switchgrass yield was also lower in 2016 than 2015 perhaps reflecting these conditions (Emery
329 et al., 2020). On the other hand, we did not detect a significant decline in aboveground
330 switchgrass biomass in response to our manipulation of drought in this experiment (Emery et al.,
331 2020), and so it is not clear that changes in AMF communities are directly connected to changes
332 in host biomass. Dirks and Jackson (2020) found that reduced switchgrass biomass was
333 correlated with reduced AMF richness at the family level in a similar experiment in Wisconsin.
334 This suggests that functional, rather than taxonomic, diversity of AMF is important for host
335 growth. More long-term studies are needed to isolate causes and consequences of temporal
336 variability in AMF communities.

337 The changes in AMF richness and composition that we observed in this study may have
338 important implications for management and production of perennial bioenergy feedstock.
339 Changes to AMF communities can feedback to affect host plant survival and growth
340 (Deveautour et al., 2020) as AMF species differ in their abilities to aid in resource uptake
341 (Verbruggen and Kiers, 2010), and AMF community composition can alter crop yield, disease
342 and herbivore resistance, stress resistance, C storage, soil health, and other ecosystem functions
343 (Cotton, 2018). While changes to AMF communities in our experiment do not seem to have
344 direct effects on feedstock yield, changes may be associated with differences in feedstock quality
345 via changes to cell wall composition (Emery et al. 2020). While there is still debate concerning
346 the importance of AMF communities in agricultural production systems (Ryan and Graham,
347 2018), given the rapid response to drought that we observed in this experiment, it is important for
348 future research to understand both the roles of AMF in sustainable bioenergy feedstock
349 production and how this may change with increasing variability in precipitation (Hawkes et al.,
350 2011).

351

352 **Acknowledgements**

353 Support for this research was provided by the US DOE Office of Science (DE-FC02-

354 07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830)

355 to the DOE Great Lakes Bioenergy Research Center, the NSF Long-term Ecological Research

356 Program (DEB 1637653) at the W.K. Kellogg Biological Station, and Michigan State University

357 AgBioResearch (#MCL02519), and USDA NIFA (award #2015-67020-23184) to SME and

358 KLG. We thank Joe Simmons and the rest of the KBS LTER field crew for managing this

359 experiment. We also thank Mark Hammond, Jeff Fox, Brad Gottshall, Matthew Reid, Erin

360 Kinnett, Andrea Howes, Binod Basyal, Aaron Sexton, and Sarah Benton for field and lab

361 assistance. This is KBS contribution #XXXX.

362

363 **References**

364 Aldrich-Wolfe, L., Black, K.L., Hartmann, E.D.L., Shivega, W.G., Schmaltz, L.C., McGlynn,

365 R.D., Johnson, P.G., Keller, R.J.A., Vink, S.N., 2020. Taxonomic shifts in arbuscular

366 mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed

367 and organic coffee agroecosystems. *Mycorrhiza* 30, 513-527.

368 Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance.

369 *Austral Ecol.* 26, 32-46.

370 Anderson, M.L., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER, Plymouth,

371 UK.

372 Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem

373 functioning. *Nature* 515, 505-511.

- 374 Barnes, C.J., Burns, C.A., van der Gast, C.J., McNamara, N.P., Bending, G.D., 2016. Spatio-
375 temporal variation of core and Satellite arbuscular mycorrhizal fungus communities in
376 *Miscanthus giganteus*. *Front. Microbiol.* 7, 12.
- 377 Borriello, R., Lumini, E., Girlanda, M., Bonfante, P., Bianciotto, V., 2012. Effects of different
378 management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular
379 approach. *Biol. Fert. Soils* 48, 911-922.
- 380 Brussaard, L., Behan-Pelletier, V.M., Bignell, D.E., Brown, V.K., Didden, W., Folgarait, P.,
381 Fragoso, C., Freckman, D.W., Gupta, V., Hattori, T., Hawksworth, D.L., Klopatke, C., Lavelle,
382 P., Malloch, D.W., Rusek, J., Soderstrom, B., Tiedje, J.M., Virginia, R.A., 1997. Biodiversity
383 and ecosystem functioning in soil. *Ambio* 26, 563-570.
- 384 Cáceres, M.D., Legendre, P., 2009. Associations between species and groups of sites: indices
385 and statistical inference. *Ecology* 90, 3566-3574.
- 386 Casler, M.D., Boe, A.R., 2003. Cultivar \times environment interactions in switchgrass. *Crop Sci.* 43,
387 2226–2233.
- 388 Cassida, K.A., Muir, J.P., Hussey, M.A., Read, J.C., Venuto, B.C., Ocumpaugh, W.R., 2005.
389 Biomass yield and stand characteristics of switchgrass in south central US environments. *Crop
390 Sci.* 45, 673–681.
- 391 Chagnon, P.L., Bradley, R.L., Maherali, H., Klironomos, J.N., 2013. A trait-based framework to
392 understand life history of mycorrhizal fungi. *Trends Plant Sci.* 18, 484-491.
- 393 Cole, J.R., Wang, Q., Fish, J.A., Chai, B.L., McGarrell, D.M., Sun, Y.N., Brown, C.T., Porras-
394 Alfaro, A., Kuske, C.R., Tiedje, J.M., 2014. Ribosomal Database Project: data and tools for high
395 throughput rRNA analysis. *Nucleic Acids Res.* 42, D633-D642.

- 396 Cotton, T.E.A., 2018. Arbuscular mycorrhizal fungal communities and global change: an
397 uncertain future. *Fems Microbiol. Ecol.* 94, fify179.
- 398 De Boeck, H.J., Bloor, J.M.G., Kreyling, J., Ransijn, J.C.G., Nijs, I., Jentsch, A., Zeiter, M.,
399 2018. Patterns and drivers of biodiversity-stability relationships under climate extremes. *J. Ecol.*
400 106, 890-902.
- 401 Deepika, S., Kothamasi, D., 2015. Soil moisture-a regulator of arbuscular mycorrhizal fungal
402 community assembly and symbiotic phosphorus uptake. *Mycorrhiza* 25, 67-75.
- 403 Deveautour, C., Power, S.A., Barnett, K.L., Ochoa-Hueso, R., Donn, S., Bennett, A.E., Powell,
404 J.R., 2020. Temporal dynamics of mycorrhizal fungal communities and co-associations with
405 grassland plant communities following experimental manipulation of rainfall. *J. Ecol.* 108, 515-
406 527.
- 407 Dirks, A.C., Jackson, R.D., 2020. Community structure of arbuscular mycorrhizal fungi in soils
408 of switchgrass harvested for bioenergy. *Appl. Envir. Microbiol.* 86, 16.
- 409 Dufrene, M., Legendre, P., 1997. Species assemblages and indicator species: The need for a
410 flexible asymmetrical approach. *Ecol. Monog.* 67, 345-366.
- 411 Durling, J.C., Leif, J.W., Burgdorf, D.W., 2008. Registration of Southlow Michigan germplasm
412 switchgrass. *J. Plant Registr.* 2, 60.
- 413 Edgar, R.C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads.
414 *Nature Methods*, dx.doi.org/10.1038/nmeth.2604.
- 415 Edgar, R.C., 2016. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon
416 reads. <http://dx.doi.org/10.1101/081257>.
- 417 Egerton-Warburton, L.M., Allen, E.B., 2000. Shifts in arbuscular mycorrhizal communities
418 along an anthropogenic nitrogen deposition gradient. *Ecol. Appl.* 10, 484-496.

- 419 Egerton-Warburton, L.M., Johnson, N.C., Allen, E.B., 2007. Mycorrhizal community dynamics
420 following nitrogen fertilization: A cross-site test in five grasslands *Ecol. Monog.* 77, 527-544.
- 421 Emery, S.M., Kinnett, E.R., Bell-Dereske, L., Stahlheber, K.A., Gross, K.L., Pennington, D.,
422 2018. Low variation in arbuscular mycorrhizal fungal associations and effects on biomass among
423 switchgrass cultivars. *Biomass Bioenergy* 119, 503-508.
- 424 Emery, S.M., Reid, M.L., Bell-Dereske, L., Gross, K.L., 2017. Soil mycorrhizal and nematode
425 diversity vary in response to bioenergy crop identity and fertilization. *GCB Bioenergy* 9, 1644-
426 1656.
- 427 Emery, S.M., Stahlheber, K.A., Gross, K.L., 2020. Drought minimized nitrogen fertilization
428 effects on bioenergy feedstock quality. *Biomass Bioenergy* 133, 105452.
- 429 Fahey, C., Koyama, A., Antunes, P.M., Dunfield, K., Flory, S.L., 2020. Plant communities
430 mediate the interactive effects of invasion and drought on soil microbial communities. *ISME J.*
431 14, 1396-1409.
- 432 Franke-Snyder, M., Douds Jr, D.D., Galvez, L., Phillips, J.G., Wagoner, P., Drinkwater, L.,
433 Morton, J.B., 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in
434 conventional versus low-input agricultural sites in eastern Pennsylvania, USA. *Appl. Soil Ecol.*
435 16, 35-48.
- 436 Garten, C.T., Brice, D.J., Castro, H.F., Graham, R.L., Mayes, M.A., Phillips, J.R., Post, W.M.,
437 Schadt, C.W., Wullschleger, S.D., Tyler, D.D., Jardine, P.M., Jastrow, J.D., Matamala, R.,
438 Miller, R.M., Moran, K.K., Vugteveen, T.W., Izaurrealde, R.C., Thomson, A.M., West, T.O.,
439 Amonette, J.E., Bailey, V.L., Metting, F.B., Smith, J.L., 2011. Response of "Alamo" switchgrass
440 tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. *Agriculture
Ecosyst. Envir.* 140, 289-297.

- 442 Giovannetti, M., Mosse, B., 1980. An evaluation of techniques for measuring vesicular
443 arbuscular mycorrhizal infection in roots. *New Phytol.* 84, 489-500.
- 444 Gollotte, A., van Tuinen, D., Atkinson, D., 2004. Diversity of arbuscular mycorrhizal fungi
445 colonising roots of the grass species *Agrostis capillaris* and *Lolium perenne* in a field
446 experiment. *Mycorrhiza* 14, 111-117.
- 447 Gosling, P., Hodge, A., Goodlass, G., Bending, G.D., 2006. Arbuscular mycorrhizal fungi and
448 organic farming. *Agric. Ecosyst. Envir.* 113, 17-35.
- 449 Hallam, A., Anderson, I.C., Buxton, D.R., 2001. Comparative economic analysis of perennial,
450 annual, and intercrops for biomass production. *Biomass Bioenergy* 21, 407-424.
- 451 Harrier, L.A., Watson, C.A., 2004. The potential role of arbuscular mycorrhizal (AM) fungi in
452 the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable
453 farming systems. *Pest Manage. Sci.* 60, 149-157.
- 454 Hawkes, C.V., Kivlin, S.N., Rocca, J.D., Huguet, V., Thomsen, M.A., Suttle, K.B., 2011. Fungal
455 community responses to precipitation. *Global Change Biol.* 17, 1637-1645.
- 456 Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T., Pringle,
457 A., Zabinski, C., Bever, J.D., Moore, J.C., Wilson, G.W.T., Klironomos, J.N., Umbanhowar, J.,
458 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal
459 fungi. *Ecol. Lett.* 13, 394-407.
- 460 IPCC, 2014. Summary for Policymakers, in: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J.,
461 Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma,
462 B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (Eds.), *Climate
463 Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.*
464 Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental

- 465 Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New
466 York, NY, USA, pp. 1-32.
- 467 Kivlin, S.N., Emery, S.M., Rudgers, J.A., 2013. Fungal symbionts alter plant responses to global
468 change. *Am. J. Bot.* 100, 1445-1457.
- 469 Klironomos, J., Hart, M., Gurney, J., Moutoglis, P., 2001. Interspecific differences in the
470 tolerance of arbuscular mycorrhizal fungi to freezing and drying. *Can. J. Bot.* 79, 1161-1166.
- 471 Kottawa-Arachchi, J.D., Wijeratne, M.A., 2017. Climate change impacts on biodiversity and
472 ecosystems in Sri Lanka: A review. *Nature Conserv. Res.* 2, 2-22.
- 473 Latef, A., Hashem, A., Rasool, S., Abd Allah, E.F., Alqarawi, A.A., Egamberdieva, D., Jan, S.,
474 Anjum, N.A., Ahmad, P., 2016. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A
475 review. *J. Plant Biol.* 59, 407-426.
- 476 Leff, J.W., Jones, S.E., Prober, S.M., Barberan, A., Borer, E.T., Firn, J.L., Harpole, W.S.,
477 Hobbie, S.E., Hofmockel, K.S., Knops, J.M.H., McCulley, R.L., La Pierre, K., Risch, A.C.,
478 Seabloom, E.W., Schutz, M., Steenbock, C., Stevens, C.J., Fierer, N., 2015. Consistent responses
479 of soil microbial communities to elevated nutrient inputs in grasslands across the globe. *Proc.*
480 *Nat. Acad. Sci. USA* 112, 10967-10972.
- 481 Lenoir, I., Fontaine, J., Sahraoui, A.L.H., 2016. Arbuscular mycorrhizal fungal responses to
482 abiotic stresses: A review. *Phytochemistry* 123, 4-15.
- 483 Liang, C., Jesus, E.d.C., Duncan, D.S., Jackson, R.D., Tiedje, J.M., Balser, T.C., 2012. Soil
484 microbial communities under model biofuel cropping systems in southern Wisconsin, USA:
485 Impact of crop species and soil properties. *Appl. Soil Ecol.* 54, 24-31.
- 486 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for
487 RNA-seq data with DESeq2. *Genome Biol.* 15, 550.

- 488 McCune, B., Grace, J.B., Urban, D.L., 2002. Analysis of Ecological Communities. MjM
489 Software Design, Gleneden Beach, Oregon.
- 490 McMurdie, P.J., Holmes, S., 2014. Waste not, want not: Why rarefying microbiome data is
491 inadmissible. *PLOS Computat. Biol.* 10, e1003531.
- 492 Meehl, G.A., Tebaldi, C., 2004. More intense, more frequent, and longer lasting heat waves in
493 the 21st Century. *Science* 305, 994-997.
- 494 Milchunas, D.G., 2012. Biases and errors associated with different root production methods and
495 their effects on field estimates of belowground net primary production, in: Mancuso, S. (Ed.),
496 *Measuring Roots: An Updated Approach*. Springer, pp. 303-339.
- 497 Millar, N.S., Bennett, A.E., 2016. Stressed out symbiotes: hypotheses for the influence of abiotic
498 stress on arbuscular mycorrhizal fungi. *Oecologia* 182, 625-641.
- 499 Morrow, W.R., Gopal, A., Fitts, G., Lewis, S., Dale, L., Masanet, E., 2014. Feedstock loss from
500 drought is a major economic risk for biofuel producers. *Biomass Bioenergy* 69, 135-143.
- 501 Mosse, B., 1959. Observations on the extra-matrical mycelium of a vesicular-arbuscular
502 endophyte. *Transact. British Mycolog. Soc.* 42, 439-IN435.
- 503 Muller, A., Eltigani, A., George, E., 2019. The abundance of arbuscular mycorrhizal fungal
504 species in symbiosis with okra plants is affected by induced drought conditions in a calcareous
505 substrate. *Rhizosphere* 10, 100150.
- 506 Muñoz, J.D., Kravchenko, A., 2011. Soil carbon mapping using on-the-go near infrared
507 spectroscopy, topography and aerial photographs. *Geoderma* 166, 102-110.
- 508 National Integrated Drought Information System, U.S., 2008. National Integrated Drought
509 Information System NIDIS - Drought.gov - U.S. Drought Portal.

- 510 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R.,
- 511 O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019.
- 512 vegan: Community Ecology Package, R package version 2.5-6 ed.
- 513 Olsson, P.A., Johnson, N.C., 2005. Tracking carbon from the atmosphere to the rhizosphere.
- 514 Ecol. Lett. 8, 1264-1270.
- 515 Parrish, D.J., Fike, J.H., 2005. The biology and agronomy of switchgrass for biofuels. Crit. Rev.
- 516 Plant Sci. 24, 423-459.
- 517 Powell, J.R., Parrent, J.L., Hart, M.M., Klironomos, J.N., Rillig, M.C., Maherli, H., 2009.
- 518 Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular
- 519 mycorrhizal fungi. Proc. Roy. Soc. B: Biol. Sci. 276, 4237-4245.
- 520 R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for
- 521 Statistical Computing, Vienna, Austria.
- 522 Redecker, D., Schüssler, A., Stockinger, H., Sturmer, S.L., Morton, J.B., Walker, C., 2013. An
- 523 evidence-based consensus for the classification of arbuscular mycorrhizal fungi
- 524 (Glomeromycota). Mycorrhiza 23, 515-531.
- 525 Ryan, M.H., Graham, J.H., 2018. Little evidence that farmers should consider abundance or
- 526 diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092-1107.
- 527 Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbiosis, 3rd Edition ed. Academic Press.
- 528 Staddon, P.L., Fitter, A.H., Graves, J.D., 1999. Effect of elevated atmospheric CO₂ on
- 529 mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in
- 530 *Plantago lanceolata* and *Trifolium repens* in association with the arbuscular mycorrhizal fungus
- 531 *Glomus mosseae*. Global Change Biol. 5, 347-358.

- 532 Staddon, P.L., Thompson, K., Jakobsen, I., Grime, J.P., Askew, A.P., Fitter, A.H., 2003.
- 533 Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field.
- 534 Global Change Biol. 9, 186-194.
- 535 Stahlheber, K.A., Lindquist, J., Drogosh, P.D., Pennington, D., Gross, K.L., 2020. Predicting
- 536 productivity: A trait-based analysis of variability in biomass yield among switchgrass feedstock
- 537 cultivars. Agric. Ecosyst. Environ. 300, 106980.
- 538 SYSTAT Software Inc, 2007. SYSTAT v. 12, Chicago, IL.
- 539 Treseder, K.K., 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and
- 540 atmospheric CO₂ in field studies. New Phytolog. 164, 347-355.
- 541 Verbruggen, E., Kiers, E.T., 2010. Evolutionary ecology of mycorrhizal functional diversity in
- 542 agricultural systems. Evol. Appl. 3, 547-560.
- 543 Vierheilig, H., Coughlan, A.P., Wyss, U., Piche, Y., 1998. Ink and vinegar, a simple staining
- 544 technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004-5007.
- 545 Vittoz, P., Cherix, D., Gonseth, Y., Lubini, V., Maggini, R., Zbinden, N., Zumbach, S., 2013.
- 546 Climate change impacts on biodiversity in Switzerland: A review. J. Nature Conserv. 21, 154-
- 547 162.
- 548 Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid
- 549 assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73,
- 550 5261-5267.
- 551 Wilhite, D.A., 2000. Drought as a Natural Hazard: Concepts and Definitions, in: Wilhite, D.A.
- 552 (Ed.), Drought: A Global Assessment. Routledge, London, pp. 1-32.

553 Wu, F., Dong, M., Liu, Y., Ma, X., An, L., Young, J.P.W., Feng, H., 2011. Effects of long-term
554 fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess
555 Plateau of China. *Plant Soil* 342, 233-247.

556 Yahdjian, L., Sala, O.E., 2002. A rainout shelter design for intercepting different amounts of
557 rainfall. *Oecologia* 133, 95-101.

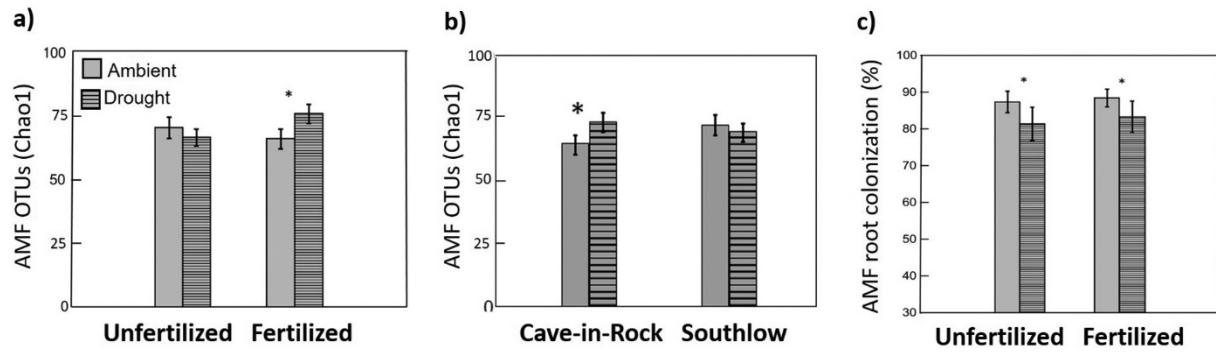
558 Zhang, T.A., Chen, H.Y.H., Ruan, H.H., 2018. Global negative effects of nitrogen deposition on
559 soil microbes. *ISME J.* 12, 1817-1825.

560

561

562 **Table 1.** Results from three-factor general linear models (sample date and plot location as block
 563 terms) examining effects of drought, fertilizer, and switchgrass cultivar on AMF operational
 564 taxonomic unit (OTU) richness, AMF root colonization and AMF extraradical hyphal (ERH)
 565 length. Significant effects ($p < 0.05$) are in bold.

Effect	df	AMF OTU		AMF % root		AMF ERH	
		richness	(chao1)	colonization	length	colonization	length
Drought	1	1.16	0.28	4.21	0.04	0.02	0.90
Fertilizer	1	0.81	0.37	0.29	0.59	0.10	0.76
Cultivar	1	0.42	0.52	1.34	0.25	0.48	0.49
Drought*Fert	1	6.18	0.02	0.02	0.88	2.49	0.12
Drought*Cultivar	1	4.40	0.04	0.10	0.76	0.06	0.81
Fert*Cultivar	1	0.05	0.82	0.24	0.62	2.77	0.10
Drought*Cultivar*Fert	1	0.85	0.36	0.23	0.63	0.64	0.43
Block	3	1.90	0.14	0.48	0.69	1.84	0.15
Sample Date	1	66.94	<0.001	74.14	<0.001	70.82	<0.001

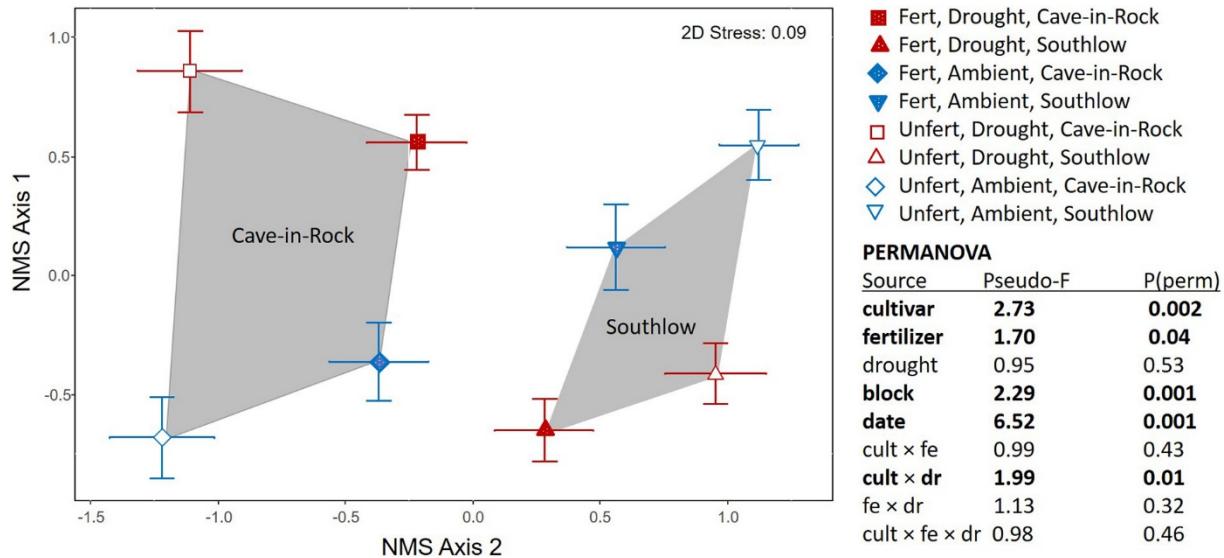

566

567 **Table 2.** Results from Indicator Species Analysis for AMF OTUs associated with drought or
 568 fertilizer treatment. P-values are calculated based on 999 randomizations in a Monte Carlo
 569 simulation. Only significant indicator taxa are reported.

OTU	Genus	Indicator Group	IV statistic (p-value)
OTU64	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.38 (0.001)
OTU87	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.33 (0.007)
OTU236	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.32 (0.01)
OTU253	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.29 (0.03)
OTU308	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.28 (0.04)
OTU174	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.28 (0.04)
OTU401	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.28 (0.03)
OTU244	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.28 (0.04)
OTU367	<i>Rhizophagus</i>	Cave-in-Rock, Drought	0.27 (0.04)
OTU240	Unk. Glomeraceae	Cave-in-Rock, Drought	0.33 (0.008)
OTU65	<i>Septoglomus</i>	Cave-in-Rock, Ambient	0.26 (0.05)
OTU373	Unk. Glomeraceae	Cave-in-Rock, Ambient	0.32 (0.01)
OTU77	Unk. Glomeraceae	Southlow, Ambient	0.35 (0.003)
OTU387	Unk. Glomeraceae	Southlow, Ambient	0.36 (0.002)
OTU446	Unk. Glomeraceae	Southlow, Ambient	0.31 (0.008)
OTU460	Unk. Glomeraceae	Southlow, Ambient	0.32 (0.007)
OTU519	<i>Rhizophagus</i>	Southlow, Ambient	0.28 (0.03)
OTU80	<i>Glomus</i>	Fertilized	0.24 (0.02)
OTU202	<i>Glomus</i>	Fertilized	0.22 (0.03)
OTU161	<i>Rhizophagus</i>	Fertilized	0.23 (0.03)
OTU353	<i>Rhizophagus</i>	Fertilized	0.02 (0.05)
OTU65	<i>Septoglomus</i>	Fertilized	0.20 (0.05)
OTU210	Unk. Glomeraceae	Fertilized	0.26 (0.01)
OTU155	Unk. Glomeraceae	Fertilized	0.23 (0.02)
OTU47	<i>Claroideoglomus</i>	Unfertilized	0.27 (0.008)
OTU280	<i>Rhizophagus</i>	Unfertilized	0.21 (0.04)
OTU425	<i>Septoglomus</i>	Unfertilized	0.22 (0.03)
OTU13	Unk. Glomeraceae	Unfertilized	0.30 (0.002)
OTU387	Unk. Glomeraceae	Unfertilized	0.28 (0.004)
OTU436	Unk. Glomeraceae	Unfertilized	0.26 (0.008)
OTU11	Unk. Glomeraceae	Unfertilized	0.22 (0.04)
OTU18	Unk. Glomeraceae	Unfertilized	0.21 (0.04)

570

571


572

573

574 **Figure 1.** Significant effects of drought, fertilizer, and cultivar treatments on (a-b) AMF OTU
 575 richness and (c) AMF root colonization. Bars are means ± 1 SE. Asterisks indicate significant
 576 pairwise differences ($p < 0.05$) in Fishers LSD post-hoc comparisons.

577

578

579

580 **Figure 2.** PERMANOVA and Non-metric Multidimensional Scaling plot of the treatment means
 581 and standard errors across sampling dates and blocks. Drought treatments are in red, while
 582 ambient treatments are in blue. Unfertilized treatments are indicated with open shapes, while
 583 fertilized treatments are filled.