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Abstract 
It is thought that the brain’s judicious reuse of previous computation underlies our ability to plan flexibly, 
but also that inappropriate reuse gives rise to inflexibilities like habits and compulsion. Yet we lack a 
complete, realistic account of either. Building on control engineering, we introduce a new model for 
decision making in the brain that reuses a temporally abstracted map of future events to enable 
biologically-realistic, flexible choice at the expense of specific, quantifiable biases. It replaces the classic 
nonlinear, model-based optimization with a linear approximation that softly maximizes around (and is 
weakly biased toward) a default policy. This solution exposes connections between seemingly disparate 
phenomena across behavioral neuroscience, notably flexible replanning with biases and cognitive control. 
It also gives new insight into how the brain can represent maps of long-distance contingencies stably and 
componentially, as in entorhinal response fields, and exploit them to guide choice even under changing 
goals. 
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Introduction 
The brain exhibits a remarkable range of flexibility and inflexibility. A key insight from reinforcement 
learning (RL) models is that humans’ ability flexibly to plan new actions – and also our failures sometimes 
to do so in healthy habits and disorders of compulsion – can be understood in terms of the brain’s ability 
to reuse previous computations1–5. Exhaustive, “model-based” computation of action values is time-
consuming; thus, it is deployed only selectively (such as early in learning a new task), and when possible, 
the brain instead bases choices on previously learned (“cached,” “model-free”) decision variables1,4. This 
strategy saves computation, but gives rise to slips of action when cached values are out-of-date. 

However, while the basic concept of adaptive recomputation seems promising, this class of models – even 
augmented with refinements such as prioritized replay, partial evaluation, and the successor 
representation – has so far failed fully to account either for the brain’s flexibility or its inflexibility5,6. For 
flexibility, we still lack a tractable and neurally plausible account how the brain accomplishes the behaviors 
associated with model-based planning. Conversely, the reuse of completely formed action preferences 
can explain extreme examples of habits (such as a rat persistently working for food it doesn’t want), but 
fails fully to explain how and when these tendencies can be overridden, and also many subtler, graded or 
probabilistic response tendencies, such as Pavlovian biases or varying error rates in cognitive control tasks.  

Here, we introduce a new model that more nimbly reuses precursors of decision variables, so as to enable 
a flexible, tractable approximation to planning that is also characterized by specific, graded biases. The 
model’s flexibility and inflexibility (and its ability to explain a number of other hitherto separate issues in 
decision neuroscience) are all rooted in a new approach to a core issue in choice. In particular, we argue 
that the central computational challenge in sequential decision tasks is that the optimal decision at every 
timepoint depends on the optimal decision at the next timepoint, and so on. In a maze, for instance, the 
value of going left or right now depends on which turn you make at the subsequent junction, and similarly 
thereafter; so, figuring out what is the best action now requires, simultaneously, also figuring out what 
are the best choices at all possible steps down the line. This interdependence between actions is a 
consequence of the objective of maximizing cumulative expected reward in this setting and is reflected in 
the Bellman equation for the optimal values7. However, it also greatly complicates planning, replanning, 
task transfer, and temporal abstraction in both artificial intelligence and biological settings8.  

How, then, can the brain produce flexible behavior? Humans and animals can solve certain replanning 
tasks, such as reward devaluation and shortcuts, which require generating new action plans on the fly 6,9–

12. It has been argued that the brain does so by some variant of model-based planning; that is, solving the 
Bellman equation directly by iterative search1,4. However, we lack a biologically realistic account how this 
is implemented in the brain3; indeed, because of the interdependence of optimal actions, exhaustive 
search (e.g., implemented by neural replay13) seems infeasible for most real-world tasks due to the 
exponentially growing number of future actions that must each be, iteratively and nonlinearly optimized. 
It has thus also been suggested that the brain employs various shortcuts that rely on reusing previously 
computed (“cached”) quantities, notably model-free long-run values14,15. 
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One such proposal, which is perhaps the most promising step toward a neurally realistic planning 
algorithm is the successor representation (SR)16, which by leveraging cached expectations about which 
states will be visited in future, can efficiently solve a subset of tasks traditionally associated with model-
based planning5,6. However, it simply assumes away the key interdependent optimization problem by 
evaluating actions under a fixed choice policy (implied by the stored state expectancies) for future steps. 
This policy-dependence makes the model incapable of explaining how the brain can solve other replanning 
tasks, in which manipulations also affect future choices5,17. In general, the precomputed information 
stored by the SR is only useful for replanning when the newly replanned policy remains similar to the old 
one. For instance, a change in goals implies a new optimal policy that visits a different set of states, and a 
different SR is then required to compute it. This is just one instance of a general problem that plagues 
attempts to simplify planning by temporal abstraction (e.g., chunking steps18,19), again due to the 
interdependence of optimal actions: if my goals change, the optimal action at future steps (and, hence, 
the relevant chunked long-run trajectories) likely also change. 

Here, we adopt and build on recent advances in the field of control engineering20–22 to propose a new 
model for decision making in the brain that can efficiently solve for an approximation to the optimal policy, 
jointly across all choices at once. It does so by relying on a precomputed, temporally abstract map of long-
run state expectancies similar to the SR, but one which is, crucially, stable and useful even under changes 
in the current goals and the decision policy they imply. We term the model linear RL, because it is based 
on Todorov’s work with a class of linearly solvable MDPs20–22. It provides a common framework for 
understanding different aspects of animals’ cognitive abilities, particularly flexible planning and 
replanning using these temporally abstract maps, but also biases in cognitive control and Pavlovian 
influences on decision making, which arise directly from the strategy of reuse. 

The model is based on a reformulation of the classical decision problem, which makes “soft” assumptions 
about the future policy (in the form of a stochastic action distribution), and introduces an additional cost 
for decision policies which deviate from this baseline. This can be viewed as an approximation to the 
classic problem, where soft, cost-dependent optimization around a baseline, which we hereafter call the 
default policy, stands in for exact optimization of the action at each successor state. This enables the 
model efficiently to deal with the interdependent optimization problem. Crucially, the form of the costs 
allows the modified value function to be solved analytically using inexpensive and biologically plausible 
linear operations. In particular, the optimal value of any state under any set of goals depends on a 
weighted average of the long-run occupancies of future states that are expected under the default policy. 
Therefore, we propose that the brain stores a map of these long-run state expectancies across all states 
(the default representation, or DR), which gives a metric of closeness of states under the default policy. 
Because the DR depends only on the default policy, and can be used to compute a new optimal policy for 
arbitrary goals, the model can solve a large class of replanning tasks, including ones that defeat the SR. 

Our novel modeling approach also addresses a number of seemingly distinct questions. First, the stability 
of the DR across tasks makes it a candidate for understanding the role in decision-making of multiscale, 
temporally abstract representations in the brain, notably grid cells in the medial entorhinal cortex. These 
cells show regular grid-like firing patterns over space, at a range of frequencies, and have been argued to 
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represent something akin to a Fourier-domain map of task space (e.g., the eigenvectors of the SR, 
equivalent to the graph Laplacian2,23), and could provide some sort of mechanism for spatial24  and mental 
navigation12,25,26. However, it has been unclear how this and similar long-run temporal abstractions are 
actually useful for planning or navigation, because as mentioned long-run (low-frequency) expectancies 
over task space are not stable across tasks due to the interdependence of policy, goals, and 
trajectories27,28. For instance, because the SR only predicts accurately under the training policy, to be even 
marginally useful for replanning the SR theory predicts grid fields must continually change to reflect 
updated successor state predictions as the animal’s choice policy evolves, which is inconsistent with 
evidence29–31. The linear RL theory clarifies how the DR, a stable and globally useful long-run map under a 
fixed default policy, can serve flexible planning. Our theory also provides a new account for updating maps 
in situations which actually do require modification – notably, the introduction of barriers. We show how 
these give rise to additional, separable basis functions in the corresponding DR, which we associate with 
a distinct class of entorhinal response fields, the border cells. This aspect of the work goes some way 
toward delivering on the promise of such response as part of a reusable, componential code for cognitive 
maps12,25. 

Finally, linear RL addresses the flip side of how the brain can be so flexible: why, in some cases it is 
inflexible. We suggest that this is simply another aspect of the same mechanisms used to enable flexible 
planning. While it has long been suggested that fully model-free learning in the brain might account for 
extreme cases of goal-inconsistent habits (e.g., animals persistently working for food when not hungry1), 
there are many other phenomena which appear as more graded or occasional biases, such as Stroop 
effects32,33, Pavlovian tendencies34,35, slips of action36, and more sporadic failures of participants to solve 
replanning tasks6. The default policy and cost term introduced to make linear RL tractable offers a natural 
explanation for these tendencies, quantifies in units of common-currency reward how costly it is to 
overcome them in different circumstances, and offers a novel rationale and explanation for a classic 
problem in cognitive control: the source of the apparent costs of “control-demanding” actions. 

Despite its simplicity, the linear RL model accounts for a diverse range of problems across different areas 
of behavioral neuroscience. In the reminder of this article, we present a series of simulation experiments 
that demonstrate that the theory provides i) a biologically-realistic, efficient and flexible account of 
decision making; ii) a novel understanding of entorhinal grid and border cells that explains their role in 
flexible planning, navigation and inference; iii) a soft and graded notion of response biases and habits; iv) 
an understanding of cognitive control that naturally links it to other aspects of decision systems; and iv) a 
normative understanding of Pavlovian-instrumental transfer (PIT). 

Results 
The Model 
In Markov decision tasks, like mazes or video games, the agent visits a series of states 𝑠𝑠, and at each they 
receive some reward or punishment 𝑟𝑟 and choose among a set of available actions 𝑎𝑎, which then affects 
which state they visit next8. The objective in this setting is typically to maximize the expected sum of future 
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rewards, called the ‘value’ function. Formally, the optimal value 𝑣̅𝑣∗ of some state is given by the sum of 
future rewards, as a series of nested expectations: 

𝑣̅𝑣∗(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) + max
𝑎𝑎𝑡𝑡

� 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) �𝑟𝑟(𝑠𝑠𝑡𝑡+1) + max
𝑎𝑎𝑡𝑡+1

� 𝑃𝑃(𝑠𝑠𝑡𝑡+2|𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)[𝑟𝑟(𝑠𝑠𝑡𝑡+2) + ⋯ ]
𝑠𝑠𝑡𝑡+2

�
𝑠𝑠𝑡𝑡+1

 

or equivalently in recursive form by the Bellman equation7: 

 𝑣̅𝑣∗(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) + max
𝑎𝑎𝑡𝑡

� 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)𝑣̅𝑣∗(𝑠𝑠𝑡𝑡+1)
𝑠𝑠𝑡𝑡+1

, (1) 

where 𝑠𝑠𝑡𝑡, 𝑟𝑟𝑡𝑡 and 𝑎𝑎𝑡𝑡 denote the state, reward and action at time 𝑡𝑡, respectively. Across all states, this 
results in a set of interdependent optimization problems, which can be solved, for instance, by iterative 
search through the tree of future states, computing the maximizing action at each step8. However, in 
realistic tasks with large state spaces, this iterative, nonlinear computation may be intractable.  

Note that prediction can be used for action choice or computing an action selection policy: once we have 
computed 𝑣̅𝑣∗ (the optimal future reward available from each state), we can just compare it across actions 
to find the best action in any particular state and form a policy, 𝜋𝜋∗; for instance, we can evaluate the max 
in equation (1) for any state, plugging in the optimal values of successor states without further iteration. 
However, note also that this depends on having already found the maximizing action at other states down 
the line, since 𝑣̅𝑣∗ depends, recursively, on which actions are taken later, and this in turn depends on the 
assignment of rewards to states (e.g., the agent’s goals). 

If we instead assumed that we were going to follow some given, not necessarily optimal, action selection 
policy 𝜋𝜋 at each subsequent state (say, choosing randomly), then equation (1) would be replaced by a 
simple set of linear equations (eliminating the nonlinear function “max” at each step) and relatively easily 
solvable. This observation is the basis of the SR model2,5,6,16, which computes values as 

 𝐯𝐯�𝜋𝜋 = 𝐒𝐒𝜋𝜋𝐫𝐫, (2) 

where (in matrix-vector form) 𝐯𝐯�𝜋𝜋 is a vector of long-run state values under the policy 𝜋𝜋; 𝐫𝐫 a vector of state 
rewards; and 𝐒𝐒𝜋𝜋 a matrix measuring which subsequent states one is likely to visit in the long run following 
a visit to any starting state: importantly, assuming that all choices are made following policy 𝜋𝜋. However, 
although this allows us to find the value of following policy 𝜋𝜋, this does not directly reveal how to choose 
optimally. For instance, plugging these values into equation (1) won’t produce optimal choices, since 𝐯𝐯�𝜋𝜋 
(the value of choosing according to 𝜋𝜋 in the future) in general does not equal the value, 𝐯𝐯�∗, of choosing 
optimally. The only way to find the latter using equation (2) is by iteratively re-solving the equation to 
repeatedly update 𝜋𝜋 and 𝐒𝐒 until they eventually converge to 𝜋𝜋∗, i.e., the classic policy iteration algorithm. 

A line of research in control engineering has shown that a change in the formulation of this problem, 
which we refer to as linear RL, greatly simplifies the Bellman equation20–22. In this paper, we build on this 
foundation to revisit questions of flexibility and inflexibility in biological learning. To derive this 
simplification, we first assume a one-to-one, deterministic correspondence between actions and 
successor states (i.e., for every state 𝑠𝑠′ reachable in one step from some 𝑠𝑠, assume there is a 
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corresponding action 𝑎𝑎 for which 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) = 1, which is simply denoted by its destination, 𝑠𝑠′). This 
assumption, which we relax later, fits many problems with fully controllable, deterministic dynamics, such 
as spatial navigation (where for each adjacent location, there is a corresponding action taking you there). 
Second, linear RL seeks to optimize not a discrete choice of successor state (action), but a stochastic 
probability distribution 𝜋𝜋 over it21,22. Finally, it redefines the value function to include not just the one-
step rewards 𝑟𝑟 but also at each step a new penalty20–22, called a “control cost,” KL�𝜋𝜋||𝜋𝜋𝑑𝑑�, which is 
increasing in the dissimilarity (KL divergence) between the chosen distribution 𝜋𝜋 and some default 
distribution, 𝜋𝜋𝑑𝑑.  

Linear RL is most naturally a formalism for modeling tasks in which there are some default dynamics (e.g., 
a rocket in a gravitational field) and costly actions to modify them (e.g., firing thrusters burning different 
amounts of fuel). Alternatively, here we view it as an approximation to the original value function, where 
the additional penalty terms modify the original problem to a related one that can be more efficiently 
solved. This is because linear RL deals with the problem of the interdependence of the optimal actions 
across states20–22: the default policy 𝜋𝜋𝑑𝑑  represents a set of soft assumptions about which actions will be 
taken later, which are optimized into an optimal stochastic distribution 𝜋𝜋∗ that is approximately 
representative of the optimal (deterministic) subsequent choices in the original problem.  

Efficient solution is possible because, substituting the penalized rewards into the Bellman equation, the 
optimal value function is now given by a non-recursive, linear equation21,22: 

 exp(𝐯𝐯∗) = 𝐌𝐌𝐌𝐌 exp(𝐫𝐫), (3) 

such as can be computed by a single layer of a simple, linear neural network. Here, 𝐯𝐯∗ is a vector of the 
optimal values (now defined as maximizing cumulative reward minus control cost) for each state; 𝐫𝐫 is a 
vector of rewards at a set of “terminal” states (i.e., various possible goals); 𝐏𝐏 is a matrix containing the 
probability of reaching each goal state from each other, nonterminal, state; and the key matrix 𝐌𝐌, which 
we call the default representation (DR), measures the closeness of each nonterminal state to each other 
nonterminal state (in terms of expected aggregate cost to all future visits) under the default policy. This 
is similar to the SR (𝐒𝐒𝜋𝜋, equation (2)), except that it is for the optimal values 𝐯𝐯∗ (not the on-policy values 
𝐯𝐯𝜋𝜋), and 𝐯𝐯∗ is systematically related to optimal values as defined in the original problem (𝐯𝐯�∗, Eq. 1), with 
the difference being the additional penalties for deviation from the default policy. But these exert only a 
soft bias in 𝜋𝜋∗ toward 𝜋𝜋𝑑𝑑, which furthermore vanishes altogether in an appropriate limit (see Methods). 
Thus, while 𝐌𝐌 does depend on the default policy 𝜋𝜋𝑑𝑑, it is stable over changes in goals and independent 
from 𝜋𝜋∗ in the sense that it can usefully find optimized policies 𝜋𝜋∗ (solving the interdependent 
optimization problem) even when these are far from 𝜋𝜋𝑑𝑑. In comparison, 𝐯𝐯𝜋𝜋 (computed from the SR: 𝐒𝐒𝜋𝜋) 
is only a useful approximation to 𝐯𝐯∗ (and thus only helpful in finding a new 𝜋𝜋∗) when the SR’s learned 
policy 𝜋𝜋 is near the target policy 𝜋𝜋∗. Effectively, linear RL works by introducing a smooth approximation 
of the “max” in equation (1), since the log-average-exp (with the average here taken with respect to the 
default distribution, 𝜋𝜋𝑑𝑑) of a set of values approximates the maximum. The control costs, then, simply 
capture the difference between the original solution and the smooth approximate one. Note that 
distinguishing between terminal and nonterminal states is necessary, as only for this type of finite decision 
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problem are the optimal values linearly computable; however, this places few limits on the flexibility of 
the model (see Discussion).  

Model Performance 
The optimized policy in this model balances expected reward with control cost, and is generally stochastic 
rather than deterministic, like a softmax function (Fig 1a-b). We evaluated the performance of linear RL 
as an approximation to exact solution by considering a difficult, 7-level decision tree task in which each 
state has two possible successors, a set of costs are assigned randomly at each state, and the goal is to 
find the cheapest path to the bottom. We conducted a series of simulations, comparing linear RL with a 
set of benchmarks: exact (model-based) solution, and a set of approximate model-based RL agents14 that 
optimally evaluate the tree up to a certain depth, then “prune” the recursion at that leaf by substituting 
the exact average value over the remaining subtree (Fig 1c; in the one-step case this is equivalent to the 
SR under the random walk policy). For linear RL, the default policy was taken as a uniform distribution 
over possible successor states. Except where stated explicitly, we use the same fixed uniform default 
policy for all simulations, so as to showcase the ability of linear RL to successfully plan without updating 
or relearning task-specific policy expectations, as is generally needed for the SR. Linear RL achieved near-
optimal average costs (Fig 1d). Note that the D1 model in Fig 1d is equivalent to the SR for the random 
walk policy (i.e. a uniform distribution over successor states), because it chooses actions using current 
reward plus the value of successor states computed based on a uniform policy. 

 

Fig 1. The linear RL model. a-b) the model optimizes the decision policy by considering the reward and 
the control cost, which is defined as the KL divergence between the decision policy and a default policy. 
Assuming an unbiased (uniform) distribution as the default policy, the optimal decision policy balances 
the expected reward with the control cost. Although the expected reward is maximum when probability 
of choosing A is close to 1 (and therefore probability of choosing B is about zero), this decision policy 
has maximum control cost due to its substantial deviation from the default policy. The optimal value 
instead maximized expected reward minus the control cost, which here occurs when probability of 
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choosing A is 0.73. c-d) The model accurately approximates optimal choice. We compared its 
performance on a 7-level decision tree task (with random one-step costs at each state) to 6 pruned 
model-based RL algorithms, which evaluate the task to a certain depth (D = 1,..,6; D7 is optimal; D1 is 
equivalent to the successor representation for the random walk policy) and use average values at the 
leaves. Linear RL (LRL) achieved near-optimal average costs (y-axis is additional cost relative to the 
optimum). Local costs of all states were randomly chosen in the range of 0 to 10, and simulations were 
repeated 100 times. Mean and standard error across all simulations relative to the optimal are plotted. 

An important aspect of linear RL is that the DR, 𝐌𝐌, reflects the structure of the task (including the distances 
between all the nonterminal states under the default policy) in a way that facilitates finding the optimal 
values, but is independent of the goal values 𝐫𝐫, and the resulting optimized value and policy (Fig 2). 
Therefore, by computing or learning the DR once, the model is able to re-plan under any change in the 
value of the goals (see below) and also (with some additional computation to efficiently add an additional 
terminal goal state, see Methods), plan toward any new goal with minimal further computation (Fig 2b-
c). In the case of spatial tasks, this corresponds to finding the shortest path from any state to any goal 
state. In fact, our simulation analysis in a maze environment revealed that linear RL efficiently finds the 
shortest path between every two states in the maze (Fig 2d).  

 

Fig 2. Default representation. a) The DR 
corresponding to a three-level decision tree task is 
shown. Each row of the DR represents weighted 
future expectancies starting from the 
corresponding state and following the default 
policy. Therefore, the DR is independent of the 
goals and optimized policy. b-c) The optimized path 
for planning from home (H) to the food (F) state is 
computed based on the DR. The linear RL model is 
efficient because the same DR is sufficient for 
planning towrds a new goal, such as the water (W) 
state. d) The path between every two states in a 10-
by-10 maze environment (d) computed by linear RL 
exactly matches the optimal (shortest) path 
computed by exhaustive search. The DR has been 
computed once and reused (in combination with 
techinuqes from matrix identities) to compute each 
optimal path.  

Replanning 
In both artificial intelligence, and psychology and biology, a key test of efficient decision making is how an 
agent is able to transfer knowledge from one task to another. For instance, many tasks from neuroscience 
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test whether organisms are able, without extensive retraining, to adjust their choices following a change 
in the rewards or goals (“revaluation,” “devaluation,” “latent learning”) or transition map (“shortcut,” 
“detour”) of a previously learned task6,9–11. In general, humans and animals can successfully solve such 
tasks, leading to the question how, algorithmically, this is accomplished. Performance on such transfer 
learning tasks is particularly informative about an agent’s learning strategy both because any successful 
adaptation exercises planning capabilities rather than trial-and-error adjustment, and also because any 
failures can be diagnostic of shortcuts for simplifying planning such as re-use of previously learned 
quantities. We explored the ability of linear RL for solving these types of replanning problems (Fig 3).  

Importantly, the model is able efficiently to solve one class of these problems that has been important in 
neuroscience and psychology – those involving revaluation of goals – because the DR can be used, 
unmodified, to solve any new problem. This corresponds to simply changing 𝐫𝐫 in Eq. 3, and computing 
new values. For instance, linear RL is able to solve a version of Tolman’s latent learning task (Fig 3a), a 
revaluation task in which rats were first trained to forage freely in a maze with two rewarding end-boxes, 
but then were shocked in one of the end-boxes to reduce its value37. This manipulation defeats model-
free RL algorithms like temporal-difference learning, because they must experience trajectories leading 
from the choice to the devalued box to update previously learned long-run value or policy estimates1. In 
contrast, rats are able to avoid the path leading to the devalued end-box on the first trial after revaluation, 
even though they had never experienced the trajectory following the devaluation37. Linear RL is also able 
to correctly update its plans using the DR computed in the training phase (Fig 3b-c). In particular, during 
the revaluation phase, the reward associated with one of the end-boxes changes but the structure of the 
environment remains the same: the revaluation corresponds to a change in 𝐫𝐫 but not 𝐌𝐌. Therefore, the 
agent is able to use the DR computed during the training phase in the test phase and update its policy 
according to revalued reward function.  

The SR is also capable of solving the latent learning task (and similar reward devaluation tasks with only a 
single step of actions widely used in neuroscience9), because the SR, 𝐒𝐒𝜋𝜋, even though learned under the 
original policy 𝜋𝜋, is for typical tasks good enough to compute usable new values from the new reward 
vector5. However, there are many other, structurally similar revaluation tasks – in particular, those with 
several stages of choices – that defeat the SR. We considered a slightly different revaluation task, which 
Russek et al.5,6 termed “policy revaluation” that has this property. Here human subjects were first trained 
to navigate a three-stage sequential task leading to one of the three terminal states (Fig 3d6). The training 
phase was followed by a revaluation phase, in which participants experienced the terminal states with 
some rewards changed. In particular, a new large reward was introduced at a previously disfavored 
terminal state. In the final test, participants were often able to change their behavioral policy at the 
starting state of the task, even though they had never experienced the new terminal state contingent on 
their choices in the task6. 

Importantly, if the SR is learned with respect to the policy used during the training phase, then it will imply 
the wrong choice in the test phase (unless the successor matrix 𝐒𝐒𝜋𝜋 is relearned or recomputed for an 
updated policy 𝜋𝜋), because under the original training policy, the cached successor matrix does not predict 
visits to the previously low-valued state5,17. That is, it computes values for the top-level state (1 in Fig 3d) 
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under the assumption of outdated choices at the successor state (2), neglecting the fact that the new 
rewards, by occasioning a change in choice policy at 2 also imply a change in choice policy at 1. This task 
then, directly probes the agent’s ability to re-plan respecting the interdependence of optimal choices 
across states. Unlike the on-policy SR, linear RL can successfully solve this task using a DR computed for 
many different default policies (including a uniform default, shown here, or an optimized policy learned 
in the training phase), because the solution is insensitive to the default policy (Fig 3e). (Note that because 
this simple example was originally designed to defeat the on-policy SR5,17, both phases can in fact be solved 
by the SR for the uniform random policy. However, it is easy to construct analogous choice problems to 
defeat the SR for any fixed policy, including the uniform one – see also Figure 1 – so work on the SR has 
generally assumed that for it to be useful in planning it must be constantly updated on-policy as tasks are 
learned5,6 16.) 

We finally considered a different class of replanning tasks, in which the transition structure of the 
environment changes, for example by placing a barrier onto the maze as to block the previously preferred 
path11. These tasks pose a challenge for both the SR and DR, since the environmental transition graph is 
cached inside both 𝐒𝐒𝜋𝜋 and 𝐌𝐌5,6, and these must thus be updated by relearning or recomputation in order 
to re-plan. However, people and animals are again often able to solve this class of revaluations6. We 
introduce a novel elaboration to linear RL to permit efficient solution of these tasks. In particular, we 
exploit matrix identities that allow us efficiently to update 𝐌𝐌 in place to take account of local changes in 
the transition graph, then re-plan as before. In particular, the updated DR, 𝐌𝐌, can be written as: 

 𝐌𝐌 = 𝐌𝐌old + 𝐌𝐌Δ, (4) 

where 𝐌𝐌Δ is the new term due to the barrier and it is a low-rank matrix that can be computed efficiently 
using 𝐌𝐌old (see Methods). In fact, the rank of matrix 𝐌𝐌Δ is equal to the number of states whose transition 
has changed. With these in place, the linear RL model can solve this task efficiently and computes the 
modified values and optimized policy using the old DR after updating it with simple operations (Fig 
3h). Interestingly, a similar algebraic update can also be used to update the successor matrix 𝐒𝐒𝜋𝜋 to take 
account of the barrier, but this step is not in itself sufficient for replanning since the training policy 𝜋𝜋 will 
not be correct for the new problem. The ability of the DR to solve for the new optimal policy independent 
of the default policy is also required to exploit this update for efficient replanning. 
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Fig 3. Linear RL can explain flexible replanning. a-c) Performance of linear RL on a version of Tolman’s 
latent learning task (a). We simulated the model in a maze representing this task (b) and plotted the 
probability of choosing each end-box during the training and test phases. The model correctly (c) 
reallocates choices away from the devalued option.  d-e) Performance of linear RL in another reward 
revaluation task5,6, termed policy revaluation (d). Choices from state 1: during the training phase, the 
model prefers to go to state 3 rather than state 2. Revaluation of the bottom level state reverses this 
preference (e) similar to human subjects6. f-h) Performance of the model in Tolman’s detour task. The 
structure of the environment changes in this task due to the barrier placed into the maze (g), which 
blocks the straight path. The model is able to compute the optimized policy using the old DR (following 
a single, inexpensive update to it) and correctly choose the left path in the test phase (h). 

Grid fields 
The linear RL model also highlights, and suggests a resolution for, a central puzzle about the neural 
representation of cognitive maps or world models. It has long been argued that the brain represents a 
task’s structure in order to support planning and flexible decision making11. This is straightforward for 
maximally local information: e.g., the one-step transition map 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) from Eq. 1, might plausibly 
be represented by connections between place fields in hippocampus, and combined with local-state 
reward mappings 𝑟𝑟(𝑠𝑠𝑡𝑡) that could be stored in hippocampal-stratial projections. But using this 
information for planning requires exhaustive evaluation, e.g. by replay13, and strongly suggesting a role 
for map-like representations of longer-scale relationships (aggregating multiple steps) to simplify 
planning19,38.  

Indeed, grid cells in entorhinal cortex represent long-range (low-frequency) periodic relationships over 
space, and theoretical and experimental work has suggested that they play a key role in representation 
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of the cognitive map and support navigation in both physical24 and abstract12,25 state spaces. However, 
the specific computational role of these representations in flexible planning is still unclear. A key concept 
is that they represent a set of basis functions for quickly building up other functions over the state space, 
including future value predictions like 𝑣̅𝑣∗23 and also future state occupancy predictions like the SR2,39. By 
capturing longer range relationships over the map, such basis functions could facilitate estimating or 
learning these functions23. In particular, the graph Laplacian (given by the eigenvectors of the on-policy, 
random walk transition matrix or, equivalently the eigenvectors of the SR for the random walk policy) 
generalizes Fourier analysis to an arbitrary state transition graph, and produces a set of periodic functions 
similar to grid fields2,28, including potentially useful low-frequency ones. Although there are clearly many 
different decompositions possible, this basic approach seems applicable to neural representations of long-
run maps like the SR and DR, and potentially to compressed or regularized learning of them23. 

The puzzle with this framework is that, as mentioned repeatedly, the long-range transition map is not 
actually stable under changes in goals, since it depends on action choices (“max”) at each step of Eq. 1: in 
effect, the spatial distribution of goals biases what would otherwise be a pure map of space, since those 
affect choice policy, which in turn affects experienced long-run location-location contingencies. 
Conversely, basis functions built on some fixed choice policy (like the SR for a particular 𝜋𝜋) are of limited 
utilty for transferring to new tasks5,17. Accordingly, algorithms building on these ideas in computer science 
(such as “representation policy iteration,”27), iteratively update basis functions to reflect changing policies 
and values as each new task is learned. It has been unclear how or whether representations like this can 
usefully support more one-shot task transfer, as in the experiments discussed in the previous section.  

As shown in the previous section, linear RL suggests a resolution for this problem, since the DR is similar 
to the SR but stably useful across different reward functions and resulting choice policies. In particular, 
the comparison between Eqs. 2 and 3 shows that the DR is a stable linear basis for the (approximate) 
optimal value function regardless of the reward function, but the SR is not. Accordingly, we suggest that 
grid cells encode an eigenvector basis for the DR, functions which are also periodic and have grid-like 
properties in 2D environments (Fig 4d). Empirically, the grid cell map is robust to some manipulations and 
affected by others; for our purposes here, two key classes of manipulations are those affecting which 
physical transitions are possible (e.g. barrier locations in space) vs. manipulations affecting which routes 
the animal actually tends to follow (i.e. policy). Because both the SR and DR represent relationships under 
the objective transition graph, both theories predict that grid fields should be affected by changes in the 
objective transition contingencies of the environment (e.g., barrier locations in space; though see the next 
section for another way to address this). This is indeed the case experimentally30,31 (Fig. 4abc). However, 
the key experimental prediction is that grid fields based on the DR can be stable under changes in the 
choice policy, since the default policy can be retained. Conversely the SR (and its eigenvectors) are 
necessarily strongly policy-dependent, so grid fields based on it should change to reflect the animal’s 
tendency to follow particular trajectories2. Experimental data support the DR’s prediction that grid fields 
are surprisingly robust to behavioral changes; for instance, grid cells are affected by walls producing a 
“hairpin maze” but not at all affected in rats trained to run an equivalent hairpin pattern without barriers31 
(Fig. 4ab); grid cells are also affected by the presence or absence of a set of walls the same shape as the 
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animal’s home cage, but whether or not it is the actual home cage (which strongly affects behavioral 
patterns) does not change the responses29 (Fig. 4c). Similar results have been reported in humans using 
functional neuroimaging40. A second difference between the SR and the DR is that the DR (and its 
eigenvectors) include information about local costs along a path; this implies the novel prediction that 
environmental features that make locomotion difficult, like rough terrain or hills, should modulate grid 
responses (see Discussion). 

 
Fig 4. The DR as a model of grid fields.  a-b) Grid fields are sensitive to the geometry of the environment, 
but are stable with respect to behavior (adapted from Derdikman et al.31). Derdikman et al.31 tested 
grid fields in a hairpin maze formed by actual barriers, and compared them to those recorded in a 
“virtual” hairpin maze, in which rats were trained to show hairpin-like behavior in an open field without 
constraining side walls. Grid fields in the virtual hairpin differ from those in the hairpin maze but are 
similar to the open field. b) This similarity is quantified by the correlation between grid fields in a 
baseline from an initial open field test (OF1) and those from the three tasks (HP: hairpin maze; VH: 
virtual hairpin; OF2: the second control open field). c) Grid fields are sensitive to the presence of the 
home cage only insofar as it introduces new barriers in space, but not through the changes it produces 
in behavior (Adapted from Sanguinetti-Scheck and Brecht29). In particular, introducing a plain box (the 
same shape as the home cage) affects grid fields compared to the open field (left); but substuting the 
home cage for the box (right) does not further affect the grid code, although it changes behavior. The 
maps show the correction between grid fields in the two scenarios. d) All eigenvectors of the DR are 
independent from behavioral policies and periodic, similar to grid fields. Three example eigenvectors 
from a 50-by-50 maze are plotted. See Supplementary Fig. 1 for other eigenvectors. 
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Border cells 
As we have already shown, one aspect of the environment that does require updating the DR if it changes 
is the transition structure of the environment, such as barriers. In simulating the Tolman detour task (Fig 
3f-h) we solved this problem using a matrix inversion identity, which rather than expensively recomputing 
or relearning the entire DR with respect to the new transition graph, expresses the new DR as the sum of 
the original DR plus a low-rank correction matrix reflecting, for each pair of states, the map change due 
to the barrier (Eq. 4).  

This operation suggests a novel, componential way to build up spatial distance maps, such as the DR, by 
summing basis functions that correspond to generic components, like walls. In this case, grid cells could 
represent a low-rank (e.g. eigenvector) representation for a baseline map, and other cells could represent 
the contribution of additional environmental features. Here, we highlight the relevance and importance 
of this computational approach in the context of entorhinal border cells (Fig 5a). This is another principal 
family of neurons in the medial entorhinal cortex that fire exclusively when the animal is close to a salient 
border of the environment41, such as the wall; and are generic in the sense that they retain this tuning at 
least across changes in the environment’s geometry. Assuming that the DR has been represented using a 
combination of features from a low-rank basis set, such as its eigenvectors, the columns of the matrix 
term for updating the DR show remarkable similarity to the border cells (Fig 5b). This brings the border 
cells and grid cells under a common understanding (both as basis functions for representing the map), 
and helps to express this map in terms of more componential features, like walls. 

In fact, our framework (Eq. 4) implies two distinct approaches for updating the DR in light of barriers. One 
is to represent additional correction terms 𝐌𝐌Δ as separate additive components, e.g. border cells. The 
second is to adjust the baseline map (e.g. the grid cells, 𝐌𝐌old) in place, e.g. via experiential learning or 
replay to incorporate the change. The latter approach implies that the geometry of the grid cells 
themselves would be affected by the barriers; the former that it would not be. There is some evidence 
that some grid cells show sensitivity to barriers and others are invariant to barriers, and that this might 
depend also on the extent of training in the environment30.Therefore, it might be the case that 𝐌𝐌Δ is 
initially represented separately and later integrated into the map if the environment is stable. 
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Fig 5. The model explains border cells. a) Adapted 
from Solstad et al.41, which shows rate maps for a 
representative border cell in different boxes. b) 
Columns of the matrix required to update the DR 
matrix to account for the wall resemble border 
cells. Four example columns from a 20-by-20 maze 
are plotted. See also Supplementary Fig. 2. 

Planning in environments with stochastic transitions 
We have so far focused on environments with deterministic transitions, such as mazes, in which each 
action reliably selects the next state. This includes many nontrivial sequential decision tasks but excludes 
other stochastically controllable domains that are also relevant to biology. The assumption of fully 
controllable dynamics is part of what enables linear RL to work, because it allows policy optimization to 
occur over the continuous, differentiable space of state transition probabilities. However, it is 
straightforward to extend this approach to stochastic tasks by adding an additional step of approximation. 
First, we solve linearly for the optimal transition dynamics as though the task were fully controllable; next, 
choose the action selection policy that comes closest to achieving these dynamics. (This second 
optimization can be done in several more or less simple ways, but roughly amounts to an additional 
projection; see Methods.) The question then arises to what extent this approach can account for planning 
in biological organisms. Here we exemplify this approach in the stochastic sequential decision task that 
has been most extensively studied in neuroscience, and then consider its limitations.  

Consider the two-step Markov decision task, which has been widely used in psychology and neuroscience 
for examining the extent to which humans and animals utilize model-based vs. model-free learning42. Each 
trial of this task (Fig. 6a) consists of an action choice in each of a series of two states, followed by a terminal 
reward. The action choice at the first state produces a transition to one of the second-stage states, but 
importantly this successor is stochastic: for each first-stage action there is a common transition (with 
probability 0.7) and a rare one (probability 0.3). Subjects must learn to maximize the terminal reward, the 
chance of which is slowly diffusing from trial to trial to encourage continued policy adjustment. 
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The key experimental finding from this task is that humans and animals can solve it in at least a partly 
model-based fashion, as evidenced by the sensitivity of their switching patterns to the task’s transition 
structure42. In particular, due to the symmetry of the state transitions, model-based learning predicts that 
if a terminal state is rewarded (vs. not), then pursuing this reward using an updated policy implies 
increasing the chance of taking the same-first level action to reach the rewarded state if the experienced 
transition was common, but instead switching to the alternative first-level action if the experienced 
transition was rare. People and animals’ choices display this type of sensitivity to the transition model42; 
as expected, linear RL (extended to the stochastic case) also successfully produces this pattern (Fig 6b).  

In this task – and, we conjecture, many planning tasks in stochastic domains that people can readily solve 
– the transition dynamics as optimized by linear RL (to transition to the better state with high probability) 
are similar enough to those actually achievable given stochastic control (to choose the action that leads 
there with 70% probability). However, it is possible to construct scenarios in which this is not the case, 
and the approximation strategy would fail. The main issue again comes down to the interdependence of 
policy across states: there are cases in which ignoring action stochasticity at some state has a dramatic 
effect on the optimal policy at other, predecessor states. For example, in the otherwise similar Markov 
task of Fig 6c, linear RL prefers A1 in S1 (while A2 is the best action on average), because it jointly optimizes 
the first- and second-stage transition dynamics under the assumption that the state transitions at all states 
are controllable. This produces an overly optimistic estimate of the value of S2 and a resulting mistake at 
S1. The current modeling predicts that people will either exhibit greater errors in this type of task, or 
instead avoid them by falling back on more costly iterative planning methods that should be measurable 
in longer planning times. To our knowledge, these predictions are as yet untested. 

 

Fig 6. Linear RL in environments with 
stochastic transitions. a) the two-step Markov 
decision task, in which first-stage actions A1 
and A2 stochastically transition to second-
stage states. b) Linear RL solves this task 
similar to classical model-based learning, such 
that the effect of reward (vs nonreward) on 
the subsequent first-stage choice (stay or 
switch, with respect to that on the current 
trial) depends on the type of transition 
(common: 70%; rare: 30%). c) A task with 
stochastic transitions that linear RL fails to 
solve. Here, taking A1 and A2 at S1 
determinstically leads to S2 and S3, 
respectively. However, taking either of A1 and 
A2 in state S2 stochastically leads to two 
different states with 10 and –10 reward (with 
50%-50% chance). Therefore, expected value 
of state S3 is higher than that of S2, and A2 is 
the optimal action in S1. Linear RL incorrecly 
chooses A1 in S1, however. 
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Habits and inflexible behavior 
We have stressed the usefulness of linear RL for enabling flexible behavior. However, because this is 
permitted by the default policy, the model also offers a natural framework for understanding biases and 
inflexibilities in behavior – and phenomena of cognitive control for overcoming them – as necessary 
consequences of the very same computational mechanisms. The default policy represents soft, baseline 
assumptions about action preferences, which (on this view) are introduced because they help efficiently 
though approximately to solve the problem of forecasting the trajectory of optimal future choices during 
planning. So far, we have simulated it as unbiased (uniform over successors), which works well because 
of the insensitivity of the algorithm to the default policy. However, the same insensitivity equally allows 
for other, non-uniform or dynamically learned default policies. In situations where action choice 
preferences exhibit stable regularities, it can be an even better approximation to build these in via a 
nonuniform default. A non-uniform default policy softly biases the model towards actions that are 
common under it. This aspect of the model naturally captures systematic biases in human behavior, such 
as habits, Stroop effects and Pavlovian biases (next sections), and suggests a novel rationale for them in 
terms of the default policy’s role in facilitating efficient planning. 

In previous sections, we considered a uniform default policy that did not change in the course of decision 
making. Without contradicting these observations (e.g., for the relative stability of grid fields in entorhinal 
cortex), one can elaborate this model by assuming that the default policy might itself change gradually 
according to regularities in the observed transitions (i.e., in the agent’s own on-policy choices). Of course, 
there are many ways to accomplish this; for concreteness, we use a simple error-driven delta rule with a 
small step-size parameter (i.e. learning rate) to train the default policy (see Methods; Simulation details 
for the equation). Note that there is no need to compute the DR matrix from scratch with every step of 
policy update. The DR can be efficiently updated from the old DR using the same matrix inversion identity 
used in previous sections. 

In the long run, this procedure results in biases in the default policy, which then softly biases the decision 
policy; this produces both a higher probability of errors on individual choices (i.e., a higher chance of 
choosing the default action) and a resulting, more global distortion of sequential choice trajectories. Even 
when the step-size is small, overtraining can ultimately substantially bias the default policy toward the 
status quo policy. The degree to which overtraining biases the decision policy also depends on a constant 
parameter in the model, which scales the control cost against rewards (see Methods and Discussion; Fig 
7a-c).  

Experiments with this model exemplify why a nonuniform default policy following overtraining can be 
relatively beneficial or harmful in some revaluation tasks. For example, when the location of a goal 
changes but the new location is close to the previous goal, the new policy overlaps substantially with the 
old one and the bias toward it is beneficial, relative to a uniform default. In Fig 7d-i, we have simulated 
the model in an environment with four rooms, in which the default policy was first trained in a task in 
which the goal is located in the blue square (Fig 7d). Overtraining was beneficial in a new task in which 
the goal was moved to a new location in the same room (Fig 7e-f), but it was harmful in another task in 
which the goal was moved to a location in a different room (Fig 7g-i). In the latter case, the model shows 
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a signature of habitual behavior: it prefers to enter the room that the goal was located during the course 
of training even though the overall resulting trajectory is suboptimal. This is because the experience 
obtained during training cannot be generalized to the new task: the pull of the default policy toward the 
pre-existing one distorts the optimum.  

 

Fig 7. Learning the default policy results in soft habits. a-c) A simple choice task (a) in which the default 
policy has been extensively trained under conditions in which state B is rewarding. In this case, an 
overtrained default policy favors choice of B by default (b) which softly biases choice away from A even 
after the rewarded goal has moved in the test phase (c). This effect is larger when the control cost 
parameter, 𝜆𝜆, is larger. This is because this parameter controls the relative weight of the control cost 
(for diverging from default policy; see Methods, Eq 4). d) The default policy has been trained extensively 
to find a goal located in the blue square. e-f) Performance of the model with overtrained vs. uniform 
(i.e. no training) default polices on this task, in which the goal has been moved but it is still in the same 
room (e). The over-trained model performs better here (f). However, when the goal has been moved 
to a different room (g-i), the model with a uniform default policy (no training; g) performs better than 
the over-trained model, which habitually enters the room in which it has been over-trained in (h). Mean 
and standard error across 100 simulations are plotted in panels f and i. For overtraining, the model has 
experienced 1000 episodes of the task with step-size 0.01. 

Cognitive control 
Cognitive control has been defined as the ability to direct behavior toward achieving internally maintained 
goals and away from responses that are in some sense more automatic but not helpful in achieving those 
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goals33,43. Although the basic phenomena are introspectively ubiquitous, they are also puzzling. Two 
classic puzzles in this area are, first, why are some behaviors favored in this way; and second, why do 
people treat it as costly to overcome them44–46? For instance, is there some rivalrous resource or energetic 
cost that makes some behaviors feel more difficult or effortful than others46,47? Such “control costs” arise 
naturally in the current framework, since actions are penalized if they are more unlikely under the default 
policy. Such deviations from default are literally charged in the objective function, in units of reward: 
though for computational reasons of facilitating planning, rather than energetic ones like consuming a 
resource. This aspect of the model is reminiscent of recent work formulating cognitive control as a 
decision theoretic problem, in which reward is balanced against a control-dependent cost term46,48,49; 
however, linear RL makes an explicit proposal about the functional form and nature of the cost term. 
(Indeed, other work in control engineering suggests alternative rationales for the same KL-divergence cost 
term as well; see Discussion.) 

These control costs trade off in planning against the rewards for different actions, and lead (through the 
stochastic resulting policy) to biased patterns of errors. Fig 8a,b plots the control cost as a function of the 
decision policy, showing that the cost is substantially larger for choosing the action that is less likely under 
the default policy. For instance, action A in this simulation could be the color-naming response in the 
classic Stroop task, in which participants must read the name of a color that it is printed in a differently 
colored ink. People are faster and make fewer errors in word reading compared to color naming, 
presumably because the former is a more common task. For the same reason, we would expect color 
naming to be less likely under the default policy (as arrived at following overtraining in the organism’s 
lifetime, as per the previous section), and incur a larger control cost to execute reliably (Fig 8b). For any 
particular reward function (utility for correct and incorrect responses), this results in a larger chance of 
making errors for this action: a classic Stroop effect.  

Furthermore, since the optimal policy in linear RL model balances the expected reward with the control 
cost, the model correctly predicts that these Stroop biases, although strong, are not obligatory. Instead, 
they can be offset by increasing the rewards for correct performance50 (Fig 8c). In other words, the 
prospect of reward can enhance performance even when the task is very difficult, as has been shown 
experimentally50,51.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2021. ; https://doi.org/10.1101/856849doi: bioRxiv preprint 

https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 

Fig 8. Linear RL captures prepotent actions and 
costs of cognitive control. a-b) The control cost 
is plotted as a function of the decision policy. For 
a uniform distribution (a) as the default policy, 
the control cost is a symmetric function of the 
decision policy. When the default policy is 
skewed toward a more likely response (b), the 
control cost is higher for reliably performing the 
action that is more unlikely under the default. c) 
People show classical Stroop effect in a color-
naming Stroop task in which the name of colors 
are printed in the same or different color. These 
errors, however, are reduced in potential 
reward trials, in which correct response is 
associated with monetary reward51. d) The 
linear RL model shows the same behavior, 
because the default probability is larger for the 
automatic response (i.e. word reading). 
Promising reward reduces this effect because 
the agent balances expected reward against the 
control cost to determine the optimized policy. 

Pavlovian-instrumental transfer 
Another example of response biases in the linear RL model arises in Pavlovian effects. Pavlovian 
relationships are those that arise between a stimulus and outcome (e.g. a bell and food), but not 
contingent on the organism’s behavior. Famously, such associations when learned can trigger reflexive 
responses (e.g., salivation to the bell). More confusingly, such noncontingent experience can also affect 
later (“instrumental”) choices over actions (e.g., lever-pressing for food) which are otherwise thought to 
be controlled by the learned association between the actions and the outcomes. This phenomenon is 
known as Pavlovian-instrumental transfer. Puzzlingly, this happens even though the Pavlovian cues are 
objectively irrelevant to the actions’ outcomes35,52. PIT – in this case, associations between drug-
associated cues and drugs triggering drug-seeking actions – has been argued to play a key role in the 
development of addiction and cue-induced relapse53. 

In a typical PIT task (Fig 9a), animals first learn that a neutral stimulus, such as a light, predicts some 
rewarding outcome in a Pavlovian phase. Later, in an instrumental phase, they learn to press a lever to 
get the same outcome. In the final testing phase, the presentation of the conditioned stimulus biases 
responding toward the action for the associated reward, even though the stimulus has never been 
presented during instrumental phase and the stimulus is objectively irrelevant as the action produces the 
outcome either way (Fig 9b). Existing RL models including the SR (and rational decision theory generally) 
typically fail to explain this result54,55, instead predicting that the presence of the stimulus should not 
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influence behavior in the test phase, because actions predict the same outcome contingencies regardless 
of the stimulus. 

Linear RL naturally explains PIT as another example of biases arising from a learned default policy, because 
during the Pavlovian phase the agent should learn that the reward outcome occurs more often in the 
presence of the conditioned stimulus, which is reflected in the default contingencies. Therefore, during 
the test phase, the presentation of a conditioned stimulus elicits a default policy biased toward the 
corresponding outcome occurring, which favors choosing the corresponding action (Fig 9c). Furthermore, 
this effect is carried by the sensory (state) aspects of the outcome, not its rewarding properties per se. In 
particular, since in the absence of reward, the decision policy is equal to the default policy, the theory 
predicts that PIT effects persist even in the absence of reward, which is consistent with experimental work 
showing that PIT biases survive even under reward devaluation (e.g. for food outcomes tested under 
satiety) (Fig 9d-e). This finding that PIT effects reflect some sort of sensory cuing, and not reward or 
motivational properties of the stimulus per se, is central to the hypothesis that they underlie some 
phenomena in drug abuse such as cue-elicited relapse following extinction53.  

 

Fig 9. Linear RL explains Pavlovian-instrumental 
transfer. a) the task testing outcome-specific PIT 
consists of three phases: a Pavlovian training 
phase, an instrumental training phase and the PIT 
test. Outcomes 1 and 2 are both rewarding. During 
PIT test, both stimuli are presented in succession, 
and “same” responses denote the one whose 
associated outcome matches that associated with 
the presented stimulus, e.g. Response 1 chosen 
following presentation of Stimulus 1. The other 
response is “different.” b-c) Data from Corbit et 
al.56 when rats are hungry (b) and simulated 
behavior of the model (c). The model learns the 
default policy during the Pavlovian phase, which 
biases performance during the PIT test. d-e) 
Outcome-specific PIT persists even when rats are 
sated on both outcomes56 (d). The model shows 
the same behavior (e) because default state 
probabilities learned during Pavlovian training 
influence responses even in absence of reward. 
Mean and standard error are plotted in b and c. 

Discussion 
A central question in decision neuroscience is how the brain can store cognitive maps or internal models 
of task contingencies and use them to make flexible choices, and more particularly how this can be done 
efficiently in a way that facilitates re-use of previous computations and leverages long-run, temporally 
abstract predictions without compromising flexibility. To help answer this question, we identify a core 
issue underlying many difficulties in planning, replanning, and reuse, which is the interdependence of 
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optimal actions across states in a sequential decision task. To solve this problem, we import from control 
theory21,57 to neuroscience a novel computational model of decision making in the brain, called linear RL, 
which enables efficient (though approximate) global policy optimization by relying on soft relaxation away 
from default, stochastic policy expectations.  

This leverages the DR, a stored, long-run predictive map of state and cost expectancies under the default 
policy. The DR is closely related to the SR, and inherits many of the appealing features that have generated 
current excitement for it as a neuroscientific model2,5,6,58. However, linear RL corrects serious problems 
that hobble the practical applicability of the SR. The DR, unlike the SR, exerts only a weak bias toward the 
default policy, and so delivers on the promise of a stable cognitive map11 that can reuse substantial 
computation to transfer learning across contexts without sacrificing flexibility. This allows the model to 
explain animals’ ability to solve reward and policy revaluation problems that otherwise would require 
exhaustive, biologically unrealistic model-based search. For the same reason, the model also helps to 
deliver on the idea that grid cells in entorhinal cortex could provide a broadly useful neural substrate for 
such a temporally abstract map. And the model’s remaining inflexibilities – in general, soft, stochastic 
biases rather than hard failures – connect naturally with phenomena of cognitive control and Pavlovian 
biases and provide a strong theoretical framework for understanding the role of many such biases in both 
healthy and disordered choice.  

This theory provides a unified and realistic computational framework for model-based planning in the 
brain and, therefore, provides a foundation for some suggestions here and much future work studying 
the neural substrates of different aspects of such planning. However, we should emphasize that 
unification at the computational level does not necessarily mean that a single neural system (e.g., 
entorhinal cortex) governs all these computations59. First, the framework encompasses many different 
subprocesses that have been previously associated with different brain systems (including map learning, 
state prediction, policy learning, value prediction, and control for overriding prepotent responses). The 
current framework suggests how these processes might interact, but we do not mean to imply that they 
are all the same thing. Furthermore, even though a particular subfunction – like map/model learning – 
may seem unitary in an abstract, computational sense, it may nonetheless be supported by different brain 
systems in different contexts, such as social vs spatial.  

We motivated linear RL from a computational perspective, in which the central question is how the brain 
efficiently reuses previous computations for flexible replanning. Mathematically, this is enabled by 
introducing a control cost term, given by the dissimilarity (KL divergence) between a default policy, and 
the final, optimized decision policy. We argued that this penalty allows the model to explain a range of 
“model-based” planning and transfer phenomena, and simultaneously explain a separate set of 
inflexibilities in decision making, such as biased behavior, Pavlovian biases, and cognitive control (Figures 
7-9), while also providing a novel, first-principle rationale for the “costs of control” implied by these 
effects. However, it is important to point out that, considered alone, these bias effects (unlike transfer) 
reflect only the control cost aspects of our model, and do not themselves require or exercise model-based 
planning. They would thus be seen, for the same reason, even in model-free algorithms for cost-sensitive 
linear RL such as Todorov’s Z-learning22 and soft Q-learning60. Also, as discussed below, there exist 
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alternative rationales that can motivate the same form of KL-divergence costs, where the default policy 
enters as a baseline expectation for efficient capacity-constrained value coding, or as a prior for Bayesian 
planning-as-inference. These perspectives are not necessarily mutually exclusive, but our proposal to view 
flexible planning as fundamental has the benefit of providing a unified view on two important but 
otherwise mostly separate areas of cognitive neuroscience, i.e. flexible planning and cognitive control.  

The basic planning operation in linear RL is matrix-vector multiplication, which is easily implemented in a 
single neural network layer. The theory offers new insights into the systems-level organization of this 
computation. In particular, the model realizes the promise of a representation that factors a map 
representing the structure of environment, separate from an enumeration of the current value of the 
goals in the environment. This facilitates transfer by allowing update of either of these representations 
while reusing the other. Previous models, like the SR, nominally exhibit this separation, but the hard policy 
dependence of the SR’s state expectancies means that goal information, in practice, inseparably infects 
the map and interferes with flexible transfer5,17.  

In fact, in order to facilitate efficient planning, the linear RL model actually factors the map into three 
rather than two pieces, distinguishing between terminal states (representing goals), and nonterminal 
states (those that may be traversed on the way to goals); and dividing the map into one matrix encoding 
long-run interconnectivity between nonterminal states (the DR, 𝐌𝐌) and a second matrix representing one-
step connections from nonterminal states to goals (𝐌𝐌). This is a necessary restriction, in that only for this 
type of finite decision problem are the optimal values linearly computable. However, this classification is 
not inflexible, because we also introduce novel techniques (based on matrix inversion lemmas) that allow 
dynamically changing which states are classed as goals. This allows the model (for example) to plan the 
best route to any arbitrary location in a maze (Fig 2d). Representing goals as terminal states also means 
that the model does not directly solve problems that require figuring out how best to visit multiple goals 
in sequence. However, this restriction has little effect in practice because these can either be treated as a 
series of episodes, re-starting at each goal, or by including subgoals within the nonterminal states, since 
the model does optimize aggregate cost over trajectories through nonterminal states as well.  

This last point raises several interesting directions for future work. First, although there is evidence that 
humans choose their goal and plan towards that goal61, there is some empirically underconstrained 
theoretical flexibility in specifying how a task’s state space should be partitioned into terminal and 
nonterminal states. For the simulations here, we have tentatively adopted the principle that all discrete, 
punctate outcomes (like food or shock) are represented as terminal goal states with corresponding value 
in 𝐫𝐫, and the rest of the (nonterminal) states contain only costs, constant everywhere, meant to capture 
the cost of locomotion. But, in general, state-dependent costs can be included for nonterminal states as 
well. These in effect modulate the “distance” between states represented within the DR (see Methods). 
Nevertheless, this leads to the testable prediction that to whatever extent state-specific costs are 
accounted for within nonterminal states, they should affect hypothetical neural representations of the 
DR, such as grid cells. For instance, unlike for the SR, the DR predicts that by increasing locomotion cost, 
hills or rough terrain should increase “distance” as measured in the grid map (Supplementary Fig. 3). This 
aspect of the DR may be relevant for explaining recent evidence that grid cells have some subtle 
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sensitivities to reward62,63 which cannot be explained, as the SR-eigenvector account would predict, as 
secondary to changes in behavioral policy (e.g., not due to occupancy around rewarding locations63, nor 
variations in trajectories or speed62).   

Linear RL in its basic form requires one other formal restriction on tasks, compared to standard Markov 
decision processes as often assumed by other RL theories in theoretical neuroscience. This is that the task 
is deterministically controllable. This is a good fit for many important sequential tasks, such as spatial 
navigation (I can reliably get from location A to location B by taking a step forward) and instrumental 
lever-pressing, but does not exactly map to tasks that include irreducibly stochastic state transitions. We 
show, however, that it is possible to address the latter class of tasks by approximating them as controllable 
and producing an intermediate approximate solution via linear RL. Though extremely simple, this 
approach can solve tasks such as two-step noisy Markov decision tasks that we and others have used to 
study model-based planning in humans and animals42. This approximation may be sufficient in practice 
for many realistic cases, though we also show that tasks can be constructed to defeat it (Fig 6c). It remains 
to be tested how or whether people solve these cases. It may also be possible to use other forms of 
approximation to extend linear RL to a broader class of stochastic environments22, but it remains for future 
work to explore how far this can be pushed.  

We have stressed how the DR can be used for planning, and also how it embodies substantial, reusable 
computation (specifically, predictions of long-run future state occupancy and cost-to-go), relative to 
simpler, easy-to-learn map representations like the one-step state adjacency model 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡). We have 
not, so far, discussed how the DR can itself be learned or computed. There are several possibilities: two 
inherited from previous work on the SR5 and one newly introduced here. First, like the SR, the DR can be 
learned gradually by actual or replay-based sampling of the environment, using a temporal difference 
rule5,16. Second, again like the SR, the DR can be constructed from the one-step transition matrix and costs 
(which can themselves be learned directly by Hebbian learning) by a matrix inversion, or equivalently a 
sum over a series of powers of a matrix. The latter form motivates attractor methods for computing the 
inverse iteratively by a simple recurrent network5,64,65. 

A third possibility for learning the DR follows from the novel method we introduce for using matrix 
inversion identities to efficiently update the DR in place to add additional goals, barriers, or shortcuts (see 
Methods). This works by expressing the inverse matrix in terms of the inverses of simpler component 
matrices (one of which is the pre-update DR), rather than for instance by updating the transition matrix 
and then, expensively, re-inverting the whole thing. For instance, we used this to solve tasks, such as 
Tolman’s detour task, in which the transition structure of the environment changes. It could also be used, 
state by state or barrier by barrier, as a learning rule for building up the DR from scratch. 

Suggestively, this insight that the Woodbury matrix inversion identity can be used to decompose a DR 
map (an inverse matrix) into the sum of component maps, each associated with different sub-graphs of 
the transition space, offers a promising direction for a direct neural implementation for representing and 
constructing maps componentially: via summing basis functions, here represented by the low-rank 
Woodbury updates or some further function of them. This idea dovetails with – and may help to formalize 
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and extend – the emerging idea that maps in the brain are built up by composing basis functions, such as 
those putatively represented in the grid cells2,12,26,39,66. Here, we showed that the term required to update 
the DR when encountering a wall remarkably resembles entorhinal border cells41. Therefore, our theory 
unifies the functional roles of entorhinal grid and border cells in planning and navigation, both as neural 
codes for making long-term maps that are useful for planning. We believe that this is the first step toward 
constructing a fully componential model of maps, which should be thoroughly studied in the future. 
Beyond its direct consequences, our model also opens the way for future work giving a more detailed 
account of different patterns of change in entorhinal maps under different environmental changes. 
Empirically, such changes arise both gradually and abruptly. Although we have emphasized the robustness 
of planning to the choice of default policy, since the DR depends on the default policy, any situations such 
as overtraining that produce a biased default policy (Fig 7), could ultimately and gradually lead to maps 
that are sensitive to the transition statistics of past behavior67. There are also situations in which abrupt 
recalculation of the DR might be necessary, for example following substantial changes in the environment. 
This is broadly consistent with findings that grid fields can dramatically remap in such situations68–70. 

For making the connection between the DR and entorhinal grid fields, we followed Stachenfeld and 
others2 and used a graph Laplacian approach, in which the DR is represented using its eigen-
decomposition. Although there are a number of reasons (including the parallels with entorhinal fields, and 
the efficiency of the Woodbury updates) to think that the brain represents maps via some decomposition 
similar to this, we are not committed to this specific decomposition as a mechanistic neural model. 
Instead, our main motivation for taking this approach was descriptive, to investigate the properties of the 
DR and to highlight its relationship with multiscale, periodic functions qualitatively similar to grid cells. 
We believe that this approach is revealing, despite its many limitations, including the fact that 
eigenvectors of the DR (and the SR) show a wide range of frequencies, not only hexagonally symmetric 
fields66. Notably, eigenvectors can also be learned using biologically-plausible networks trained by Oja’s 
rule66,71, and it has been suggested that since eigen-decomposition is commonly used for compression, 
this approach could also be used to allow a regularized SR or DR to be learned and represented more 
efficiently2. However, this results in a loss of information if only a subset of eigenvectors is used. 
Nevertheless, the eigen-decomposition is by no means the only possible approach for efficient 
representation of the DR. In fact, the DR, at least in open fields with a fixed cost, has a redundant structure 
that can be exploited for efficient and exact representation, and a fully compositional account of border 
cells would require additional nonlinearities to account for their translation to different locations in space. 
This is a topic that goes beyond the scope of the current work and which we plan to pursue in future work. 

Our model is based on the notion of the default policy, which is a map of expected state-to-state transition 
probability regardless of the current goals. Unlike previous RL models, such as the SR, linear RL does not 
entirely rely on the default policy and instead optimizes the decision policy around the default policy. This 
means that the final optimized policy is between the exact, deterministic optimized policy, and the 
default. The degree of this bias is controlled by a free parameter, 𝜆𝜆, that scales the control costs relative 
to rewards and corresponds to the temperature in the softmax approximation to the optimization. In the 
limits of zero, or respectively infinite, control cost scaling, the approximation to the optimum becomes 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2021. ; https://doi.org/10.1101/856849doi: bioRxiv preprint 

https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

exact, or the default policy dominates completely. How should this parameter be set, and why not always 
take it near zero to improve the fidelity of the approximation? Linear RL works by multiplying very small 
numbers (future occupancies) times very large numbers (exponentiated, scaled rewards) to approximate 
the maximum expected value. Making this work effectively across different decision situations in the brain 
requires careful control of scaling to manage limits on precision (e.g. maximum spike rate and 
quantization, analogous to numerical precision in computers). This suggests fruitful connections (for 
future work) with research on gain control and normalization72, and rational models for choice using noisy 
representations73,74.  

The same tradeoff can also be understood from principles of efficient information theoretic coding75 and 
from the perspective of Bayesian planning as inference76,77. Here, the default policy plays the role of prior 
over policy space and rewards play the role of the likelihood function. In this case, the decision policy is 
the posterior that optimally combines them57. Then, how much the default should influence the decision 
policy depends on how informative a prior it is (e.g. how reliable or uncertain it has been previously). This 
also suggests another distinct perspective on the default policy’s role, in the model, in producing 
prepotent biases that can be overcome by cognitive control43,46. On this view, it serves to regularize 
behavior toward policies that have worked reliably in the past; and deviations from this baseline are 
presumptively costly. This perspective also provides the theoretical basis to exploit the machinery of 
probabilistic graphical modeling for unifying models of planning and inference in neuroscience.  

Indeed, our framework can encompass many different possibilities not just for how strongly the default 
policy is emphasized, but also how it is learned or chosen. In general, while the model provides a good 
approximation to the true optimal values independent of which default policy is used (so long as its cost 
is scaled appropriately relative to the rewards), we can also ask the converse question – which default 
policy should be chosen to allow for the best approximation and thereby obtain the most (actual) reward? 
The answer is of course, that the cost term (measuring the divergence between true and approximate 𝐯𝐯∗) 
is minimized whenever the future 𝜋𝜋∗ is equal to the default 𝜋𝜋𝑑𝑑. Any algorithm for learning policies might 
be appropriate, then, for finding a 𝜋𝜋𝑑𝑑  that is likely to be near-optimal in the future. We exhibit one simple 
policy-learning algorithm (which is analogous to one habit-learning proposal from the psychological 
literature78) but other habit learning models including model-free actor-critic learning79 are equally 
applicable . A related idea has also been recently proposed in the context of a more explicitly hierarchical 
model of policy learning: that a default policy (and control-like charges for deviation form it) can be useful 
in the context of multitask learning to extract useful, reusable policies49,80. Separately, an analogous 
principle of identification of task structure that generalizes across tasks in a hierarchical generative model 
has also been proposed as a model of grid and place cell responses that shares some similarities with our 
account12,26. Future work remains to understand the relationship between the considerations in both of 
these models – which involve identifying shared structure across tasks – and ours, which are motivated 
instead more by efficient planning within a task.  

The role of the default policy, finally, points at how the linear RL framework provides a richer, more 
nuanced view of habits and pathologies of decision making than previous computational theories. 
Although a learned default policy biases behavior, and may modulate accuracy or speed of performance, 
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it trades off against rewards in the optimization. This give and take stands in contrast to much previous 
work, especially in computational psychiatry, which has often assumed a binary model of evaluation: 
either flexible values are computed (model-based, goal-directed) or they are not (model-free, habits). The 
latter, acting rather than thinking, has been taken as a model of both healthy and unhealthy habits, and 
especially of compulsive symptoms such as in drug abuse  and obsessive compulsive disorder81. Although 
such outright stimulus-response reflexes may exist, the present framework allows for a much broader 
range of biases and tendencies, and may help to understand a greater range of symptomatology, such as 
excessive avoidance in anxiety82, craving and cue-induced relapse in drug abuse, and the ability to 
effortfully suppress compulsive behaviors across many disorders. Finally, and relatedly, the possibility of 
a dynamic and situation-dependent default policy also offers a way to capture some aspects of emotion 
that have been resistant to RL modeling. In particular, one important aspect of emotion is its ability to 
elicit a pattern of congruent response tendencies, such as a greater tendency toward aggression when 
angry. Complementing recent work suggesting these might arise due to a hard bias on planning (via 
pruning context-inappropriate actions)83, the default policy offers a clear and normative lever for 
influencing behavior on the basis of emotional (and other) context.  

Methods 
Model description 
In this work, we focus on Markov decision processes (MDPs) with two conditions. First, we assume that 
there is one or a set of terminal states, 𝑠𝑠𝑇𝑇; Second, we initially consider deterministic environments, such 
as mazes, in which there is a one-to-one map between actions and successor states (and later extend to 
stochastic transitions; see the section Stochastic transitions below).  

The linear RL model is based on a modification to the value function for this setting21,22, in which the agent 
controls the probabilistic distribution over successor states (i.e., actions) and pays an additional control 
cost quantified as the dissimilarity, in the form of Kullback–Leibler (KL) divergence, between the controlled 
dynamics (i.e. decision policy), 𝜋𝜋(. |𝑠𝑠𝑡𝑡) and a default dynamics, 𝜋𝜋𝑑𝑑(. |𝑠𝑠𝑡𝑡). In particular, the objective of this 
MDP is to optimize a “gain” function, 𝑔𝑔(𝑠𝑠𝑡𝑡), defined as 

 𝑔𝑔(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) − 𝜆𝜆KL(𝜋𝜋||𝜋𝜋𝑑𝑑) (5) 

where 𝜆𝜆 > 0 is a constant and KL(𝜋𝜋||𝜋𝜋𝑑𝑑) is the KL divergence between the two probability distributions; 
it is only zero if the two distributions are the same, i.e. 𝜋𝜋 = 𝜋𝜋𝑑𝑑  and otherwise is positive. We also require 
that 𝜋𝜋 = 0 if 𝜋𝜋𝑑𝑑 = 0. Note that in the limit of zero, or respectively infinite, 𝜆𝜆, the gain converges to pure 
reward (i.e. a standard MDP), or pure cost. Here, 𝜆𝜆 scales the relative strength of control costs in units of 
reward (and is equivalent to rescaling the units of reward while holding the cost fixed). 

It is easy then to show that the optimal value function for this new problem, 𝐯𝐯∗, is analytically solvable21,22 
(see formal derivation below). We first define the one-step state transition matrix 𝐓𝐓, whose (𝑖𝑖, 𝑗𝑗) element 
is equal to the probability of transitioning from state 𝑖𝑖 to state 𝑗𝑗 under the default policy (i.e. probability 
of the action under the default policy that makes 𝑖𝑖 → 𝑗𝑗 transition). This contains subblocks, 𝐓𝐓𝑁𝑁𝑁𝑁, the 
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transition probability between nonterminal states, and 𝐓𝐓𝑁𝑁𝑁𝑁 = 𝐌𝐌, the transition probabilities from 
nonterminal to terminal states. Then:  

 exp(𝐯𝐯∗/𝜆𝜆) = 𝐌𝐌𝐌𝐌 exp(𝐫𝐫/𝜆𝜆), (6) 

where 𝐯𝐯∗ is the vector of optimal values at nonterminal states, 𝐫𝐫 is the vector of rewards at terminal 
states, and 𝐌𝐌 is a matrix defined below. Note that equation (3) is the case of this equation for 𝜆𝜆 = 1. 

The DR matrix 𝐌𝐌 is defined as: 

𝐌𝐌 = (diag(exp(−𝐫𝐫𝑁𝑁 𝜆𝜆⁄ )) − 𝐓𝐓𝑁𝑁𝑁𝑁)−1, 

where 𝐫𝐫𝑁𝑁 is the vector of rewards at nonterminal states (which we take as a uniform cost of −1 in most 
of our simulations). 

For flexibility in updating which states are viewed as goal states, it is helpful to define a second, more 
general version of the DR matrix, 𝐃𝐃, defined over all states (not just nonterminal states) as: 

𝐃𝐃 = (diag(exp(−𝐫𝐫𝐴𝐴 𝜆𝜆⁄ )) − 𝐓𝐓)−1, 

where 𝐫𝐫𝐴𝐴 is the reward vector across all states. Note that since matrix 𝐌𝐌 can be easily computed from 𝐃𝐃 
(in particular, 𝐌𝐌 is a subblock of 𝐃𝐃 corresponding to the nonterminal states only), we refer to both of 
them as the DR unless specified otherwise. Also note that for defining 𝐃𝐃, we assumed, without loss of 
generality (since this assumption does not affect 𝐌𝐌), that reward at terminal states are not 0. 

This solution for 𝐯𝐯∗ further implies that the policy takes the form of a weighted softmax, where the 
weights are given by the default policy 

 
𝜋𝜋(𝑎𝑎|𝑠𝑠𝑡𝑡) =

𝜋𝜋𝑑𝑑(𝑎𝑎|𝑠𝑠𝑡𝑡) exp(𝑣𝑣∗(𝑠𝑠𝑎𝑎)/𝜆𝜆)
∑ 𝜋𝜋𝑑𝑑(𝑎𝑎′|𝑠𝑠𝑡𝑡) exp(𝑣𝑣∗(𝑠𝑠𝑎𝑎′)/𝜆𝜆)𝑎𝑎′

 (7) 

where 𝑠𝑠𝑎𝑎 is the successor state associated with action 𝑎𝑎. Thus, for a uniform default policy, the optimal 
policy is simply given by the softmax over optimal values with the temperature parameter 𝜆𝜆. Note also 
that in the limit as 𝜆𝜆 → 0, the problem becomes the classical MDP (because 𝑔𝑔(𝑠𝑠𝑡𝑡) → 𝑟𝑟(𝑠𝑠𝑡𝑡) in equation 
(4)) and the decision policy in equation (6) also reflects the optimum policy (i.e. greedy) exactly. In the 
limit of infinite 𝜆𝜆, the influence of the rewards vanishes and the decision policy converges to the default 
policy. 

Planning toward a new goal and transfer revaluation 
Consider an environment with 𝐓𝐓𝟎𝟎 and 𝐃𝐃𝟎𝟎 as the transition matrix under the default policy and the 
associated DR, respectively. Now suppose that the agent’s goal is to plan toward state 𝑗𝑗 (or equivalently 
computing the distance between any state and 𝑗𝑗), i.e., we wish to add 𝑗𝑗 to the set of terminal states. Here, 
we aim to develop an efficient method to plan towards 𝑗𝑗 by using the cached 𝐃𝐃𝟎𝟎, without re-inverting the 
matrix.  

If we define 𝐋𝐋𝟎𝟎 = diag(exp(−𝐫𝐫𝐴𝐴/𝜆𝜆)) − 𝐓𝐓0 and 𝐋𝐋 = diag(exp(−𝐫𝐫𝐴𝐴/𝜆𝜆)) − 𝐓𝐓, then 𝐋𝐋 and 𝐋𝐋𝟎𝟎 are only 
different in their 𝑗𝑗th row (because 𝐓𝐓 and 𝐓𝐓𝟎𝟎 are only different in their 𝑗𝑗th row). We define 𝐝𝐝, a row-vector 
corresponding to the difference in 𝑗𝑗th row of the two matrices: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2021. ; https://doi.org/10.1101/856849doi: bioRxiv preprint 

https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

𝐝𝐝 = 𝐋𝐋(𝑗𝑗, : ) − 𝐋𝐋0(𝑗𝑗, : ), 

 and therefore, we can write: 

𝐋𝐋 = 𝐋𝐋𝟎𝟎 + 𝐞𝐞𝐞𝐞, 

where 𝐞𝐞 is a binary column-vector that is one only on 𝑗𝑗th element. Using the Woodbury matrix identity, 
𝐋𝐋−1 is given by 

𝐋𝐋−1 = 𝐋𝐋𝟎𝟎−1 −
1

1 + 𝐝𝐝𝐋𝐋𝟎𝟎−𝟏𝟏𝐞𝐞
𝐋𝐋𝟎𝟎−1𝐞𝐞𝐞𝐞𝐋𝐋𝟎𝟎−1, 

in which we exploited the fact that 𝐝𝐝 and 𝐞𝐞 are row- and column- vectors, respectively, and therefore 
𝐝𝐝𝐋𝐋𝟎𝟎−1𝐞𝐞 is a scalar. Since 𝐃𝐃𝟎𝟎 = 𝐋𝐋𝟎𝟎−1 and 𝐃𝐃 = 𝐋𝐋−1, we obtain 

 𝐃𝐃 = 𝐃𝐃𝟎𝟎 −
1

1 + 𝐝𝐝𝐦𝐦𝟎𝟎
𝐦𝐦𝟎𝟎𝐝𝐝𝐃𝐃𝟎𝟎, (8) 

where 𝐦𝐦𝟎𝟎 is the 𝑗𝑗th column of 𝐃𝐃𝟎𝟎. 

The above equation represents an efficient, low-rank update to the DR itself. However, for the purpose 
of this single planning problem (e.g. if, we do not intend further modifications to the matrix later), we may 
also further simplify the computation by focusing only on the product 𝐳𝐳 = 𝐌𝐌𝐌𝐌, which is what is needed 
for planning using equation (5) in the new environment. We find 𝐳𝐳 in terms of an intermediate vector 𝐳𝐳� =
𝐃𝐃𝐌𝐌�, where 𝐌𝐌� is a subblock of 𝐓𝐓 from all states to terminal states, in which all elements of rows 
corresponding to terminal states are set to 0. Therefore, 𝐳𝐳� is given by 

 𝐳𝐳�  = 𝐳𝐳𝟎𝟎 −
1

1 + 𝐝𝐝𝐦𝐦𝟎𝟎
𝐦𝐦𝟎𝟎𝐝𝐝𝐳𝐳𝟎𝟎, (9) 

where  

 𝐳𝐳𝟎𝟎 = 𝐃𝐃𝟎𝟎𝐌𝐌�. (10) 

Finally, 𝐳𝐳 is given by the submatrix of 𝐳𝐳� corresponding to nonterminal rows. 

It is important to note that since 𝐝𝐝 and 𝐌𝐌� are very sparse, computations in equations (8-9) are local. In 
fact, 𝐝𝐝 is only nonzero on elements associated with immediate state of 𝑗𝑗 (and 𝑗𝑗th element). If we assume 
that there is only one terminal state (i.e. 𝑗𝑗), then 𝐌𝐌� is a vector that is nonzero on elements associated with 
immediate state of 𝑗𝑗. 

The same technique can be used to update the DR or re-plan in transfer revaluation problems, such as 
localized changes in 𝐓𝐓𝑁𝑁𝑁𝑁 or 𝐌𝐌. For example, if transition from state 𝑗𝑗 to 𝑖𝑖 has been blocked, new values 
for 𝐃𝐃 and 𝐳𝐳 can be computed efficiently using equations (7) and (8), respectively. Similarly, 𝐃𝐃 and 𝐳𝐳 can 
be computed efficiently using those equations if the reward value for the nonterminal state changes. 
Finally, it is also possible to learn the DR matrix, transition by transition, by iteratively computing 𝐃𝐃 for 
each update using 𝐃𝐃0 in equation (7). 
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Border cells 
We employed a similar approach to account for border cells. Suppose that a wall has been inserted into 
the environment, which changes the transition matrix 𝐓𝐓0 to 𝐓𝐓. Suppose 𝐋𝐋𝟎𝟎 = diag(exp(−𝐫𝐫𝐴𝐴/𝜆𝜆)) − 𝐓𝐓0 
and 𝐋𝐋 = diag(exp(−𝐫𝐫𝐴𝐴/𝜆𝜆)) − 𝐓𝐓. We define matrix 𝚫𝚫 using rows of 𝐋𝐋𝟎𝟎 and 𝐋𝐋 corresponding to 𝐽𝐽: 

𝚫𝚫 = 𝐋𝐋𝐽𝐽 − 𝐋𝐋0𝐽𝐽 , 

where 𝐽𝐽 denotes those states that their transition has been changed, 𝐋𝐋𝐽𝐽 and 𝐋𝐋0𝐽𝐽, are, respectively, 
submatrices associated with rows of 𝐋𝐋 and 𝐋𝐋𝟎𝟎 corresponding to 𝐽𝐽. Using the Woodbury matrix identity 
(similar to equation (7)), the DR associated with the new environment is given by  

𝐃𝐃 = 𝐃𝐃𝟎𝟎 − 𝐁𝐁, 

where  

𝐁𝐁 = 𝐃𝐃𝟎𝟎𝐽𝐽�𝐈𝐈 + 𝚫𝚫𝐃𝐃𝟎𝟎𝐽𝐽�
−1𝚫𝚫𝐃𝐃𝟎𝟎, 

in which matrix 𝐃𝐃𝟎𝟎𝐽𝐽 is the submatrix associated with columns of 𝐃𝐃𝟎𝟎 corresponding to 𝐽𝐽, and 𝐈𝐈 is the identity 
matrix. Note that although this model requires inverting of a matrix, this computation is substantially 
easier than inverting matrix 𝐋𝐋, because this matrix is low-dimensional. For simulating the border cells in 
Fig 5, we replaced matrix 𝐃𝐃𝟎𝟎 by its eigenvectors. Thus, if 𝐮𝐮 is an eigenvector of 𝐃𝐃𝟎𝟎, the corresponding 
column in 𝐁𝐁, 𝐛𝐛(𝐮𝐮) is given by 

𝐛𝐛(𝐮𝐮) = 𝐃𝐃𝟎𝟎𝐽𝐽�𝐈𝐈 + 𝚫𝚫𝐃𝐃𝟎𝟎𝐽𝐽�
−1𝚫𝚫𝚫𝚫. 

Stochastic transitions 
In deterministic environments, the default policy is equivalent to a default probabilistic mapping between 
states, which can be written as 𝜋𝜋𝑑𝑑(𝑠𝑠′ = 𝑠𝑠𝑎𝑎|𝑠𝑠) = 𝜋𝜋𝑑𝑑(𝑎𝑎|𝑠𝑠),  where 𝑠𝑠𝑎𝑎 denotes the corresponding state 
(among the set of successor states of 𝑠𝑠) to action 𝑎𝑎. In environments with stochastic dynamics, however, 
there is no such mapping between policy and dynamics, and therefore one additional step is required to 
extend the linear RL framework to stochastic environments. Here, 𝜋𝜋𝑑𝑑(𝑠𝑠′|𝑠𝑠) is defined as the default 1-
step transition from state 𝑠𝑠 to 𝑠𝑠′ (it is only nonzero for successor states of 𝑠𝑠). We can then use the 
framework of linear RL to obtain the optimal transition, 𝑢𝑢(𝑠𝑠′|𝑠𝑠), between immediate states by optimizing 
the gain function defined as 𝑔𝑔(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) − 𝜆𝜆 KL(𝑢𝑢||𝜋𝜋𝑑𝑑). This is the same as Equation 4 in which the 
decision policy has been replaced by 𝑢𝑢. Therefore, it is easy to see that optimal 𝑢𝑢 is given as before by 
Equation 6. Now suppose that the transition model of the environment is given by 𝑆𝑆(𝑠𝑠′|𝑎𝑎, 𝑠𝑠). The optimal 
𝑢𝑢 can therefore be seen as the desired marginal probability distribution of the joint policy 𝜋𝜋 and the 
transition model, in which effects of actions are marginalized  

𝑢𝑢(𝑠𝑠′|𝑠𝑠) = � 𝑆𝑆(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝜋𝜋(𝑎𝑎|𝑠𝑠)
𝑎𝑎

 

If we write the transition model for a given state 𝑠𝑠 as matrix 𝐒𝐒𝑠𝑠 defined by successor states (rows) and 
available actions (columns), then we have 𝐮𝐮(. |𝑠𝑠) = 𝐒𝐒𝑠𝑠𝝅𝝅(. |𝑠𝑠). We can then find 𝝅𝝅 by minimizing the 
squared error between 𝐮𝐮(. |𝑠𝑠) and 𝐒𝐒𝑠𝑠𝝅𝝅(. |𝑠𝑠) under the constraint that 𝝅𝝅 is a probability distribution. In 
practice, in most situations, such as the two-step task (Fig 6a-b), this can be readily computed as 𝝅𝝅(. |𝑠𝑠) =
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𝐒𝐒s−1𝐮𝐮(. |𝑠𝑠). In situations in which this solution is not a distribution, an iterative optimization method (e.g. 
active-set) can be used. Such iterative methods converge very quickly if the rank of 𝐒𝐒𝑠𝑠 is small.  

Simulation details  
We assumed a uniform default policy in all analyses presented in Figure 1-5. In Fig 1, the cost for all states 
were randomly generated in the range of 0 to 10 and analysis was repeated 100 times. In Fig 2b-c, a 50x50 
maze environment was considered. In Fig 2d-e, a 10x10 maze was considered with 20 blocked states. The 
DR was computed in this environment with no terminal state, in which the cost for all states was 1. We 
used equation (8) to compute the shortest path using linear RL. The optimal path between every two 
states was computed by classic value iteration algorithm. In Fig 3b-c, the reward of all states was –1, 
except the terminal states, which was +5. In the revaluation phase, the reward of the left terminal state 
was set to –5. In Fig 3d, the reward of states 1,2 and 3 is 0. In Fig 3e, reward at all states is –1, except for 
the terminal state, which is +5. In Fig 4d, a 50x50 maze was considered, the cost for all states was assumed 
to be 0.1. In this figure, 15th, 20th, 32th eigenvectors of the DR have been plotted. In Fig 5b, a 20x20 maze 
was considered and the cost for all states was assumed to be 0.1. In this figure, 1th, 6th, 11th, 12th 
eigenvectors of the DR have been considered. In Fig 6b, the amount of reward was assumed to be 0.25. 
For overtraining in Fig 7, the model has undergone 1000 episodes of training (each until termination) and 
the default policy has been trained gradually according to a delta-rule: if the transition is from state 𝑠𝑠𝑎𝑎 to 
𝑠𝑠𝑏𝑏, and the default policy is given by 𝜋𝜋𝑑𝑑(𝑠𝑠𝑏𝑏|𝑠𝑠𝑎𝑎), then 𝜋𝜋�𝑑𝑑(𝑠𝑠𝑏𝑏|𝑠𝑠𝑎𝑎) ← 𝜋𝜋𝑑𝑑(𝑠𝑠𝑏𝑏|𝑠𝑠𝑎𝑎) + 𝛼𝛼(1 − 𝜋𝜋𝑑𝑑(𝑠𝑠𝑏𝑏|𝑠𝑠𝑎𝑎)). The 
new 𝜋𝜋𝑑𝑑(. |𝑠𝑠𝑎𝑎) is given by normalizing 𝜋𝜋�𝑑𝑑(. |𝑠𝑠𝑎𝑎). The step-size, 𝛼𝛼, is assumed to be 0.01. For simulating the 
two-step task, we also assumed that there is a perseveration probability (i.e. repeating the same choice 
regardless of reward) of 0.75, similar to empirical values seen in our previous work42,84.  

The default policy in Figs 8-9 was not uniform. In Fig 8c, the default probability for the control-demanding 
action assumed to be 0.2 and reward was assumed to be +2. For simulating PIT in Fig 9, we followed 
experimental design of Corbit et al.56 and assumed that the environment contains 4 states, in which state 
1 was the choice state, states 2, 3, and 4 were associated with outcomes 1,2 and 3, respectively. In Fig 9c, 
the reward of outcome 1-3 was +5. In Fig 9e, the reward of all states was assumed to be 0. It was also 
assumed that during the Pavlovian training, the default probability for Stimulus 1→ Outcome 1 and for 
Stimulus 2→ Outcome 2 changes from 0.33 (i.e. uniform) to 0.5.  

The only parameter of linear RL is 𝜆𝜆, which was always assumed to be 1, except for simulating the results 
presented in Fig 3e (and Fig 7, in which 𝜆𝜆 was systematically manipulated), where we set 𝜆𝜆 = 10 to avoid 
overflow of the exponential due to large reward values.  

Formal derivation 
For completeness, we present derivation of equations (5-6) based on Todorov21,22. By substituting the gain 
defined in equation (4) into the Bellman equation (1), we obtain: 

𝑣𝑣(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) + max
𝜋𝜋

�−𝜆𝜆𝜆𝜆𝑎𝑎~𝜋𝜋�𝑎𝑎�𝑠𝑠𝑡𝑡� �log
𝜋𝜋(𝑎𝑎|𝑠𝑠𝑡𝑡)

𝜋𝜋𝑑𝑑(𝑎𝑎|𝑠𝑠𝑡𝑡) exp (𝑣𝑣(𝑠𝑠𝑎𝑎) 𝜆𝜆)⁄ ��, 

where 𝑠𝑠𝑎𝑎 denotes the corresponding state (among the set of successor states of 𝑠𝑠𝑡𝑡) to action 𝑎𝑎. 
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Note that the expectation in the Bellman equation is under the dynamics, which we have replaced it with 
the policy because they are equivalent here. The expression being optimized in this equation is akin to a 
KL divergence, except that the denominator in the argument of the log function is not normalized. 
Therefore, we define the normalization term 𝑐𝑐: 

𝑐𝑐 = � 𝜋𝜋𝑑𝑑(𝑎𝑎|𝑠𝑠𝑡𝑡)𝑒𝑒𝑣𝑣(𝑠𝑠𝑎𝑎)/𝜆𝜆
𝑎𝑎

, 

Note that 𝑐𝑐 is independent of the distribution being optimized 𝜋𝜋. By multiplying and dividing the 
denominator of the log by 𝑐𝑐, we obtain: 

𝑣𝑣(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) + 𝜆𝜆 log 𝑐𝑐 + max
𝜋𝜋

 {−𝜆𝜆KL(𝜋𝜋(𝑎𝑎|𝑠𝑠𝑡𝑡)||𝜋𝜋𝑑𝑑(𝑎𝑎|𝑠𝑠𝑡𝑡)𝑒𝑒𝑣𝑣(𝑠𝑠𝑎𝑎)/𝜆𝜆/𝑐𝑐)}, 

where the maximum value of negative KL divergence is zero, which occurs only if the two distributions 
are equal, giving rise to equation (6): 

𝜋𝜋(𝑎𝑎|𝑠𝑠𝑡𝑡) = 𝜋𝜋𝑑𝑑(𝑎𝑎|𝑠𝑠𝑡𝑡)𝑒𝑒𝑣𝑣(𝑠𝑠𝑎𝑎)/𝜆𝜆/𝑐𝑐. 

Furthermore, since the KL divergence is zero, optimal values satisfy: 

𝑣𝑣∗(𝑠𝑠𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡) + 𝜆𝜆 log 𝑐𝑐. 

Across all states, this gives rise to a system of linear equations in the exponential space. Since at terminal 
states, 𝑣𝑣(𝑠𝑠𝑇𝑇) = 𝑟𝑟(𝑠𝑠𝑇𝑇), this system can be solved analytically, which can be written in the matrix equation 
5. 

Code availability 
The code and simulation data are available publicly at https://github.com/payampiray/LinearRL. 
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Supplementary Fig 1. The first 32 eigenvectors (corresponding to the 32 largest eigenvalues) 
of the DR from a 50-by-50 maze are plotted. All state costs are assumed to be 0.1. 
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Supplementary Fig 2. Different border cells corresponding to the largest 32 eigenvectors in a 
20-by-20 maze. 
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Supplementary Fig 3. Effects of state costs on eigenvectors of the DR in a 50-by-50 maze. 
Top: cost across all states. The cost is 0.1 for all states except those yellow states in the 
middle of the maze in which the cost is 0.5. Other plots show the top 32 eigenvectors of the 
DR. 
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