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Macroscopic models for networks of coupled
biological oscillators
Kevin M. Hannay1*, Daniel B. Forger2,3, Victoria Booth2,4

The study of synchronization of coupled biological oscillators is fundamental to many areas of biology including
neuroscience, cardiac dynamics, and circadian rhythms. Mathematical models of these systems may involve
hundreds of variables in thousands of individual cells resulting in an extremely high-dimensional description of
the system. This often contrasts with the low-dimensional dynamics exhibited on the collective or macroscopic scale
for these systems. We introduce a macroscopic reduction for networks of coupled oscillators motivated by an ele-
gant structure we find in experimental measurements of circadian protein expression and several mathematical
models for coupled biological oscillators. The observed structure in the collective amplitude of the oscillator pop-
ulation differs from the well-known Ott-Antonsen ansatz, but its emergence can be characterized through a simple
argument depending only on general phase-locking behavior in coupled oscillator systems. We further demonstrate
its emergence in networks of noisy heterogeneous oscillators with complex network connectivity. Applying this
structure, we derive low-dimensional macroscopic models for oscillator population activity. This approach allows
for the incorporation of cellular-level experimental data into the macroscopic model whose parameters and varia-
bles can then be directly associated with tissue- or organism-level properties, thereby elucidating the core proper-
ties driving the collective behavior of the system.

INTRODUCTION
The study of coupled oscillators is important for many biological and
physical systems, including neural networks, circadian rhythms, and
power grids (1–3). Mathematical models of these coupled oscillator
systems can be extremely high-dimensional, having at least as many
degrees of freedom as the number of oscillators as well as additional
dimensions for the couplingmechanisms between oscillators. However,
the elegant simplicity that emerges at the macroscopic scale in many
coupled oscillator populations belies this microscale complexity. Quite
generally, these systems demonstrate a phase transition as the coupling
between the oscillators is strengthened, leading to the emergence of a
self-organized synchronized state (4).

This emergence of a synchronized state from the dynamics of a very
high-dimensional dynamical system suggests that a low-dimensional
representation of this system should be possible. A major step in this
direction was proposed by Winfree in 1967 (5) when he intuitively
grasped that for systems of weakly coupled, limit cycle oscillators, the
time evolution of each oscillator and the effects of coupling with its
neighbors may be described by a single-phase variable. This method,
known as phase reduction, reduces the dimension of the coupled system
to the number of constituent oscillators and has been used to analyze
diverse coupled oscillator systems (1, 6–8).

In the following years, Kuramoto formalized the mathematical
procedure for phase reduction and used it to derive his now famous
model for N coupled heterogeneous oscillators

_fj ¼ wj þ
K
N
∑
N

n¼1
sinðfn $ fjÞ; j ¼ 1;N ð1Þ

where fj gives the phase of the jth oscillator, K is the coupling strength,
and wj gives the natural frequency of the oscillator (6). The natural

frequencies of the oscillators are typically assumed to be drawn from
a distribution g(w), which reflects the heterogeneity in the oscillator
population. The Kuramoto model captures the essential features of
many coupled oscillator systems and has been used to study the phase
transition to synchrony in detail (9).

However, many biological systems contain thousands of oscillators,
making even the phase model a very high-dimensional representation
of the dynamical system.A recent breakthrough occurredwhenOtt and
Antonsen (10) discovered an ansatz that can be applied to a family of
Kuramoto-like systems toderive a low-dimensionalmodel for themacro-
scopic behavior of the coupled population. When the ansatz is ap-
plied, the long-time behavior of a system of N→∞ heterogeneous
oscillators can accurately be described by two differential equations,
one for themean phase of the coupled oscillators and the other for their
collective amplitude (11). Despite the hundreds of recent papers that use
the Ott-Antonsen dimension reduction procedure, the authors are not
aware of any carefully done experiments to test whether this powerful
ansatz holds for biological systems.

Here, we test the applicability of the Ott-Antonsen ansatz using
a recent experimental data set collected from neurons in the supra-
chiasmatic nucleus (SCN), the mammalian circadian pacemaker, and
through simulations of several models of coupled biological oscillators
(12). We find that a core assumption of the Ott-Antonsen ansatz is not
valid in our test systems. However, we find that a different, but related,
ansatz more accurately describes the data. Using a simple argument, we
demonstrate the validity of our ansatz for a wide class of models. We
then apply this ansatz to derive a two-dimensional macroscopic model
for the population activity of a system of coupled, heterogeneous noisy
oscillators. The generality of our procedure should allow for the deriva-
tion of low-dimensional macroscopic models of many coupled oscilla-
tor systems, allowing for fundamental insights into the core principles
driving many biological phenomena.

RESULTS
The development of the Ott-Antonsen ansatz initiated a revolution
in the coupled oscillator literature (13). The impact of their ansatz
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stems from the fact that the macroscopic equations exactly capture
all the long-time attractors of the Kuramoto (Eq. 1) and closely related
systems (11). The ability to derive strong analytic results has led to its
application to a vast array of application areas (14–16). Recently, the
Ott-Antonsen procedure was applied directly to the study of circadian
rhythms for the first time (17).

While an extremely powerful method, the Ott-Antonsen procedure
necessarily suffers from several limitations. First, it may only be applied
to systemswhere the interaction between the oscillators is described by a
coupling function with a single harmonic (18). Second, the ansatz is not
valid for systems whose oscillators evolve with a stochastic component
(19). Each of these limitations could severely restrict its applicability to
biological systems: Complex coupling forces between biological oscilla-
tors often induce higher harmonic components in the model’s coupling
function (20, 21), and biological oscillators are invariably subjected to
noise (21).

A further limitation of the Ott-Antonsen procedure is one of prac-
ticality rather than a formal mathematical restriction. In its most pow-
erful form, the Ott-Antonsen procedure requires the assumption that
the distribution of natural frequencies of the oscillators be a rational
function g(w) = a(w)/b(w), which is typically taken to be a Cauchy
(Lorentzian) distribution

gðwÞ ¼ g

p½ðw$ w0Þ2 þ g2Þ'
ð2Þ

where w0 is the median frequency and g controls the range of heter-
ogeneity in the oscillator population. Making this assumption on the
frequency distribution is a crucial step in achieving the dimension
reduction to the macroscopic model. For more general frequency
distributions, the Ott-Antonsen procedure is still mathematically
valid, although it produces an infinite set of integro-ordinary differ-
ential equations rather than the two-dimensional ordinary differential
equation macroscopic model (22). Let us refer to the Ott-Antonsen re-
duction procedure with the additional assumption of a Cauchy dis-
tribution of frequencies as Cauchy Ott-Antonsen (COA).

The ansatz of the COA procedure takes a particularly simple form
whenwritten in terms of theDaido order parameters for the distribution
of phases of the coupled oscillators. TheDaido order parameters (23, 24)
are given by

ZmðtÞ ¼ RmðtÞeiymðtÞ ¼ 1
N
∑
N

j¼1
eimfjðtÞ ð3Þ

where fj are the phases of the oscillators, Rm are the phase coherences,
andym are themeanphases.Note thatZ0 = 1 follows from the definition
of the Daido order parameters. Typically, only the n = 1 term is con-
sidered Z1 ¼ R1eiy1 and is known as the Kuramoto order parameter.
Here, R1 measures the amplitude of the collective behavior of the oscil-
lator population, with R1 ≈ 0 indicating desynchrony among the oscil-
lators and R1 = 1 indicating perfect synchrony.

The higher Daido order parameters add additional details to the
description of the phase distribution properties and are often used in
the study and detection of cluster synchrony (23, 25). For example, a
phase distribution with R2 > 0 and R1 ≈ 0 indicates the presence of
two synchronized clusters in the population. Generally, Daido order
parameters emerge in the study of phase oscillator systems with

higher harmonics in their coupling interactions and phase sensitivity
functions (15, 23, 26).

The COA ansatz is a simple geometric relation between the Daido
order parameters

Zm ¼ ðZ1Þm ð4AÞ

Rm ¼ Rm
1 ym ¼ my1 COA ð4BÞ

When the phase distribution of the oscillators is unimodal and sym-
metric about its mean phase, we expect the mean phase relation ym =
my1 to hold generally. Here, we will focus on the case where the phase
distribution is approximately unimodal and symmetric. The predic-
tion that Rm ¼ Rm

1 , however, is more subtle, and its accuracy has
not been evaluated for biological systems.

To test the COA ansatz, we computed the Daido order parameters
for a recently published data set measuring the approximate 24-hour
oscillations of protein expression in neurons from whole SCN explants
(12). Phases were computed from hourly measurements of protein ex-
pression in individual neurons over a week-long period as the neurons
resynchronized following the application of a desynchronizing pertur-
bation (see Materials and Methods). We examined this data set for ev-
idence of the COA relationRm ¼ Rm

1 at each time point.We found that
the phase coherences did not follow this relation (Fig. 1A). In addition,
numerical simulations of several different coupled populations of
biological oscillator models also reveal that the COA ansatz does not
provide a good representation of the equilibrium phase coherences
for these systems (Fig. 1, B to D).

Instead, in each of these systems, we found that the relation

Rm ¼ Rm2

1 ym ¼ my1 m2ansatz ð5Þ

captures the properties of the phase distribution. We shall refer to
this alternate scaling of the Daido order parameters as the m2 ansatz,
although we note that this ansatz is equivalent to the Gaussian ansatz
used elsewhere (19, 27).

Emergence of the scaling
Them2 ansatz may be derived under more general assumptions than
those required by the Ott-Antonsen procedure. Let us consider a pop-
ulation of N coupled oscillators with an equilibrium phase distribu-
tion f*j such thatf*j ≈ 0 for j = 1,…,N. A Taylor series expansion of the
Daido order parameters may be written as

Zm ≈ 1þ im
N
∑
N

j¼1
f*j $

m2

2N
∑
N

j¼1
ðf*jÞ

2 þ :::: ð6Þ

Making use of our assumption that the equilibrium phase dis-
tribution is unimodal and symmetric, we have ym =my1, and without
loss of generality, we may set y1 = 0. Thus, introducing the notation

jjf*jjkk ¼ ∑
N

j¼1ðf*jÞk gives

Rm ≈ 1$m2jjf*jj22
2N

≈ 1$ jjf*jj22
2N

! "m2

ð7AÞ

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Hannay et al., Sci. Adv. 2018;4 : e1701047 3 August 2018 2 of 9

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of M

ichigan A
nn A

rbor on O
ctober 27, 2021



Rm ≈ Rm2

1 ð7BÞ

which holds whenever the quantity jjf*jj22 can be considered small and
justifies the emergence of the m2 ansatz we found in both the experi-
mental and simulated data (Fig. 1).

This analysis begs the question of how the COA ansatzRm ¼ Rm
1

and the m2 ansatz can both be true. The root of the discrepancy is
in the “fat tails” of the Cauchy distribution for the natural frequen-
cies of the oscillator population. The slow decay of the tails of the
Cauchy distribution profile results in a significant fraction of oscil-
lators whose phases are not locked to the mean phase but instead
drift relative to the population rhythm. This effect keeps the quan-
tity jjf*jj22 large for any finite coupling strength. However, for natural
frequency distributions with exponential tails (for example, Gaussian),
the fraction of locked oscillators grows quickly as coupling strength
increases, and the m2 ansatz emerges for moderate coupling strengths.
Figure 2 (A and B) shows the phase coherences for simulations of
the Kuramoto system (Eq. 1) with Gaussian and Cauchy distribu-
tions of natural frequencies. Thus, we conclude that the m2 ansatz
provides a close approximation for systems with natural frequen-
cy distributions with exponential tails, while the COA procedure
provides an exact relation for systems with a Cauchy distribution
of natural frequencies.

In fact, wemay introduce a correction to our ansatz, which takes into
account the presence of phase-locked and phase-drifting oscillators in
the population. Let p be the fraction of the population whose phases are
locked to the mean phase. Then, the Daido order parameters can be
expressed as Zm ¼ pZlocked

m þ ð1$ pÞZdrift
m and jZdrift

m j≈ 0 for the
drifting population. Then, the same Taylor series–based argument
in Eqs. 6 and 7 considering only the contribution of the locked pop-
ulation gives

Rm ≈
Rm2

1

pm2$1 ð8Þ

which collapses to Eq. 7B as p→1. In addition, this analysis shows
that assuming p = 1 gives a lower bound on the Daido order parameter.
In particular,Rm ≥ Rm2

1 andRm→Rm2

1 as p→1. For theKuramotomodel
(Eq. 1), we may calculate the fraction of phase-locked oscillators as the
coupling strength increases p(K) as (6, 9)

pðKÞ ¼ ∫KR1

$KR1
gðwÞdw ð9Þ

For the Kuramoto model with Gaussian or Cauchy distributions of
oscillator natural frequencies g(w), we may solve for p(K) using Eq. 9.

Fig. 1. A low-dimensional structure in the phase distribution of coupled oscillator systems. (A) Experimental SCN neuron data (see Materials and Methods and the
Supplementary Materials) (12). (i and ii) Green dots show the phase coherences computed from hourly measurements of cell protein expression in the SCN neurons.
The solid black curve shows the relation Rm ¼ Rm

2

1 , and the dashed curve shows the COA ansatz Rm ¼ Rm1 . Inset plots show the circular mean vector of ym − my1 across
all observations. Bottom row: Histogram (iii) and the first 10 phase coherences (iv) of the phase distribution computed from the data point indicated by the blue star in
the top row compared to the phase distribution satisfying the m2 ansatz (black curves). (B to D) Each figure shows a different model simulation: (B) simulation of
coupled heterogeneous repressilator oscillators (32, 44), (C) simulation of coupled heterogeneous Morris-Lecar neural oscillators (45, 46), and (D) simulation of coupled
noisy modified Goodwin oscillators (47) (see the Supplementary Materials for model details). In each figure (B to D): (i and ii) histogram of the simulated equilibrium
phase distribution computed from model simulations for two different coupling strengths [(i), strong coupling; (ii), weak coupling], compared to the m2 ansatz phase
distribution. (iii) The first 10 phase coherences for the simulated equilibrium phase distributions for two coupling strengths (green dots, strong coupling; blue squares,
weak coupling) compared to the m2 ansatz relation (solid curves).
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The comparatively slow growth of the fraction of locked oscillators asK
increases for the Cauchy distribution relative to a Gaussian distribution
of natural frequencies is shown in Fig. 2C.

Complex networks and noise
The simplicity of our derivationmakes it clear that them2 ansatz should
hold quite generally. In this section, we characterize its emergence for
the case of systems with complex network coupling and intrinsically
noisy oscillators. To explore this, we consider a model network of
N noisy heterogeneous phase oscillators,

_fi ¼ wi þ
K
di
∑
N

j¼1
AijHðfj $ fiÞ þ

ffiffiffiffi
D

p
hiðtÞ ð10Þ

where hi is a white noise process with 〈hi〉= 0 and 〈hi(t)hi(t′)〉2d(t− t′)dij,
where dij is the Kronecker delta. Network connectivity is defined by
the adjacency matrix A, and we assume an undirected network such
that A is symmetric and Aij = Aij = 1(0) if oscillators i and j are
coupled (uncoupled). The degree of the oscillator is then given by

di ¼ ∑N

j¼1Aij. Let the coupling function H be a 2p periodic function

and we assume that H′(0) > 0. We note that Eq. 10 is quite general
and may be derived in many applications from higher-dimensional,
limit cycle oscillator network models under the assumption of weak
coupling (28).

We consider the case of strong coupling between the oscillators such
that fj − fi≈ 0 for all oscillator pairs. In this case, we can linearize about
the phase-locked state to give

_fi ¼ ~wi $ KH′ð0Þ∑
N

j¼1
Lijfj þ

ffiffiffiffi
D

p
hiðtÞ ð11Þ

where L is a normalized Laplacian matrix given by Lij = dij − Aij/di and
~wi ¼ wi þ KHð0Þ. Our assumptions on the network connectivity dic-

tate that L has real eigenvalues thatmay be ordered l1 = 0≤ l2≤… lN
with associated eigenvectors {v1,…, vN}. For the linear system (Eq. 11)
in the absence of noise (D→0), we may solve for the deterministic
steady state f* using the Moore-Penrose pseudoinverse of the normal-
ized Laplacian L†

f* ¼ L† ~w
KH′ð0Þ ; with L† ¼ ∑

N

j¼2

vjvTj
lj

ð12Þ

Allowing for stochastic fluctuations about the deterministic steady
state f*, we may compute the expected value E jjf*jj22

$ %
t as

E jjf*jj22
$ %

t ¼ ∑
N

j¼2

jvj⋅~wj
ljKH′ð0Þ

! "2

þ D
ljKH′ð0Þ

" #

ð13Þ

where details of this derivation are given in the Supplementary
Materials. If the quantity E½jjf*jj22't is small, then our expansion of
the Daido order parameters (Eq. 7A) tells us that them2 ansatz will pro-
vide a good approximation for the phase distribution. Thus, considering
Eq. 13, we see that the m2 ansatz will hold for sufficiently strong cou-
pling strengths for any connected network where jj~wjj is finite. In ad-
dition, Eq. 13 can be used to study how the emergence of the ansatz
depends on the network connectivity, noise strength, and the arrange-
ment of the heterogeneous frequencies in the network (29).

These results are confirmed by numerical simulations of Eq. 10 for
the noisy, heterogeneous Kuramoto model [where H(q) = sin(q)] with
different network connectivity topologies (Fig. 3). In particular, we
find that the m2 ansatz provides a quality approximation to the Daido
order parameters for both Watts-Strogatz small-world (30) and Barabasi-
Albert scale-free (31) network topologies. For each network topology,
the accuracy of the approximation increases with the strength of the
coupling, as predicted by Eq. 13.

Macroscopic model
Aprincipal strength of theOtt-Antonsen approach is that the dynamics
of the Kuramotomodel (Eq. 1) for a large system of coupled oscillators

A B

C

Fig. 2. The emergence of the ansatz depends on the frequency distribution
of the oscillators. The Kuramoto model (Eq. 1) with Gaussian and Cauchy distri-
butions for the natural frequencies of the oscillators, g(w). (A and B) Relation among
the Daido order parameters computed from numerical simulations (circles) and pre-
dicted (curves) by (A) the m2 ansatz for Gaussian g(w) and (B) the COA ansatz for
Cauchy g(w) for increasing coupling strength. Colors indicate different coupling
strengths with K that is normalized to the critical coupling strength Kc where partially
synchronized solutions emerge (6, 9): K/Kc = 1.1 (red), K/Kc = 1.5 (blue), and K/Kc = 3.0
(green). (C) The fraction of oscillators phase-locked to the mean phase p as a function
of normalized coupling strength K/Kc for a Cauchy (dashed green curve) and Gaussian
(solid black curve) g(w).

A

B

Fig. 3. The equilibrium phase distribution of complex network phase oscil-
lators converges to the m2 ansatz as the coupling strength between the os-
cillators increases. (A) Barabasi-Albert scale-free network. (B) Watts-Strogatz
small-world network. Circles show the results from simulations of networks of N =
1000 coupled oscillators with noise amplitude D = 1 and oscillator frequencies drawn
from a Gaussian distribution with s = 1. Solid curves show Rm ¼ Rm

2

1 . Colors indicate
different coupling strengths as in Fig. 2. Additional details of these simulations are
given in the Supplementary Materials.
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can be reduced to the following two-dimensional macroscopic
model (10)

_R1 ¼
K
2
$ g

! "
R1 $

K
2
R3
1 ð14AÞ

_y1 ¼ w0 ð14BÞ

where w0 is the median frequency of the oscillators and g is the dis-
persion parameter of the Cauchy distribution of natural frequencies
(Eq. 2). In this section, we apply the m2 ansatz to extract a similar
macroscopic model for a large network of noisy, heterogeneous os-
cillators. In particular, we use the m2 ansatz as a motivated moment
closure to extract a macroscopic model for the order parameter Z1
for the noisy heterogeneous Kuramoto equation (Eq. 10). We con-
sider a fully connected network with coupling function H(q) = sin(q).
Under these conditions, we may write the system using the Kuramoto
order parameter Z1 ¼ R1eiy1 (6)

_fi ¼ wi þ KR1sinðy1 $ fiÞ þ
ffiffiffiffi
D

p
hiðtÞ ð15Þ

Following the Ott-Antonsen procedure (10), we consider the
continuum limit N→∞ of Eq. 15 and find the continuity equation for
the phase density function f(w,f,t)

∂f
∂t

þ ∂
∂f

ð f vÞ þ D
∂2f
∂f2

¼ 0 ð16AÞ

v ¼ wþ Kℑ½e$ifZ1' ð16BÞ

whereℑ denotes the imaginary part of the expression. The Fourier series
decomposition of f is given by

f ¼ gðwÞ
2p

1þ ∑
∞

n¼1
Anðw; tÞeinf þ c:c:

& '! "
ð17Þ

where c.c. stands for the complex conjugate of the expression and g(w) is
the distribution of natural frequencies of the oscillators. Substitution of
the Fourier series for f into the continuity equation yields

_An

n
þ ðiwþ DnÞAn þ

K
2
ðZ1Anþ1 $ !Z1An$1Þ ¼ 0 ð18Þ

where barred quantities are the complex conjugate. In the continuum
limit, the Daido order parameters Zm are given by

ZmðtÞ ¼ ∫
2p

0 ∫
∞

$∞ f ðw; f; tÞe
imϕdwdf ð19AÞ

¼ ∫∞$∞
!Amðw; tÞgðwÞdw ð19BÞ

using the fact that all oscillating terms in the Fourier series for f integrate
to zero except for n = m. Within Eq. 19B, we may regard Ā̄m(w, t) as a

frequency-dependent version of themth Daido order parameter, which
may be integrated against the frequency distribution g(w) to obtain the
composite Daido order parameter Zm(t) (22).

The m2 ansatz applies to the composite, frequency-independent,
Daido order parameters. Thus, to apply our moment closure, we need
to remove this frequencydependence by obtaining a relation of the form
Zm(t)≈ Ā̄m(c, t) with c=w0 − ig being the “dominant frequencymode.”
In the special case where g(w) follows a Cauchy distribution, the dom-
inant frequency mode approximation is exact with w0 given by the
median frequency and g given by the dispersion parameter of the fre-
quency distribution (10). For simplicity, we begin by considering g(w)
Cauchy and leave the development of a general approximation scheme
for the dominant frequency mode to the following section.

Making the substitution Zm(t) = Ā̄m(w0 − ig, t) allows us to sim-
plify Eq. 18 to an infinite set of coupled equations for the Daido order
parameters

_Zn

n
¼ ðiw0 $ g$ DnÞZn þ

K
2
ðZ1Zn$1 $ !Z1Znþ1Þ ð20Þ

Finally, we consider the dynamics of Z1 and apply our moment
closure Zm ¼ jZ1jðm

2$mÞZm
1 or Rm ¼ Rm2

1 ;ym ¼ my1, which yields
an equation of motion for the Kuramoto order parameter Z = Z1

_Z1 ¼ ðiw0 $ g$ DÞZ1 þ
K
2
ðZ1 $ jZ1j2ðZ1Þ2!Z1Þ ð21Þ

Separating the real and imaginary parts Z1 ¼ R1eiy1 gives the mac-
roscopic equations

_R1 ¼
K
2
$ D$ g

! "
R1 $

K
2
R5
1 ð22AÞ

_y1 ¼ w0 ð22BÞ

In previouswork, Sonnenschein and Schimansky-Geier (19) derived
Eq. 22 for the special case of the noisy Kuramoto model assuming ho-
mogeneous oscillator frequencies (g→0) by using an ad hoc Gaussian
moment closure on the phase distribution. The Gaussian moment
closure follows the m2 ansatz found here. In agreement with our find-
ings, they found that the macroscopic system (Eq. 22) captured the dy-
namics of the microscopic noisy homogeneous Kuramoto model
accurately, particularly at strong coupling strengths.

Here, we find that them2 ansatz provides an accurate approximation
for the macroscopic dynamics of the noisy heterogeneous Kuramoto
model. In Fig. 4, we show the predictions of the macroscopic model
(Eq. 22) compared to numerical simulations of the microscopic model
in the continuum limit found by using the first 50 moments of Eq. 20
(19). In the case of weak to moderate heterogeneity relative to the noise
strength s = g/D ≤ 1, we find that the m2 ansatz provides an accurate
description of the macroscopic dynamics (Fig. 4). Moreover, we find
that them2 ansatz provides a useful upper bound for the collective am-
plitudeR1, and the accuracy improves with increased coupling strength.
This property may be explained by our result that Rm≥Rm2

1 and that
Rm→Rm2

1 as the entire oscillator population is locked to the mean field.
In the limit of zero noise amplitude (D→0), the accuracy of the m2

ansatz breaks down under the assumption of a Cauchy distribution of
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oscillator natural frequencies. This is to be expected, as in the zero noise
limit of our system, the COA ansatz has been proven to contain all the
long-time attractors of the full system (11). In addition, theOtt-Antonsen
approach features an invariance property, which guarantees that states
that obey the COA ansatz retain this property for all time (10, 11). Since
our ansatz is only approximately obeyed, our method does not share
these elegant properties with the Ott-Antonsen approach. However,
the use of an approximate ansatz does allow our procedure to be applied
to stochastic systems, which are not accurately described by the Ott-
Antonsen approach (19).

As previously discussed, the breakdown of the m2 ansatz at weak
noise amplitudes (D→0) is related to the fat tails of the Cauchy dis-
tribution, which cause the fraction of oscillators locked to themean field
to grow slowly as coupling strength increases. If the natural frequency
heterogeneity has less density in the tails of the distribution, our analysis
predicts that the m2 ansatz should become more accurate. In the next
section, we investigate how the m2 ansatz may be used to derive mac-
roscopic models for systems with strong heterogeneity.

Oscillator heterogeneity
In the derivation of the macroscopic model for the noisy Kuramoto
system (Eq. 22), the frequency dependence was removed using an ap-
proximation of the form Zm(t) ≈ Ām(w0 − ig, t), where w0 − ig is the
dominant frequency mode. As applied in the previous section, this ap-
proximation can bemade exact when g(w) follows aCauchy distribution
as the integral may be evaluated as a residue in the lower-half complex
plane (10). However, our analysis has shown that the m2 ansatz is best
applied to frequency distributions with exponential tails; therefore, we
generalize themacroscopicmodel reduction procedure to allow formore
general frequency distributions.

For a general symmetric and unimodal distribution of oscillator
frequencies g(w) with amaximum atw0, we can think of approximating
it with a Cauchy distribution gc(w,g). Let h(w,g) = g(w) − gc(w,g), then
the frequency integral (Eq. 19B) becomes

Z1ðtÞ ¼ !A1ðw0 $ ig; tÞ þ E1ðg; tÞ≈ !A1ðw0 $ ig; tÞ ð23AÞ

E1ðg; tÞ ¼ ∫
∞

$∞
!A1ðw; tÞhðw; gÞdw ¼ Z1ðtÞ $ Zc

1ðg; tÞ ð23BÞ

The accuracy of themacroscopicmodel will depend on choosing the
dispersion parameter g ¼ ĝ such that the magnitude of the error term
jE1ðg; tÞj ¼ jZ1ðtÞ $ Zc

1ðg; tÞj is minimized. The m2 ansatz may then
be applied to give the higher-order Daido order parameters with error
OðE1Þ using the relation Zm ¼ jZ1jðm

2$mÞZm
1 .

To compute the error term |E1(g,t)|, we recall that A1(w,t) may be
considered a frequency-dependent version of the Kuramoto order
parameter Z1 (22). For oscillators that are entrained to the mean field,
we may write

A1ðw; tÞ ¼ rðwÞeiðqðwÞþWtÞ ð24Þ

whereW gives the frequency of the mean field, r(w) describes the col-
lective amplitude, and q(w) is the entrainment angle for oscillators
with natural frequency w. When oscillators with frequency w are
locked to the mean field, we have r(w) = 1 (22). The collective contri-
bution of the remaining population of unentrained “drifting” oscilla-
tors to the order parameter Z1 cancels in the limit of large populations
of oscillators (9).

For the Kuramoto model, oscillators with |w| ≤ KR1 are locked

to the mean field with entrainment angle q ¼ arcsin w
KR1

( )
. There-

fore, we may rewrite the magnitude of the error integral as

jE1ðgÞj ¼ j∫
KR

$KRe
iarcsin w

KR1

* +
hðw; gÞdwj

¼ j∫p=2$p=2KR1cosðqÞeiqhðKR1sinðqÞ; gÞdqj ð25Þ

We define ĝ as the value of g such that the error term |E1(g)| is mini-
mized. For KR1≈ 0, we may solve for ĝ analytically by expanding E1(g)
as a Taylor series in KR1. Equating the first-order term to zero gives
ĝc ¼ 1=ðgðw0ÞpÞwithKc = 2gc, whichmatches the results obtained by
classical self-consistency arguments (6, 9). Further, numerical solutions of
Eq. 25 show that ĝ decreases quickly as a function ofKR and asymptotes
to zero for frequency distributions with less density in the tails than the
Cauchy distribution (Fig. 5A). Thus, for sufficiently strong coupling
strengths, ĝ is only weakly dependent on the dynamic variable R1(t).

Therefore, for small perturbations about the synchronized solution
in systems with a fixed coupling strength K between the oscillators, we
may regard ĝ as approximately constant in time. We compute ĝ as a
function of the coupling strength ĝðKRÞ≈ĝðKR*

1ðKÞÞ, where R*
1ðKÞ

gives the stable phase coherence of the synchronized state. Since the
curve R*

1ðKÞ can be determined numerically by applying a classical
self-consistency approach (6, 9), we can solve for the ĝðKÞ curve nu-
merically using Eq. 25 (Fig. 5B). We note that each of the distributions
we tested gave extremely small error values jE1ðĝÞj ¼ jZ1 $ Zc

1ðĝÞj ¼
Oð10$9Þ at the optimal frequency mode.

Following the reduction procedure as given in the last section,
withAnðw; tÞ≈Z1ðw0 $ iĝ; tÞ, we find the approximate macroscopic
model for the heterogeneous Kuramoto model

_R1 ¼
K
2
$ ĝðKÞ

! "
R1 $

K
2
R5
1 ð26AÞ

D E

A B C

Fig. 4. The accuracy of the ansatz for the noisy heterogeneous Kuramoto
model. The equilibrium phase coherence R1 as a function of the coupling strength
K for the noisy, heterogeneous Kuramoto model (Eq. 15) for different relative levels
of heterogeneity (g) and noise amplitude (D). (A) s = g/D = 0.05. (B) s = 0.5. (C) s = 1.
(D and E) The transient dynamics of R1 for (D) s = 0.05 and (E) s = 1.0 for different
coupling strengths: K = 1.2 (magenta), K = 1.5 (red), and K = 3.0 (blue). In all panels,
solid curves show the macroscopic model predictions (Eq. 22), and dashed curves
show numerical simulations of the microscopic model in the continuum limit
(Eq. 20). Parameters were chosen such that critical coupling strength Kc = 1 for
the microscopic model. Insets show curves in the rectangular regions.
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_y ¼ w0 ð26BÞ

Numerical simulations demonstrate that the macroscopic model
(Eq. 26) provides a close approximation to R*

1ðKÞ as the coupling
strength increases, as shown in Fig. 6 (A and B) for g(w) Gaussian
and gðwÞºe$w4=a. More significantly, by plotting the dynamics in
the ðR; _RÞ plane resulting from random perturbations off the synchro-
nized solution, we observe that the macroscopic model provides an
accurate approximation of the transient recovery dynamics of the
high-dimensional phase model (Fig. 6, C and D). For large deviations
from the synchronized state, the approximation breaks down as ĝ can
no longer be considered to be constant in this regime.

Our method for extracting low-dimensional macroscopic models
for heterogeneous oscillators can be separated into two key steps: the
estimation of a dominant frequency mode and moment closure via
them2 ansatz. These two approximations have a certain synergy when
applied in tandem, as our method for extracting the dominant fre-
quency mode and the m2 ansatz are each most accurate for systems
where a large fraction of the oscillators are phase-locked to the mean
field (p ≈ 1). Specifically, in the regime where KR1 is large, relative to
the tails of the frequency distribution, both the m2 ansatz and domi-
nant frequency mode estimation reach their peak accuracy. We find
that the resulting macroscopic models provide a close approximation
to the dynamics of the full phase model in the vicinity of the equilib-
rium states. We found similar results when we evaluated the accuracy
of the macroscopic model reduction for the full coupled heteroge-
neous repressilator model in the Supplementary Material (fig. S4)
(32). Thus, our method may be applied to derive approximate macro-
scopic models for a wide class of coupled oscillator systems and study
the response to perturbations about the steady states.

DISCUSSION
In the past decade, the powerful ansatz discovered by Ott and Antonsen
(10) has been used to resolve many open problems in the coupled os-
cillator literature and has been applied to an increasing number of
application areas (14, 16, 17). Here, we provide the first evaluation of
the suitability of the Ott-Antonsen reduction procedure for extracting
macroscopic models of real biological networks.

Our examination of a recent experimental data set of circadian os-
cillator activity (12), as well as simulations of several biological oscillator
networks, revealed that these systems did not follow the Ott-Antonsen

ansatz. Instead, we identified a new relation, the m2 ansatz, which
captures the phase distribution of these systems more accurately.

A simple argument showed the emergence of the m2 ansatz for
systems of coupled oscillators, which have a high percentage of the
oscillators phase-locked to themean-field oscillation.We found that the
m2 ansatz emerged at moderate coupling strengths for oscillator popu-
lations whose frequency heterogeneity has exponential tails. In contrast,
the Ott-Antonsen ansatz holds at any coupling strength when the fre-
quency heterogeneity has a Cauchy distribution (polynomial tails). For
noisy heterogeneous coupled oscillator systems, the m2 ansatz robustly
emerged for sufficiently strong coupling strengths. Further, them2 ansatz
may be used as a moment closure to extract a low-dimensional macro-
scopic model for noisy heterogeneous oscillator networks.

The low-dimensional system we derive differs slightly from the Ott-
Antonsen approach as it produces a term of order R5 in the collective
amplitude equation as compared with the cubic scaling R3 in the Ott-
Antonsen equations (10, 17).Wenote that a cubic scaling is expected for
coupling strengths near the critical coupling strengthKc, as predicted by
the normal form for a Hopf bifurcation (33). Therefore, we expect that
our ansatz would overestimate the growth of the phase coherence about
the critical coupling strength and may not be an appropriate tool for
studying the scaling of the order parameter about the critical coupling.
However, as we demonstrated, our approach provides a close approx-
imation to the equilibrium phase coherence as the coupling between
oscillators is strengthened.

In the case of human circadian rhythms, several results suggest that
models for collective amplitude dynamics should include higher-order
terms. For example, higher-order terms in the amplitude growth have
previously been required to accurately model the collective amplitude
dynamics of the human circadian rhythm in response to a desynchro-
nizing light pulse (34). In addition, the R5 term, which appears in our
model, predicts that it should be difficult to increase the amplitude of
the circadian rhythm by applying light pulses to an equilibrium circadi-
an amplitude. This is in accordance with experimental results that show
that light pulses administered during the day do not significantly affect
the circadian amplitude (35). Finally, we note that a previous compar-
ison of two phenomenological van der Pol models for human circadian

A B

C D

Fig. 6. The macroscopic model for heterogeneous oscillators. (A and B) The
equilibrium phase coherence R1 against the coupling strength K for the Kuramoto
model for (A) Gaussian g(w) and (B) gðwÞºe$w4=a distributions of natural frequen-
cies. Exact solutions obtained from classical self-consistency theory (6, 9) are
shown as dashed green curves, and the solution according to the m2 ansatz is
shown as solid black curves. Insets show curves in the rectangular regions. (C and
D) Plot of the dynamics in the phase plane ðR; _RÞ for perturbations about the
synchronized state for K = 3. The dashed black curve shows the predicted dynam-
ics by the macroscopic model, and the solid colored curves show the recovery
dynamics for randomperturbations off the synchronized state in the high-dimensional
phasemodel. Circles indicate the initial conditions for the transient curves. (C) Gaussian
g(w) and (D) gðwÞºe$w4=a distribution.

A B

Fig. 5. Determination of optimal frequency modes. (A) The optimal frequency
mode ĝ as a function of KR values, as determined by Eq. 25. (B) The optimal fre-
quency mode ĝðKÞ when R is given by the long-time asymptotic value R(1ðKÞ.
Gaussian g(w) frequency distribution is shown as a solid green curve and
gðwÞºe$w4=a distribution is shown as a dashed black curve. Parameters were cho-
sen such that critical coupling strength Kc = 1 for both distributions.
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rhythms showed that the model with higher-order terms better ex-
plained human circadian amplitude data (36).

A principal strength of both the Ott-Antonsen procedure and our
results is that the parameters and variables of the derived macroscopic
models have direct physical interpretations. Therefore, the predictions
of the models may be compared with experimental data from the
cellular, tissue, and whole-organism levels. For example, Lu et al. (17)
made use of the COA ansatz to study jet lag resynchronization
asymmetry using readily available data on themean period of circadian
oscillator cells (37, 38). Future work could use this formalism to synthe-
size cellular-level data on the coupling mechanisms (39), network con-
nections (12), and cellular periods (40) of SCN neurons with behavioral
circadian abnormalities observed at the whole-organism level.

To conclude, the m2 ansatz allows derivations of macroscopic
models for populations of oscillators with more general frequency
distributions and phase-locked behavior than required by the COA
ansatz. Our analysis of the phase-locked dynamics of neurons in
the mammalian circadian pacemaker suggests that other biological
oscillator systems may also be better represented by the m2 ansatz.

MATERIALS AND METHODS
Experimental design
The circadian time series shown in Fig. 1Awas collected as described by
Abel et al. (12), who generously made their data set publicly available.
Briefly, the time series was collected from whole SCN mouse explants
cultured for 14 days. The expression of the circadianmarker PERIOD2::
Luciferase was monitored under a microscope, with bioluminescence
measurements collected every hour. On day 6 in culture, tetrodotoxin
(TTX) was added to the culture to block neuronal signaling and de-
synchronize the neurons. The TTX solution was washed away and
the culturewas allowed to resynchronize. For our purposes, we removed
the time points when the TTX solution was added to study the phase
distribution of the coupled neurons during resynchronization.

Statistical analysis
The raw bioluminescence data were processed following established
methods (40). First, the raw bioluminescence data were de-trended
by removing the Hodrick-Prescott baseline trend with a large penalty
parameter l = 106 tominimize loss of the oscillatory signal component.
The time-dependent protophase of each oscillator was extracted by
dimensional embedding with a 6-hour embedding lag (41). Finally,
the time-dependent phase was estimated using the protophase to
phase transformation as specified in the Data Analysis with Models
of Coupled Oscillators MATLAB toolbox (42, 43).

Details for themathematical models used in Fig. 1 (B toD) are given
in the SupplementaryMaterials. The estimation of the phase distribution
for the in silico data was carried out in the samemanner, as described for
the experimental data. However, due to the large number of time points
available in the simulated data, we used theHilbert transform to estimate
the protophase of the oscillators rather than the dimensional embedding.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/e1701047/DC1
Data and mathematical model details.
Emergence of the m2 ansatz for complex heterogeneous noisy networks.
Finding the dominant frequency.
Reduction of limit cycle models to macroscopic models.

Fig. S1. The low-dimensional structure in the phase distribution of coupled oscillator systems
from the Abel et al. (12) circadian data set.
Fig. S2. The numerically estimated coupling function G(y) for the interaction between the
repressilator oscillators.
Fig. S3. The variation of the angular frequency induced by the variation of the b parameter in
the repressilator model.
Fig. S4. Macroscopic model amplitude recovery dynamics predictions against numerical
simulations.
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