
 

 

Model-Predictive Safety Optimal Actions to Detect and 

Handle Process Operation Hazards  

 

 

Masoud Soroush1,*, Leila Samandari Masooleh1, Warren D. Seider2,  

Ulku Oktem3, and Jeffrey E. Arbogast4,5 

 

 
1Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, 

USA 
2Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, 

PA 19104-6393, USA 
3Near-Miss Management, LLC, 1800 JFK Blvd., Suite 300, Philadelphia, PA 19103, USA 
4American Air Liquide, Newark, DE 19702, USA 
5Air Liquide (China) R&D Co., Ltd., Shanghai, China 201108 

 

 

 

 

January 20, 2020 

 

 

 

 

REVISED VERSION 

 

 

 

 

Submitted for Publication in AIChE Journal 

 

 

 

Keywords:  Model-predictive safety, process constraints, process safety, chemical processes, 

receding horizon, predictive alarm 

 

 
*Corresponding author. soroushm@drexel.edu; (215) 895-1710 (phone); (215) 895-5837 (fax)  



1 

 

Abstract 

In 2016, we introduced the concept of model-predictive safety (MPS) 1. MPS is a proposed 

innovation in functional safety systems to methodically account for process nonlinearities and 

variable interactions to enable predictive, prescriptive actions, while existing functional safety 

systems generally react when individual process variables exceed thresholds. MPS systematically 

utilizes a dynamic process model to detect imminent and potential future operation hazards in real 

time and to take optimal preventive and mitigative actions proactively. This work expands the concept 

of MPS and formulates two min-max optimization problems, offline solutions of which are the 

optimal proactive preventive and mitigating actions that MPS takes online, in response to predicted 

process operation hazards. A nested particle swarm optimization (PSO) algorithm is proposed to solve 

the min-max optimization problems. The application and performance of the min-max optimization 

formulations, the PSO algorithm, and MPS, applied to two chemical process examples, are shown 

through numerical simulations. 

 

1  Introduction 

In spite of continuous extensive efforts to improve the safety of processes, the level of human 

and financial losses due to incidents in the U.S. process industries is still significant (more than 50 

serious accidents only over the past ten years 2). This motivates the development of methods that 

predict emerging operating hazards in processes, allowing for proactive prevention and mitigation of 

the hazards 3.   

Among efforts to improve process safety further, software packages  have been used within 

the process industries 4-14 to predict frequencies and consequences of incidents based upon historical 

data. However, these packages are usually unable to predict the probabilities of incidents that have 

never happened before 4-22. This inability points to a need for methods capable of predicting hazardous 

conditions in processes.  

In a process, typically there are two instrumentation hardware and software systems: a control 

system and a safety instrumented system (SIS). A control system is used to ensure an efficient 

operation of the process and the production of high-quality products under normal conditions. An SIS 

is a functional safety system, which is used to take automatic actions (such as emergency shutdowns) 

needed to prevent equipment damage, environmental, and/or personnel safety consequences. An SIS 

is always a protection layer above the control system in a process. In addition to having the ability to 

override the control system (the ability to take over the actuators that the control system sends signals 
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to), it generally has the ability to set other process input variables. The hierarchical structure of 

protection layers in processes is essential, as it ensures the robustness and modularity of the process 

protection layers.  Therefore, SISs have to meet stricter regulations and oversight (both within 

companies and by governments) than control systems. A conventional hierarchical process protection 

structure is shown in Figure S1.  In such a structure, a control system and an SIS both send alarm 

signals to an alarm system to activate alarms to alert the process personnel to an abnormal condition. 

In response, the process personnel may then take corrective actions through the operator inputs (OI).  

In recent years, safety constraints have been included in model-predictive control (MPC) formulations 

to ensure MPC actions do not lead to unsafe conditions in processes that are under MPC 3, 23-26. 

Dynamic first-principles process models have been used widely in design, optimization, process 

monitoring, model-based control, and offline safety analysis and validation of chemical and 

petrochemical processes. While they may not predict future process behavior exactly, they can be 

used to forecast the potential consequences of future incidents with reasonable accuracy. Such 

forecasts can lead to proactive actions whose consequences (outcomes) can be predicted. This 

combined predictive and proactive (prescriptive), real-time use of process models in process safety 

had not been explored until very recently 1.  

Model-predictive safety (MPS)1 represents a new paradigm in functional safety; that is, the use of 

model predictions to detect operation hazards before they lead to safety risks. Unlike conventional 

safety systems that are individually reactive to current conditions through specifically designed logic, 

an MPS system systematically accounts for process nonlinearities and interactions among process 

variables and generates predictive alarm signals alerting process personnel to imminent and potential 

future operation hazards. Therefore, this new paradigm in functional safety systems is analogous to 

the evolution in process control systems from only single-loop control (e.g., proportional-integral-

derivative control) toward multivariable MPC. Figure S2 depicts a hierarchical process protection 

structure with an MPS system. When appropriate, the MPS system can be directly incorporated into 

the SIS. Herein, we expand the concepts of MPS and formulate two min-max optimization problems 

that are solved offline. For each process-constraint index, the formulations allow for a systematic 

calculation of: (a) the optimal MPS action that minimizes the highest value of the process-constraint 

index over a moving prediction horizon when uncertain model parameters and process variables take 

their nominal values, and (b) the optimal MPS action that minimizes the highest value of the process-

constraint index over a moving prediction horizon when uncertain model parameters and process 

variables take their worst-case values.  An MPS system uses the optimal MPS actions in real time to: 
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(i) generate the predictive definitely hazardous and potentially hazardous operation alarm signals 

described previously 1, and (ii) prescribe optimal proactive preventive and mitigating actions in 

response to the predicted process operation hazards. A particle-swarm optimization (PSO) method is 

proposed to solve the min-max optimization problems.  

First, Section 2 briefly reviews the components of MPS 1 that are relevant to this work. Section 

3 describes the two min-max optimization formulations and the PSO method. Section 4 formulates 

min-max problems for two chemical process examples, solves the problems using PSO, and presents 

the application and performance of the min-max optimization formulations as well as MPS applied 

to the two examples, through numerical simulations.  

2 Model-Predictive Safety: Preliminaries 

In this section, the concept of MPS, introduced earlier 1, is reviewed briefly and expanded. In 

this formulation, MPS is given the ability to set all process inputs (manipulated variables and other 

safety process inputs). An MPS system includes two major components: a set of process constraints 

and a state-estimate predictor, which is based on a process model.  

2.1 Process Model 

Consider a dynamic process model in the general form: 

                    
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)),                𝑥(0) = 𝑥0 ∈ Ω𝑥0

⊂ ℝ𝑛𝑥                  

                    𝑦(𝑡) = ℎ(𝑥(𝑡))  (1) 

with the process operation constraints: 

 𝐺(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)) ∈ Ω𝑐 ⊂ ℝ𝑛𝑐                                                               (2) 

where 𝑥 ∈ Ω𝑥 ⊂ ℝ𝑛𝑥 is the vector of process state variables, 𝑑 ∈ Ω𝑑 ⊂ ℝ𝑛𝑑  is the vector of 

unmeasured process input variables, 𝑑𝑚 ∈ Ω𝑑𝑚
⊂ ℝ𝑛𝑑𝑚  is the vector of measured process input 

variables (excluding manipulated variables and other adjustable process input variables), 𝑝 ∈ Ω𝑝 ⊂

ℝ𝑛𝑝 is the vector process uncertain parameters, 𝑢 ∈ Ω𝑢 ⊂ ℝ𝑛𝑢  is the vector of process input variables 

that MPS can set or override, and  𝑦 ∈ Ω𝑦 ⊂ ℝ𝑛𝑦 is the vector of process output variables. The vector 

𝑢 includes every manipulated input (variable) that is adjusted by a control system. The sets 

Ω𝑥, Ω𝑑 , Ω𝑑𝑚
, Ω𝑝, and Ω𝑥0

 are closed convex sets that are hyperrectangles, each defined by the upper 

and lower limits of the parameters or variables that belong to the hyperrectangle. The set Ω𝑢 consists 

of the corner points of a hyperrectangle. Each corner point represents an action that MPS can take.  

𝑓, ℎ, and 𝐺 are smooth vector functions.  
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The process constraints systematically include all existing process alarm thresholds of primary 

and secondary process variables. Also, included in this constraint formulation is the saturation of each 

actuator. The general constraint formulation of Eq. (2) allows for the design of MPS systems that 

account for process nonlinearities and interactions among process variables. 

Real and hypothetical process personnel errors, process (including controller, sensor, actuator, 

and equipment) faults, and surrounding and feed changes can be included in the formulation through 

the parameters and initial conditions. For example, a parameter can be added to represent the state of 

health of a pump. In this case, the moving-horizon safety analyses determine whether process 

constraints are satisfied in the event that the pump fails. The vector of process parameters can include 

catalyst activity, the state of health of each process equipment item, and the process personnel inputs 

to the process.  For each uncertain quantity, a range of possible values that each quantity can take are 

typically available based on historical data, operation procedures, and/or process-personnel 

experience.   

2.2  Receding-Horizon Safety Analyses 

As an MPS system generates alarm signals indicating the occurrence of present and/or future 

operation hazard(s), an operation hazard needs to be defined and classified in terms of its occurrence 

likelihood.  

Definition 1: An operation hazard is said to exist when control and functional safety systems 

are unable to prevent the violation of a process constraint over a time horizon into the future.  

Upon identification of an operation hazard, functional safety systems and/or process personnel 

must intervene to proactively prevent the occurrence of the hazard and mitigate its consequences.   

Definition 2: The operation of a process at a time instant 𝑡 is said to be nominally hazard-free 

over a time horizon of [𝑡, 𝑡 + 𝜏], if at the time instant 𝑡 there exists a feasible MPS action profile, 

𝑢(ℓ|𝑡) ∈ Ω𝑢,  ℓ ∈ [𝑡, 𝑡 + 𝜏], that satisfies the following conditions: 

𝐺(𝑥̂(ℓ|𝑡), 𝑑(ℓ|𝑡), 𝑑𝑚(ℓ|𝑡), 𝑝(ℓ|𝑡), 𝑢(ℓ|𝑡)) ∈ Ω𝑐,     𝑑𝑚(𝑡|𝑡) = 𝑑̃𝑚(𝑡), 𝑑(ℓ|𝑡) = 𝑑𝑛,    

               𝑑𝑚(ℓ|𝑡) = 𝑑𝑚𝑛
, 𝑝(ℓ|𝑡) = 𝑝𝑛, 𝑥0 = 𝑥0𝑛

, ∀ℓ ∈ [𝑡, 𝑡 + 𝜏]                                     (3)                                         

where 𝑑𝑛, 𝑑𝑚𝑛
, 𝑥0𝑛

 and 𝑝𝑛 are the nominal (typical operating) values of 𝑑, 𝑑𝑚, 𝑥0 and  𝑝, 

respectively. Note that 𝑥̂ represents the vector of state estimates at time ℓ given the last measurements 

(available at time 𝑡), and 𝑑̃𝑚(𝑡) denotes the vector of measurements of measurable process inputs at 

t 1. A dissatisfaction of the condition of Eq. (3) indicates the existence of an operation hazard at the 

present time or the development of an operation hazard in the future.  In other words, the conditions 
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allow MPS to predict the presence of future risks and to determine whether the functional safety 

system has adequate ability to maneuver away from the current and future operation hazards at the 

current time instant 𝑡. A dissatisfaction of the condition of Eq. (3) also indicates that no controller or 

functional safety system, whether traditional or model-based, can provide safe operation at a time 

instant in the future.  

Definition 3: The operation of a process at a time instant 𝑡 is said to be absolutely hazard-free 

over a time horizon of [𝑡, 𝑡 + 𝜏], if at the time instant, 𝑡, there exists a feasible MPS action profile, 

𝑢(ℓ|𝑡) ∈ Ω𝑢,  ℓ ∈ [𝑡, 𝑡 + 𝜏], that satisfies the following conditions:  

 𝐺(𝑥̂(ℓ|𝑡), 𝑑(ℓ|𝑡), 𝑑𝑚(ℓ|𝑡), 𝑝(ℓ|𝑡), 𝑢(ℓ|𝑡)) ∈ Ω𝑐,   𝑑𝑚(𝑡|𝑡) = 𝑑̃𝑚(𝑡),   

  ∀ 𝑑(ℓ|𝑡) ∈ Ω𝑑 , ∀𝑑𝑚(ℓ|𝑡) ∈ Ω𝑑𝑚
, ∀𝑝(ℓ|𝑡) ∈ Ω𝑝, ∀𝑥0 ∈ Ω𝑥0

,   ∀ℓ ∈ [𝑡, 𝑡 + 𝜏]                             (4)  

If the operation of a process is absolutely hazard-free at a time instant 𝑡, then the MPS system 

is able to ensure that all process constraints of Eq. (4) are satisfied over a time horizon of [𝑡, 𝑡 + 𝜏] 

into the future. Note that the conditions of Eq.(4) are required to be satisfied for every 𝑑 ∈ Ω𝑑 , every 

𝑑𝑚 ∈ Ω𝑑𝑚
, every 𝑝 ∈ Ω𝑝, and every 𝑥0 ∈ Ω𝑥0

. Thus, the conditions of Eq. (4) account systematically 

for parameter and input uncertainties.  

2.3 State-Estimate Predictor 

As Eqs. (3) and (4) indicate, the receding-horizon safety analyses require the present and 

future estimates of the process state variables. This process state estimate prediction can be achieved 

by simply using a process model directly (without any corrective feedback of output measurements) 

or by using a state estimator that takes advantage of a corrective feedback. In the former case, state 

estimates may not be adequately accurate to use in real-time applications. The feedback especially 

with integral action has several advantages such as improving the robustness of the estimates to 

process-model mismatch. There are several methods of state estimation. The use of an extended 

Luenberger observer based on an extended model (process model combined with models of every 

mismatch and unknown disturbance) was proposed in Ref.1  However, the systematic design of a 

robust state-estimate predictor is still an open problem.  

2.4 MPS Alarm Mechanisms 

On the basis of the three definitions in Section 2.2, two alarm mechanisms were proposed 1. 

The mechanisms at each time instant 𝑡, determine whether an MPS system is able to force the process 

to satisfy all conditions of Eqs. (3) and (4) over the moving time horizon Ω𝜏 = [𝑡, 𝑡 + 𝜏].  On the 
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dissatisfaction of a condition of Eq. (3) or (4) at a time instant 𝑡, an MPS system generates an alarm 

signal corresponding to the constraint: 

• Definitely Hazardous Operation (DHO), when the operation is not nominally hazard-free 

(when a constraint of Eq. (3) is not satisfied); and 

• Potentially Hazardous Operation (PHO), when the operation is not absolutely hazard-free 

(when a constraint of Eq. (4) is not satisfied). 

The DHO alarm mechanism allows for predictively determining whether the operation is 

hazard-free under normal conditions (no faults or uncertainties), while the PHO alarm mechanism 

allows for predictively determining whether the operation is hazard-free under all real or 

hypothetical faults and errors accounted for in the MPS design.  When the DHO alarm corresponding 

to a constraint is ON, the PHO alarm corresponding to the same condition is ON too. However, the 

converse may not be true, because a necessary condition for a DHO alarm to be OFF is that its PHO 

alarm counterpart be OFF. 

3  Real-Time Implementation 

An MPS system should determine the satisfaction of every constraint of Eqs. (3) and (4) in 

real time at desired time instants (to generate a DHO or PHO alarm signal whenever a constraint is 

not satisfied) and prescribe an optimal action when a DHO or PHO alarm signal is generated. In 

practice, process operation constraints of Eq. (2) can be written in the form of the inequality 

constraints (constraint indices): 

                           𝜓𝑖(𝑥̂(ℓ|𝑡), 𝑑(ℓ|𝑡), 𝑑𝑚(ℓ|𝑡), 𝑝(ℓ|𝑡), 𝑢(ℓ|𝑡)) ≤ 0,      𝑖 = 1, ⋯ , 𝑛𝑐,𝑖𝑛                            (5) 

where nc,in is the number of inequality constraints.  According to Definitions 2 and 3, in real time at 

every desired time instant, 𝑡, an MPS system should determine whether: 

(i)  For every 𝜓𝑖  there exists a feasible MPS action profile, 𝑢(ℓ|𝑡) ∈ Ω𝑢,  ℓ ∈ Ω𝜏 = [𝑡, 𝑡 + 𝜏], 

such that 𝜓𝑖 ≤ 0 at every ℓ ∈ Ω𝜏 when 𝑑𝑚(𝑡|𝑡) = 𝑑̃𝑚(𝑡), 𝑑(ℓ|𝑡) = 𝑑𝑛,  𝑑𝑚(ℓ|𝑡) = 𝑑𝑚𝑛
, 

𝑝(ℓ|𝑡) = 𝑝𝑛, and 𝑥0 = 𝑥0𝑛
; and  

(ii) For every 𝜓𝑖  there exists a feasible MPS action profile, 𝑢(ℓ|𝑡) ∈ Ω𝑢,  ℓ ∈ [𝑡, 𝑡 + 𝜏], such 

that 𝜓𝑖 ≤ 0 at every ℓ ∈ Ω𝜏 when 𝑑𝑚(𝑡|𝑡) = 𝑑̃𝑚(𝑡), ∀ 𝑑(ℓ|𝑡) ∈ Ω𝑑 , ∀𝑑𝑚(ℓ|𝑡) ∈ Ω𝑑𝑚
,

∀𝑝(ℓ|𝑡) ∈ Ω𝑝, and ∀𝑥0 ∈ Ω𝑥0
.  

These determinations are computationally very expensive and thus are hard to carry out in real time. 

This major computational difficulty is overcome using a novel approach proposed in the next section. 
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3.1 Combined Offline and Online Computational Approach 

The main idea behind this approach is that: (i) when at a time instant 𝑡 with the ‘most 

aggressive MPS action’ corresponding to 𝜓𝑖,  𝜓𝑖 exceeds zero over [𝑡, 𝑡 + 𝜏], then the DHO alarm 

signal corresponding to 𝜓𝑖 is generated; and (ii) when at a time instant 𝑡 with the ‘most aggressive 

MPS action’ and the ‘worst-case values’ of 𝑑,  𝑑𝑚, 𝑝 and 𝑥0 corresponding to 𝜓𝑖 ,  𝜓𝑖 exceeds zero 

over [𝑡, 𝑡 + 𝜏], then the PHO alarm signal corresponding to 𝜓𝑖 is generated. 

The corner points of the hyperrectangle Ω𝑢 represent the actions that an MPS system can take, 

and the corner boundary points of Ω𝑥0
, Ω𝑑, Ω𝑑𝑚

, and Ω𝑝 that correspond to combinations of lower 

and upper limits of 𝑥0, 𝑑, 𝑑𝑚, and 𝑝. In the case of non-complex small-scale processes, personnel 

knowledge of the process and/or process model predictions usually guides the identification of the 

combination of the lower and upper bounds for the components of 𝑥0, 𝑑, 𝑑𝑚, and 𝑝 that represent the 

‘most extreme’ (worst-case) values corresponding to a constraint index. In this case, the same 

knowledge can be used to identify the ‘most aggressive’ MPS action corresponding to a constraint 

index. In the case of complex large-scale processes, however, these worst-case uncertainties and most 

aggressive MPS actions need to be calculated systematically offline using the min-max optimization 

problem formulations described in the next section. 

3.1.1 Offline Calculations 

The most aggressive (optimal) MPS action corresponding to a 𝜓𝑖   is defined as the time-

invariant the MPS action that minimizes the highest value of 𝜓𝑖 over the moving horizon 

[𝑡, 𝑡 + 𝜏𝑠𝑖
] when 𝑑𝑚(𝑡|𝑡) = 𝑑̃𝑚(𝑡), 𝑑(ℓ|𝑡) = 𝑑𝑛,  𝑑𝑚(ℓ|𝑡) = 𝑑𝑚𝑛

, 𝑝(ℓ|𝑡) = 𝑝𝑛, and 𝑥0 = 𝑥0𝑛
, 

where 𝜏𝜓𝑖
= max

𝑗
𝜃𝑖𝑗, and 𝜃𝑖𝑗 is the 2% settling time of 𝜓𝑖 with respect to 𝑢𝑗 . It is obtained by solving 

the min-max optimization problem: 

    min
𝑢∈Ω𝑢

max
   𝑡∈Ω𝜏𝜓𝑖

𝜓𝑖(𝑥(𝑡), 𝑑𝑛, 𝑑𝑚𝑛
, 𝑝𝑛, 𝑢(𝑡))                                                  (6) 

subject to: 

                    
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)),                𝑥(0) = 𝑥0 ∈ Ω𝑥0

⊂ ℝ𝑛𝑥                  

                    𝑦(𝑡) = ℎ(𝑥(𝑡))   

                  𝜓𝑗(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)) ≤ 0,      𝑗 = 1, ⋯ , 𝑛𝑐,𝑖𝑛,   𝑗 ≠ 𝑖 

𝑑𝑢(𝑡)

𝑑𝑡
= 0 
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The infeasibility of the min-max optimization problem corresponding to a 𝜓𝑖 points to the poor design 

of the MPS system and the need for providing the MPS system with more process input variables to 

set. As requested, the optimal MPS action is time-independent (is a fixed corner point of the 

Ωu hyperrectangle); that is, 

 𝑢∗𝑛(𝑡)𝑖 =  𝑢∗𝑛
𝑖 . 

The most aggressive (optimal) MPS action and the worst-case values of 𝑡, 𝑥0, 𝑑,  𝑑𝑚, and 𝑝 

corresponding to a 𝜓𝑖   are, respectively, defined as the time-invariant MPS action that minimizes 𝜓𝑖, 

the values of 𝑡 and 𝑥0 on  Ω𝜏𝜓𝑖
× Ω𝑥0

 that maximize 𝜓𝑖 , and the time-invariant values of   𝑑,  𝑑𝑚, 

and 𝑝 on  Ω𝑑 × Ω𝑑𝑚
× Ω𝑝 that maximize 𝜓𝑖, where  Ω𝜏𝜓𝑖

= [𝑡, 𝑡 + 𝜏𝜓𝑖
].  They are obtained by 

solving the following min-max optimization problem: 

 min
𝑢∈Ω𝑢

   max
  𝑡∈Ω𝜏𝜓𝑖

,𝑑∈Ω𝑑,𝑑𝑚∈Ω𝑑𝑚 ,𝑝∈Ω𝑝,𝑥0∈Ω𝑥0

  𝜓𝑖(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡))                 (7) 

subject to: 

                    
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)),                𝑥(0) = 𝑥0 ∈ Ω𝑥0

⊂ ℝ𝑛𝑥                  

                    𝑦(𝑡) = ℎ(𝑥(𝑡))   

                  𝜓𝑗(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)) ≤ 0,      𝑗 = 1, ⋯ , 𝑛𝑐,𝑖𝑛,   𝑗 ≠ 𝑖 

𝑑 𝑑(𝑡)

𝑑𝑡
= 0,

𝑑 𝑑𝑚(𝑡)

𝑑𝑡
= 0,

𝑑𝑝(𝑡)

𝑑𝑡
= 0,

𝑑𝑢(𝑡)

𝑑𝑡
= 0 

As requested, the optimal MPS action is time-independent (is a fixed corner point of the 

Ωu hyperrectangle), and the worst-case values of 𝑑∗(𝑡), 𝑑𝑚
∗ (𝑡), 𝑝∗(𝑡), and 𝑥0 are also time-

independent (a fixed combination of the boundary points of the hyperrectangles); that is: 

(𝑑∗(𝑡), 𝑑𝑚
∗ (𝑡), 𝑝∗(𝑡), 𝑥0, 𝑢∗(𝑡))𝑖 = (𝑑∗, 𝑑𝑚

∗ , 𝑝∗, 𝑥0
∗, 𝑢∗)𝑖,      ∀ 𝑡             

3.1.2  Online Calculations 

The offline calculation of the worst-case uncertainties and the most aggressive (optimal) MPS 

actions permits online implementation of MPS with very little computer CPU time, as the satisfaction 

of each process operation constraint is evaluated online only (a) one time with the nominal values of 

process parameters and inputs, and a corner point of Ω𝑢 corresponding to the most aggressive action 

of the MPS system, for the particular process operation constraint; and (b) one time with the worst-

case combination of the values that process inputs and parameters can take, and the corner point of 

Ω𝑢 that corresponds to the most aggressive action of the MPS system, for the particular process 

operation constraint index. Thus, with the offline calculations, the implementation of an MPS system 
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simply requires online integration of the differential equations of a state estimator at each time instant 

t over a moving time horizon of [𝑡, 𝑡 + 𝜏] at most 2𝑛𝑐,𝑖𝑛 times, where 𝜏 can be much shorter than 

𝜏𝜓𝑖
,   𝑖 = 1, ⋯ , 𝑛𝑐,𝑖𝑛 .  Figure 1 illustrates this for one of the inequality constraints when  𝑛𝑑 = 𝑛𝑑𝑚

=

𝑛𝑝 = 𝑛𝑢 = 2 to determine whether an operation is nominally hazard-free, at a time instant 𝑡.  Figure 

2 illustrates the concept for one of the inequality constraints when 𝑛𝑑 = 𝑛𝑑𝑚
= 𝑛𝑝 = 𝑛𝑢 = 2 to 

determine whether an operation is absolutely hazard-free at a time instant 𝑡. Figure 3 depicts a block 

diagram that explains the implementation of an MPS system in real time. Of course, the higher is the 

value of 𝜏, the more effective is MPS in preventing and mitigating accidents, but the lower is the 

accuracy of the alarm signals (the higher is the probability of false alarms). In contrast, MPC usually 

requires online integration of the same differential equations at each time instant 𝑡 over a moving 

time horizon of [𝑡, 𝑡 + 𝜏] significantly more than 2𝑛𝑐,𝑖𝑛 times to solve an MPC optimization problem 

at the time instant 𝑡.  

 

4  Numerically Solving the Min-Max Optimization Problems 

A min-max optimization problem minimizes the maximum value of an objective function or 

a set of objective functions. Two main types of min-max optimization problems have been reported: 

• Type A:  

    min
𝑥

max
𝑖

𝐹𝑖(𝑥), 

subject to:  

    𝑔(𝑥) = 0 

  ℎ(𝑥) ≤ 0 

• Type B: 

min
𝑞∊𝑄

max
𝑣∊𝑉

𝐹(𝑞, 𝑣) 

subject to:  

        𝑔(𝑞, 𝑣) = 0 

        ℎ(𝑞, 𝑣) ≤ 0 

This second type has application in decision making in the presence of uncertainty. The goal 

of this min-max optimization is to minimize the maximum of the objective function when optimizing 

variables take their worst-case combination. Min-max optimization problems of this type have been 

reported in many fields 27-28 for the last two decades.  They are known as difficult problems to solve 

29, with no general technique or algorithm to locate globally optimal solutions, especially for 

nonconvex problems 30. The min-max optimization problems of MPS, Eqs. (6) and (7), are of this 

type in which a loss is minimized for the worst case (maximum loss) scenario.  

https://en.wikipedia.org/wiki/Worst-case_scenario
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Various approaches and methods have been proposed for solving the min-max problems, 

ranging from gradient-based to stochastic optimization methods. Gradient-based methods, such as 

successive quadratic programming (SQP), are often not suitable due to limitations, such as the 

unavailability of exact derivatives of objective functions and the lack of objective functions continuity 

31-32. 

Stochastic optimization algorithms have been found to be efficient for global optimization. 

They are often able to escape from local optima and show good performance uniformly across many 

data sets 33. Swarm intelligence and swarm evolutionary techniques exploit social behavior and 

natural evolution algorithmic mechanisms, respectively. Unlike gradient-based methods, these 

techniques do not require objective function derivatives, and can handle discontinuous objective 

functions and disjoint search spaces 34.  For discrete min-max optimization problems, Herrmann35 

presented a two-space genetic algorithm (GA), and Laskari et al.36 investigated the use of the particle-

swarm optimization (PSO) method. They reported cases where SQP failed, but PSO had success rates 

higher than 90%. They also used a smoothing technique and found that PSO results, in many cases, 

were superior. Hassan et al. 37 compared the computational effectiveness and efficiency of GA and 

PSO using a formal hypothesis testing approach. They observed that PSO and GA were comparable 

in finding globally optimal solutions, but that PSO provided significantly better computational 

efficiencies.  

  Particle-swarm optimization was developed by Eberhart and  Kennedy 38 inspired by the social 

behavior of bird flocking or fish schooling. PSO uses intuition and the social behavior of individuals 

to locate global optima. The particle-swarm algorithm starts with initial positioned particles, having 

computed objective functions, with assigned initial velocities. A particle 𝑖 is defined by its position 

vector, 𝑧𝑖, and its velocity vector, 𝑣𝑖. In each iteration, 𝑗, the position of the particle in the next 

iteration, 𝑧𝑖(𝑗 + 1), is calculated according to 39: 

𝑧𝑖(𝑗 + 1) = 𝑧𝑖(𝑗) + 𝑣𝑖(𝑗 + 1)                                                          (8) 

where 𝑧𝑖(𝑗) is the position of the particle in the current iteration, and 𝑣𝑖(𝑗 + 1) is the velocity of the 

particle in the next iteration, calculated using: 

𝑣𝑖(𝑗 + 1) = 𝜔𝑣𝑖(𝑗) + 𝑐1𝑟1(𝑝𝑖(𝑗) − 𝑥𝑖(𝑗)) + 𝑐2𝑟2(𝑝𝑔(𝑗) − 𝑥𝑖(𝑗))                               (9) 

where 𝑣𝑖(𝑗) is the velocity of the particle in the current iteration; 𝑝𝑖(𝑗) is the best location the particle 

has achieved until the current iteration; 𝑝𝑔(𝑗) is the best location that the other particles have found 

until the current iteration; and 𝑐1 and 𝑐2 are, respectively, cognitive and social parameters, which vary 

https://www.sciencedirect.com/topics/engineering/optimisation
http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/
https://www.sciencedirect.com/topics/engineering/position-vector
https://www.sciencedirect.com/topics/engineering/position-vector
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between 0 and 2. The parameters  𝑐1 and 𝑐2 determine the size of the step each particle takes towards 

its own personal best position and the overall global best position, respectively.  Default values for 

these two parameters in PSO codes are 𝑐1 = 𝑐2 = 2.  𝑟1 and 𝑟2 are two random vectors whose 

components are assumed to be independent random variables from U (0, 1). These values are different 

in each iteration, as they are generated randomly every time.  𝜔 is an inertia weight that maintains 

balance between global and local search abilities. It is usually a constant value between 0.8 and 1.2. 

In this work, it is set to 1. 

Chen et al. 40 used the PSO method in a nested form to solve a min-max optimization problem 

of the second type: 

min
𝑞∊𝑄

max
𝑣∊𝑉

𝐹(𝑞, 𝑣) = min
𝑞∊𝑄

𝑓𝑜𝑢𝑡𝑒𝑟 (𝑞)                                                 (10) 

where  

 𝑓𝑜𝑢𝑡𝑒𝑟(𝑞) = max
𝑣∊𝑉

𝐹(𝑞, 𝑣)                                                       (11) 

They used two PSO algorithms, one for minimization, and the other for the maximization. For the 

outer minimization, particles minimize the maximum of the cost function. For each particle, the 

maximum is calculated using the inner PSO algorithm. As the flowchart in Figure 4 shows, 

calculations start with the outer function. First, the outer PSO randomly chooses 𝑛 particles by 

assigning initial positions and velocities for every particle in the space of 𝑞. Each particle is a solution 

guess. Next, for each particle in the 𝑞 space, the inner PSO maximizes the cost function in the domain 

of 𝑣.  The inner function initiates iterations by assigning initial positions and velocities to every 

particle in the domain of 𝑣. Through a series of iterations for each outer particle, positions and 

velocities are updated according to Eqs. (8) and (9), and the maximization over 𝑣 is performed until 

convergence is achieved – providing the maximum, for each outer particle, of F(q,v) in Eq. (10).  This 

procedure is repeated for every particle in the outer PSO, until the outer function converges, and the 

final solution of the min-max optimization is found.  

5  Case Studies 

The application and performance of the min-max optimization formulations as well as MPS, 

applied to two chemical process examples, are shown through numerical simulations in this section. 

One example (Process Example 1) is an isothermal continuous-stirred-tank reactor (CSTR) with 

series chemical reactions, and the other (Process Example 2) is a free-radical polymerization CSTR.  

The resulting min-max optimization problems are solved using the nested PSO algorithm. For 

the first process, 100 particles and 20 max stall iterations are used, and for the second process, 200 



12 

 

particles and 40 max stall iterations are used. For both, default values are used for all other tuning 

parameters of the PSO algorithm programmed in MATLAB version R2018b. The solution of each 

min-max optimization problem in Process Example 1 requires just a few seconds of CPU time. For 

the min-max optimization problems in Process Example 2, having 17 variables, solutions were 

obtained using a high-performance computer cluster with Intel® Xeon® E5-2670 Sandy Bridge 

CPUs. The Parallel Computing Toolbox of MATLAB permitted 12 Intel CPUs to compute in parallel 

with a 32 GB of memory. The wall time was about 20 minutes for solving each of these min-max 

optimization problems. 

5.1 Process Example 1: A Classical Chemical Reactor 

Consider an isothermal CSTR in which the irreversible series reactions 𝐴 → 𝐵 → 𝐶 take 

place. The reactor is represented by: 

𝑑𝑐𝐴

𝑑𝑡
= −𝑘1𝑐𝐴

2 + (𝑐𝐴𝑖
− 𝑐𝐴)𝐹

𝑑𝑐𝐵

𝑑𝑡
= 𝑘1𝑐𝐴

2 − 𝑘2𝑐𝐵 − 𝑐𝐵𝐹      

𝑑𝑐𝐶

𝑑𝑡
= 𝑘2𝑐𝐵 − 𝑐𝐶𝐹                   

       (12) 

where 𝑐𝐴, 𝑐𝐵, and 𝑐𝐶  (kmol ∙ m−3) are the concentrations of 𝐴, 𝐵 and 𝐶 in the reactor outlet stream, 

respectively, and 𝐹  (m3 ∙ h−1) is the volumetric flow rate of the inlet and outlet streams. The reactor 

is operated at the steady state corresponding to 𝑐𝐵𝑠𝑠
= 3 kmol ∙ m−3 by adjusting 𝐹.  The nominal 

values of 𝑐𝐴𝑖
, 𝑘1 and 𝑘2 are 7 kmol ∙ m−3,  6 m3 ∙ kmol−1 ∙ h−1, and 1 h−1, respectively. Their ranges 

are:  5 ≤ 𝑘1 ≤ 7 m3 ∙ kmol−1 ∙ h−1,  0 ≤ 𝑘2 ≤ 2 h−1,  and 5 ≤ 𝑐𝐴𝑖
≤ 10 kmol ∙ m−3.  For this 

process, the conditions 𝑐𝐵 ≤ 3.5 kmol ∙ m−3 and 𝑐𝐴 ≤ 2.0 kmol ∙ m−3 should never be violated.                          

The unforced zero dynamics of the reactor are given by: 

𝑑𝑐𝐴

𝑑𝑡
= −6𝑐𝐴

2 + (𝑐𝐴𝑖
− 𝑐𝐴)(2𝑐𝐴

2 − 1)
           

𝑑𝑐𝐶

𝑑𝑡
= 3 − 𝑐𝐶(2𝑐𝐴

2 − 1)                

                          (13) 

The eigenvalues of the Jacobian of this system are [4𝑐𝐴𝑠𝑠
(𝑐𝐴𝑖

− 3)  − 6𝑐𝐴𝑠𝑠
2 + 1 ] and [−2𝑐𝐴𝑠𝑠

2 +

1].  At the steady state (𝑐𝐴𝑠𝑠
, 𝑐𝐶𝑠𝑠

, 𝑐𝐴𝑖
) = (1, 3, 7), the zero dynamics are unstable, as the eigenvalues 

are +11 and  −1. Consequently,  𝑐𝐵 shows an inverse response to a step change from 1 to 2 m3 ∙ h−1 

in 𝐹, as shown in Figure S3. When 𝑐𝐴𝑖
= 7 kmol ∙ m−3, the first eigenvalue is positive for every 

steady state corresponding to 𝐹𝑠𝑠  (m3 ∙ h−1) in the range of [0, 10.45), as shown in Figure S4.  

The reactor control system controls 𝑐𝐵 by adjusting the flow rate, 𝐹, using a proportional 

control valve within the following range:  
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0.0 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥 = 2.0 m3 ∙ h−1 

The control system has a simple proportional-integral (PI) controller: 

𝑑𝜔

𝑑𝑡
= − 

1

𝜏𝐼
 𝜔 +  

1

𝑘𝑐

(𝐹 − 𝐹𝑠𝑠) 
           

                                  

𝐹 = sat {𝐹𝑠𝑠 + 𝑘𝑐 (𝑐𝐵𝑠𝑝
− 𝑐𝐵 +

1

𝜏𝐼
 𝜔  )}            

 

where 𝑐𝐵𝑠𝑝
= 3 kmol ∙ m−3,   𝐹𝑠𝑠 = 1 m3 ∙ h−1, 𝑘𝑐 = 1 m6 ∙ h−1 ∙ kmol−1,  𝜏𝐼 = 1 h, and 

sat{𝑙} = {
0,           𝑙 < 0                 
𝑙,            0 ≤  𝑙 ≤ 𝐹𝑚𝑎𝑥

𝐹𝑚𝑎𝑥 ,     𝐹𝑚𝑎𝑥 <  𝑙         
 

5.1.1 Model-Predictive Safety System 

When one of the following constraints is violated at any moment over a receding future 

horizon of 𝜏, the MPS system generates an alarm signal: 

(a) Saturation alarms when: 

𝐹(ℓ|𝑡) ≥ 𝐹𝑚𝑎𝑥 = 2.0 m3. h−1                                                       (14)  

𝐹(ℓ|𝑡) ≤ 𝐹𝑚𝑖𝑛 = 0.0 m3. h−1                                                       (15) 

(b) PHO and DHO alarms when:    

                     𝑐̂𝐵(ℓ|𝑡) > 3.5 kmol ∙ m−3                          (16) 

                                   𝑐̂𝐴(ℓ|𝑡) >  2.0 kmol ∙ m−3                                      (17) 

The following constraint (alarm) indices 𝜓1, … , 𝜓4 are defined: 

𝜓1 = 𝐹(ℓ|𝑡) − 2                                                                (18) 

   𝜓2 = −𝐹(ℓ|𝑡)                                                                    (19) 

𝜓3 = 𝑐̂𝐵(ℓ|𝑡) − 3.5                                                           (20) 

𝜓4 =  𝑐̂𝐴(ℓ|𝑡) − 2.0                                                            (21) 

The receding prediction horizons, 𝜏𝜓3
, 𝜏𝜓4

,  and 𝜏 are chosen to be 2.0 h, 

1.0 h, and 0.2 h, respectively.  

5.1.2 Min-Max Optimization 

To determine whether an operation is nominally hazard-free, each of the constraint indices of 

Eqs. (20) and (21) should be checked with the nominal values of 𝑥0, 𝑑, 𝑑𝑚 and 𝑝, and with the most 

aggressive (optimal) MPS action corresponding to the condition over the receding horizon. These 

most aggressive MPS actions are calculated by solving the following two constrained min-max 

optimization problems: 
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 min
𝑢∈Ω𝑢

  max
𝑡∈Ω𝜏𝜓3

  𝜓3 = 𝑐𝐵(𝑡) − 3.5                                                  (22) 

subject to: 

𝑑𝑐𝐴(𝑡)

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)2 + (𝑐𝐴𝑖

(𝑡) − 𝑐𝐴(𝑡))𝐹(𝑡)              

𝑑𝑐𝐵(𝑡)

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)2 − 𝑘2𝑐𝐵(𝑡) − 𝑐𝐵(𝑡)𝐹(𝑡)                   

𝑑𝑐𝐶(𝑡)

𝑑𝑡
= 𝑘2𝑐𝐵(𝑡) − 𝑐𝐶(𝑡)𝐹(𝑡)                                

                                                                     
              

 

𝜓1 = 𝐹(𝑡) − 2 ≤ 0 

𝜓2 = −𝐹(𝑡) ≤ 0 

𝜓4 =  𝑐𝐴(𝑡) − 2.0 ≤ 0 

and 

 min
𝑢∈Ω𝑢

  max
𝑡∈Ω𝜏𝜓4

 𝜓4 = 𝑐𝐴(𝑡) − 2.0                                                 (23) 

subject to: 

𝑑𝑐𝐴(𝑡)

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)2 + (𝑐𝐴𝑖

(𝑡) − 𝑐𝐴(𝑡))𝐹(𝑡)                  

𝑑𝑐𝐵(𝑡)

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)2 − 𝑘2𝑐𝐵(𝑡) − 𝑐𝐵(𝑡)𝐹(𝑡)                      

𝑑𝑐𝐶(𝑡)

𝑑𝑡
= 𝑘2𝑐𝐵(𝑡) − 𝑐𝐶(𝑡)𝐹(𝑡)                             

                                                                     
              

 

𝜓1 = 𝐹(𝑡) − 2 ≤ 0 

𝜓2 = −𝐹(𝑡) ≤ 0 

𝜓3 = 𝑐𝐵(𝑡) − 3.5 ≤ 0 

where 𝑢 = 𝐹, Ω𝑢 = [0, 2],   Ω𝜏𝜓3
= [0, 2.0], and Ω𝜏𝜓4

= [0, 1.0]. 

By applying the nested PSO algorithm, these two optimization problems were solved. When 

𝑘1, 𝑘2 and 𝐶𝐴𝑖  take their nominal values, in both cases the algorithm found that the optimal MPS 

action corresponds to an inlet flow rate, F, of zero: 𝐹∗𝑛 = 0.  The MPS system applied these to the 

reactor model; the simulation results shown in Figure S5 confirm that the nested PSO algorithm 

indeed solved the two min-max optimization problems; in both cases  𝐹∗𝑛 = 0 minimizes both 

constraint indices. 

To determine whether an operation is absolutely hazard-free, the MPS system should check 

each of the constraint indices of Eqs. (20) ad (21) with the corresponding worst-case values of 𝑑,  𝑑𝑚, 
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𝑝 and 𝑥0 and the optimal MPS actions. The worst-case combinations and their corresponding optimal 

MPS actions were calculated by solving the following two min-max optimization problems: 

min
𝑢∈Ω𝑢

  max
𝑡∈Ω𝜏𝜓3

,𝑑∈Ω𝑑,𝑝∈Ω𝑝,𝑥0∈Ω𝑥0

  𝜓3 = 𝑐𝐵(𝑡) − 3.5                                                  (24) 

subject to: 

𝑑𝑐𝐴(𝑡)

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)2 + (𝑐𝐴𝑖

(𝑡) − 𝑐𝐴(𝑡)) 𝐹(𝑡)                       

𝑑𝑐𝐵(𝑡)

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)2 − 𝑘2𝑐𝐵(𝑡) − 𝑐𝐵(𝑡)𝐹(𝑡)                             

𝑑𝑐𝐶(𝑡)

𝑑𝑡
= 𝑘2𝑐𝐵(𝑡) − 𝑐𝐶(𝑡)𝐹(𝑡)                                        
                                                                     

              

 

𝜓1 = 𝐹(𝑡) − 2 ≤ 0 

𝜓2 = −𝐹(𝑡) ≤ 0 

𝜓4 =  𝑐𝐴(𝑡) − 2.0 ≤ 0 

and 

 min
𝑢∈Ω𝑢

  max
𝑡∈Ω𝜏𝜓4

,𝑑∈Ω𝑑,𝑝∈Ω𝑝,𝑥0∈Ω𝑥0

 𝜓4 =  𝑐𝐴(𝑡) − 2.0                                                 (25) 

subject to: 

𝑑𝑐𝐴(𝑡)

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)2 + (𝑐𝐴𝑖

(𝑡) − 𝑐𝐴(𝑡)) 𝐹(𝑡)                       

𝑑𝑐𝐵(𝑡)

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)2 − 𝑘2𝑐𝐵(𝑡) − 𝑐𝐵(𝑡)𝐹(𝑡)                             

𝑑𝑐𝐶(𝑡)

𝑑𝑡
= 𝑘2𝑐𝐵(𝑡) − 𝑐𝐶(𝑡)𝐹(𝑡)                                        
                                                                     

              

 

𝜓1 = 𝐹(𝑡) − 2 ≤ 0 

𝜓2 = −𝐹(𝑡) ≤ 0 

𝜓3 = 𝑐𝐵(𝑡) − 3.5 ≤ 0 

where 𝑑 = 𝑐𝐴𝑖
, Ω𝑑 = [5, 10],  𝑝 = [𝑘1     𝑘2]𝑇, and Ω𝑝 = [5,   7] × [0,   2].  

The nested PSO algorithm found that:  

• In the case of the constraint index of Eq.(20), the worst combination of uncertainties is 

 𝑐𝐴𝑖
= 10, 𝑘1 = 7, and  𝑘2 = 0, and the optimal MPS action is 𝐹 = 0.  

• In the case of the constraint index of Eq.(21), the worst combination of uncertainties is 

  𝑐𝐴𝑖
= 10, 𝑘1 = 5, and  𝑘2 = any value in [0, 2] and the optimal MPS action is 𝐹 = 0.  

The simulation results shown in Figure S6 again confirm that the nested PSO algorithm solved the 

two min-max optimization problems; in both cases  𝐹∗ = 0 minimizes both constraint indices. 
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5.1.3 State Estimate Predictor 

The MPS system uses the following state estimator to predict the future values of the state 

variables online1 when the manipulated variable takes the optimal MPS value corresponding to each 

constraint index: 

𝑑𝑐̂𝐴(ℓ|𝑡)

𝑑𝑡
= −𝑘1𝑐̂𝐴(ℓ|𝑡)2 + (𝑐𝐴𝑖

(ℓ|𝑡) − 𝑐̂𝐴(ℓ|𝑡)) 𝐹(ℓ|𝑡) + 𝐿1(𝑐𝐵(𝑡|𝑡) − 𝑐̂𝐵(𝑡|𝑡)) + 𝜉𝑥1
(ℓ|𝑡)

𝑑𝑐̂𝐵(ℓ|𝑡)

𝑑𝑡
= 𝑘1𝑐̂𝐴(ℓ|𝑡)2 − 𝑘2𝑐̂𝐵(ℓ|𝑡) − 𝑐̂𝐵(ℓ|𝑡)𝐹(ℓ|𝑡) + 𝐿2(𝑐𝐵(𝑡|𝑡) − 𝑐̂𝐵(𝑡|𝑡))                               

𝑑𝑐̂𝐶(ℓ|𝑡)

𝑑𝑡
= 𝑘2𝑐̂𝐵(ℓ|𝑡) − 𝑐̂𝐶(ℓ|𝑡)𝐹(ℓ|𝑡) + 𝐿3(𝑐𝐵(𝑡|𝑡) − 𝑐̂𝐵(𝑡|𝑡))                                         

𝑑𝜉𝑥1
(ℓ|𝑡)

𝑑𝑡
= 𝐿4(𝑐𝐵(𝑡|𝑡) − 𝑐̂𝐵(𝑡|𝑡))                                                                                   

              

 

5.1.4 Application of MPS 

 To test the MPS system, the process is assumed to undergo an unmeasured disturbance in the 

form of a step change in 𝑐𝐴𝑖
 from 7 to 9 kmol ∙ m−3 at time 𝑡 = 2 h. An SIS activates an alarm when 

𝜓3 exceeds zero in real time. However, MPS sets the feed flow rate to zero when the predicted future 

value of 𝜓3 exceeds zero; that is, it sets the feed flow rate to zero before the SIS sets the current value 

of 𝜓3 to zero. Figure 5 depicts 𝐶𝐴 and 𝐶𝐵 in the absence of the disturbance. The MPS system activates 

an DHO alarm when the constraint of Eq. (20) or (21) is violated with the optimal MPS action and 

the nominal values of the parameters and unmeasured disturbance, over the receding horizon of 

[𝑡, 𝑡 + 𝜏]. The thick blue lines in Figure 6 represent variations of the two constraint indices of the 

actual process under the PI controller. Figure 6 also shows the future values of the two constraint 

indices predicted at time instants 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 h using the state estimate predictor in 

Section 5.1.3, the nominal values of the uncertain quantities, and the optimal MPS action 

corresponding to each constraint index. It shows that none of the constraints are violated, indicating 

that the operation is nominally hazard free.  

The MPS system activates a PHO alarm when the constraint of Eq. (20) or (21) is violated 

with its corresponding optimal MPS action and the worst combination of uncertainties. The thick blue 

lines in Figure 7 represent variations of the two constraint indices of the actual process under the PI 

controller. Figure 7 also shows the future values of the two constraint indices predicted at time instants 

2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 h using the state estimate predictor in Section 5.1.3, and the worst-case 

values of the uncertain quantities and the optimal MPS action corresponding to each constraint index. 
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It shows that the constraint index 𝜓3 exceeds zero at 𝑡 = 2.09, leading to the activation of the PHO 

alarm corresponding to the constraint index 𝜓3 and setting the inlet stream flow rate to zero. In this 

case study, the uncertainties in the state estimator initial conditions were not considered. Such 

uncertainties can be easily handled by considering the most extreme combination of the parameter 

values and state-estimator initial conditions.  

Figure S7 depicts the concentrations of A and B in the presence of a disturbance in the reactor. 

As Figure S7 shows, at 𝑡 = 2.5 hr, the predicted concentration of B exceeds 3.5 kmol ∙ m−3, resulting 

in the MPS system activating an alarm and setting the inlet flow rate to zero. With the action taken 

by the MPS system the constraint index 𝜓3 is violated at 𝑡 = 2.09 hr (Figure 7), leading to the 

activation of the PHO alarm corresponding to constraint 𝜓3 by the MPS system. This case clearly 

demonstrates the ability of MPS in predicting the occurrence of operation hazards before the hazards 

really happen. 

5.2 Process Example 2: A Continuous Stirred-Tank Polymerization Reactor 

 Consider a continuous stirred-tank jacketed polymerization reactor in which free-radical 

solution polymerization of methyl methacrylate (MMA) initiated by azo-bis-isobutyronitrile in 

toluene takes place 41. The polymerization reactions are listed in Table S1. Under assumptions such 

as: (i) no gel or glass effect, (ii) the quasi-steady-state-approximation, (iii) constant density and heat 

capacity of the reacting mixture, (iv) a well-insulated reactor, and (v) perfect mixing, the dynamics 

of the continuous-stirred-tank reactor are described by: 

𝑉
𝑑𝑐𝑀

𝑑𝑡
= −(𝑘𝑃 + 𝑘𝑓𝑚

)𝑐𝑀𝑅𝑉 + 𝐹𝑀𝑖
𝑐𝑀𝑖

− 𝐹𝑐𝑀,                                      𝑐𝑀(0) = 0 

𝑉
𝑑𝑐𝐼

𝑑𝑡
= −𝑘𝐼𝑐𝐼𝑉 + 𝐹𝐼𝑖

𝑐𝐼𝑖
− 𝐹𝑐𝐼 ,                                                                    𝑐𝐼(0) = 0                        (26) 

𝑉
𝑑𝑐𝑖

𝑑𝑡
= −𝑘𝑖𝑐𝑖𝑅𝑉 + 𝐹𝑀𝑖

𝑐𝑖𝑖
− 𝐹𝑐𝑖                                                                𝑐𝑖(0) = 0 

𝐶𝜌𝑉
𝑑𝑇

𝑑𝑡
= 𝑘𝑃𝑐𝑀𝑅𝑉∆𝐻 + 𝐹𝐶𝜌(𝑇𝑖 − 𝑇) + 𝑈𝑆(𝑇𝑗 − 𝑇),                          𝑇(0) = 𝑇𝑠𝑝 

𝑑𝑇𝑗

𝑑𝑡
=

𝑈𝑆(𝑇 − 𝑇𝑗) + 𝑄

𝑐𝑗𝑚𝑗
,                                                                                𝑇𝑗(0) = 𝑇𝑗,0 

where 

𝐹 = 𝐹𝑀𝑖
+   𝐹𝐼𝑖

,     

𝑘𝑗 = 𝑧𝑗exp (
−𝐸𝑗

𝑅𝐶𝑇
) ,   𝑗 = 𝐼, 𝑃, 𝑡, 𝑖, 𝑓𝑚 
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𝑄 = ∆𝐻𝑠𝑚̇𝑠 + 𝐹𝑐𝑤𝜌𝑐𝑤𝑐𝑐𝑤(𝑇𝑐𝑤 − 𝑇𝑗) 

Applying the quasi-steady-state assumption to the rate of change of the molar concentration of the 

free radicals leads to: 

𝑅 =
−𝑘𝑖𝑐𝑖 + √(𝑘𝑖𝑐𝑖)2 + 8𝑓𝑘𝑡𝑘𝐼𝑐𝐼

2𝑘𝑡
 

The variables are defined in the Nomenclature. Online measurements of 𝑇𝑗 , 𝑇, 𝑇𝑖, 𝐹𝑀𝑖
 𝐹𝐼𝑖

, 𝐹𝑐𝑤, and 

𝑚̇𝑆 are assumed to be available. The reactor control system adjusts the cooling water flow rate, 𝐹𝑐𝑤 , 

and the steam mass flow rate, 𝑚̇𝑠, using proportional valves within the following ranges:  

0 ≤ 𝐹𝑐𝑤 ≤ 𝐹𝑐𝑤𝑚𝑎𝑥
= 2.22 × 10−4 m3 ∙ s−1 

                                              0 ≤ 𝑚̇𝑠 ≤ 𝑚̇𝑠 𝑚𝑎𝑥
= 0.15 kg ∙ s−1     

 In addition to overriding these two manipulated variables, the MPS system can set the inlet monomer 

and initiator flow rates, 𝐹𝑀𝑖
 and 𝐹𝐼𝑖

 using ON-OFF valves within the following ranges:  

0 ≤ 𝐹𝑀𝑖
≤ 𝐹𝑀𝑖  𝑚𝑎𝑥

= 8.3 × 10−4  m3 ∙ s−1 

0 ≤  𝐹𝐼𝑖
≤ 𝐹𝐼𝑖 𝑚𝑎𝑥

=  1.6 × 10−5 m3 ∙ s−1 

The remaining nominal values of the reactor model parameters are given in Tables 1a and 1b. 

 

5.2.1 Model-Predictive Safety System 

For this process, the constraint indices are: 

 𝜓1 = 𝐹𝑐𝑤(ℓ|𝑡) − 𝐹𝑐𝑤𝑚𝑎𝑥
                                                (27)

 𝜓2 = − 𝐹𝑐𝑤(ℓ|𝑡)                                                            (28) 

 𝜓3 = 𝑚̇𝑠(ℓ|𝑡) − 𝑚̇𝑠 𝑚𝑎𝑥
                                                      (29) 

 𝜓4 =   −𝑚̇𝑠(ℓ|𝑡)                                                                    (30) 

 𝜓5 = 𝐹𝑀𝑖
(ℓ|𝑡) − 𝐹𝑀𝑖  𝑚𝑎𝑥

                                                    (31) 

 𝜓6 = −𝐹𝑀𝑖
(ℓ|𝑡)                                                                     (32) 

 𝜓7 =  𝐹𝐼𝑖
(ℓ|𝑡) − 𝐹𝐼𝑖 𝑚𝑎𝑥

                                                       (33) 

 𝜓8 =  − 𝐹𝐼𝑖
(ℓ|𝑡)                                                                     (34) 

 𝜓9 = 𝑐̂𝑚(ℓ|𝑡) − 0.6                                                        (35) 

 𝜓10 = 𝑐̂𝐼(ℓ|𝑡) − 0.02                                                      (36) 

 𝜓11 =  𝑐̂𝑖(ℓ|𝑡) − 3 × 10−4                                              (37) 

 𝜓12 = 𝑇̂(ℓ|𝑡) − 373.2                                                    (38) 
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                                                            𝜓13 =  𝑇̂𝑗(ℓ|𝑡) − 393.2                                                   (39) 

When at a time instant 𝑡 the projected value of a constraint index over the receding prediction horizon 

[𝑡, 𝑡 + 𝜏] exceeds zero, the MPS system activates the corresponding alarm.   

The reactor temperature is controlled using a cascade control system consisting of two PI 

controllers: 

𝑑𝜔1

𝑑𝑡
= −

1

𝜏𝐼1

 𝜔1 +
1

𝑘𝑐1

(𝑇𝑗𝑠𝑝
− 𝑇𝑗𝑠𝑠

)

           
                                               

𝑑𝜔2

𝑑𝑡
= −

1

𝜏𝐼2

 𝜔2 +  
1

𝑘𝑐2

(𝑄 − 𝑄𝑠𝑠)                                                     

𝑇𝑗𝑠𝑝
  = sat𝑇𝑗𝑠𝑝

{𝑇𝑗𝑠𝑠
+ 𝑘𝑐1

(𝑇𝑠𝑝 − 𝑇 +
1

𝜏𝐼1

 𝜔1 )}                         

𝑄 =   sat𝑄 {𝑄𝑠𝑠 + 𝑘𝑐2
(𝑇𝑗𝑠𝑝

− 𝑇𝑗 +
1

𝜏𝐼2

 𝜔2 )}                   

 

where 𝑇𝑠𝑝 = 363.2 K,   𝑄𝑠𝑠 = −50.16 kJ ∙ s−1, 𝑘𝑐1
= 1 ,  𝜏𝐼1

= 5 × 103 s , 𝑘𝑐2
= 200 kJ ∙ s−1 ∙ K−1,

𝜏𝐼2
= 1 × 105 s, and  

sat𝑄{𝑙} = {

𝑄𝑚𝑖𝑛,           𝑙 < 𝑄𝑚𝑖𝑛                 
𝑙,                 𝑄𝑚𝑖𝑛 ≤  𝑙 ≤  𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥,          𝑄𝑚𝑎𝑥 <  𝑙                
 

sat𝑇𝑗𝑠𝑝
{𝑙} = {

0,             𝑙 < 0                  
𝑙,            0 ≤  𝑙 ≤  𝑇𝑗𝑚𝑎𝑥

𝑇𝑗𝑚𝑎𝑥
,    𝑇𝑗𝑚𝑎𝑥

<  𝑙         
 

where 𝑄𝑚𝑎𝑥 = ∆𝐻𝑠𝑚̇𝑠𝑚𝑎𝑥
 and  𝑄𝑚𝑖𝑛 = 𝐹𝑐𝑤𝑚𝑎𝑥

𝜌𝑐𝑤𝑐𝑐𝑤(𝑇𝑐𝑤 − 𝑇𝑗). The primary and secondary 

controllers control the reactor and jacket temperatures, respectively. Their manipulated variables are 

the jacket temperature setpoint, 𝑇𝑗𝑠𝑝
, and the rate of energy supplied to/removed from the reactor 

jacket, 𝑄. 

5.2.2 Min-Max Optimization 

To determine whether an operation is nominally hazard-free, the MPS system should check each 

condition of Eqs. (27) – (39) with the nominal values of 𝑥0, 𝑑, 𝑑𝑚 and 𝑝, and with the most aggressive 

(optimal) MPS action corresponding to that condition. The optimal MPS actions are calculated by 

solving the optimization problems: 

    min
𝑢∈Ω𝑢

  max
𝑡∈Ω𝜏𝑖

𝜓𝑖(𝑥(𝑡), 𝑑𝑛, 𝑑𝑚𝑛
, 𝑝𝑛, 𝑢(𝑡)),          𝑖 = 1, ⋯ ,13                     (40) 
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subject to the process dynamics and the remaining constraints. To solve this set of optimization 

problems, we applied the nested PSO algorithm. The results indicate when the initial conditions, 

frequency factors, and activation energies take their nominal values, the optimal MPS action 

corresponding to this condition is: the maximum coolant flow rate, and the minimum steam, monomer 

flow rates, and initiator solution. 

To determine whether an operation is absolutely hazard-free, the MPS system should check 

each condition of Eqs. (27) – (39) with the corresponding worst-case values of 𝑑,  𝑑𝑚, 𝑝 and 𝑥0  and 

with the corresponding optimal MPS action. Each of the worst-case combinations and its 

corresponding optimal MPS action are calculated using: 

 min
𝑢∈Ω𝑢

  max
𝑡∈Ω𝜏𝑖

,𝑑∈Ω𝑑,𝑑𝑚∈Ω𝑑𝑚 ,𝑝∈Ω𝑝,𝑥0∈Ω𝑥0

   𝜓𝑖(𝑥(𝑡), 𝑑(𝑡), 𝑑𝑚(𝑡), 𝑝(𝑡), 𝑢(𝑡)),    𝑖 = 1, ⋯ ,13       (41) 

subject to the process dynamics and the remaining constraints. For each of these constraint indices, 

the min-max optimization is solved by applying the nested PSO algorithm. To solve these min-max 

problems, all of the uncertain parameters, in a lumped vector, are adjusted to maximize the inner 

function and calculate the most aggressive action that the manipulated variables can take. The min-

max optimization results are given in Tables 2–5. A summary of the results is as follows.   

• Reactor temperature upper-limit constraint index: The worst-case scenario occurs when 

the inlet monomer and initiator concentrations take their maximum values, and the 

inhibitor inlet concentration takes its minimum value. Worst-case values of the initial 

conditions are listed in Table 3. The optimal MPS action is the maximum cooling water 

flow rate, and the minimum steam, initiator solution, and monomer flow rates. 

• Monomer concentration upper-limit constraint index: The worst-case scenario occurs 

when the inlet monomer and inhibitor concentrations take their maximum values, and the 

inlet initiator takes any value within [0  10]. Worst-case values of the initial conditions 

are listed in Table 4. The optimal MPS action is the maximum cooling water and initiator 

solution flow rates and the minimum monomer and steam flow rates.  

• Initiator concentration upper-limit constraint index: The worst-case scenario happens 

when the inhibitor inlet concentration takes its maximum value, the initiation reaction 

frequency factor takes its minimum value, and the initiation reaction activation energy 

takes its maximum value. It is entirely independent of all other parameters.  The optimal 

MPS action corresponding to this worst combination is the minimum initiator solution and 

steam flow rates and the maximum monomer and cooling water flow rates.  
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• Inhibitor concentration upper-limit constraint index: The worst-case scenario occurs when 

the inhibitor inlet concentration is at its maximum. The other worse-case values are given 

in Table 5. For this case, the optimal MPS action is the minimum monomer and steam 

flow rates and the maximum initiator solution and cooling water flow rates. 

5.2.3 State Estimate Predictor 

The following state estimator is used to calculate future estimates of the state variables when 

the MPS outputs take their optimal values corresponding to each constraint index: 

𝑑𝑐̂𝑀(ℓ|𝑡)

𝑑ℓ
= −[𝑘̂𝑃(ℓ|𝑡) + 𝑘̂𝑓𝑚

(ℓ|𝑡)]𝑐̂𝑀(ℓ|𝑡)𝑅̂(ℓ|𝑡) +
𝐹𝑀𝑖

(ℓ|𝑡)𝑐𝑀𝑖
(ℓ|𝑡) − 𝐹(ℓ|𝑡)𝑐̂𝑀(ℓ|𝑡)

𝑉
     

                                                                        +𝜂1,                                                  𝑐̂𝑀(0|0) = 𝑐̂𝑀,0    

𝑑𝑐̂𝐼(ℓ|𝑡)

𝑑ℓ
= −𝑘̂𝐼(ℓ|𝑡)𝑐̂𝐼(ℓ|𝑡) +

(𝐹𝐼𝑖
(ℓ|𝑡)𝑐𝐼𝑖 

(ℓ|𝑡) − 𝐹(ℓ|𝑡)𝑐̂𝐼(ℓ|𝑡))

𝑉
+ 𝜂2,         𝑐̂𝐼(0|0) = 𝑐̂𝐼,0 

𝑑𝑐̂𝑖(ℓ|𝑡)

𝑑ℓ
= −𝑘̂𝑖(ℓ|𝑡)𝑐̂𝑖(ℓ|𝑡)𝑅̂(ℓ|𝑡) +

(𝐹𝑀𝑖
(ℓ|𝑡)𝑐𝑖𝑖

(ℓ|𝑡)−𝐹(ℓ|𝑡)𝑐̂𝑖(ℓ|𝑡))

𝑉
+ 𝜉𝑥1

(ℓ|𝑡) + 𝜂3,    𝑐̂𝑖(0|0) = 𝑐̂𝑖,0                        

(42) 

𝑑𝑇̂(ℓ|𝑡)

𝑑ℓ
= 𝑘̂𝑃(ℓ|𝑡)𝑐̂𝑀(ℓ|𝑡)𝑅̂(ℓ|𝑡)

∆𝐻

𝐶𝜌
+ 𝐹(ℓ|𝑡)

(𝑇𝑖(ℓ|𝑡) − 𝑇̂(ℓ|𝑡))

𝑉
 +   

𝑈𝑆 (𝑇̂𝑗(ℓ|𝑡) − 𝑇̂(ℓ|𝑡))

𝐶𝜌𝑉

+ 𝜂4,                                                                                                       𝑇̂(0|0) = 𝑇̂0 

𝑑𝑇̂𝑗(ℓ|𝑡)

𝑑ℓ
=

𝑈𝑆(𝑇̂(ℓ|𝑡)−𝑇̂𝑗(ℓ|𝑡))+∆𝐻𝑠𝑚̇𝑠(ℓ|𝑡)+𝐹𝑐𝑤(ℓ|𝑡)𝜌𝑐𝑤𝑐𝑐𝑤(𝑇𝑐𝑤−𝑇̂𝑗(ℓ|𝑡))

𝑐𝑗𝑚𝑗
+ 𝜂5,       𝑇̂𝑗(0|0) = 𝑇̂𝑗,0 

𝑑𝜉𝑥1
(ℓ|𝑡)

𝑑ℓ
= 𝜂6,                                                                                                              𝜉𝑥1

(0|0) = 0 

where 

𝜂𝑖 = 𝐿𝑖1 (𝑇(𝑡|𝑡) − 𝑇̂(𝑡|𝑡))+𝐿𝑖2 (𝑇𝑗(𝑡|𝑡) − 𝑇̂𝑗(𝑡|𝑡)) ,       𝑖 = 1, ⋯ ,6 

𝑘̂𝑗(ℓ|𝑡) = 𝑧𝑗exp (
−𝐸𝑗

𝑅𝑇̂(ℓ|𝑡)
) ,                  𝑗 = 𝐼, 𝑃, 𝑡, 𝑖, 𝑓𝑚 

𝑅̂(ℓ|𝑡) =
−𝑘̂𝑖(ℓ|𝑡)𝑐̂𝑖(ℓ|𝑡) + √(𝑘̂𝑖(ℓ|𝑡)𝑐̂𝑖(ℓ|𝑡))

2

+ 8𝑓𝑘̂𝑡(ℓ|𝑡)𝑘̂𝐼(ℓ|𝑡)𝑐̂𝐼(ℓ|𝑡)

2𝑘̂𝑡(ℓ|𝑡)
 

The estimator gain matrix elements are selected such that all eigenvalues of the Jacobian matrix of 

the estimator error dynamics have negative real parts and have the same order of magnitude. The 

values of the gain matrix elements are given in Table 6. 

 

5.2.4 Application of MPS 
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 To test the MPS system, two (normal and abnormal) operations are simulated. In the normal 

operation, the reactor undergoes startup in the absence of any inhibitors in the monomer or initiator 

solution inlet stream. The thick blue lines in Figure 8 represent variations of the five constraint indices 

of the actual process under the control system. Figure 8 also shows the future values of the five 

constraint indices predicted at the five time instants using the state estimate predictor in Section 5.2.3, 

and the optimal MPS action corresponding to each constraint index. The receding prediction horizon,  

𝜏, was chosen to be 0.2 h.  It shows that during the normal operation (in the absence of the inhibitor), 

none of constraints of Eqs. (27)-(39) are violated; that is, the operation is nominally hazard free.  

The thick blue lines in Figure 9 represent variations of the five constraint indices of the actual 

process under the control system. Figure 9 also shows the future values of the five constraint indices 

predicted at five time instants using the state estimate predictor in Section 5.2.3, and the worst-case 

values of the uncertain quantities and the optimal MPS action corresponding to each constraint index. 

As can be seen during normal operation, no alarms are activated as none of constraints of Eqs. (27)-

(39) are violated. It indicates that the operation is absolutely hazard free. 

 In the abnormal operation, when the reactor is at steady state the concentration of the inhibitor 

in the monomer feed stream increases from 0 to 0.03 kmol ∙ m−3 (disturbance). In this case, as shown 

in Figure 10, the operation is nominally hazard free, because none of the constraint index predictions 

take a value of zero or higher.  Figure 11 shows the projections of several constraint indices with the 

optimal MPS action corresponding to the constraint index and the worst-case values of the uncertain 

quantities. It depicts the constraint index 𝜓9 exceeds zero at 𝑡 = 0.76 h. Upon this violation, MPS 

generates the PHO alarm signal corresponding to the constraint index 𝜓9 and sets the monomer inlet 

flow rate to zero and the initiator solution flow rate to its maximum as long as the constraint index 

𝜓10 does not exceed zero, as calculated in the min-max optimization section. Even with this action 

taken by the MPS system, the violation of the upper bound on the monomer concentration cannot be 

prevented. In this case study, uncertainties in the state-estimator initial conditions were not 

considered. Such uncertainties can be easily handled by considering the most extreme combination 

of the parameter values and state-estimator initial conditions. 

Figures S8 shows the concentrations of the unreacted monomer, initiator, and inhibitor in the 

reactor, and the reactor and jacket temperatures during the first two hours of operation after the reactor 

reaches steady-state conditions in the presence of the disturbance. As Figure S8 shows, at 𝑡 = 1.5 h 

the monomer upper bound (0.6 kmol ∙ m−3) is violated, resulting in the MPS system generating an 

monomer concentration alarm signal. As Figure 11 shows, the future value of the constraint index 𝜓9  
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first exceeds zero at 𝑡 = 0.76 hr, leading to the MPS system activating the PHO alarm corresponding 

to the constraint index 𝜓9.  As can be seen, the MPS system predicts the future violation of the upper 

bound on the monomer concentration long before the concentration actually exceeds its limit in real 

time. 

 

6 Conclusion 

 MPS can play a critical role in the petroleum, chemical and petrochemical industries.  It can 

be adapted easily to other industries such as the food, nuclear, aircraft, and petroleum industries, to 

identify imminent and potential future operation hazards. It is a new paradigm in functional safety; 

that is, the design and use of predictive and proactive (prescriptive) functional safety systems that 

account for process nonlinearities and interactions among process variables. Existing functional 

safety systems typically do not account for these process characteristics and are not predictive.  We 

envision that an MPS system will sit above a conventional functional safety system much like MPC 

that sits above a conventional control system. 

 The concept of MPS was expanded and min-max optimization problems were formulated 

herein. The problems are solved offline to calculate systematically (a) the optimal MPS action that 

minimizes each process-constraint index when uncertain model parameters take their nominal values, 

and (b) the optimal MPS action that minimizes each process-constraint index when uncertain model 

parameters take their worst-case values. To solve min-max optimization problems, a nested PSO 

algorithm was implemented. The min-max formulations were applied to two process examples, a 

classical chemical reactor with series reactions and a free-radical polymerization reactor, and the 

resulting min-max problems were solved using the nested PSO algorithm. Simulation results showed 

that the algorithm solves the min-max optimization problems reliably. 
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Nomenclature 

𝑐 Heat capacity of reacting mixture,  kJ ∙ kg−1 ∙ K−1 
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𝑐𝑐𝑤 Heat capacity of cooling water,  kJ ∙ kg−1 ∙ K−1 

𝑐𝑗 Heat capacity of the reactor jacket,  kJ ∙ kg−1 ∙ K−1 

 𝑐𝑀𝑖
 Molar concentration of monomer in the monomer feed stream, 𝑘mol ∙ m−3 

𝑐𝐼𝑖
  Molar concentration of initiator in the initiator feed stream, kmol ∙ m−3 

𝑐𝑖𝑖
  Molar concentration of inhibitor in the monomer feed stream, kmol ∙ m−3 

𝐷𝑛 Dead polymer chain with 𝑛 monomer units 

𝐸𝑓𝑚
 Chain-transfer-to-monomer reaction activation energy,  kJ ∙ kmol−1 

𝐸𝐼 Initiation reaction activation energy,  kJ ∙ kmol−1 

𝐸𝑖 Inhibition reaction activation energy,  kJ ∙ kmol−1 

𝐸𝑃 Propagation reaction activation energy,  kJ ∙ kmol−1 

𝐸𝑡 Termination reaction activation energy,  𝑘J ∙ kmol−1 

𝐹𝑐𝑤 Cooling water volumetric flow rate,  m3. s−1 

𝐹𝐼𝑖
 Volumetric flow rate of initiator-solution feed stream,  m3. s−1 

𝐹𝑀𝑖
 Volumetric flow rate of monomer feed stream,  m3. s−1 

𝑓    Initiator efficiency 

𝐼2 Initiator 

𝑖 Inhibitor 

𝐿𝑖𝑗   Observer gain matrix entries 

𝑘𝑓𝑚
 Chain-transfer-to-monomer reaction rate constant, m3 ∙ kmol−1 ∙ s−1 

𝑘𝐼 Initiation reaction rate constant, s−1 

𝑘𝑖 Inhibition reaction rate constant, m3 ∙ kmol−1 ∙ s−1 

𝑘𝑃 Propagation reaction rate constant, m3 ∙ kmol−1 ∙ s−1 

𝑘𝑡 Termination reaction rate constant, m3 ∙ kmol−1 ∙ s−1 

𝑚𝑗    Mass of the reactor jacket, kg 

𝑚̇𝑠 Mass flow rate of steam, kg ∙ s−1 

𝑅 Molar concentration of free radicals, kmol ∙ m−3 

𝑅𝑐 Gas constant, J ∙ mol−1K−1 

𝑆 Reactor-jacket heat-transfer surface area, m2 

𝑇 Reactor temperature, K 

𝑇𝑖 Temperature of the inlet stream, K 
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𝑇𝑗 Jacket temperature, K 

𝑇𝑐𝑤 Cooling water temperature, K 

𝑇𝑠𝑝 Reactor temperature set point, K 

𝑈 Reactor-jacket overall heat-transfer coefficient,  kJ. K−1. s−1. m−2 

𝑉 Volume of reacting mixture,  m3 

𝑧𝑓𝑚
 Chain-transfer-to-monomer reaction frequency factor, m3 ∙ kmol−1 ∙ s−1 

𝑧𝐼 Initiation reaction frequency factor, s−1 

𝑧𝑖 Inhibition reaction frequency factor, m3 ∙ kmol−1 ∙ s−1 

𝑧𝑃 Propagation reaction frequency factor, m3 ∙ kmol−1 ∙ s−1 

𝑧𝑡 Termination reaction frequency factor, m3 ∙ kmol−1 ∙ s−1 

Greek 

∆𝐻 Heat of propagation reactions, kJ ∙ kmol−1 

∆𝐻𝑠 Steam latent heat, kJ ∙ kg−1 

𝜌  Density of the reacting mixture, kg ∙ m−3 

𝜌𝑐𝑤  Density of cooling water, kg ∙ m−3 

𝜏  Online prediction horizon, s 

𝜏𝜓𝑖
  Offline prediction horizon for the inequality constraint index 𝜓𝑖 
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Table 1a: Nominal Values of the Polymerization Reactor Model Parameters. 

Parameter Value Unit Ref. 

𝑧𝑡 9.800 × 107 m3 ∙ kmol−1 ∙ s−1 41 

𝑧𝑃 4.917 × 105 m3 ∙ kmol−1 ∙ s−1 41 

𝑧𝐼 1.053 × 1015 s−1 41 

𝑧𝑖 7.623 × 109 m3 ∙ kmol−1 ∙ s−1 42 

𝑧𝑓𝑚
 4.660 × 109 m3 ∙ kmol−1 ∙ s−1 

41 

𝐸𝑡 2.944 × 103 kJ ∙ kmol−1 41 

𝐸𝑃 1.828 × 104 kJ ∙ kmol−1 41 

𝐸𝐼 1.288 × 105 kJ ∙ kmol−1 41 

𝐸𝑖 2.390 × 104 kJ ∙ kmol−1 42 

𝐸𝑓𝑚
 7.440 × 104 kJ ∙ kmol−1 

41 

𝑐 2.200 × 100 kJ ∙ kg−1 ∙ K−1 41 

∆𝐻 5.780 × 104 kJ ∙ kmol−1 41 

𝑓 5.800 × 10−1  41 

𝜌 9.300 × 102 kg ∙ m−3 41 

𝑀𝑀 1.001 × 102 kg ∙ kmol−1 41 

𝑀𝐼 1.642 × 102 kg ∙ kmol−1 41 

𝑐𝐼𝑖
 5.000 × 100 kmol ∙ m−3  

𝑐𝑖𝑖
 0.000 × 100 kmol ∙ m−3  

𝑐𝑀𝑖
 5.000 × 100 kmol ∙ m−3  

𝑐𝐼0
 5.000 × 10−2 kmol ∙ m−3  

𝑐𝑖0
 0.000 × 100 kmol ∙ m−3  

𝑐𝑀0
 0.000 × 100 kmol ∙ m−3  

𝑇0 3.430 × 102 K  

 

 

 

Table 1b: Nominal Values of the Other Polymerization Reactor Model Parameters. 

Parameter Value Unit 

𝑇𝑖 2.932 × 102 K 

𝑈 3.000 × 10−1 kJ. K−1. s−1. m−2 

𝑇𝑗,0 3.630 × 102 K 

𝑇𝑠𝑝 3.632 × 102 K 

∆𝐻𝑠 2.257 × 103 kJ ∙ kg−1 

𝑇𝑐𝑤 2.882 × 102 K 

𝜌𝑐𝑤 9.980 × 102 kg ∙ m−3 

𝑐𝑐𝑤 4.180 × 100 kJ ∙ kg−1 ∙ K−1 

𝑐𝑗 2.200 × 100 kJ ∙ kg−1 ∙ K−1 

𝑆 1.000 × 101 m2 
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𝑉 1.000 × 101 m3 

𝑚𝑗 1.114 × 104 kg 

 

 

 

Table 2: Ranges for the Polymerization Reactor Parameters. 

Parameter Lower value Upper value Unit Ref. 

𝑧𝑡 3.500 × 106 4.900 × 109 m3 ∙ kmol−1 ∙ s−1 42-44 

𝑧𝑃 4.917 × 105 6.600 × 105 m3 ∙ kmol−1 ∙ s−1 42-45 

𝑧𝐼 4.160 × 1012 1.000 × 1016 s−1 41, 46-47 

𝑧𝑖 4.800 × 108 7.600 × 109 m3 ∙ kmol−1 ∙ s−1 42-48 

𝑧𝑓𝑚
 2.000 × 105 4.660 × 109 m3 ∙ kmol−1 ∙ s−1 

41, 49-50 

𝐸𝑡 4.000 × 102 1.190 × 104 kJ ∙ kmol−1 42-44 

𝐸𝑃 1.800 × 104 2.236 × 104 kJ ∙ kmol−1 42-45 

𝐸𝐼 1.200 × 105 1.300 × 105 kJ ∙ kmol−1 41, 46-47 

𝐸𝑖 2.300 × 104 2.500 × 104 kJ ∙ kmol−1 42-48 

𝐸𝑓𝑚
 2.030 × 104 7.440 × 104 kJ ∙ kmol−1 

41, 49-50 

𝑐𝐼𝑖
 0.000 × 100 1.000× 101 kmol ∙ m−3  

𝑐𝑖𝑖
 0.000 × 100  1.860 × 10−2 kmol ∙ m−3  

𝑐𝑀𝑖
 0.000× 100 9.300 × 100 kmol ∙ m−3  

 

 

Table 3: Worst-Case Parameter Values Corresponding to the Polymerization Reactor Temperature 

Constraint Index. 

Parameter Value Unit 

𝑧𝑡 3.500 × 106 m3 ∙ kmol−1 ∙ s−1 

𝑧𝑃 6.600 × 105 m3 ∙ kmol−1 ∙ s−1 

𝑧𝐼 4.160 × 1012 s−1 

𝑧𝑖 4.800 × 108 − 7.600 × 109 m3 ∙ kmol−1 ∙ s−1 

𝑧𝑓𝑚
 2.000 × 105 −  4.660 × 109 m3 ∙ kmol−1 ∙ s−1 

𝐸𝑡 1.190 × 104 kJ ∙ kmol−1 

𝐸𝑃 1.800 × 104 kJ ∙ kmol−1 

𝐸𝐼 1.300 × 105 kJ ∙ kmol−1 

𝐸𝑖 2.300 × 104 − 2.500 × 104 kJ ∙ kmol−1 

𝐸𝑓𝑚
 7.440 × 104 kJ ∙ kmol−1 

 

Table 4: Worst-Case Parameter Values Corresponding to the Monomer Concentration Constraint Index. 

Parameter Value Unit 

𝑧𝑡 4.900 × 109 m3 ∙ kmol−1 ∙ s−1 

𝑧𝑃 4.917 × 105 m3 ∙ kmol−1 ∙ s−1 

𝑧𝐼 4.160 × 1012 s−1 

𝑧𝑖 7.600 × 109 m3 ∙ kmol−1 ∙ s−1 

𝑧𝑓𝑚
 2.000 × 105 m3 ∙ kmol−1 ∙ s−1 

𝐸𝑡 4.000 × 102 kJ ∙ kmol−1 

𝐸𝑃 2.236 × 104 kJ ∙ kmol−1 

𝐸𝐼 1.300 × 105 kJ ∙ kmol−1 

𝐸𝑖 2.300 × 104 kJ ∙ kmol−1 

𝐸𝑓𝑚
 7.440 × 104 kJ ∙ kmol−1 
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Table 5: Worst-Case Parameter Values Corresponding to the Inhibitor Concentration Constraint Index. 

Parameter Value Unit 

𝑧𝑡 4.900 × 109 m3 ∙ kmol−1 ∙ s−1 

𝑧𝑃 4.917 × 105 − 6.600 × 105 m3 ∙ kmol−1 ∙ s−1 

𝑧𝐼 4.160 × 1012 s−1 

𝑧𝑖 4.800 × 108 m3 ∙ kmol−1 ∙ s−1 

𝑧𝑓𝑚
 2.000 × 105 − 4.660 × 109 m3 ∙ kmol−1 ∙ s−1 

𝐸𝑡 4.000 × 102 kJ ∙ kmol−1 

𝐸𝑃 1.828 × 104 − 2.236 × 104 kJ ∙ kmol−1 

𝐸𝐼 1.300 × 105 kJ ∙ kmol−1 

𝐸𝑖 2.500 × 104 kJ ∙ kmol−1 

𝐸𝑓𝑚
 2.030 × 104 − 7.440 × 104 kJ ∙ kmol−1 

 

Table 6: State-estimator Gain. 

𝑖 1 2 3 4 5 6 

𝐿𝑖1 0.88 7.46 0.00 8.88 0.79 0.01 

𝐿𝑖2 1.45 2.31 0.34 3.48 1.41 6.23 
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Figure 1: The optimal MPS action 

corresponding to a constraint index when 𝑛𝑑 =

𝑛𝑑𝑚
= 𝑛𝑝 = 𝑛𝑢 = 2; the 𝑢  profile is 

calculated offline and is used online to 

determine whether MPS should generate  a 

DHO signal.   

 

 

 

 

Figure 2: The worst-case values of 

𝑝, 𝑑, and 𝑑𝑚, and the optimal MPS control 

action corresponding to a constraint index 

when  𝑛𝑝 = 𝑛𝑑 = 𝑛𝑑𝑚
= 𝑛𝑢 = 2; the 

𝑑, 𝑝, 𝑑𝑚and 𝑢 profiles are calculated offline 

and are used online to determine whether MPS 

should generate  a PHO signal. 
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Figure 4: Flowchart of the nested PSO algorithm. 

 

 

 
Figure 3: Block diagram showing the implementation of an MPS system in real time. 
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Figure 5: The reactor state in the absence of the disturbance (under hazard-free operation 

conditions). 
 

     

 

Figure 6: Real-time and projected values of the two constraint indices indicating the 

operation is nominally hazard free. 
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Figure 7: Real time and projected values of the constraint indices when applying the 

PHO alarm mechanism. 
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Figure 8: Real time and projected values of five constraint indices (normal operation). The 

projections in each plot are with the optimal MPS control action corresponding to the 

constraint index and the nominal values of the uncertain quantities. 
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Figure 9: Real time and projected values of five constraint indices (normal operation). The 

projections in each plot are with the optimal MPS action corresponding to the constraint index 

and the worst-case values of the uncertain quantities. 
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Figure 10: Real time and projected values of five constraint indices (abnormal operation). The 

projections in each plot are with the optimal MPS action corresponding to the constraint index 

and the nominal values of the uncertain quantities. 

 

 

 

 

-0.6

-0.4

-0.2

0

0.2

0 0.5 1 1.5 2

 
9

Time (hr)

-0.01

-0.0075

-0.005

-0.0025

0

0 0.5 1 1.5 2

 
1
0

Time (hr)

-4.0E-04

-4.0E-04

-4.0E-04

-4.0E-04

-4.0E-04

-4.0E-04

-4.0E-04

0 0.5 1 1.5 2

 
1
1

Time (hr)

-20

-16

-12

-8

-4

0

0 0.5 1 1.5 2

 
1
2

Time (hr)

-51

-50

-49

-48

-47

0 0.5 1 1.5 2

 
1
3

Time (hr)

 

               
Figure 11: Real time and projected values of five constraint indices (abnormal operation). The 

projections in each plot are with the optimal MPS action corresponding to the constraint index 

and the worst-case values of the uncertain quantities. 
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