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Abstract

It is thought that the brain’s judicious reuse of previous computation underlies our ability to plan flexibly,
but also that inappropriate reuse gives rise to inflexibilities like habits and compulsion. Yet we lack a
complete, realistic account of either. Building on control engineering, we introduce a new model for
decision making in the brain that reuses a temporally abstracted map of future events to enable
biologically-realistic, flexible choice at the expense of specific, quantifiable biases. It replaces the classic
nonlinear, model-based optimization with a linear approximation that softly maximizes around (and is
weakly biased toward) a default policy. This solution exposes connections between seemingly disparate
phenomena across behavioral neuroscience, notably flexible replanning with biases and cognitive control.
It also gives new insight into how the brain can represent maps of long-distance contingencies stably and
componentially, as in entorhinal response fields, and exploit them to guide choice even under changing

goals.
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Introduction

The brain exhibits a remarkable range of flexibility and inflexibility. A key insight from reinforcement
learning (RL) models is that humans’ ability flexibly to plan new actions — and also our failures sometimes
to do so in healthy habits and disorders of compulsion — can be understood in terms of the brain’s ability
to reuse previous computations’™. Exhaustive, “model-based” computation of action values is time-
consuming; thus, it is deployed only selectively (such as early in learning a new task), and when possible,
the brain instead bases choices on previously learned (“cached,” “model-free”) decision variables'*. This
strategy saves computation, but gives rise to slips of action when cached values are out-of-date.

However, while the basic concept of adaptive recomputation seems promising, this class of models — even
augmented with refinements such as prioritized replay, partial evaluation, and the successor
representation — has so far failed fully to account either for the brain’s flexibility or its inflexibility>®. For
flexibility, we still lack a tractable and neurally plausible account how the brain accomplishes the behaviors
associated with model-based planning. Conversely, the reuse of completely formed action preferences
can explain extreme examples of habits (such as a rat persistently working for food it doesn’t want), but
fails fully to explain how and when these tendencies can be overridden, and also many subtler, graded or
probabilistic response tendencies, such as Pavlovian biases or varying error rates in cognitive control tasks.

Here, we introduce a new model that more nimbly reuses precursors of decision variables, so as to enable
a flexible, tractable approximation to planning that is also characterized by specific, graded biases. The
model’s flexibility and inflexibility (and its ability to explain a number of other hitherto separate issues in
decision neuroscience) are all rooted in a new approach to a core issue in choice. In particular, we argue
that the central computational challenge in sequential decision tasks is that the optimal decision at every
timepoint depends on the optimal decision at the next timepoint, and so on. In a maze, for instance, the
value of going left or right now depends on which turn you make at the subsequent junction, and similarly
thereafter; so, figuring out what is the best action now requires, simultaneously, also figuring out what
are the best choices at all possible steps down the line. This interdependence between actions is a
consequence of the objective of maximizing cumulative expected reward in this setting and is reflected in
the Bellman equation for the optimal values’. However, it also greatly complicates planning, replanning,
task transfer, and temporal abstraction in both artificial intelligence and biological settings®.

How, then, can the brain produce flexible behavior? Humans and animals can solve certain replanning
tasks, such as reward devaluation and shortcuts, which require generating new action plans on the fly &°-
12 1t has been argued that the brain does so by some variant of model-based planning; that is, solving the
Bellman equation directly by iterative search*. However, we lack a biologically realistic account how this
is implemented in the brain®; indeed, because of the interdependence of optimal actions, exhaustive
search (e.g., implemented by neural replay®®) seems infeasible for most real-world tasks due to the
exponentially growing number of future actions that must each be, iteratively and nonlinearly optimized.
It has thus also been suggested that the brain employs various shortcuts that rely on reusing previously

computed (“cached”) quantities, notably model-free long-run values**>,
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One such proposal, which is perhaps the most promising step toward a neurally realistic planning
algorithm is the successor representation (SR)!, which by leveraging cached expectations about which
states will be visited in future, can efficiently solve a subset of tasks traditionally associated with model-
based planning®®. However, it simply assumes away the key interdependent optimization problem by
evaluating actions under a fixed choice policy (implied by the stored state expectancies) for future steps.
This policy-dependence makes the model incapable of explaining how the brain can solve other replanning
tasks, in which manipulations also affect future choices®'’. In general, the precomputed information
stored by the SR is only useful for replanning when the newly replanned policy remains similar to the old
one. For instance, a change in goals implies a new optimal policy that visits a different set of states, and a
different SR is then required to compute it. This is just one instance of a general problem that plagues
attempts to simplify planning by temporal abstraction (e.g., chunking steps'®!°), again due to the
interdependence of optimal actions: if my goals change, the optimal action at future steps (and, hence,
the relevant chunked long-run trajectories) likely also change.

Here, we adopt and build on recent advances in the field of control engineering?®? to propose a new
model for decision making in the brain that can efficiently solve for an approximation to the optimal policy,
jointly across all choices at once. It does so by relying on a precomputed, temporally abstract map of long-
run state expectancies similar to the SR, but one which is, crucially, stable and useful even under changes
in the current goals and the decision policy they imply. We term the model linear RL, because it is based

on Todorov’s work with a class of linearly solvable MDPs2%-%2

. It provides a common framework for
understanding different aspects of animals’ cognitive abilities, particularly flexible planning and
replanning using these temporally abstract maps, but also biases in cognitive control and Pavlovian

influences on decision making, which arise directly from the strategy of reuse.

The model is based on a reformulation of the classical decision problem, which makes “soft” assumptions
about the future policy (in the form of a stochastic action distribution), and introduces an additional cost
for decision policies which deviate from this baseline. This can be viewed as an approximation to the
classic problem, where soft, cost-dependent optimization around a baseline, which we hereafter call the
default policy, stands in for exact optimization of the action at each successor state. This enables the
model efficiently to deal with the interdependent optimization problem. Crucially, the form of the costs
allows the modified value function to be solved analytically using inexpensive and biologically plausible
linear operations. In particular, the optimal value of any state under any set of goals depends on a
weighted average of the long-run occupancies of future states that are expected under the default policy.
Therefore, we propose that the brain stores a map of these long-run state expectancies across all states
(the default representation, or DR), which gives a metric of closeness of states under the default policy.
Because the DR depends only on the default policy, and can be used to compute a new optimal policy for
arbitrary goals, the model can solve a large class of replanning tasks, including ones that defeat the SR.

Our novel modeling approach also addresses a number of seemingly distinct questions. First, the stability
of the DR across tasks makes it a candidate for understanding the role in decision-making of multiscale,
temporally abstract representations in the brain, notably grid cells in the medial entorhinal cortex. These
cells show regular grid-like firing patterns over space, at a range of frequencies, and have been argued to
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represent something akin to a Fourier-domain map of task space (e.g., the eigenvectors of the SR,
equivalent to the graph Laplacian®%3), and could provide some sort of mechanism for spatial?* and mental
navigation'>%>26, However, it has been unclear how this and similar long-run temporal abstractions are
actually useful for planning or navigation, because as mentioned long-run (low-frequency) expectancies
over task space are not stable across tasks due to the interdependence of policy, goals, and
trajectories?”?8, For instance, because the SR only predicts accurately under the training policy, to be even
marginally useful for replanning the SR theory predicts grid fields must continually change to reflect
updated successor state predictions as the animal’s choice policy evolves, which is inconsistent with
evidence?®3!, The linear RL theory clarifies how the DR, a stable and globally useful long-run map under a
fixed default policy, can serve flexible planning. Our theory also provides a new account for updating maps
in situations which actually do require modification — notably, the introduction of barriers. We show how
these give rise to additional, separable basis functions in the corresponding DR, which we associate with
a distinct class of entorhinal response fields, the border cells. This aspect of the work goes some way
toward delivering on the promise of such response as part of a reusable, componential code for cognitive

maps!22.

Finally, linear RL addresses the flip side of how the brain can be so flexible: why, in some cases it is
inflexible. We suggest that this is simply another aspect of the same mechanisms used to enable flexible
planning. While it has long been suggested that fully model-free learning in the brain might account for
extreme cases of goal-inconsistent habits (e.g., animals persistently working for food when not hungry?),
there are many other phenomena which appear as more graded or occasional biases, such as Stroop

3435 slips of action®, and more sporadic failures of participants to solve

effects®?33, Pavlovian tendencies
replanning tasks®. The default policy and cost term introduced to make linear RL tractable offers a natural
explanation for these tendencies, quantifies in units of common-currency reward how costly it is to
overcome them in different circumstances, and offers a novel rationale and explanation for a classic

problem in cognitive control: the source of the apparent costs of “control-demanding” actions.

Despite its simplicity, the linear RL model accounts for a diverse range of problems across different areas
of behavioral neuroscience. In the reminder of this article, we present a series of simulation experiments
that demonstrate that the theory provides i) a biologically-realistic, efficient and flexible account of
decision making; ii) a novel understanding of entorhinal grid and border cells that explains their role in
flexible planning, navigation and inference; iii) a soft and graded notion of response biases and habits; iv)
an understanding of cognitive control that naturally links it to other aspects of decision systems; and iv) a
normative understanding of Pavlovian-instrumental transfer (PIT).

Results
The Model

In Markov decision tasks, like mazes or video games, the agent visits a series of states s, and at each they
receive some reward or punishment r and choose among a set of available actions a, which then affects
which state they visit next®. The objective in this setting is typically to maximize the expected sum of future


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

rewards, called the ‘value’ function. Formally, the optimal value 7* of some state is given by the sum of
future rewards, as a series of nested expectations:

v (se) =71(se) + H}Iaxz P(sti1lse ap) |r(sppq) + I{'?axz P(St42l5e41, Aer) [1(Spa2) + o]
t t+1

St+1 St+2

or equivalently in recursive form by the Bellman equation”:

v (se) =71(sp) + rrtllétlx Z P(sy1lse a) ™ (seq1), (1)
St+1
where s;, 1 and a; denote the state, reward and action at time t, respectively. Across all states, this
results in a set of interdependent optimization problems, which can be solved, for instance, by iterative
search through the tree of future states, computing the maximizing action at each step® However, in
realistic tasks with large state spaces, this iterative, nonlinear computation may be intractable.

Note that prediction can be used for action choice or computing an action selection policy: once we have
computed 7* (the optimal future reward available from each state), we can just compare it across actions
to find the best action in any particular state and form a policy, ©*; for instance, we can evaluate the max
in equation (1) for any state, plugging in the optimal values of successor states without further iteration.
However, note also that this depends on having already found the maximizing action at other states down
the line, since v* depends, recursively, on which actions are taken later, and this in turn depends on the
assignment of rewards to states (e.g., the agent’s goals).

If we instead assumed that we were going to follow some given, not necessarily optimal, action selection
policy m at each subsequent state (say, choosing randomly), then equation (1) would be replaced by a
simple set of linear equations (eliminating the nonlinear function “max” at each step) and relatively easily
solvable. This observation is the basis of the SR model>>%1¢, which computes values as

vt =S"r, (2)

where (in matrix-vector form) V™ is a vector of long-run state values under the policy 7; r a vector of state
rewards; and S™ a matrix measuring which subsequent states one is likely to visit in the long run following
a visit to any starting state: importantly, assuming that all choices are made following policy . However,
although this allows us to find the value of following policy m, this does not directly reveal how to choose
optimally. For instance, plugging these values into equation (1) won’t produce optimal choices, since V"
(the value of choosing according to 7 in the future) in general does not equal the value, Vv*, of choosing
optimally. The only way to find the latter using equation (2) is by iteratively re-solving the equation to
repeatedly update  and S until they eventually converge to ™, i.e., the classic policy iteration algorithm.

A line of research in control engineering has shown that a change in the formulation of this problem,
which we refer to as linear RL, greatly simplifies the Bellman equation?®=22, In this paper, we build on this
foundation to revisit questions of flexibility and inflexibility in biological learning. To derive this
simplification, we first assume a one-to-one, deterministic correspondence between actions and
successor states (i.e., for every state s’reachable in one step from some s, assume there is a
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corresponding action a for which P(s’|s,a) = 1, which is simply denoted by its destination, s’). This
assumption, which we relax later, fits many problems with fully controllable, deterministic dynamics, such
as spatial navigation (where for each adjacent location, there is a corresponding action taking you there).
Second, linear RL seeks to optimize not a discrete choice of successor state (action), but a stochastic
probability distribution  over it??2, Finally, it redefines the value function to include not just the one-

20-22

step rewards r but also at each step a new penalty“®™*, called a “control cost,” KL(and), which is

increasing in the dissimilarity (KL divergence) between the chosen distribution m and some default

distribution, .

Linear RL is most naturally a formalism for modeling tasks in which there are some default dynamics (e.g.,
a rocket in a gravitational field) and costly actions to modify them (e.g., firing thrusters burning different
amounts of fuel). Alternatively, here we view it as an approximation to the original value function, where
the additional penalty terms modify the original problem to a related one that can be more efficiently
solved. This is because linear RL deals with the problem of the interdependence of the optimal actions
across states?>?%: the default policy ¢ represents a set of soft assumptions about which actions will be
taken later, which are optimized into an optimal stochastic distribution m* that is approximately
representative of the optimal (deterministic) subsequent choices in the original problem.

Efficient solution is possible because, substituting the penalized rewards into the Bellman equation, the

optimal value function is now given by a non-recursive, linear equation??%;

exp(v*) = MPexp(r), (3)

such as can be computed by a single layer of a simple, linear neural network. Here, v* is a vector of the
optimal values (now defined as maximizing cumulative reward minus control cost) for each state; r is a
vector of rewards at a set of “terminal” states (i.e., various possible goals); P is a matrix containing the
probability of reaching each goal state from each other, nonterminal, state; and the key matrix M, which
we call the default representation (DR), measures the closeness of each nonterminal state to each other
nonterminal state (in terms of expected aggregate cost to all future visits) under the default policy. This
is similar to the SR (S™, equation (2)), except that it is for the optimal values v* (not the on-policy values
v™), and v* is systematically related to optimal values as defined in the original problem (V*, Eq. 1), with
the difference being the additional penalties for deviation from the default policy. But these exert only a
soft bias in m* toward ¢, which furthermore vanishes altogether in an appropriate limit (see Methods).
Thus, while M does depend on the default policy 74, it is stable over changes in goals and independent
from m* in the sense that it can usefully find optimized policies ©* (solving the interdependent
optimization problem) even when these are far from m%. In comparison, v (computed from the SR: S™)
is only a useful approximation to v* (and thus only helpful in finding a new ©*) when the SR’s learned
policy 1 is near the target policy m*. Effectively, linear RL works by introducing a smooth approximation
of the “max” in equation (1), since the log-average-exp (with the average here taken with respect to the
default distribution, m¢) of a set of values approximates the maximum. The control costs, then, simply
capture the difference between the original solution and the smooth approximate one. Note that
distinguishing between terminal and nonterminal states is necessary, as only for this type of finite decision
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problem are the optimal values linearly computable; however, this places few limits on the flexibility of
the model (see Discussion).

Model Performance

The optimized policy in this model balances expected reward with control cost, and is generally stochastic
rather than deterministic, like a softmax function (Fig 1a-b). We evaluated the performance of linear RL
as an approximation to exact solution by considering a difficult, 7-level decision tree task in which each
state has two possible successors, a set of costs are assigned randomly at each state, and the goal is to
find the cheapest path to the bottom. We conducted a series of simulations, comparing linear RL with a
set of benchmarks: exact (model-based) solution, and a set of approximate model-based RL agents!* that
optimally evaluate the tree up to a certain depth, then “prune” the recursion at that leaf by substituting
the exact average value over the remaining subtree (Fig 1c; in the one-step case this is equivalent to the
SR under the random walk policy). For linear RL, the default policy was taken as a uniform distribution
over possible successor states. Except where stated explicitly, we use the same fixed uniform default
policy for all simulations, so as to showcase the ability of linear RL to successfully plan without updating
or relearning task-specific policy expectations, as is generally needed for the SR. Linear RL achieved near-
optimal average costs (Fig 1d). Note that the D1 model in Fig 1d is equivalent to the SR for the random
walk policy (i.e. a uniform distribution over successor states), because it chooses actions using current
reward plus the value of successor states computed based on a uniform policy.

a b

=
/i
X

05 Expected reward
Control cost
—— Expected reward — Control cost

0 0.2 0.4 0.6 0.8 1
Probability of choosing A

Fig 1. The linear RL model. a-b) the model optimizes the decision policy by considering the reward and
the control cost, which is defined as the KL divergence between the decision policy and a default policy.
Assuming an unbiased (uniform) distribution as the default policy, the optimal decision policy balances
the expected reward with the control cost. Although the expected reward is maximum when probability
of choosing A is close to 1 (and therefore probability of choosing B is about zero), this decision policy
has maximum control cost due to its substantial deviation from the default policy. The optimal value
instead maximized expected reward minus the control cost, which here occurs when probability of
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choosing A is 0.73. c-d) The model accurately approximates optimal choice. We compared its
performance on a 7-level decision tree task (with random one-step costs at each state) to 6 pruned
model-based RL algorithms, which evaluate the task to a certain depth (D = 1,..,6; D7 is optimal; D1 is
equivalent to the successor representation for the random walk policy) and use average values at the
leaves. Linear RL (LRL) achieved near-optimal average costs (y-axis is additional cost relative to the
optimum). Local costs of all states were randomly chosen in the range of 0 to 10, and simulations were
repeated 100 times. Mean and standard error across all simulations relative to the optimal are plotted.

Animportant aspect of linear RLis that the DR, M, reflects the structure of the task (including the distances
between all the nonterminal states under the default policy) in a way that facilitates finding the optimal
values, but is independent of the goal values r, and the resulting optimized value and policy (Fig 2).
Therefore, by computing or learning the DR once, the model is able to re-plan under any change in the
value of the goals (see below) and also (with some additional computation to efficiently add an additional
terminal goal state, see Methods), plan toward any new goal with minimal further computation (Fig 2b-
c). In the case of spatial tasks, this corresponds to finding the shortest path from any state to any goal
state. In fact, our simulation analysis in a maze environment revealed that linear RL efficiently finds the
shortest path between every two states in the maze (Fig 2d).

a DR Fig 2. Default representation. a) The DR
corresponding to a three-level decision tree task is
shown. Each row of the DR represents weighted
future expectancies starting  from the
corresponding state and following the default
policy. Therefore, the DR is independent of the
goals and optimized policy. b-c) The optimized path
for planning from home (H) to the food (F) state is
b c computed based on the DR. The linear RL model is
T By efficient because the same DR is sufficient for
planning towrds a new goal, such as the water (W)
state. d) The path between every two states in a 10-
by-10 maze environment (d) computed by linear RL
; exactly matches the optimal (shortest) path
4 computed by exhaustive search. The DR has been
computed once and reused (in combination with
d techinuges from matrix identities) to compute each
optimal path.
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Replanning
In both artificial intelligence, and psychology and biology, a key test of efficient decision making is how an
agent is able to transfer knowledge from one task to another. For instance, many tasks from neuroscience
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test whether organisms are able, without extensive retraining, to adjust their choices following a change
in the rewards or goals (“revaluation,” “devaluation,” “latent learning”) or transition map (“shortcut,”
“detour”) of a previously learned task®°!!, In general, humans and animals can successfully solve such
tasks, leading to the question how, algorithmically, this is accomplished. Performance on such transfer
learning tasks is particularly informative about an agent’s learning strategy both because any successful
adaptation exercises planning capabilities rather than trial-and-error adjustment, and also because any
failures can be diagnostic of shortcuts for simplifying planning such as re-use of previously learned
guantities. We explored the ability of linear RL for solving these types of replanning problems (Fig 3).

Importantly, the model is able efficiently to solve one class of these problems that has been important in
neuroscience and psychology — those involving revaluation of goals — because the DR can be used,
unmodified, to solve any new problem. This corresponds to simply changing r in Eq. 3, and computing
new values. For instance, linear RL is able to solve a version of Tolman’s latent learning task (Fig 3a), a
revaluation task in which rats were first trained to forage freely in a maze with two rewarding end-boxes,
but then were shocked in one of the end-boxes to reduce its value®’. This manipulation defeats model-
free RL algorithms like temporal-difference learning, because they must experience trajectories leading
from the choice to the devalued box to update previously learned long-run value or policy estimates?. In
contrast, rats are able to avoid the path leading to the devalued end-box on the first trial after revaluation,
even though they had never experienced the trajectory following the devaluation®’. Linear RL is also able
to correctly update its plans using the DR computed in the training phase (Fig 3b-c). In particular, during
the revaluation phase, the reward associated with one of the end-boxes changes but the structure of the
environment remains the same: the revaluation corresponds to a change in r but not M. Therefore, the
agent is able to use the DR computed during the training phase in the test phase and update its policy
according to revalued reward function.

The SR is also capable of solving the latent learning task (and similar reward devaluation tasks with only a
single step of actions widely used in neuroscience®), because the SR, S™, even though learned under the
original policy m, is for typical tasks good enough to compute usable new values from the new reward
vector’. However, there are many other, structurally similar revaluation tasks — in particular, those with
several stages of choices — that defeat the SR. We considered a slightly different revaluation task, which
Russek et al.>® termed “policy revaluation” that has this property. Here human subjects were first trained
to navigate a three-stage sequential task leading to one of the three terminal states (Fig 3d®). The training
phase was followed by a revaluation phase, in which participants experienced the terminal states with
some rewards changed. In particular, a new large reward was introduced at a previously disfavored
terminal state. In the final test, participants were often able to change their behavioral policy at the
starting state of the task, even though they had never experienced the new terminal state contingent on
their choices in the task®.

Importantly, if the SR is learned with respect to the policy used during the training phase, then it will imply
the wrong choice in the test phase (unless the successor matrix S™ is relearned or recomputed for an
updated policy 1), because under the original training policy, the cached successor matrix does not predict
visits to the previously low-valued state>!’, That is, it computes values for the top-level state (1 in Fig 3d)
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under the assumption of outdated choices at the successor state (2), neglecting the fact that the new
rewards, by occasioning a change in choice policy at 2 also imply a change in choice policy at 1. This task
then, directly probes the agent’s ability to re-plan respecting the interdependence of optimal choices
across states. Unlike the on-policy SR, linear RL can successfully solve this task using a DR computed for
many different default policies (including a uniform default, shown here, or an optimized policy learned
in the training phase), because the solution is insensitive to the default policy (Fig 3e). (Note that because
this simple example was originally designed to defeat the on-policy SR>Y’, both phases can in fact be solved
by the SR for the uniform random policy. However, it is easy to construct analogous choice problems to
defeat the SR for any fixed policy, including the uniform one — see also Figure 1 — so work on the SR has
generally assumed that for it to be useful in planning it must be constantly updated on-policy as tasks are

learned™® 16,)

We finally considered a different class of replanning tasks, in which the transition structure of the
environment changes, for example by placing a barrier onto the maze as to block the previously preferred
path!!. These tasks pose a challenge for both the SR and DR, since the environmental transition graph is
cached inside both S™ and M>5, and these must thus be updated by relearning or recomputation in order
to re-plan. However, people and animals are again often able to solve this class of revaluations®. We
introduce a novel elaboration to linear RL to permit efficient solution of these tasks. In particular, we
exploit matrix identities that allow us efficiently to update M in place to take account of local changes in
the transition graph, then re-plan as before. In particular, the updated DR, M, can be written as:

M= Mold + MA! (4)

where M, is the new term due to the barrier and it is a low-rank matrix that can be computed efficiently
using M4 (see Methods). In fact, the rank of matrix M, is equal to the number of states whose transition
has changed. With these in place, the linear RL model can solve this task efficiently and computes the
modified values and optimized policy using the old DR after updating it with simple operations (Fig
3h). Interestingly, a similar algebraic update can also be used to update the successor matrix S™ to take
account of the barrier, but this step is not in itself sufficient for replanning since the training policy 7 will
not be correct for the new problem. The ability of the DR to solve for the new optimal policy independent
of the default policy is also required to exploit this update for efficient replanning.
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Fig 3. Linear RL can explain flexible replanning. a-c) Performance of linear RL on a version of Tolman’s
latent learning task (a). We simulated the model in a maze representing this task (b) and plotted the
probability of choosing each end-box during the training and test phases. The model correctly (c)
reallocates choices away from the devalued option. d-e) Performance of linear RL in another reward
revaluation task>®, termed policy revaluation (d). Choices from state 1: during the training phase, the
model prefers to go to state 3 rather than state 2. Revaluation of the bottom level state reverses this
preference (e) similar to human subjects®. f-h) Performance of the model in Tolman’s detour task. The
structure of the environment changes in this task due to the barrier placed into the maze (g), which
blocks the straight path. The model is able to compute the optimized policy using the old DR (following
a single, inexpensive update to it) and correctly choose the left path in the test phase (h).

Grid fields

The linear RL model also highlights, and suggests a resolution for, a central puzzle about the neural
representation of cognitive maps or world models. It has long been argued that the brain represents a
task’s structure in order to support planning and flexible decision making®. This is straightforward for
maximally local information: e.g., the one-step transition map P(s;411Ss, a;) from Eq. 1, might plausibly
be represented by connections between place fields in hippocampus, and combined with local-state
reward mappings r(s;) that could be stored in hippocampal-stratial projections. But using this
information for planning requires exhaustive evaluation, e.g. by replay®3, and strongly suggesting a role
for map-like representations of longer-scale relationships (aggregating multiple steps) to simplify

planning!®3,

Indeed, grid cells in entorhinal cortex represent long-range (low-frequency) periodic relationships over
space, and theoretical and experimental work has suggested that they play a key role in representation
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of the cognitive map and support navigation in both physical** and abstrac state spaces. However,
the specific computational role of these representations in flexible planning is still unclear. A key concept
is that they represent a set of basis functions for quickly building up other functions over the state space,
including future value predictions like 7% and also future state occupancy predictions like the SR>3, By
capturing longer range relationships over the map, such basis functions could facilitate estimating or
learning these functions®. In particular, the graph Laplacian (given by the eigenvectors of the on-policy,
random walk transition matrix or, equivalently the eigenvectors of the SR for the random walk policy)
generalizes Fourier analysis to an arbitrary state transition graph, and produces a set of periodic functions

228 including potentially useful low-frequency ones. Although there are clearly many

similar to grid fields
different decompositions possible, this basic approach seems applicable to neural representations of long-

run maps like the SR and DR, and potentially to compressed or regularized learning of them?3.

The puzzle with this framework is that, as mentioned repeatedly, the long-range transition map is not
actually stable under changes in goals, since it depends on action choices (“max”) at each step of Eqg. 1: in
effect, the spatial distribution of goals biases what would otherwise be a pure map of space, since those
affect choice policy, which in turn affects experienced long-run location-location contingencies.
Conversely, basis functions built on some fixed choice policy (like the SR for a particular ) are of limited
utilty for transferring to new tasks>'’. Accordingly, algorithms building on these ideas in computer science
(such as “representation policy iteration,”?’), iteratively update basis functions to reflect changing policies
and values as each new task is learned. It has been unclear how or whether representations like this can
usefully support more one-shot task transfer, as in the experiments discussed in the previous section.

As shown in the previous section, linear RL suggests a resolution for this problem, since the DR is similar
to the SR but stably useful across different reward functions and resulting choice policies. In particular,
the comparison between Egs. 2 and 3 shows that the DR is a stable linear basis for the (approximate)
optimal value function regardless of the reward function, but the SR is not. Accordingly, we suggest that
grid cells encode an eigenvector basis for the DR, functions which are also periodic and have grid-like
properties in 2D environments (Fig 4d). Empirically, the grid cell map is robust to some manipulations and
affected by others; for our purposes here, two key classes of manipulations are those affecting which
physical transitions are possible (e.g. barrier locations in space) vs. manipulations affecting which routes
the animal actually tends to follow (i.e. policy). Because both the SR and DR represent relationships under
the objective transition graph, both theories predict that grid fields should be affected by changes in the
objective transition contingencies of the environment (e.g., barrier locations in space; though see the next
section for another way to address this). This is indeed the case experimentally3®3! (Fig. 4abc). However,
the key experimental prediction is that grid fields based on the DR can be stable under changes in the
choice policy, since the default policy can be retained. Conversely the SR (and its eigenvectors) are
necessarily strongly policy-dependent, so grid fields based on it should change to reflect the animal’s
tendency to follow particular trajectories?. Experimental data support the DR’s prediction that grid fields
are surprisingly robust to behavioral changes; for instance, grid cells are affected by walls producing a
“hairpin maze” but not at all affected in rats trained to run an equivalent hairpin pattern without barriers3!
(Fig. 4ab); grid cells are also affected by the presence or absence of a set of walls the same shape as the
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animal’s home cage, but whether or not it is the actual home cage (which strongly affects behavioral
patterns) does not change the responses? (Fig. 4c). Similar results have been reported in humans using
functional neuroimaging®. A second difference between the SR and the DR is that the DR (and its
eigenvectors) include information about local costs along a path; this implies the novel prediction that
environmental features that make locomotion difficult, like rough terrain or hills, should modulate grid
responses (see Discussion).

a
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Fig 4. The DR as a model of grid fields. a-b) Grid fields are sensitive to the geometry of the environment,
but are stable with respect to behavior (adapted from Derdikman et al.3!). Derdikman et al.3! tested
grid fields in a hairpin maze formed by actual barriers, and compared them to those recorded in a
“virtual” hairpin maze, in which rats were trained to show hairpin-like behavior in an open field without
constraining side walls. Grid fields in the virtual hairpin differ from those in the hairpin maze but are
similar to the open field. b) This similarity is quantified by the correlation between grid fields in a
baseline from an initial open field test (OF1) and those from the three tasks (HP: hairpin maze; VH:
virtual hairpin; OF2: the second control open field). c) Grid fields are sensitive to the presence of the
home cage only insofar as it introduces new barriers in space, but not through the changes it produces
in behavior (Adapted from Sanguinetti-Scheck and Brecht?®). In particular, introducing a plain box (the
same shape as the home cage) affects grid fields compared to the open field (left); but substuting the
home cage for the box (right) does not further affect the grid code, although it changes behavior. The
maps show the correction between grid fields in the two scenarios. d) All eigenvectors of the DR are
independent from behavioral policies and periodic, similar to grid fields. Three example eigenvectors
from a 50-by-50 maze are plotted. See Supplementary Fig. 1 for other eigenvectors.
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Border cells

As we have already shown, one aspect of the environment that does require updating the DR if it changes
is the transition structure of the environment, such as barriers. In simulating the Tolman detour task (Fig
3f-h) we solved this problem using a matrix inversion identity, which rather than expensively recomputing
or relearning the entire DR with respect to the new transition graph, expresses the new DR as the sum of
the original DR plus a low-rank correction matrix reflecting, for each pair of states, the map change due
to the barrier (Eq. 4).

This operation suggests a novel, componential way to build up spatial distance maps, such as the DR, by
summing basis functions that correspond to generic components, like walls. In this case, grid cells could
represent a low-rank (e.g. eigenvector) representation for a baseline map, and other cells could represent
the contribution of additional environmental features. Here, we highlight the relevance and importance
of this computational approach in the context of entorhinal border cells (Fig 5a). This is another principal
family of neurons in the medial entorhinal cortex that fire exclusively when the animal is close to a salient
border of the environment®!, such as the wall; and are generic in the sense that they retain this tuning at
least across changes in the environment’s geometry. Assuming that the DR has been represented using a
combination of features from a low-rank basis set, such as its eigenvectors, the columns of the matrix
term for updating the DR show remarkable similarity to the border cells (Fig 5b). This brings the border
cells and grid cells under a common understanding (both as basis functions for representing the map),
and helps to express this map in terms of more componential features, like walls.

In fact, our framework (Eq. 4) implies two distinct approaches for updating the DR in light of barriers. One
is to represent additional correction terms M, as separate additive components, e.g. border cells. The
second is to adjust the baseline map (e.g. the grid cells, M 4) in place, e.g. via experiential learning or
replay to incorporate the change. The latter approach implies that the geometry of the grid cells
themselves would be affected by the barriers; the former that it would not be. There is some evidence
that some grid cells show sensitivity to barriers and others are invariant to barriers, and that this might

t30

depend also on the extent of training in the environment>.Therefore, it might be the case that My is

initially represented separately and later integrated into the map if the environment is stable.
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a Fig 5. The model explains border cells. a) Adapted
from Solstad et al.*}, which shows rate maps for a
representative border cell in different boxes. b)
Columns of the matrix required to update the DR
matrix to account for the wall resemble border
cells. Four example columns from a 20-by-20 maze
are plotted. See also Supplementary Fig. 2.
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Planning in environments with stochastic transitions

We have so far focused on environments with deterministic transitions, such as mazes, in which each
action reliably selects the next state. This includes many nontrivial sequential decision tasks but excludes
other stochastically controllable domains that are also relevant to biology. The assumption of fully
controllable dynamics is part of what enables linear RL to work, because it allows policy optimization to
occur over the continuous, differentiable space of state transition probabilities. However, it is
straightforward to extend this approach to stochastic tasks by adding an additional step of approximation.
First, we solve linearly for the optimal transition dynamics as though the task were fully controllable; next,
choose the action selection policy that comes closest to achieving these dynamics. (This second
optimization can be done in several more or less simple ways, but roughly amounts to an additional
projection; see Methods.) The question then arises to what extent this approach can account for planning
in biological organisms. Here we exemplify this approach in the stochastic sequential decision task that
has been most extensively studied in neuroscience, and then consider its limitations.

Consider the two-step Markov decision task, which has been widely used in psychology and neuroscience
for examining the extent to which humans and animals utilize model-based vs. model-free learning*. Each
trial of this task (Fig. 6a) consists of an action choice in each of a series of two states, followed by a terminal
reward. The action choice at the first state produces a transition to one of the second-stage states, but
importantly this successor is stochastic: for each first-stage action there is a common transition (with
probability 0.7) and a rare one (probability 0.3). Subjects must learn to maximize the terminal reward, the
chance of which is slowly diffusing from trial to trial to encourage continued policy adjustment.

15


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The key experimental finding from this task is that humans and animals can solve it in at least a partly
model-based fashion, as evidenced by the sensitivity of their switching patterns to the task’s transition
structure®. In particular, due to the symmetry of the state transitions, model-based learning predicts that
if a terminal state is rewarded (vs. not), then pursuing this reward using an updated policy implies
increasing the chance of taking the same-first level action to reach the rewarded state if the experienced
transition was common, but instead switching to the alternative first-level action if the experienced
transition was rare. People and animals’ choices display this type of sensitivity to the transition model*;
as expected, linear RL (extended to the stochastic case) also successfully produces this pattern (Fig 6b).

In this task —and, we conjecture, many planning tasks in stochastic domains that people can readily solve
—the transition dynamics as optimized by linear RL (to transition to the better state with high probability)
are similar enough to those actually achievable given stochastic control (to choose the action that leads
there with 70% probability). However, it is possible to construct scenarios in which this is not the case,
and the approximation strategy would fail. The main issue again comes down to the interdependence of
policy across states: there are cases in which ignoring action stochasticity at some state has a dramatic
effect on the optimal policy at other, predecessor states. For example, in the otherwise similar Markov
task of Fig 6¢, linear RL prefers Al in S1 (while A2 is the best action on average), because it jointly optimizes
the first- and second-stage transition dynamics under the assumption that the state transitions at all states
are controllable. This produces an overly optimistic estimate of the value of S2 and a resulting mistake at
S1. The current modeling predicts that people will either exhibit greater errors in this type of task, or
instead avoid them by falling back on more costly iterative planning methods that should be measurable
in longer planning times. To our knowledge, these predictions are as yet untested.

a b Fig 6. Linear RL in environments with
EJommon stochastic transitions. a) the two-step Markov
Al A2 08 h decision task, in which first-stage actions Al

and A2 stochastically transition to second-
H stage states. b) Linear RL solves this task
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the subsequent first-stage choice (stay or
switch, with respect to that on the current
trial) depends on the type of transition
(common: 70%; rare: 30%). c) A task with
stochastic transitions that linear RL fails to
solve. Here, taking Al and A2 at S1
determinstically leads to S2 and S3,
respectively. However, taking either of Al and
A2 in state S2 stochastically leads to two
different states with 10 and —10 reward (with
50%-50% chance). Therefore, expected value
of state S3 is higher than that of S2, and A2 is
the optimal action in S1. Linear RL incorrecly
chooses Al in S1, however.
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Habits and inflexible behavior

We have stressed the usefulness of linear RL for enabling flexible behavior. However, because this is
permitted by the default policy, the model also offers a natural framework for understanding biases and
inflexibilities in behavior — and phenomena of cognitive control for overcoming them — as necessary
consequences of the very same computational mechanisms. The default policy represents soft, baseline
assumptions about action preferences, which (on this view) are introduced because they help efficiently
though approximately to solve the problem of forecasting the trajectory of optimal future choices during
planning. So far, we have simulated it as unbiased (uniform over successors), which works well because
of the insensitivity of the algorithm to the default policy. However, the same insensitivity equally allows
for other, non-uniform or dynamically learned default policies. In situations where action choice
preferences exhibit stable regularities, it can be an even better approximation to build these in via a
nonuniform default. A non-uniform default policy softly biases the model towards actions that are
common under it. This aspect of the model naturally captures systematic biases in human behavior, such
as habits, Stroop effects and Pavlovian biases (next sections), and suggests a novel rationale for them in
terms of the default policy’s role in facilitating efficient planning.

In previous sections, we considered a uniform default policy that did not change in the course of decision
making. Without contradicting these observations (e.g., for the relative stability of grid fields in entorhinal
cortex), one can elaborate this model by assuming that the default policy might itself change gradually
according to regularities in the observed transitions (i.e., in the agent’s own on-policy choices). Of course,
there are many ways to accomplish this; for concreteness, we use a simple error-driven delta rule with a
small step-size parameter (i.e. learning rate) to train the default policy (see Methods; Simulation details
for the equation). Note that there is no need to compute the DR matrix from scratch with every step of
policy update. The DR can be efficiently updated from the old DR using the same matrix inversion identity
used in previous sections.

In the long run, this procedure results in biases in the default policy, which then softly biases the decision
policy; this produces both a higher probability of errors on individual choices (i.e., a higher chance of
choosing the default action) and a resulting, more global distortion of sequential choice trajectories. Even
when the step-size is small, overtraining can ultimately substantially bias the default policy toward the
status quo policy. The degree to which overtraining biases the decision policy also depends on a constant
parameter in the model, which scales the control cost against rewards (see Methods and Discussion; Fig
7a-c).

Experiments with this model exemplify why a nonuniform default policy following overtraining can be
relatively beneficial or harmful in some revaluation tasks. For example, when the location of a goal
changes but the new location is close to the previous goal, the new policy overlaps substantially with the
old one and the bias toward it is beneficial, relative to a uniform default. In Fig 7d-i, we have simulated
the model in an environment with four rooms, in which the default policy was first trained in a task in
which the goal is located in the blue square (Fig 7d). Overtraining was beneficial in a new task in which
the goal was moved to a new location in the same room (Fig 7e-f), but it was harmful in another task in
which the goal was moved to a location in a different room (Fig 7g-i). In the latter case, the model shows
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a signature of habitual behavior: it prefers to enter the room that the goal was located during the course
of training even though the overall resulting trajectory is suboptimal. This is because the experience
obtained during training cannot be generalized to the new task: the pull of the default policy toward the
pre-existing one distorts the optimum.
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Fig 7. Learning the default policy results in soft habits. a-c) A simple choice task (a) in which the default
policy has been extensively trained under conditions in which state B is rewarding. In this case, an
overtrained default policy favors choice of B by default (b) which softly biases choice away from A even
after the rewarded goal has moved in the test phase (c). This effect is larger when the control cost
parameter, A, is larger. This is because this parameter controls the relative weight of the control cost
(for diverging from default policy; see Methods, Eq 4). d) The default policy has been trained extensively
to find a goal located in the blue square. e-f) Performance of the model with overtrained vs. uniform
(i.e. no training) default polices on this task, in which the goal has been moved but it is still in the same
room (e). The over-trained model performs better here (f). However, when the goal has been moved
to a different room (g-i), the model with a uniform default policy (no training; g) performs better than
the over-trained model, which habitually enters the room in which it has been over-trained in (h). Mean
and standard error across 100 simulations are plotted in panels f and i. For overtraining, the model has
experienced 1000 episodes of the task with step-size 0.01.

Cognitive control

Cognitive control has been defined as the ability to direct behavior toward achieving internally maintained
goals and away from responses that are in some sense more automatic but not helpful in achieving those

18


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

goals®**, Although the basic phenomena are introspectively ubiquitous, they are also puzzling. Two
classic puzzles in this area are, first, why are some behaviors favored in this way; and second, why do
people treat it as costly to overcome them®*#6? For instance, is there some rivalrous resource or energetic
cost that makes some behaviors feel more difficult or effortful than others*®#’? Such “control costs” arise
naturally in the current framework, since actions are penalized if they are more unlikely under the default
policy. Such deviations from default are literally charged in the objective function, in units of reward:
though for computational reasons of facilitating planning, rather than energetic ones like consuming a
resource. This aspect of the model is reminiscent of recent work formulating cognitive control as a
decision theoretic problem, in which reward is balanced against a control-dependent cost term?64849;
however, linear RL makes an explicit proposal about the functional form and nature of the cost term.
(Indeed, other work in control engineering suggests alternative rationales for the same KL-divergence cost

term as well; see Discussion.)

These control costs trade off in planning against the rewards for different actions, and lead (through the
stochastic resulting policy) to biased patterns of errors. Fig 8a,b plots the control cost as a function of the
decision policy, showing that the cost is substantially larger for choosing the action that is less likely under
the default policy. For instance, action A in this simulation could be the color-naming response in the
classic Stroop task, in which participants must read the name of a color that it is printed in a differently
colored ink. People are faster and make fewer errors in word reading compared to color naming,
presumably because the former is a more common task. For the same reason, we would expect color
naming to be less likely under the default policy (as arrived at following overtraining in the organism’s
lifetime, as per the previous section), and incur a larger control cost to execute reliably (Fig 8b). For any
particular reward function (utility for correct and incorrect responses), this results in a larger chance of
making errors for this action: a classic Stroop effect.

Furthermore, since the optimal policy in linear RL model balances the expected reward with the control
cost, the model correctly predicts that these Stroop biases, although strong, are not obligatory. Instead,
they can be offset by increasing the rewards for correct performance® (Fig 8c). In other words, the
prospect of reward can enhance performance even when the task is very difficult, as has been shown

experimentally®%>1,
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a b Fig 8. Linear RL captures prepotent actions and
costs of cognitive control. a-b) The control cost
is plotted as a function of the decision policy. For
a uniform distribution (a) as the default policy,
the control cost is a symmetric function of the
decision policy. When the default policy is
skewed toward a more likely response (b), the
control cost is higher for reliably performing the
action that is more unlikely under the default. c)
People show classical Stroop effect in a color-
naming Stroop task in which the name of colors
are printed in the same or different color. These
errors, however, are reduced in potential
reward trials, in which correct response is
associated with monetary reward®l. d) The
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Pavlovian-instrumental transfer

Another example of response biases in the linear RL model arises in Pavlovian effects. Pavlovian
relationships are those that arise between a stimulus and outcome (e.g. a bell and food), but not
contingent on the organism’s behavior. Famously, such associations when learned can trigger reflexive
responses (e.g., salivation to the bell). More confusingly, such noncontingent experience can also affect

IM

later (“instrumental”) choices over actions (e.g., lever-pressing for food) which are otherwise thought to
be controlled by the learned association between the actions and the outcomes. This phenomenon is
known as Pavlovian-instrumental transfer. Puzzlingly, this happens even though the Pavlovian cues are
objectively irrelevant to the actions’ outcomes®>®2, PIT — in this case, associations between drug-
associated cues and drugs triggering drug-seeking actions — has been argued to play a key role in the

development of addiction and cue-induced relapse®.

In a typical PIT task (Fig 9a), animals first learn that a neutral stimulus, such as a light, predicts some
rewarding outcome in a Pavlovian phase. Later, in an instrumental phase, they learn to press a lever to
get the same outcome. In the final testing phase, the presentation of the conditioned stimulus biases
responding toward the action for the associated reward, even though the stimulus has never been
presented during instrumental phase and the stimulus is objectively irrelevant as the action produces the
outcome either way (Fig 9b). Existing RL models including the SR (and rational decision theory generally)
typically fail to explain this result>*®, instead predicting that the presence of the stimulus should not
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influence behavior in the test phase, because actions predict the same outcome contingencies regardless
of the stimulus.

Linear RL naturally explains PIT as another example of biases arising from a learned default policy, because
during the Pavlovian phase the agent should learn that the reward outcome occurs more often in the
presence of the conditioned stimulus, which is reflected in the default contingencies. Therefore, during
the test phase, the presentation of a conditioned stimulus elicits a default policy biased toward the
corresponding outcome occurring, which favors choosing the corresponding action (Fig 9c). Furthermore,
this effect is carried by the sensory (state) aspects of the outcome, not its rewarding properties per se. In
particular, since in the absence of reward, the decision policy is equal to the default policy, the theory
predicts that PIT effects persist even in the absence of reward, which is consistent with experimental work
showing that PIT biases survive even under reward devaluation (e.g. for food outcomes tested under
satiety) (Fig 9d-e). This finding that PIT effects reflect some sort of sensory cuing, and not reward or
motivational properties of the stimulus per se, is central to the hypothesis that they underlie some
phenomena in drug abuse such as cue-elicited relapse following extinction®.

a P . Fig 9. Linear RL explains Pavlovian-instrumental
Paviovian e vreome transfer. a) the task testing outcome-specific PIT

training Stimulus 2 = Outcome 2 . . L.
- Son . consists of three phases: a Pavlovian training
Inst tal esponse — QOutcome . .
MSHEmEE phase, an instrumental training phase and the PIT
training Response 2 = Outcome 2

- test. Outcomes 1 and 2 are both rewarding. During
Stimulus 1 = Response 1 or 2? ) . . X
PIT tests ) PIT test, both stimuli are presented in succession,
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Discussion

A central question in decision neuroscience is how the brain can store cognitive maps or internal models
of task contingencies and use them to make flexible choices, and more particularly how this can be done
efficiently in a way that facilitates re-use of previous computations and leverages long-run, temporally
abstract predictions without compromising flexibility. To help answer this question, we identify a core
issue underlying many difficulties in planning, replanning, and reuse, which is the interdependence of
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optimal actions across states in a sequential decision task. To solve this problem, we import from control
theory?>*” to neuroscience a novel computational model of decision making in the brain, called linear RL,
which enables efficient (though approximate) global policy optimization by relying on soft relaxation away
from default, stochastic policy expectations.

This leverages the DR, a stored, long-run predictive map of state and cost expectancies under the default
policy. The DR is closely related to the SR, and inherits many of the appealing features that have generated
current excitement for it as a neuroscientific model>>®°®, However, linear RL corrects serious problems
that hobble the practical applicability of the SR. The DR, unlike the SR, exerts only a weak bias toward the
default policy, and so delivers on the promise of a stable cognitive map'! that can reuse substantial
computation to transfer learning across contexts without sacrificing flexibility. This allows the model to
explain animals’ ability to solve reward and policy revaluation problems that otherwise would require
exhaustive, biologically unrealistic model-based search. For the same reason, the model also helps to
deliver on the idea that grid cells in entorhinal cortex could provide a broadly useful neural substrate for
such a temporally abstract map. And the model’s remaining inflexibilities — in general, soft, stochastic
biases rather than hard failures — connect naturally with phenomena of cognitive control and Pavlovian
biases and provide a strong theoretical framework for understanding the role of many such biases in both
healthy and disordered choice.

This theory provides a unified and realistic computational framework for model-based planning in the
brain and, therefore, provides a foundation for some suggestions here and much future work studying
the neural substrates of different aspects of such planning. However, we should emphasize that
unification at the computational level does not necessarily mean that a single neural system (e.g.,
entorhinal cortex) governs all these computations®. First, the framework encompasses many different
subprocesses that have been previously associated with different brain systems (including map learning,
state prediction, policy learning, value prediction, and control for overriding prepotent responses). The
current framework suggests how these processes might interact, but we do not mean to imply that they
are all the same thing. Furthermore, even though a particular subfunction — like map/model learning —
may seem unitary in an abstract, computational sense, it may nonetheless be supported by different brain
systems in different contexts, such as social vs spatial.

We motivated linear RL from a computational perspective, in which the central question is how the brain
efficiently reuses previous computations for flexible replanning. Mathematically, this is enabled by
introducing a control cost term, given by the dissimilarity (KL divergence) between a default policy, and
the final, optimized decision policy. We argued that this penalty allows the model to explain a range of
“model-based” planning and transfer phenomena, and simultaneously explain a separate set of
inflexibilities in decision making, such as biased behavior, Pavlovian biases, and cognitive control (Figures

I”

7-9), while also providing a novel, first-principle rationale for the “costs of control” implied by these
effects. However, it is important to point out that, considered alone, these bias effects (unlike transfer)
reflect only the control cost aspects of our model, and do not themselves require or exercise model-based
planning. They would thus be seen, for the same reason, even in model-free algorithms for cost-sensitive

linear RL such as Todorov’s Z-learning?? and soft Q-learning®. Also, as discussed below, there exist
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alternative rationales that can motivate the same form of KL-divergence costs, where the default policy
enters as a baseline expectation for efficient capacity-constrained value coding, or as a prior for Bayesian
planning-as-inference. These perspectives are not necessarily mutually exclusive, but our proposal to view
flexible planning as fundamental has the benefit of providing a unified view on two important but
otherwise mostly separate areas of cognitive neuroscience, i.e. flexible planning and cognitive control.

The basic planning operation in linear RL is matrix-vector multiplication, which is easily implemented in a
single neural network layer. The theory offers new insights into the systems-level organization of this
computation. In particular, the model realizes the promise of a representation that factors a map
representing the structure of environment, separate from an enumeration of the current value of the
goals in the environment. This facilitates transfer by allowing update of either of these representations
while reusing the other. Previous models, like the SR, nominally exhibit this separation, but the hard policy
dependence of the SR’s state expectancies means that goal information, in practice, inseparably infects

the map and interferes with flexible transfer>.

In fact, in order to facilitate efficient planning, the linear RL model actually factors the map into three
rather than two pieces, distinguishing between terminal states (representing goals), and nonterminal
states (those that may be traversed on the way to goals); and dividing the map into one matrix encoding
long-run interconnectivity between nonterminal states (the DR, M) and a second matrix representing one-
step connections from nonterminal states to goals (P). This is a necessary restriction, in that only for this
type of finite decision problem are the optimal values linearly computable. However, this classification is
not inflexible, because we also introduce novel techniques (based on matrix inversion lemmas) that allow
dynamically changing which states are classed as goals. This allows the model (for example) to plan the
best route to any arbitrary location in a maze (Fig 2d). Representing goals as terminal states also means
that the model does not directly solve problems that require figuring out how best to visit multiple goals
in sequence. However, this restriction has little effect in practice because these can either be treated as a
series of episodes, re-starting at each goal, or by including subgoals within the nonterminal states, since
the model does optimize aggregate cost over trajectories through nonterminal states as well.

This last point raises several interesting directions for future work. First, although there is evidence that
humans choose their goal and plan towards that goal®!, there is some empirically underconstrained
theoretical flexibility in specifying how a task’s state space should be partitioned into terminal and
nonterminal states. For the simulations here, we have tentatively adopted the principle that all discrete,
punctate outcomes (like food or shock) are represented as terminal goal states with corresponding value
in r, and the rest of the (nonterminal) states contain only costs, constant everywhere, meant to capture
the cost of locomotion. But, in general, state-dependent costs can be included for nonterminal states as
well. These in effect modulate the “distance” between states represented within the DR (see Methods).
Nevertheless, this leads to the testable prediction that to whatever extent state-specific costs are
accounted for within nonterminal states, they should affect hypothetical neural representations of the
DR, such as grid cells. For instance, unlike for the SR, the DR predicts that by increasing locomotion cost,
hills or rough terrain should increase “distance” as measured in the grid map (Supplementary Fig. 3). This
aspect of the DR may be relevant for explaining recent evidence that grid cells have some subtle
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sensitivities to reward®>%

which cannot be explained, as the SR-eigenvector account would predict, as
secondary to changes in behavioral policy (e.g., not due to occupancy around rewarding locations®?, nor

variations in trajectories or speed®).

Linear RL in its basic form requires one other formal restriction on tasks, compared to standard Markov
decision processes as often assumed by other RL theories in theoretical neuroscience. This is that the task
is deterministically controllable. This is a good fit for many important sequential tasks, such as spatial
navigation (I can reliably get from location A to location B by taking a step forward) and instrumental
lever-pressing, but does not exactly map to tasks that include irreducibly stochastic state transitions. We
show, however, that it is possible to address the latter class of tasks by approximating them as controllable
and producing an intermediate approximate solution via linear RL. Though extremely simple, this
approach can solve tasks such as two-step noisy Markov decision tasks that we and others have used to
study model-based planning in humans and animals*?. This approximation may be sufficient in practice
for many realistic cases, though we also show that tasks can be constructed to defeat it (Fig 6c). It remains
to be tested how or whether people solve these cases. It may also be possible to use other forms of
approximation to extend linear RL to a broader class of stochastic environments??, but it remains for future
work to explore how far this can be pushed.

We have stressed how the DR can be used for planning, and also how it embodies substantial, reusable
computation (specifically, predictions of long-run future state occupancy and cost-to-go), relative to
simpler, easy-to-learn map representations like the one-step state adjacency model P(s;,4|s;). We have
not, so far, discussed how the DR can itself be learned or computed. There are several possibilities: two
inherited from previous work on the SR®> and one newly introduced here. First, like the SR, the DR can be
learned gradually by actual or replay-based sampling of the environment, using a temporal difference
rule>®, Second, again like the SR, the DR can be constructed from the one-step transition matrix and costs
(which can themselves be learned directly by Hebbian learning) by a matrix inversion, or equivalently a
sum over a series of powers of a matrix. The latter form motivates attractor methods for computing the

inverse iteratively by a simple recurrent network>%4%%,

A third possibility for learning the DR follows from the novel method we introduce for using matrix
inversion identities to efficiently update the DR in place to add additional goals, barriers, or shortcuts (see
Methods). This works by expressing the inverse matrix in terms of the inverses of simpler component
matrices (one of which is the pre-update DR), rather than for instance by updating the transition matrix
and then, expensively, re-inverting the whole thing. For instance, we used this to solve tasks, such as
Tolman’s detour task, in which the transition structure of the environment changes. It could also be used,
state by state or barrier by barrier, as a learning rule for building up the DR from scratch.

Suggestively, this insight that the Woodbury matrix inversion identity can be used to decompose a DR
map (an inverse matrix) into the sum of component maps, each associated with different sub-graphs of
the transition space, offers a promising direction for a direct neural implementation for representing and
constructing maps componentially: via summing basis functions, here represented by the low-rank
Woodbury updates or some further function of them. This idea dovetails with —and may help to formalize
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and extend — the emerging idea that maps in the brain are built up by composing basis functions, such as
those putatively represented in the grid cells>1%26396¢ Here, we showed that the term required to update
the DR when encountering a wall remarkably resembles entorhinal border cells*'. Therefore, our theory
unifies the functional roles of entorhinal grid and border cells in planning and navigation, both as neural
codes for making long-term maps that are useful for planning. We believe that this is the first step toward
constructing a fully componential model of maps, which should be thoroughly studied in the future.
Beyond its direct consequences, our model also opens the way for future work giving a more detailed
account of different patterns of change in entorhinal maps under different environmental changes.
Empirically, such changes arise both gradually and abruptly. Although we have emphasized the robustness
of planning to the choice of default policy, since the DR depends on the default policy, any situations such
as overtraining that produce a biased default policy (Fig 7), could ultimately and gradually lead to maps
that are sensitive to the transition statistics of past behavior®’. There are also situations in which abrupt
recalculation of the DR might be necessary, for example following substantial changes in the environment.

This is broadly consistent with findings that grid fields can dramatically remap in such situations®®7°,

For making the connection between the DR and entorhinal grid fields, we followed Stachenfeld and
others? and used a graph Laplacian approach, in which the DR is represented using its eigen-
decomposition. Although there are a number of reasons (including the parallels with entorhinal fields, and
the efficiency of the Woodbury updates) to think that the brain represents maps via some decomposition
similar to this, we are not committed to this specific decomposition as a mechanistic neural model.
Instead, our main motivation for taking this approach was descriptive, to investigate the properties of the
DR and to highlight its relationship with multiscale, periodic functions qualitatively similar to grid cells.
We believe that this approach is revealing, despite its many limitations, including the fact that
eigenvectors of the DR (and the SR) show a wide range of frequencies, not only hexagonally symmetric
fields®. Notably, eigenvectors can also be learned using biologically-plausible networks trained by Oja’s

rule®7!

, and it has been suggested that since eigen-decomposition is commonly used for compression,
this approach could also be used to allow a regularized SR or DR to be learned and represented more
efficiently?. However, this results in a loss of information if only a subset of eigenvectors is used.
Nevertheless, the eigen-decomposition is by no means the only possible approach for efficient
representation of the DR. In fact, the DR, at least in open fields with a fixed cost, has a redundant structure
that can be exploited for efficient and exact representation, and a fully compositional account of border
cells would require additional nonlinearities to account for their translation to different locations in space.

This is a topic that goes beyond the scope of the current work and which we plan to pursue in future work.

Our model is based on the notion of the default policy, which is a map of expected state-to-state transition
probability regardless of the current goals. Unlike previous RL models, such as the SR, linear RL does not
entirely rely on the default policy and instead optimizes the decision policy around the default policy. This
means that the final optimized policy is between the exact, deterministic optimized policy, and the
default. The degree of this bias is controlled by a free parameter, A, that scales the control costs relative
to rewards and corresponds to the temperature in the softmax approximation to the optimization. In the
limits of zero, or respectively infinite, control cost scaling, the approximation to the optimum becomes
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exact, or the default policy dominates completely. How should this parameter be set, and why not always
take it near zero to improve the fidelity of the approximation? Linear RL works by multiplying very small
numbers (future occupancies) times very large numbers (exponentiated, scaled rewards) to approximate
the maximum expected value. Making this work effectively across different decision situations in the brain
requires careful control of scaling to manage limits on precision (e.g. maximum spike rate and
guantization, analogous to numerical precision in computers). This suggests fruitful connections (for
future work) with research on gain control and normalization’?, and rational models for choice using noisy

representations’>74,

The same tradeoff can also be understood from principles of efficient information theoretic coding’® and
from the perspective of Bayesian planning as inference’®”’. Here, the default policy plays the role of prior
over policy space and rewards play the role of the likelihood function. In this case, the decision policy is
the posterior that optimally combines them®. Then, how much the default should influence the decision
policy depends on how informative a prior it is (e.g. how reliable or uncertain it has been previously). This
also suggests another distinct perspective on the default policy’s role, in the model, in producing
prepotent biases that can be overcome by cognitive control**¢. On this view, it serves to regularize
behavior toward policies that have worked reliably in the past; and deviations from this baseline are
presumptively costly. This perspective also provides the theoretical basis to exploit the machinery of
probabilistic graphical modeling for unifying models of planning and inference in neuroscience.

Indeed, our framework can encompass many different possibilities not just for how strongly the default
policy is emphasized, but also how it is learned or chosen. In general, while the model provides a good
approximation to the true optimal values independent of which default policy is used (so long as its cost
is scaled appropriately relative to the rewards), we can also ask the converse question — which default
policy should be chosen to allow for the best approximation and thereby obtain the most (actual) reward?
The answer is of course, that the cost term (measuring the divergence between true and approximate v*)
is minimized whenever the future * is equal to the default =%. Any algorithm for learning policies might
be appropriate, then, for finding a w that is likely to be near-optimal in the future. We exhibit one simple
policy-learning algorithm (which is analogous to one habit-learning proposal from the psychological
literature’®) but other habit learning models including model-free actor-critic learning’® are equally
applicable . A related idea has also been recently proposed in the context of a more explicitly hierarchical
model of policy learning: that a default policy (and control-like charges for deviation form it) can be useful
in the context of multitask learning to extract useful, reusable policies**®. Separately, an analogous
principle of identification of task structure that generalizes across tasks in a hierarchical generative model
has also been proposed as a model of grid and place cell responses that shares some similarities with our
account!®?®, Future work remains to understand the relationship between the considerations in both of
these models — which involve identifying shared structure across tasks — and ours, which are motivated
instead more by efficient planning within a task.

The role of the default policy, finally, points at how the linear RL framework provides a richer, more
nuanced view of habits and pathologies of decision making than previous computational theories.
Although a learned default policy biases behavior, and may modulate accuracy or speed of performance,
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it trades off against rewards in the optimization. This give and take stands in contrast to much previous
work, especially in computational psychiatry, which has often assumed a binary model of evaluation:
either flexible values are computed (model-based, goal-directed) or they are not (model-free, habits). The
latter, acting rather than thinking, has been taken as a model of both healthy and unhealthy habits, and
especially of compulsive symptoms such as in drug abuse and obsessive compulsive disorder®!. Although
such outright stimulus-response reflexes may exist, the present framework allows for a much broader
range of biases and tendencies, and may help to understand a greater range of symptomatology, such as
excessive avoidance in anxiety®?, craving and cue-induced relapse in drug abuse, and the ability to
effortfully suppress compulsive behaviors across many disorders. Finally, and relatedly, the possibility of
a dynamic and situation-dependent default policy also offers a way to capture some aspects of emotion
that have been resistant to RL modeling. In particular, one important aspect of emotion is its ability to
elicit a pattern of congruent response tendencies, such as a greater tendency toward aggression when
angry. Complementing recent work suggesting these might arise due to a hard bias on planning (via
pruning context-inappropriate actions)®, the default policy offers a clear and normative lever for
influencing behavior on the basis of emotional (and other) context.

Methods

Model description

In this work, we focus on Markov decision processes (MDPs) with two conditions. First, we assume that
there is one or a set of terminal states, st; Second, we initially consider deterministic environments, such
as mazes, in which there is a one-to-one map between actions and successor states (and later extend to
stochastic transitions; see the section Stochastic transitions below).

2122 in which the agent

The linear RL model is based on a modification to the value function for this setting
controls the probabilistic distribution over successor states (i.e., actions) and pays an additional control
cost quantified as the dissimilarity, in the form of Kullback—Leibler (KL) divergence, between the controlled
dynamics (i.e. decision policy), (. |s;) and a default dynamics, (. |s;). In particular, the objective of this

MDP is to optimize a “gain” function, g(s;), defined as
g(se) =r(se) = AKL(r||m?) (5)

where 1 > 0 is a constant and KL(rr||®) is the KL divergence between the two probability distributions;
it is only zero if the two distributions are the same, i.e. T = 7% and otherwise is positive. We also require
that w = 0 if #¢ = 0. Note that in the limit of zero, or respectively infinite, A, the gain converges to pure
reward (i.e. a standard MDP), or pure cost. Here, A scales the relative strength of control costs in units of
reward (and is equivalent to rescaling the units of reward while holding the cost fixed).

It is easy then to show that the optimal value function for this new problem, v*, is analytically solvable???

(see formal derivation below). We first define the one-step state transition matrix T, whose (i, j) element
is equal to the probability of transitioning from state i to state j under the default policy (i.e. probability
of the action under the default policy that makes i — j transition). This contains subblocks, Tyy, the
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transition probability between nonterminal states, and Tyr = P, the transition probabilities from
nonterminal to terminal states. Then:

exp(v*/1) = MPexp(r/1), (6)

where v* is the vector of optimal values at nonterminal states, r is the vector of rewards at terminal
states, and M is a matrix defined below. Note that equation (3) is the case of this equation for A = 1.

The DR matrix M is defined as:

M = (diag(exp(—ry/1)) — Tyn) ™",

where 1y is the vector of rewards at nonterminal states (which we take as a uniform cost of —1 in most

of our simulations).

For flexibility in updating which states are viewed as goal states, it is helpful to define a second, more
general version of the DR matrix, D, defined over all states (not just nonterminal states) as:

D = (diag(exp(—ry/1) —T)7},

where 1, is the reward vector across all states. Note that since matrix M can be easily computed from D
(in particular, M is a subblock of D corresponding to the nonterminal states only), we refer to both of
them as the DR unless specified otherwise. Also note that for defining D, we assumed, without loss of
generality (since this assumption does not affect M), that reward at terminal states are not 0.

This solution for v* further implies that the policy takes the form of a weighted softmax, where the
weights are given by the default policy

n?(als,) exp(v*(sa)/A)
am?(@'|se) exp(v*(sq)/A)

where s, is the successor state associated with action a. Thus, for a uniform default policy, the optimal

mw(als;) = 5 (7)

policy is simply given by the softmax over optimal values with the temperature parameter A. Note also
that in the limit as A — 0, the problem becomes the classical MDP (because g(s;) — r(s;) in equation
(4)) and the decision policy in equation (6) also reflects the optimum policy (i.e. greedy) exactly. In the
limit of infinite A, the influence of the rewards vanishes and the decision policy converges to the default

policy.

Planning toward a new goal and transfer revaluation

Consider an environment with Tg and Dg as the transition matrix under the default policy and the
associated DR, respectively. Now suppose that the agent’s goal is to plan toward state j (or equivalently
computing the distance between any state and j), i.e., we wish to add j to the set of terminal states. Here,
we aim to develop an efficient method to plan towards j by using the cached Dy, without re-inverting the

matrix.

If we define Ly = diag(exp(—r4/1)) — Ty and L = diag(exp(—r,/4)) — T, then L and Ly are only
different in their jth row (because T and Ty are only different in their jth row). We define d, a row-vector
corresponding to the difference in jth row of the two matrices:
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d=LG,:)—Lo(,:),
and therefore, we can write:
L=Ly+ed,
where e is a binary column-vector that is one only on jth element. Using the Woodbury matrix identity,
L1 is given by
L =Ly~ i, alTe Lo edLy’,

in which we exploited the fact that d and e are row- and column- vectors, respectively, and therefore
dLy'e is a scalar. Since Dy = L' and D = L™, we obtain

D= DO modDo, (8)

B 1+ dmo
where my is the jth column of Dg.

The above equation represents an efficient, low-rank update to the DR itself. However, for the purpose
of this single planning problem (e.g. if, we do not intend further modifications to the matrix later), we may
also further simplify the computation by focusing only on the product z = MP, which is what is needed
for planning using equation (5) in the new environment. We find z in terms of an intermediate vector Z =
DP, where P is a subblock of T from all states to terminal states, in which all elements of rows
corresponding to terminal states are set to 0. Therefore, Z is given by

A~

Z=125— mydz,, 9)

1+dm0

where

Zy = DoP (10)
Finally, z is given by the submatrix of Z corresponding to nonterminal rows.

It is important to note that since d and P are very sparse, computations in equations (8-9) are local. In
fact, d is only nonzero on elements associated with immediate state of j (and jth element). If we assume
that there is only one terminal state (i.e. j), then P is a vector that is nonzero on elements associated with
immediate state of j.

The same technique can be used to update the DR or re-plan in transfer revaluation problems, such as
localized changes in Tyy or P. For example, if transition from state j to i has been blocked, new values
for D and z can be computed efficiently using equations (7) and (8), respectively. Similarly, D and z can
be computed efficiently using those equations if the reward value for the nonterminal state changes.
Finally, it is also possible to learn the DR matrix, transition by transition, by iteratively computing D for
each update using D, in equation (7).
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Border cells

We employed a similar approach to account for border cells. Suppose that a wall has been inserted into
the environment, which changes the transition matrix Ty to T. Suppose Ly = diag(exp(—14/4)) — T,
and L = diag(exp(—r,/1)) — T. We define matrix A using rows of Ly and L corresponding to J:

A=L]_L0],

where ]| denotes those states that their transition has been changed, L; and Ly, are, respectively,
submatrices associated with rows of L and Ly corresponding to J. Using the Woodbury matrix identity
(similar to equation (7)), the DR associated with the new environment is given by

D =D, - B,

where

B = Do, (I + ADy;)” AD,,

in which matrix Dy, is the submatrix associated with columns of D¢ corresponding to /, and Lis the identity
matrix. Note that although this model requires inverting of a matrix, this computation is substantially
easier than inverting matrix L, because this matrix is low-dimensional. For simulating the border cells in
Fig 5, we replaced matrix Dg by its eigenvectors. Thus, if u is an eigenvector of D¢, the corresponding
column in B, b(u) is given by

b(u) = Do, (I +ADy;) ' Au.

Stochastic transitions

In deterministic environments, the default policy is equivalent to a default probabilistic mapping between
states, which can be written as m%(s’ = s,|s) = n%(als), where s, denotes the corresponding state
(among the set of successor states of s) to action a. In environments with stochastic dynamics, however,
there is no such mapping between policy and dynamics, and therefore one additional step is required to
extend the linear RL framework to stochastic environments. Here, m%(s’|s) is defined as the default 1-
step transition from state s to s’ (it is only nonzero for successor states of s). We can then use the
framework of linear RL to obtain the optimal transition, u(s’|s), between immediate states by optimizing
the gain function defined as g(s;) = r(s;) — 41 KL(u||m4). This is the same as Equation 4 in which the
decision policy has been replaced by u. Therefore, it is easy to see that optimal u is given as before by
Equation 6. Now suppose that the transition model of the environment is given by S(s’|a, s). The optimal
u can therefore be seen as the desired marginal probability distribution of the joint policy m and the
transition model, in which effects of actions are marginalized

u(s'ls) = Z S(s'|s,a)m(als)

If we write the transition model for a given state s as matrix S defined by successor states (rows) and
available actions (columns), then we have u(.|s) = Sgm(.|s). We can then find m by minimizing the
squared error between u(.|s) and Sgm(. |s) under the constraint that 7 is a probability distribution. In
practice, in most situations, such as the two-step task (Fig 6a-b), this can be readily computed as 7t(. |s) =
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S;1u(.|s). In situations in which this solution is not a distribution, an iterative optimization method (e.g.
active-set) can be used. Such iterative methods converge very quickly if the rank of S is small.

Simulation details

We assumed a uniform default policy in all analyses presented in Figure 1-5. In Fig 1, the cost for all states
were randomly generated in the range of 0 to 10 and analysis was repeated 100 times. In Fig 2b-c, a 50x50
maze environment was considered. In Fig 2d-e, a 10x10 maze was considered with 20 blocked states. The
DR was computed in this environment with no terminal state, in which the cost for all states was 1. We
used equation (8) to compute the shortest path using linear RL. The optimal path between every two
states was computed by classic value iteration algorithm. In Fig 3b-c, the reward of all states was —1,
except the terminal states, which was +5. In the revaluation phase, the reward of the left terminal state
was set to —5. In Fig 3d, the reward of states 1,2 and 3 is 0. In Fig 3e, reward at all states is —1, except for
the terminal state, which is +5. In Fig 4d, a 50x50 maze was considered, the cost for all states was assumed
to be 0.1. In this figure, 15, 20t", 32" eigenvectors of the DR have been plotted. In Fig 5b, a 20x20 maze
was considered and the cost for all states was assumed to be 0.1. In this figure, 1%, 6, 11t%, 12t
eigenvectors of the DR have been considered. In Fig 6b, the amount of reward was assumed to be 0.25.
For overtraining in Fig 7, the model has undergone 1000 episodes of training (each until termination) and
the default policy has been trained gradually according to a delta-rule: if the transition is from state s, to
sp, and the default policy is given by % (sp|sg), then #%(sp|sq) « T4 (sp|sq) + a(1 — w%(sp|s,)). The
new (. |s,) is given by normalizing #%(. |s,). The step-size, a, is assumed to be 0.01. For simulating the
two-step task, we also assumed that there is a perseveration probability (i.e. repeating the same choice
regardless of reward) of 0.75, similar to empirical values seen in our previous work*>#*,

The default policy in Figs 8-9 was not uniform. In Fig 8c, the default probability for the control-demanding
action assumed to be 0.2 and reward was assumed to be +2. For simulating PIT in Fig 9, we followed
experimental design of Corbit et al.>® and assumed that the environment contains 4 states, in which state
1 was the choice state, states 2, 3, and 4 were associated with outcomes 1,2 and 3, respectively. In Fig 9c,
the reward of outcome 1-3 was +5. In Fig 9e, the reward of all states was assumed to be 0. It was also
assumed that during the Pavlovian training, the default probability for Stimulus 1— Outcome 1 and for

Stimulus 2— Outcome 2 changes from 0.33 (i.e. uniform) to 0.5.

The only parameter of linear RL is A, which was always assumed to be 1, except for simulating the results
presented in Fig 3e (and Fig 7, in which A was systematically manipulated), where we set A = 10 to avoid
overflow of the exponential due to large reward values.

Formal derivation
For completeness, we present derivation of equations (5-6) based on Todorov?%?2, By substituting the gain
defined in equation (4) into the Bellman equation (1), we obtain:

n(alse) }
m?(als) exp (v(sa)/D)])’

where s, denotes the corresponding state (among the set of successor states of s;) to action a.

v(sy) =1(se) + max {_AEa~n(a|St) [log
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Note that the expectation in the Bellman equation is under the dynamics, which we have replaced it with
the policy because they are equivalent here. The expression being optimized in this equation is akin to a
KL divergence, except that the denominator in the argument of the log function is not normalized.

Therefore, we define the normalization term c:
c= Z 7% (als,)e? G/,
a
Note that c¢ is independent of the distribution being optimized m. By multiplying and dividing the
denominator of the log by c, we obtain:
v(sy) = r(sy) + Alogc + max {—AKL(m(a|sy)||w%(als,)e? /% /)3,
T
where the maximum value of negative KL divergence is zero, which occurs only if the two distributions
are equal, giving rise to equation (6):
n(als,) = m%(als,)e?Ca/? /¢,
Furthermore, since the KL divergence is zero, optimal values satisfy:
v*(st) = r(sy) + Aloge.

Across all states, this gives rise to a system of linear equations in the exponential space. Since at terminal
states, v(sy) = r(sy), this system can be solved analytically, which can be written in the matrix equation
5.

Code availability
The code and simulation data are available publicly at https://github.com/payampiray/LinearRL.

Acknowledgement
We thank Tim Behrens and Jon Cohen for helpful discussions. This work was supported by grants IIS-
1822571 from the National Science Foundation, part of the CRNCS program, and 61454 from the John
Templeton Foundation.

32


https://github.com/payampiray/LinearRL
https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

1. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal
systems for behavioral control. Nat. Neurosci. 8, 1704-1711 (2005).

2. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20,
1643-1653 (2017).

3. Daw, N. D. & Dayan, P. The algorithmic anatomy of model-based evaluation. Philos. Trans. R. Soc. Lond. B. Biol.
Sci. 369, (2014).

4. Keramati, M., Dezfouli, A. & Piray, P. Speed/accuracy trade-off between the habitual and the goal-directed
processes. PLoS Comput. Biol. 7, e1002055 (2011).

5. Russek, E. M., Momennejad, |., Botvinick, M. M., Gershman, S. J. & Daw, N. D. Predictive representations can
link model-based reinforcement learning to model-free mechanisms. PLoS Comput. Biol. 13, e1005768 (2017).

6. Momennejad, I. et al. The successor representation in human reinforcement learning. Nat. Hum. Behav. 1, 680—
692 (2017).

7. Bellman, R. E. Dynamic Programming. (Princeton University Press, 1957).

Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction. (MIT Press, 2018).

9. Dickinson, A. & Balleine, B. W. The role of learning in motivation. in Volume 3 of Steven’s Handbook of
Experimental Psychology: Learning, Motivation, and Emotion (ed. Gallistel, C. R.) 497-533 (Wiley, 2002).

10. Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias
decisions. Science 338, 270-273 (2012).

11. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189-208 (1948).

12. Behrens, T. E. J. et al. What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. Neuron 100, 490—
509 (2018).

13. Mattar, M. G. & Daw, N. D. Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci.
21, 1609-1617 (2018).

14. Keramati, M., Smittenaar, P., Dolan, R. J. & Dayan, P. Adaptive integration of habits into depth-limited planning
defines a habitual-goal-directed spectrum. Proc. Natl. Acad. Sci. U. S. A. 113, 12868-12873 (2016).

15. Huys, Q. J. M. et al. Interplay of approximate planning strategies. Proc. Natl. Acad. Sci. U. S. A. 112, 3098-3103
(2015).

16. Dayan, P. Improving Generalization for Temporal Difference Learning: The Successor Representation. Neural
Comput. 5, 613-624 (1993).

17. Lehnert, L., Tellex, S. & Littman, M. L. Advantages and Limitations of using Successor Features for Transfer in
Reinforcement Learning. ArXiv170800102 Cs Stat (2017).

18. Dezfouli, A. & Balleine, B. W. Habits, action sequences and reinforcement learning. Eur. J. Neurosci. 35, 1036—
1051 (2012).

19. Botvinick, M. M., Niv, Y. & Barto, A. C. Hierarchically organized behavior and its neural foundations: A
reinforcement-learning perspective. Cognition 113, 262—-280 (2009).

20. Kappen, H. J. Linear theory for control of nonlinear stochastic systems. Phys. Rev. Lett. 95, 200201 (2005).

21. Todorov, E. Linearly-solvable Markov decision problems. in Advances in Neural Information Processing Systems
19 (eds. Schélkopf, B., Platt, J. C. & Hoffman, T.) 1369-1376 (MIT Press, 2007).

22. Todorov, E. Efficient computation of optimal actions. Proc. Natl. Acad. Sci. U. S. A. 106, 11478-11483 (2009).

23. Gustafson, N. J. & Daw, N. D. Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement
Learning. PLOS Comput. Biol. 7, €1002235 (2011).

24. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. |. Microstructure of a spatial map in the entorhinal
cortex. Nature 436, 801-806 (2005).

25. Constantinescu, A. O., O'Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a
gridlike code. Science 352, 1464—1468 (2016).

26. Whittington, J. C. et al. The Tolman-Eichenbaum Machine: Unifying space and relational memory through
generalisation in the hippocampal formation. bioRxiv 770495 (2019) doi:10.1101/770495.

27. Mahadevan, S. Representation Policy Iteration. ArXiv12071408 Cs (2012).

28. Mahadevan, S. & Maggioni, M. Proto-value Functions: A Laplacian Framework for Learning Representation and
Control in Markov Decision Processes. J. Mach. Learn. Res. 8, 2169-2231 (2007).

®

33


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

29. Sanguinetti-Scheck, J. I. & Brecht, M. Home, head direction stability and grid cell distortion. bioRxiv 602771
(2019) doi:10.1101/602771.

30. Carpenter, F., Manson, D., Jeffery, K., Burgess, N. & Barry, C. Grid cells form a global representation of connected
environments. Curr. Biol. CB 25, 1176-1182 (2015).

31. Derdikman, D. et al. Fragmentation of grid cell maps in a multicompartment environment. Nat. Neurosci. 12,
1325-1332 (2009).

32. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643-662 (1935).

33. Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a parallel distributed
processing account of the Stroop effect. Psychol. Rev. 97, 332-361 (1990).

34. Estes, W. K. A discriminative property of conditioned anticipation. J. Exp. Psychol 150-155 (1943).

35. Corbit, L. H. & Balleine, B. W. Learning and Motivational Processes Contributing to Pavlovian—Instrumental
Transfer and Their Neural Bases: Dopamine and Beyond. in Behavioral Neuroscience of Motivation (eds.
Simpson, E. H. & Balsam, P. D.) 259-289 (Springer International Publishing, 2016). doi:10.1007/7854_2015_388.

36. de Wit, S., Niry, D., Wariyar, R., Aitken, M. R. F. & Dickinson, A. Stimulus-outcome interactions during
instrumental discrimination learning by rats and humans. J. Exp. Psychol. Anim. Behav. Process. 33, 1-11 (2007).

37. Tolman, E. C. & Gleitman, H. Studies in learning and motivation; equal reinforcements in both end-boxes;
followed by shock in one end-box. J. Exp. Psychol. 39, 810-819 (1949).

38. Sutton, R.S. TD Models: Modeling the World at a Mixture of Time Scales. in Machine Learning Proceedings 1995
(eds. Prieditis, A. & Russell, S.) 531-539 (Morgan Kaufmann, 1995). doi:10.1016/B978-1-55860-377-6.50072-4.

39. Baram, A. B., Muller, T. H., Whittington, J. C. R. & Behrens, T. E. J. Intuitive planning: global navigation through
cognitive maps based on grid-like codes. bioRxiv 421461 (2018) doi:10.1101/421461.

40. He, Q. & Brown, T. I. Environmental Barriers Disrupt Grid-like Representations in Humans during Navigation.
Curr. Biol. CB 29, 2718-2722.e3 (2019).

41. Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B. & Moser, E. |. Representation of geometric borders in the
entorhinal cortex. Science 322, 1865-1868 (2008).

42. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices
and striatal prediction errors. Neuron 69, 1204-1215 (2011).

43. Botvinick, M. M. & Cohen, J. D. The computational and neural basis of cognitive control: charted territory and
new frontiers. Cogn. Sci. 38, 1249-1285 (2014).

44. Kool, W., McGuire, J. T., Rosen, Z. B. & Botvinick, M. M. Decision making and the avoidance of cognitive demand.
J. Exp. Psychol. Gen. 139, 665-682 (2010).

45. Westbrook, A., Kester, D. & Braver, T. S. What Is the Subjective Cost of Cognitive Effort? Load, Trait, and Aging
Effects Revealed by Economic Preference. PLOS ONE 8, 68210 (2013).

46. Shenhav, A. et al. Toward a Rational and Mechanistic Account of Mental Effort. Annu. Rev. Neurosci. 40, 99-124
(2017).

47. Kurzban, R., Duckworth, A., Kable, J. W. & Myers, J. An opportunity cost model of subjective effort and task
performance. Behav. Brain Sci. 36, (2013).

48. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior
cingulate cortex function. Neuron 79, 217-240 (2013).

49. Kool, W. & Botvinick, M. Mental labour. Nat. Hum. Behav. 2, 899-908 (2018).

50. Botvinick, M. & Braver, T. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev.
Psychol. 66, 83—-113 (2015).

51. Krebs, R. M., Boehler, C. N. & Woldorff, M. G. The influence of reward associations on conflict processing in the
Stroop task. Cognition 117, 341-347 (2010).

52. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1-18 (1994).

53. Everitt, B. J. & Robbins, T. W. Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annu.
Rev. Psychol. 67, 23-50 (2016).

54. Dayan, P., Niv, Y., Seymour, B. & Daw, N. D. The misbehavior of value and the discipline of the will. Neural Netw.
Off. J. Int. Neural Netw. Soc. 19, 1153-1160 (2006).

55. Afsardeir, A. & Keramati, M. Behavioural signatures of backward planning in animals. Eur. J. Neurosci. 47, 479—
487 (2018).

34


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

56. Corbit, L. H., Janak, P. H. & Balleine, B. W. General and outcome-specific forms of Pavlovian-instrumental
transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur. J. Neurosci.
26, 3141-3149 (2007).

57. Todorov, E. General duality between optimal control and estimation. in 2008 47th IEEE Conference on Decision
and Control 4286—4292 (2008). doi:10.1109/CDC.2008.4739438.

58. Gershman, S. J. The Successor Representation: Its Computational Logic and Neural Substrates. J. Neurosci. 38,
7193-7200 (2018).

59. Behrens, T. E. J., Hunt, L. T. & Rushworth, M. F. S. The computation of social behavior. Science 324, 1160-1164
(2009).

60. Haarnoja, T., Tang, H., Abbeel, P. & Levine, S. Reinforcement Learning with Deep Energy-Based Policies.
ArXiv170208165 Cs (2017).

61. Cushman, F. & Morris, A. Habitual control of goal selection in humans. Proc. Natl. Acad. Sci. U. S. A. 112, 13817—-
13822 (2015).

62. Boccara, C. N., Nardin, M., Stella, F., O’Neill, J. & Csicsvari, J. The entorhinal cognitive map is attracted to goals.
Science 363, 1443-1447 (2019).

63. Butler, W. N., Hardcastle, K. & Giocomo, L. M. Remembered reward locations restructure entorhinal spatial
maps. Science 363, 1447-1452 (2019).

64. Sutton, R.S. & Pinette, B. The learning of world models by connectionist networks. in Seventh Annual Conference
of the Cognitive Science Society 54—64 (1985).

65. Jang, J.-S., Lee, S.-Y. & Shin, S.-Y. An Optimization Network for Matrix Inversion. in 397-401 (1988).

66. Dordek, Y., Soudry, D., Meir, R. & Derdikman, D. Extracting grid cell characteristics from place cell inputs using
non-negative principal component analysis. eLife 5, 10094 (2016).

67. Barry, C., Hayman, R., Burgess, N. & Jeffery, K. J. Experience-dependent rescaling of entorhinal grids. Nat.
Neurosci. 10, 682-684 (2007).

68. Fyhn, M., Hafting, T., Treves, A., Moser, M.-B. & Moser, E. |. Hippocampal remapping and grid realignment in
entorhinal cortex. Nature 446, 190-194 (2007).

69. Pérez-Escobar, J. A., Kornienko, O., Latuske, P., Kohler, L. & Allen, K. Visual landmarks sharpen grid cell metric
and confer context specificity to neurons of the medial entorhinal cortex. eLife 5, e16937 (2016).

70. Ismakov, R., Barak, O., Jeffery, K. & Derdikman, D. Grid Cells Encode Local Positional Information. Curr. Biol. 27,
2337-2343.e3 (2017).

71. QOja, E. A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267-273 (1982).

72. Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal
cortex. J. Neurosci. Off. J. Soc. Neurosci. 31, 10627-10639 (2011).

73. Gershman, S. & Wilson, R. The Neural Costs of Optimal Control. in Advances in Neural Information Processing
Systems 23 (eds. Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S. & Culotta, A.) 712-720 (Curran
Associates, Inc., 2010).

74. Woodford, M. Prospect Theory as Efficient Perceptual Distortion. Am. Econ. Rev. 102, 41-46 (2012).

75. Ziebart, B. D., Maas, A., Bagnell, J. A. & Dey, A. K. Maximum entropy inverse reinforcement learning. in
Proceedings of the 23rd national conference on Artificial intelligence - Volume 3 1433-1438 (AAAI Press, 2008).

76. Levine, S. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review. ArXiv180500909
Cs Stat (2018).

77. Botvinick, M. & Toussaint, M. Planning as inference. Trends Cogn. Sci. 16, 485—488 (2012).

78. Miller, K. J., Shenhav, A. & Ludvig, E. A. Habits without values. Psychol. Rev. 126, 292—-311 (2019).

79. Barto, A. G. Adaptive critic and the basal ganglia. in Models of information processing in the basal ganglia (eds.
Houk, J. C., Davis, J. L. & Beiser, D. G.) 215-232 (MIT Press, 1995).

80. Teh, Y. et al. Distral: Robust multitask reinforcement learning. in Advances in Neural Information Processing
Systems 30 (eds. Guyon, I. et al.) 4496—4506 (Curran Associates, Inc., 2017).

81. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension
related to deficits in goal-directed control. eLife 5, (2016).

82. Zorowitz, S., Momennejad, |. & Daw, N. D. Anxiety, avoidance, and sequential evaluation. bioRxiv 724492 (2019)
doi:10.1101/724492.

83. Huys, Q. J. M. & Renz, D. A Formal Valuation Framework for Emotions and Their Control. Biol. Psychiatry 82,
413-420 (2017).

35


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

84. Piray, P., Toni, I. & Cools, R. Human Choice Strategy Varies with Anatomical Projections from Ventromedial
Prefrontal Cortex to Medial Striatum. J. Neurosci. 36, 2857-2867 (2016).

36


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Information

Linear reinforcement learning: Flexible reuse of computation
in planning, grid fields, and cognitive control

Payam Piray* and Nathaniel D. Daw
Princeton Neuroscience Institute, Princeton University
Corresponding author: ppiray@princeton.edu


https://doi.org/10.1101/856849
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/856849; this version posted April 26, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Fig 1. The first 32 eigenvectors (corresponding to the 32 largest eigenvalues)
of the DR from a 50-by-50 maze are plotted. All state costs are assumed to be 0.1.
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Supplementary Fig 2. Different border cells corresponding to the largest 32 eigenvectors in a
20-by-20 maze.
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Supplementary Fig 3. Effects of state costs on eigenvectors of the DR in a 50-by-50 maze.
Top: cost across all states. The cost is 0.1 for all states except those yellow states in the

middle of the maze in which the cost is 0.5. Other plots show the top 32 eigenvectors of the
DR.
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