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Abstract

In 2016, we introduced the concept of model-predictive safety (MPS) !. MPS is a proposed
innovation in functional safety systems to methodically account for process nonlinearities and
variable interactions to enable predictive, prescriptive actions, while existing functional safety
systems generally react when individual process variables exceed thresholds. MPS systematically
utilizes a dynamic process model to detect imminent and potential future operation hazards in real
time and to take optimal preventive and mitigative actions proactively. This work expands the concept
of MPS and formulates two min-max optimization problems, offline solutions of which are the
optimal proactive preventive and mitigating actions that MPS takes online, in response to predicted
process operation hazards. A nested particle swarm optimization (PSO) algorithm is proposed to solve
the min-max optimization problems. The application and performance of the min-max optimization
formulations, the PSO algorithm, and MPS, applied to two chemical process examples, are shown

through numerical simulations.

1 Introduction

In spite of continuous extensive efforts to improve the safety of processes, the level of human
and financial losses due to incidents in the U.S. process industries is still significant (more than 50
serious accidents only over the past ten years %). This motivates the development of methods that
predict emerging operating hazards in processes, allowing for proactive prevention and mitigation of
the hazards °.

Among efforts to improve process safety further, software packages have been used within
the process industries *'* to predict frequencies and consequences of incidents based upon historical
data. However, these packages are usually unable to predict the probabilities of incidents that have
never happened before *22. This inability points to a need for methods capable of predicting hazardous
conditions in processes.

In a process, typically there are two instrumentation hardware and software systems: a control
system and a safety instrumented system (SIS). A control system is used to ensure an efficient
operation of the process and the production of high-quality products under normal conditions. An SIS
is a functional safety system, which is used to take automatic actions (such as emergency shutdowns)
needed to prevent equipment damage, environmental, and/or personnel safety consequences. An SIS
is always a protection layer above the control system in a process. In addition to having the ability to
override the control system (the ability to take over the actuators that the control system sends signals
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to), it generally has the ability to set other process input variables. The hierarchical structure of
protection layers in processes is essential, as it ensures the robustness and modularity of the process
protection layers. Therefore, SISs have to meet stricter regulations and oversight (both within
companies and by governments) than control systems. A conventional hierarchical process protection
structure is shown in Figure S1. In such a structure, a control system and an SIS both send alarm
signals to an alarm system to activate alarms to alert the process personnel to an abnormal condition.
In response, the process personnel may then take corrective actions through the operator inputs (OI).
In recent years, safety constraints have been included in model-predictive control (MPC) formulations
to ensure MPC actions do not lead to unsafe conditions in processes that are under MPC 3 23-26,

Dynamic first-principles process models have been used widely in design, optimization, process
monitoring, model-based control, and offline safety analysis and validation of chemical and
petrochemical processes. While they may not predict future process behavior exactly, they can be
used to forecast the potential consequences of future incidents with reasonable accuracy. Such
forecasts can lead to proactive actions whose consequences (outcomes) can be predicted. This
combined predictive and proactive (prescriptive), real-time use of process models in process safety
had not been explored until very recently .

Model-predictive safety (MPS)! represents a new paradigm in functional safety; that is, the use of
model predictions to detect operation hazards before they lead to safety risks. Unlike conventional
safety systems that are individually reactive to current conditions through specifically designed logic,
an MPS system systematically accounts for process nonlinearities and interactions among process
variables and generates predictive alarm signals alerting process personnel to imminent and potential
future operation hazards. Therefore, this new paradigm in functional safety systems is analogous to
the evolution in process control systems from only single-loop control (e.g., proportional-integral-
derivative control) toward multivariable MPC. Figure S2 depicts a hierarchical process protection
structure with an MPS system. When appropriate, the MPS system can be directly incorporated into
the SIS. Herein, we expand the concepts of MPS and formulate two min-max optimization problems
that are solved offline. For each process-constraint index, the formulations allow for a systematic
calculation of: (a) the optimal MPS action that minimizes the highest value of the process-constraint
index over a moving prediction horizon when uncertain model parameters and process variables take
their nominal values, and (b) the optimal MPS action that minimizes the highest value of the process-
constraint index over a moving prediction horizon when uncertain model parameters and process
variables take their worst-case values. An MPS system uses the optimal MPS actions in real time to:
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(1) generate the predictive definitely hazardous and potentially hazardous operation alarm signals
described previously !, and (ii) prescribe optimal proactive preventive and mitigating actions in
response to the predicted process operation hazards. A particle-swarm optimization (PSO) method is
proposed to solve the min-max optimization problems.

First, Section 2 briefly reviews the components of MPS ! that are relevant to this work. Section
3 describes the two min-max optimization formulations and the PSO method. Section 4 formulates
min-max problems for two chemical process examples, solves the problems using PSO, and presents
the application and performance of the min-max optimization formulations as well as MPS applied

to the two examples, through numerical simulations.

2 Model-Predictive Safety: Preliminaries

In this section, the concept of MPS, introduced earlier !, is reviewed briefly and expanded. In
this formulation, MPS is given the ability to set all process inputs (manipulated variables and other
safety process inputs). An MPS system includes two major components: a set of process constraints

and a state-estimate predictor, which is based on a process model.

2.1 Process Model

Consider a dynamic process model in the general form:

LU = F(x(0. 4, @O, pO®),  x(0) = ¥, € Oy, C R
y(®) = h(x(®)) M

with the process operation constraints:
G(X(t), d(t)’ dm(t)’ p(t): u(t)) e ‘QC C Rnc (2)

where x € ,, € R™ is the vector of process state variables, d € ; € R™@ is the vector of
unmeasured process input variables, d,,, € Qg < R™m is the vector of measured process input
variables (excluding manipulated variables and other adjustable process input variables), p € Q,,
R™ is the vector process uncertain parameters, u € {2,, € R™ is the vector of process input variables
that MPS can set or override, and y € Q,, € R™ is the vector of process output variables. The vector
u includes every manipulated input (variable) that is adjusted by a control system. The sets
Qye, L4, Qq,., Qp, and O, are closed convex sets that are hyperrectangles, each defined by the upper
and lower limits of the parameters or variables that belong to the hyperrectangle. The set (), consists
of the corner points of a hyperrectangle. Each corner point represents an action that MPS can take.

f,h,and G are smooth vector functions.



The process constraints systematically include all existing process alarm thresholds of primary
and secondary process variables. Also, included in this constraint formulation is the saturation of each
actuator. The general constraint formulation of Eq. (2) allows for the design of MPS systems that
account for process nonlinearities and interactions among process variables.

Real and hypothetical process personnel errors, process (including controller, sensor, actuator,
and equipment) faults, and surrounding and feed changes can be included in the formulation through
the parameters and initial conditions. For example, a parameter can be added to represent the state of
health of a pump. In this case, the moving-horizon safety analyses determine whether process
constraints are satisfied in the event that the pump fails. The vector of process parameters can include
catalyst activity, the state of health of each process equipment item, and the process personnel inputs
to the process. For each uncertain quantity, a range of possible values that each quantity can take are
typically available based on historical data, operation procedures, and/or process-personnel

experience.

2.2 Receding-Horizon Safety Analyses

As an MPS system generates alarm signals indicating the occurrence of present and/or future
operation hazard(s), an operation hazard needs to be defined and classified in terms of its occurrence
likelihood.

Definition 1: An operation hazard is said to exist when control and functional safety systems
are unable to prevent the violation of a process constraint over a time horizon into the future.

Upon identification of an operation hazard, functional safety systems and/or process personnel
must intervene to proactively prevent the occurrence of the hazard and mitigate its consequences.

Definition 2: The operation of a process at a time instant t is said to be nominally hazard-free
over a time horizon of [t,t + t], if at the time instant t there exists a feasible MPS action profile,
u(€|t) € Q,, € € [t, t + ], that satisfies the following conditions:

G(R(E1D), d(£]t), dm(£11), p(£]6), u(€]t)) € Qe,  di(t]t) = din (), d(£|t) = dy,
dp(€|t) = dp,, P(£]t) = Dn, X0 = X0, VL E [t,t + 7] 3)

where dy, dy,,, Xo, and p, are the nominal (typical operating) values of d,d,, xoand p,
respectively. Note that X represents the vector of state estimates at time £ given the last measurements
(available at time t), and d,,(t) denotes the vector of measurements of measurable process inputs at
t 1. A dissatisfaction of the condition of Eq. (3) indicates the existence of an operation hazard at the

present time or the development of an operation hazard in the future. In other words, the conditions

4



allow MPS to predict the presence of future risks and to determine whether the functional safety
system has adequate ability to maneuver away from the current and future operation hazards at the
current time instant t. A dissatisfaction of the condition of Eq. (3) also indicates that no controller or
functional safety system, whether traditional or model-based, can provide safe operation at a time
instant in the future.

Definition 3: The operation of a process at a time instant t is said to be absolutely hazard-free
over a time horizon of [t, t + t], if at the time instant, t, there exists a feasible MPS action profile,
u(?|t) € Q,, € € [t, t + 7], that satisfies the following conditions:

G(R(LIL), A1), A (£]6), p(L11), u(£]1)) € Qe, dm(t]t) = di (0),
Vd(£|t) € Qq, Vdp,,(£]t) € Qq ,VD(L|t) € Qp, VXo € Qy, VL E [t t+ 1] 4)

If the operation of a process is absolutely hazard-free at a time instant ¢, then the MPS system
is able to ensure that all process constraints of Eq. (4) are satisfied over a time horizon of [¢t,t + 7]
into the future. Note that the conditions of Eq.(4) are required to be satisfied for every d € (4, every
dm € Qg ,every p € Qp, and every x, € Q, . Thus, the conditions of Eq. (4) account systematically

for parameter and input uncertainties.

2.3 State-Estimate Predictor

As Egs. (3) and (4) indicate, the receding-horizon safety analyses require the present and
future estimates of the process state variables. This process state estimate prediction can be achieved
by simply using a process model directly (without any corrective feedback of output measurements)
or by using a state estimator that takes advantage of a corrective feedback. In the former case, state
estimates may not be adequately accurate to use in real-time applications. The feedback especially
with integral action has several advantages such as improving the robustness of the estimates to
process-model mismatch. There are several methods of state estimation. The use of an extended
Luenberger observer based on an extended model (process model combined with models of every
mismatch and unknown disturbance) was proposed in Ref.! However, the systematic design of a

robust state-estimate predictor is still an open problem.

2.4 MPS Alarm Mechanisms
On the basis of the three definitions in Section 2.2, two alarm mechanisms were proposed .
The mechanisms at each time instant t, determine whether an MPS system is able to force the process

to satisfy all conditions of Egs. (3) and (4) over the moving time horizon Q, = [t,t + 7]. On the



dissatisfaction of a condition of Eq. (3) or (4) at a time instant £, an MPS system generates an alarm
signal corresponding to the constraint:
¢ Definitely Hazardous Operation (DHO), when the operation is not nominally hazard-free
(when a constraint of Eq. (3) is not satisfied); and
¢ Potentially Hazardous Operation (PHO), when the operation is not absolutely hazard-free

(when a constraint of Eq. (4) is not satisfied).

The DHO alarm mechanism allows for predictively determining whether the operation is
hazard-free under normal conditions (no faults or uncertainties), while the PHO alarm mechanism
allows for predictively determining whether the operation is hazard-free under all real or
hypothetical faults and errors accounted for in the MPS design. When the DHO alarm corresponding
to a constraint is ON, the PHO alarm corresponding to the same condition is ON too. However, the
converse may not be true, because a necessary condition for a DHO alarm to be OFF is that its PHO

alarm counterpart be OFF.

3 Real-Time Implementation

An MPS system should determine the satisfaction of every constraint of Egs. (3) and (4) in
real time at desired time instants (to generate a DHO or PHO alarm signal whenever a constraint is
not satisfied) and prescribe an optimal action when a DHO or PHO alarm signal is generated. In
practice, process operation constraints of Eq. (2) can be written in the form of the inequality
constraints (constraint indices):

Pi(RC16), d(2I), d (£16), PRI, u(£1)) S O, i = 1,0, My 5)
where 7., 1s the number of inequality constraints. According to Definitions 2 and 3, in real time at
every desired time instant, t, an MPS system should determine whether:

(i) For every 1; there exists a feasible MPS action profile, u(£|t) € Q,, € € Q, =[t, t + 1],
such that ; < 0at every £ € Q, when d,,(t|t) = d,, (), d(£|t) = d,, d,,(£|t) = dm,,
p(£|t) = pp, and xo = x,,; and

(ii) For every 1; there exists a feasible MPS action profile, u(€|t) € Q,, € € [t,t + ], such
that i; < 0 at every £ € Q, when d, (t|t) = d, (), V d(£]t) € Qy, Vdp(£|t) € Qy
Vp(£|t) € Qp, and Vx, € Q.

These determinations are computationally very expensive and thus are hard to carry out in real time.

This major computational difficulty is overcome using a novel approach proposed in the next section.



3.1 Combined Offline and Online Computational Approach

The main idea behind this approach is that: (i) when at a time instant ¢t with the ‘most
aggressive MPS action’ corresponding to ;, ¥; exceeds zero over [t,t + 7], then the DHO alarm
signal corresponding to 1; is generated; and (ii) when at a time instant t with the ‘most aggressive
MPS action’ and the ‘worst-case values’ of d, d,,,, p and x, corresponding to Y;, P; exceeds zero
over [t,t + 7], then the PHO alarm signal corresponding to 1; is generated.

The corner points of the hyperrectangle Q,, represent the actions that an MPS system can take,
and the corner boundary points of Q ,Q4, Q4 ,and Q, that correspond to combinations of lower
and upper limits of xy, d, d;,,, and p. In the case of non-complex small-scale processes, personnel
knowledge of the process and/or process model predictions usually guides the identification of the
combination of the lower and upper bounds for the components of x,, d, d,,,, and p that represent the
‘most extreme’ (worst-case) values corresponding to a constraint index. In this case, the same
knowledge can be used to identify the ‘most aggressive’ MPS action corresponding to a constraint
index. In the case of complex large-scale processes, however, these worst-case uncertainties and most
aggressive MPS actions need to be calculated systematically offline using the min-max optimization

problem formulations described in the next section.

3.1.1 Offline Calculations

The most aggressive (optimal) MPS action corresponding to a ; is defined as the time-
invariant the MPS action that minimizes the highest value of i); over the moving horizon
[t ¢ + 75, ] when dp,(t]t) = dpp(£), d(£]t) = dp, diy(£]t) = dpy,, PEIE) =Py, and xp = X,

where 7, = max 6;;, and 6;; is the 2% settling time of 1; with respect to u;. It is obtained by solving
J

B

the min-max optimization problem:

min pggfwi i (x(t), dy, dim,,, Py u(2)) (6)
subject to:
d
SO — f(x(0, A0, dnOpOUD),  2(0) = x0 € Oy © R

y(£) = h(x(1))
Yi(x(),d(©), dn@®),p(®),u(t)) <0, j=1,, N, j*i

du(t) B

dt 0




The infeasibility of the min-max optimization problem corresponding to a 1; points to the poor design
of the MPS system and the need for providing the MPS system with more process input variables to
set. As requested, the optimal MPS action is time-independent (is a fixed corner point of the
O, hyperrectangle); that is,
u(); = u
The most aggressive (optimal) MPS action and the worst-case values of t, x,,d, d,,,, and p
corresponding to a Y; are, respectively, defined as the time-invariant MPS action that minimizes v;,

the values of t and x, on ), v, X (1, that maximize );, and the time-invariant values of d, d,
and pon Q4 X Qg4 X, that maximize 1;, where wai = [t,t + T,,,l.]. They are obtained by

solving the following min-max optimization problem:

min max lpi(x(t), d(t),d,,(t), p(t),u(t)) (7N

UEQy  tEQr,, A€QAmED iy PEX0E 0,

subject to:

L0 = Fr@, A, dn@,pO,u®),  x(0) =x; € Oy © R

y(£) = h(x())
Y;(x(@®),d®),dn@®),pO,u®)) <0, j=1,ngm j*i

dd(t) _o dd,(t) _o dp(t) _o du(t) B
dt dt dt dt

As requested, the optimal MPS action is time-independent (is a fixed corner point of the

0

Q, hyperrectangle), and the worst-case values of d*(t),d;,(t),p*(t), and x, are also time-

independent (a fixed combination of the boundary points of the hyperrectangles); that is:

(d*(0), din (0, p™ (1), X0, u™(0)); = (A", dp, ™, X", ")y, V'L

3.1.2 Online Calculations

The offline calculation of the worst-case uncertainties and the most aggressive (optimal) MPS
actions permits online implementation of MPS with very little computer CPU time, as the satisfaction
of each process operation constraint is evaluated online only (a) one time with the nominal values of
process parameters and inputs, and a corner point of (,, corresponding to the most aggressive action
of the MPS system, for the particular process operation constraint; and (b) one time with the worst-
case combination of the values that process inputs and parameters can take, and the corner point of
Q,, that corresponds to the most aggressive action of the MPS system, for the particular process

operation constraint index. Thus, with the offline calculations, the implementation of an MPS system
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simply requires online integration of the differential equations of a state estimator at each time instant
t over a moving time horizon of [t, t + t] at most 2n.;;, times, where T can be much shorter than
Ty L=1,--,ng;, . Figure 1 illustrates this for one of the inequality constraints when ng; =n, =
n, = n, = 2 to determine whether an operation is nominally hazard-free, at a time instant t. Figure
2 illustrates the concept for one of the inequality constraints when ng =n, =mn,=n, =2 to
determine whether an operation is absolutely hazard-free at a time instant t. Figure 3 depicts a block
diagram that explains the implementation of an MPS system in real time. Of course, the higher is the
value of 7, the more effective is MPS in preventing and mitigating accidents, but the lower is the
accuracy of the alarm signals (the higher is the probability of false alarms). In contrast, MPC usually
requires online integration of the same differential equations at each time instant t over a moving
time horizon of [t, t + 7] significantly more than 2n_ ;,, times to solve an MPC optimization problem

at the time instant t.

4 Numerically Solving the Min-Max Optimization Problems
A min-max optimization problem minimizes the maximum value of an objective function or

a set of objective functions. Two main types of min-max optimization problems have been reported:

e TypeA:
min max F; (x),
X L
subject to:
gx) =0
h(x) <0
e TypeB:
min max F(q,v)
subject to:
9(q,v) =0
h(q,v) <0

This second type has application in decision making in the presence of uncertainty. The goal
of this min-max optimization is to minimize the maximum of the objective function when optimizing
variables take their worst-case combination. Min-max optimization problems of this type have been
reported in many fields 2”?® for the last two decades. They are known as difficult problems to solve
29 with no general technique or algorithm to locate globally optimal solutions, especially for
nonconvex problems *°. The min-max optimization problems of MPS, Eqgs. (6) and (7), are of this

type in which a loss is minimized for the worst case (maximum loss) scenario.
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Various approaches and methods have been proposed for solving the min-max problems,
ranging from gradient-based to stochastic optimization methods. Gradient-based methods, such as
successive quadratic programming (SQP), are often not suitable due to limitations, such as the
unavailability of exact derivatives of objective functions and the lack of objective functions continuity
31-32.

Stochastic optimization algorithms have been found to be efficient for global optimization.
They are often able to escape from local optima and show good performance uniformly across many
data sets 3. Swarm intelligence and swarm evolutionary techniques exploit social behavior and
natural evolution algorithmic mechanisms, respectively. Unlike gradient-based methods, these
techniques do not require objective function derivatives, and can handle discontinuous objective
functions and disjoint search spaces **. For discrete min-max optimization problems, Herrmann*?

presented a two-space genetic algorithm (GA), and Laskari et al.>

investigated the use of the particle-
swarm optimization (PSO) method. They reported cases where SQP failed, but PSO had success rates
higher than 90%. They also used a smoothing technique and found that PSO results, in many cases,

were superior. Hassan et al. 3’

compared the computational effectiveness and efficiency of GA and
PSO using a formal hypothesis testing approach. They observed that PSO and GA were comparable
in finding globally optimal solutions, but that PSO provided significantly better computational
efficiencies.

Particle-swarm optimization was developed by Eberhart and Kennedy *® inspired by the social
behavior of bird flocking or fish schooling. PSO uses intuition and the social behavior of individuals
to locate global optima. The particle-swarm algorithm starts with initial positioned particles, having
computed objective functions, with assigned initial velocities. A particle i is defined by its position
vector, z;, and its velocity vector, v;. In each iteration, j, the position of the particle in the next
iteration, z;(j + 1), is calculated according to *:

z(j+1) =z() +v,(G+1) (8)
where z;(j) is the position of the particle in the current iteration, and v;(j + 1) is the velocity of the
particle in the next iteration, calculated using:

v+ 1) = 0v;()) + 1 (p:()) — x:())) + co13 (Pg(i) - xi(f)) 9)
where v;(j) is the velocity of the particle in the current iteration; p;(j) is the best location the particle

has achieved until the current iteration; p4(j) is the best location that the other particles have found

until the current iteration; and ¢, and c, are, respectively, cognitive and social parameters, which vary
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between 0 and 2. The parameters c¢; and ¢, determine the size of the step each particle takes towards
its own personal best position and the overall global best position, respectively. Default values for
these two parameters in PSO codes are ¢; = ¢, = 2. 1, and r, are two random vectors whose
components are assumed to be independent random variables from U (0, 1). These values are different
in each iteration, as they are generated randomly every time. w is an inertia weight that maintains
balance between global and local search abilities. It is usually a constant value between 0.8 and 1.2.
In this work, it is set to 1.

Chen et al. ** used the PSO method in a nested form to solve a min-max optimization problem

of the second type:

minmax F(q,v) = min foyrer (@) (10)
qeQ vev qeQ
where
fouter(@) = IES/XF(CI: V) (1T)

They used two PSO algorithms, one for minimization, and the other for the maximization. For the
outer minimization, particles minimize the maximum of the cost function. For each particle, the
maximum is calculated using the inner PSO algorithm. As the flowchart in Figure 4 shows,
calculations start with the outer function. First, the outer PSO randomly chooses n particles by
assigning initial positions and velocities for every particle in the space of g. Each particle is a solution
guess. Next, for each particle in the g space, the inner PSO maximizes the cost function in the domain
of v. The inner function initiates iterations by assigning initial positions and velocities to every
particle in the domain of v. Through a series of iterations for each outer particle, positions and
velocities are updated according to Egs. (8) and (9), and the maximization over v is performed until
convergence is achieved — providing the maximum, for each outer particle, of /(g,v) in Eq. (10). This
procedure is repeated for every particle in the outer PSO, until the outer function converges, and the

final solution of the min-max optimization is found.

5 Case Studies
The application and performance of the min-max optimization formulations as well as MPS,

applied to two chemical process examples, are shown through numerical simulations in this section.
One example (Process Example 1) is an isothermal continuous-stirred-tank reactor (CSTR) with
series chemical reactions, and the other (Process Example 2) is a free-radical polymerization CSTR.

The resulting min-max optimization problems are solved using the nested PSO algorithm. For
the first process, 100 particles and 20 max stall iterations are used, and for the second process, 200
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particles and 40 max stall iterations are used. For both, default values are used for all other tuning
parameters of the PSO algorithm programmed in MATLAB version R2018b. The solution of each
min-max optimization problem in Process Example 1 requires just a few seconds of CPU time. For
the min-max optimization problems in Process Example 2, having 17 variables, solutions were
obtained using a high-performance computer cluster with Intel® Xeon® E5-2670 Sandy Bridge
CPUs. The Parallel Computing Toolbox of MATLAB permitted 12 Intel CPUs to compute in parallel
with a 32 GB of memory. The wall time was about 20 minutes for solving each of these min-max

optimization problems.

5.1 Process Example 1: A Classical Chemical Reactor
Consider an isothermal CSTR in which the irreversible series reactions A —» B — C take

place. The reactor is represented by:

dc
d_tA = _kchZ + (CAi - CA)F
dde= kchZ_kch_CBF (12)
dc
d_tc = kZCB - CcF

where ¢, cg, and ¢ (kmol - m~3) are the concentrations of 4, B and C in the reactor outlet stream,
respectively, and F (m3 - h™1) is the volumetric flow rate of the inlet and outlet streams. The reactor
is operated at the steady state corresponding to ¢z . = 3 kmol - m~3 by adjusting F. The nominal
values of ¢s;, k; and k, are 7 kmol - m™3, 6 m> - kmol™" - h™, and 1 h™", respectively. Their ranges
are: 5 <k; <7m®-kmol™*-h™', 0<k, <2 h™%, and 5 <¢,; <10kmol-m™3. For this
process, the conditions cg < 3.5 kmol - m~3 and ¢4 < 2.0 kmol - m~3 should never be violated.

The unforced zero dynamics of the reactor are given by:

d
f = _6CA2 + (CAi - CA)(ZCAZ - 1)

(13)

% =3 —c.(2¢,2— 1)
The eigenvalues of the Jacobian of this system are [4CASS (CAL. - 3) - 6CA552 +1 ] and [—ZCASS2 +
1]. At the steady state (ca, Cc o Ca;) = (1, 3, 7), the zero dynamics are unstable, as the eigenvalues
are +11 and —1. Consequently, cg shows an inverse response to a step change from 1 to 2 m3 - h™?
in F,as shown in Figure S3. When ¢,; = 7 kmol - m~3, the first eigenvalue is positive for every
steady state corresponding to F,; (m3 - h™1) in the range of [0, 10.45), as shown in Figure S4.

The reactor control system controls cz by adjusting the flow rate, F, using a proportional

control valve within the following range:
12



00<F<E,; =20m3-h?

The control system has a simple proportional-integral (PI) controller:

dw 1 4 1(F )
i~ 5 0Tk, S5
1
F=sat{Fss+kC(cBS —(pgt—w )}
14 T

where g, = 3 kmol - m3, FE,=1m3-h™! k,=1m®-h!-kmol™%, 7, =1 h, and

0, [<0
sat{l} = {l; 0<1! < Fnax
Frax,  Frnax < 1

5.1.1 Model-Predictive Safety System
When one of the following constraints is violated at any moment over a receding future
horizon of 7, the MPS system generates an alarm signal:

(a) Saturation alarms when:

F(£|t) = Fpgy = 2.0m3.h71 (14)
F(£|t) € Fpyn = 0.0 m3.h71 (15)
(b) PHO and DHO alarms when:

ég(£|t) > 3.5kmol - m™3 (16)

é4(2|t) > 2.0 kmol - m™3 (17)

The following constraint (alarm) indices ¥y, ..., P, are defined:

Y =F([t) -2 (18)

Y, = —F(£]t) (19)

Y5 = Cg(L|t) — 3.5 (20)

Yy = Ca(£]t) — 2.0 21)

The receding prediction horizons, 7Ty,, Ty, and T are chosen to be 2.0 h,

1.0 h, and 0.2 h, respectively.

5.1.2 Min-Max Optimization

To determine whether an operation is nominally hazard-free, each of the constraint indices of
Egs. (20) and (21) should be checked with the nominal values of x,, d, d,, and p, and with the most
aggressive (optimal) MPS action corresponding to the condition over the receding horizon. These
most aggressive MPS actions are calculated by solving the following two constrained min-max

optimization problems:

13



subject to:

and

subject to:

whereu =F, Q, =10, 2], Q

min max = cg(t) — 3.5
UEQy fEQr¢3 lp3 B( )

dczft) = —kica(t)* + (CAi(t) — ca(D)F ()
dcgft) = kyca(£)* — kapcp(t) — cg(D)F(t)
d
0 < kaca(t) ~ ce(OF )

Y, =F({t)—2<0

Y, =—-F(t)<0
s = c,(t) —2.0<0
5252 tgggf; s = cu(t) — 2.0

dcgt(t) = —kyc ()* + (CAi(t) — ca(®))F (1)
dcst(t) = kica(t)? — kpcp(t) — cg(DF(8)
) kaea ()~ ce(OF O

W, =F()—2<0
v, =—F({) <0
Vs =cp(t) —35<0

Tipg = [01 20]; and QTTIM- = [0, 10]

(22)

(23)

By applying the nested PSO algorithm, these two optimization problems were solved. When

ki, k, and C,; take their nominal values, in both cases the algorithm found that the optimal MPS

action corresponds to an inlet flow rate, F, of zero: F** = 0. The MPS system applied these to the

reactor model; the simulation results shown in Figure S5 confirm that the nested PSO algorithm

indeed solved the two min-max optimization problems; in both cases F** = 0 minimizes both

constraint indices.

To determine whether an operation is absolutely hazard-free, the MPS system should check

each of the constraint indices of Egs. (20) ad (21) with the corresponding worst-case values of d, d,,,
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p and x, and the optimal MPS actions. The worst-case combinations and their corresponding optimal

MPS actions were calculated by solving the following two min-max optimization problems:
min max =cg(t) —3.5 24
UEQy, teﬂrws,deﬂd,peﬂp,xoeﬂxo ll}3 B( ) ( )

subject to:
d

dcst(t) = kica(®)? = kacp(8) = e (OF (0)

dce(t) = kycg(t) — cc(H)F(t)

dt

Y, =F({t)—2<0
Y, =—-F(t)<0

W, = () —2.0<0
(25)

and
min max Yy = c4(t) — 2.0
UEy, tEQTw4,dEQd,peﬂp,xerxo

subject to:
d

Cst(t) —kica()? + (CAi(t) B CA(t)) F©

dccl:t(t) = kica(t)? — kacp(t) — cg(OF (O)

dcc(t) = k,cg(t) — cc(H)F(t)

dt

W, =F(t)—2<0
Y, =—-F(t) <0

Y3 =cp(t) —35<0

where d = ¢,;, Qg =[5, 10], p = [k; k;]",and Q, =[5, 7] x [0, 2].

The nested PSO algorithm found that:
In the case of the constraint index of Eq.(20), the worst combination of uncertainties is

[ ]
ca; =10, ky = 7,and k, = 0, and the optimal MPS action is F = 0.

In the case of the constraint index of Eq.(21), the worst combination of uncertainties is

[ ]
ca; =10, ky = 5,and k, = any value in [0, 2] and the optimal MPS action is F = 0.
The simulation results shown in Figure S6 again confirm that the nested PSO algorithm solved the

two min-max optimization problems; in both cases F* = 0 minimizes both constraint indices.
15



5.1.3 State Estimate Predictor
The MPS system uses the following state estimator to predict the future values of the state
variables online' when the manipulated variable takes the optimal MPS value corresponding to each

constraint index:

%flt) = —k;Ca(£t)* + (CAi({’It) — éA({’lt)) F(IE) + Ly (cp(tlt) — E5(t10)) + &, (£10)
% = ky84(£16)? — k€5 (£]t) — Eg(RIDF (£16) + Ly (cp(tlt) — é5(tlD))
@ = kyCg(2|0) — Ec(LIDF (£]t) + L3(cp(tlt) — e5(¢lt))

@ = Ly(cp(tlt) — E5(t0)

5.1.4 Application of MPS
To test the MPS system, the process is assumed to undergo an unmeasured disturbance in the

form of a step change in ¢,; from 7 to 9 kmol - m~3 at time t = 2 h. An SIS activates an alarm when

5 exceeds zero in real time. However, MPS sets the feed flow rate to zero when the predicted future
value of Y3 exceeds zero; that is, it sets the feed flow rate to zero before the SIS sets the current value
of 15 to zero. Figure 5 depicts C4 and Cp in the absence of the disturbance. The MPS system activates
an DHO alarm when the constraint of Eq. (20) or (21) is violated with the optimal MPS action and
the nominal values of the parameters and unmeasured disturbance, over the receding horizon of
[t,t + t]. The thick blue lines in Figure 6 represent variations of the two constraint indices of the
actual process under the PI controller. Figure 6 also shows the future values of the two constraint
indices predicted at time instants 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 h using the state estimate predictor in
Section 5.1.3, the nominal values of the uncertain quantities, and the optimal MPS action
corresponding to each constraint index. It shows that none of the constraints are violated, indicating
that the operation is nominally hazard free.

The MPS system activates a PHO alarm when the constraint of Eq. (20) or (21) is violated
with its corresponding optimal MPS action and the worst combination of uncertainties. The thick blue
lines in Figure 7 represent variations of the two constraint indices of the actual process under the PI
controller. Figure 7 also shows the future values of the two constraint indices predicted at time instants
2.0,2.1,2.2,2.3, 2.4 and 2.5 h using the state estimate predictor in Section 5.1.3, and the worst-case

values of the uncertain quantities and the optimal MPS action corresponding to each constraint index.
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It shows that the constraint index 5 exceeds zero at t = 2.09, leading to the activation of the PHO
alarm corresponding to the constraint index 5 and setting the inlet stream flow rate to zero. In this
case study, the uncertainties in the state estimator initial conditions were not considered. Such
uncertainties can be easily handled by considering the most extreme combination of the parameter
values and state-estimator initial conditions.

Figure S7 depicts the concentrations of A and B in the presence of a disturbance in the reactor.

As Figure S7 shows, at t = 2.5 hr, the predicted concentration of B exceeds 3.5 kmol - m™3

, resulting
in the MPS system activating an alarm and setting the inlet flow rate to zero. With the action taken
by the MPS system the constraint index 3 is violated at t = 2.09 hr (Figure 7), leading to the
activation of the PHO alarm corresponding to constraint i3 by the MPS system. This case clearly
demonstrates the ability of MPS in predicting the occurrence of operation hazards before the hazards

really happen.

5.2 Process Example 2: A Continuous Stirred-Tank Polymerization Reactor

Consider a continuous stirred-tank jacketed polymerization reactor in which free-radical
solution polymerization of methyl methacrylate (MMA) initiated by azo-bis-isobutyronitrile in
toluene takes place *!. The polymerization reactions are listed in Table S1. Under assumptions such
as: (1) no gel or glass effect, (ii) the quasi-steady-state-approximation, (iii) constant density and heat
capacity of the reacting mixture, (iv) a well-insulated reactor, and (v) perfect mixing, the dynamics
of the continuous-stirred-tank reactor are described by:

dcy

VW = —(kp + kfm)CMRV + FMiCMi - FCM, CM(O) =0
% = _kICIV + FIiCIi - FC[; CI(O) =0 (26)
dCi
dT
CpV —= = kpcyRVAH + FCp(T; = T) + US(T; = T), T(0) =Ty
dT; US(T—-T;))+Q
J J
dt C]m] ]( ) 70
where

F=Fy+ F,

kj = Zjexp (RC_’I]")' j=1,P,tifn
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Q = AHgm + Foypew Cow (Tew — T])
Applying the quasi-steady-state assumption to the rate of change of the molar concentration of the

free radicals leads to:

_kici + \/(kiCi)z + 8fktk1C1
R =
2k,

The variables are defined in the Nomenclature. Online measurements of T;, T, T;, Fy, Fy,, F.,, and

mg are assumed to be available. The reactor control system adjusts the cooling water flow rate, F,,,
and the steam mass flow rate, mg, using proportional valves within the following ranges:
0<Fy,<FE, =222x10"*m>-s7"

0 <m, < =0.15kg-s™!

Ms max
In addition to overriding these two manipulated variables, the MPS system can set the inlet monomer

and initiator flow rates, Fy;, and F;, using ON-OFF valves within the following ranges:
< < = —4 3.¢71
O_FMi_FMimax 83%x107* m°-s
0< F.<F =16x10"°m3-s7!
t lmax

The remaining nominal values of the reactor model parameters are given in Tables 1a and 1b.

5.2.1 Model-Predictive Safety System

For this process, the constraint indices are:

Y1 = Fw (818) — Fowppay 27)
Y, = — Fy(£0) (28)
Y3 =ms(€t) —ms . (29)
Yy = —m(£]t) (30)
Ys = Fy,(41t) = Fyy, (31)
Yo = —Fu, (£]¢) (32)
¥y = Bl —F (33)
Yg = — F,(£]t) (34)
Yo = ey (£]t) — 0.6 (35)
P10 = & (£]t) — 0.02 (36)
P11 = &) —3x107% (37)
P, = T(L|t) — 373.2 (38)
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Y13 = T(£|t) — 393.2 (39)
When at a time instant t the projected value of a constraint index over the receding prediction horizon

[t,t + 7] exceeds zero, the MPS system activates the corresponding alarm.

The reactor temperature is controlled using a cascade control system consisting of two PI

controllers:
dwq 1 1
a T +k—61(T,-S,, ~71.)
dw, 1 1
T _E wy + k_cz(Q — Qss)
B 1
Tf'sp = satTjsp Tfss +ke \Top—T+ Z w4
1
Q= SatQ st+k62 Tjsp —Tj+a wo

where Ty, = 363.2K, Qg = —50.16k-s™", ke, =1, 1, =5x10%s, k., =200k]-s™' - K%,

75, = 1% 10° s, and

Qminr [ < Qmin
SatQ{l} =11, Qmin < 1 < Qmax
Qmaxs Qmax < 1
0, [<O0
satTj {l} ={L 0=<lI< ijax
N Tnax Timax <!
max max

where Qmax = AHgmg, and  Qumin = Fow,, 0 PewCew (Tew — T;). The primary and secondary
controllers control the reactor and jacket temperatures, respectively. Their manipulated variables are

the jacket temperature setpoint, Tjsp’ and the rate of energy supplied to/removed from the reactor
jacket, Q.

5.2.2 Min-Max Optimization

To determine whether an operation is nominally hazard-free, the MPS system should check each
condition of Egs. (27) — (39) with the nominal values of x,, d, d,,, and p, and with the most aggressive
(optimal) MPS action corresponding to that condition. The optimal MPS actions are calculated by
solving the optimization problems:

min max Y;(x(t), dp, dpm,,, P, u(t)), i=1,-,13 (40)

UEQy, tEQTl.
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subject to the process dynamics and the remaining constraints. To solve this set of optimization
problems, we applied the nested PSO algorithm. The results indicate when the initial conditions,
frequency factors, and activation energies take their nominal values, the optimal MPS action
corresponding to this condition is: the maximum coolant flow rate, and the minimum steam, monomer
flow rates, and initiator solution.

To determine whether an operation is absolutely hazard-free, the MPS system should check
each condition of Egs. (27) — (39) with the corresponding worst-case values of d, d,,, p and x, and
with the corresponding optimal MPS action. Each of the worst-case combinations and its

corresponding optimal MPS action are calculated using:

min max Vi(x(®),d®), dm(©), p(@®),u(®)), i=1--,13 (41)

UEQy teQTi,dEQd,deQdm,peﬂp,xoeﬂxo
subject to the process dynamics and the remaining constraints. For each of these constraint indices,
the min-max optimization is solved by applying the nested PSO algorithm. To solve these min-max
problems, all of the uncertain parameters, in a lumped vector, are adjusted to maximize the inner
function and calculate the most aggressive action that the manipulated variables can take. The min-
max optimization results are given in Tables 2—5. A summary of the results is as follows.

e Reactor temperature upper-limit constraint index: The worst-case scenario occurs when
the inlet monomer and initiator concentrations take their maximum values, and the
inhibitor inlet concentration takes its minimum value. Worst-case values of the initial
conditions are listed in Table 3. The optimal MPS action is the maximum cooling water
flow rate, and the minimum steam, initiator solution, and monomer flow rates.

e Monomer concentration upper-limit constraint index: The worst-case scenario occurs
when the inlet monomer and inhibitor concentrations take their maximum values, and the
inlet initiator takes any value within [0 10]. Worst-case values of the initial conditions
are listed in Table 4. The optimal MPS action is the maximum cooling water and initiator
solution flow rates and the minimum monomer and steam flow rates.

e [Initiator concentration upper-limit constraint index: The worst-case scenario happens
when the inhibitor inlet concentration takes its maximum value, the initiation reaction
frequency factor takes its minimum value, and the initiation reaction activation energy
takes its maximum value. It is entirely independent of all other parameters. The optimal
MPS action corresponding to this worst combination is the minimum initiator solution and

steam flow rates and the maximum monomer and cooling water flow rates.
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¢ Inhibitor concentration upper-limit constraint index: The worst-case scenario occurs when
the inhibitor inlet concentration is at its maximum. The other worse-case values are given
in Table 5. For this case, the optimal MPS action is the minimum monomer and steam

flow rates and the maximum initiator solution and cooling water flow rates.

5.2.3 State Estimate Predictor
The following state estimator is used to calculate future estimates of the state variables when

the MPS outputs take their optimal values corresponding to each constraint index:

déy (L)t ~ - A Fy, (Et) ey, (£1t) — F(L|t) ey (£]t)
% = ~[kp(210) + Ky, (£10)]ew (LIDR(EIE) + = -
+11 ¢n(010) = Eumo
de,el) - Fi,(2l0)c, (216) = F(216)ér (#1¢)
D - kcameceln + (e V ) e 00 = e
A s P (B0 (P10 -F(EIDA(ED) ) )
240 - —kaaeDRED i _ L bt +ms, 60100 = 50
(42)
ATCEIO o i s BH (T:Cely = Tcelry)  us (Tiele) - Teelo)
27 = keCIDaEIOREID T+ F(EID - + o7
+ N4, T(OlO) = 7\10
dT"j(Sf|t) _ us(f(€|t)-f,-({’|t))+AHSmS(€C|;):CW({’|t)pcwccw(rcw-fj(ﬂt)) ins T010) =T
., (¢10) :
e e $x,(010) =0
where
mi = L (T = 70l (Gl = Tl)),  i=1,6
A _ —E; L )
k;(£|t) = zjexp (RT(ﬂt))' j=1Pt1ifn

~R0acel) + (R Inaen) + 8FREOR @0

2k, (2]t)
The estimator gain matrix elements are selected such that all eigenvalues of the Jacobian matrix of

R(It) =

the estimator error dynamics have negative real parts and have the same order of magnitude. The

values of the gain matrix elements are given in Table 6.

5.2.4 Application of MPS
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To test the MPS system, two (normal and abnormal) operations are simulated. In the normal
operation, the reactor undergoes startup in the absence of any inhibitors in the monomer or initiator
solution inlet stream. The thick blue lines in Figure 8 represent variations of the five constraint indices
of the actual process under the control system. Figure 8 also shows the future values of the five
constraint indices predicted at the five time instants using the state estimate predictor in Section 5.2.3,
and the optimal MPS action corresponding to each constraint index. The receding prediction horizon,
7, was chosen to be 0.2 h. It shows that during the normal operation (in the absence of the inhibitor),
none of constraints of Eqgs. (27)-(39) are violated; that is, the operation is nominally hazard free.

The thick blue lines in Figure 9 represent variations of the five constraint indices of the actual
process under the control system. Figure 9 also shows the future values of the five constraint indices
predicted at five time instants using the state estimate predictor in Section 5.2.3, and the worst-case
values of the uncertain quantities and the optimal MPS action corresponding to each constraint index.
As can be seen during normal operation, no alarms are activated as none of constraints of Egs. (27)-
(39) are violated. It indicates that the operation is absolutely hazard free.

In the abnormal operation, when the reactor is at steady state the concentration of the inhibitor
in the monomer feed stream increases from 0 to 0.03 kmol - m~3 (disturbance). In this case, as shown
in Figure 10, the operation is nominally hazard free, because none of the constraint index predictions
take a value of zero or higher. Figure 11 shows the projections of several constraint indices with the
optimal MPS action corresponding to the constraint index and the worst-case values of the uncertain
quantities. It depicts the constraint index ¥ exceeds zero at t = 0.76 h. Upon this violation, MPS
generates the PHO alarm signal corresponding to the constraint index 19 and sets the monomer inlet
flow rate to zero and the initiator solution flow rate to its maximum as long as the constraint index
110 does not exceed zero, as calculated in the min-max optimization section. Even with this action
taken by the MPS system, the violation of the upper bound on the monomer concentration cannot be
prevented. In this case study, uncertainties in the state-estimator initial conditions were not
considered. Such uncertainties can be easily handled by considering the most extreme combination
of the parameter values and state-estimator initial conditions.

Figures S8 shows the concentrations of the unreacted monomer, initiator, and inhibitor in the
reactor, and the reactor and jacket temperatures during the first two hours of operation after the reactor
reaches steady-state conditions in the presence of the disturbance. As Figure S8 shows, att = 1.5 h
the monomer upper bound (0.6 kmol - m~3) is violated, resulting in the MPS system generating an

monomer concentration alarm signal. As Figure 11 shows, the future value of the constraint index g
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first exceeds zero at t = 0.76 hr, leading to the MPS system activating the PHO alarm corresponding
to the constraint index 9. As can be seen, the MPS system predicts the future violation of the upper
bound on the monomer concentration long before the concentration actually exceeds its limit in real

time.

6 Conclusion

MPS can play a critical role in the petroleum, chemical and petrochemical industries. It can
be adapted easily to other industries such as the food, nuclear, aircraft, and petroleum industries, to
identify imminent and potential future operation hazards. It is a new paradigm in functional safety;
that is, the design and use of predictive and proactive (prescriptive) functional safety systems that
account for process nonlinearities and interactions among process variables. Existing functional
safety systems typically do not account for these process characteristics and are not predictive. We
envision that an MPS system will sit above a conventional functional safety system much like MPC
that sits above a conventional control system.

The concept of MPS was expanded and min-max optimization problems were formulated
herein. The problems are solved offline to calculate systematically (a) the optimal MPS action that
minimizes each process-constraint index when uncertain model parameters take their nominal values,
and (b) the optimal MPS action that minimizes each process-constraint index when uncertain model
parameters take their worst-case values. To solve min-max optimization problems, a nested PSO
algorithm was implemented. The min-max formulations were applied to two process examples, a
classical chemical reactor with series reactions and a free-radical polymerization reactor, and the
resulting min-max problems were solved using the nested PSO algorithm. Simulation results showed

that the algorithm solves the min-max optimization problems reliably.
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Nomenclature
c Heat capacity of reacting mixture, k] - kg™ -K™!
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Heat capacity of cooling water, k] -kg™1-K™1
Heat capacity of the reactor jacket, kJ - kg™1-K™1

Molar concentration of monomer in the monomer feed stream, kmol - m™

Molar concentration of initiator in the initiator feed stream, kmol - m~

Molar concentration of inhibitor in the monomer feed stream, kmol - m™

Dead polymer chain with n monomer units

Chain-transfer-to-monomer reaction activation energy, k] - kmol™?
Initiation reaction activation energy, kJ - kmol™!

Inhibition reaction activation energy, k] - kmol™?

Propagation reaction activation energy, KJ - kmol™!

Termination reaction activation energy, kJ - kmol™?

Cooling water volumetric flow rate, m3.s™!

Volumetric flow rate of initiator-solution feed stream, m3.s™!

Volumetric flow rate of monomer feed stream, m3.s™!

Initiator efficiency

Initiator

Inhibitor

Observer gain matrix entries

Chain-transfer-to-monomer reaction rate constant, m3 - kmol™! - s

Initiation reaction rate constant, s~ *

Inhibition reaction rate constant, m3 - kmol=! - s~
Propagation reaction rate constant, m3 - kmol™1 - s71
Termination reaction rate constant, m3 - kmol=! - s~

Mass of the reactor jacket, kg

Mass flow rate of steam, kg * s™1

Molar concentration of free radicals, kmol - m~3
Gas constant, ] - mol™1K ™!

Reactor-jacket heat-transfer surface area, m?
Reactor temperature, K

Temperature of the inlet stream, K
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T; Jacket temperature, K

T.,  Cooling water temperature, K

Tsp Reactor temperature set point, K

U Reactor-jacket overall heat-transfer coefficient, k]. K™1.s71.m™2
/4 Volume of reacting mixture, m3

z;  Chain-transfer-to-monomer reaction frequency factor, m® - kmol™* - s~*

Z; Initiation reaction frequency factor, s™1

Z; Inhibition reaction frequency factor, m3 - kmol™1 - s71
Zp Propagation reaction frequency factor, m3 - kmol™1 - s71
Z; Termination reaction frequency factor, m3 - kmol™! - s71
Greek

AH  Heat of propagation reactions, k] - kmol™?

AH;  Steam latent heat, k] - kg1

p Density of the reacting mixture, kg - m~3

Pew  Density of cooling water, kg - m™3

T Online prediction horizon, s
Ty, Offline prediction horizon for the inequality constraint index y;
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Table 1a: Nominal Values of the Polymerization Reactor Model Parameters.

Parameter Value Unit Ref.
Z; 9.800 x 107 m? - kmol™! - 57! 4
Zp 4917 x 105 m3 - kmol™1-s71 4
Z 1.053 x 10%° st 4
Z; 7.623 x 10° m3 - kmol™1-s1 42
z 4.660 x 10° m? - kmol™! - 571 B
E; 2.944 x 103 k] - kmol ! 4
Ep 1.828 x 10* k] - kmol ! 4
E; 1.288 x 10° k] - kmol ! 4
E; 2.390 x 10* k] - kmol ! 42
Er 7.440 x 10* k] - kmol ™2 B
c 2.200 x 10° k] -kg™1-K! 4
AH 5.780 x 10* k] - kmol ! 4
f 5.800 x 107! 4l
p 9.300 x 102 kg -m3 4
My 1.001 x 10?2 kg - kmol ! 4
M, 1.642 x 10? kg - kmol™?! 4
cy 5.000 x 10° kmol - m~3
ci; 0.000 x 10° kmol - m~3
Cum; 5.000 x 10° kmol - m~3
c, 5.000 X 1072 kmol - m~3
Ci, 0.000 x 10° kmol - m~3
Cm, 0.000 x 10° kmol - m~3
Ty 3.430 x 102 K

Table 1b: Nominal Values of the Other Polymerization Reactor Model Parameters.

Parameter Value Unit
T; 2.932 x 10?2 K
U 3.000 x 10~ kl.K"Ls L. m™2
Tio 3.630 x 10?2 K
Tsp 3.632 x 107 K
AH, 2.257 x 103 k] - kg™t
Tow 2.882 x 10?2 K
Dew 9.980 x 102 kg -m™3
Cew 4,180 x 10° kJ -kg™1-K™!
Cj 2.200 x 10° k] -kg™1-K™1
S 1.000 x 10! m?
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1.000 x 10t

1.114 x 10*

Table 2: Ranges for the Polymerization Reactor Parameters.

Parameter Lower value Upper value Unit Ref.
7 3.500 x 10° 4.900 x 10° m3 - kmol~*-s-1 44
Zp 4917 x 105 6.600 x 105 m3 -kmol L -s1 3
Z 4,160 x 1012 1.000 x 101° 51 a1, 4647
z; 4.800 x 108 7.600 x 10° m3 -kmol L -s1 1248
Zfn 2.000 x 10° 4.660 x 10° m3 - kmol ™! - s71 41.49-50
E, 4.000 x 102 1.190 x 10* KJ - kmol~1 144
Ep 1.800 x 10* 2.236 x 10* K] - kmol ™ 33
E 1.200 x 10° 1.300 x 10° kJ - kmol™? 31, 4647
E; 2.300 x 10% 2.500 x 10% k] - kmol™! 248
Ef 2.030 x 10* 7.440 x 10* K] - kmol~1 41,4950
cy 0.000 x 10° 1.000x 10! kmol - m~3
Ci; 0.000 x 10° 1.860 x 1072 kmol - m—3
Cum; 0.000x 10° 9.300 x 10° kmol - m—3

Table 3: Worst-Case Parameter Values Corresponding to the Polymerization Reactor Temperature
Constraint Index.

Table 4: Worst-Case Parameter Values Corresponding to the Monomer Concentration Constraint Index.

Parameter Value Unit
Z; 3.500 x 10° m3 - kmol™!-s7?
Zp 6.600 x 10° m? - kmol™!-s7?
Z 4.160 x 10'? st
Z; 4.800 x 108 — 7.600 x 10° m3 - kmol™?-s71
zs 2.000 X 10° — 4.660 x 10° m? - kmol ™! -s7!
E, 1.190 x 10* k] - kmol~?
Ep 1.800 x 10* k] - kmol~?
E, 1.300 x 10° k] - kmol™?!
E; 2.300 x 10* — 2.500 x 10* k] - kmol~?
Ef 7.440 x 10* k] - kmol™?

Parameter Value Unit
Z; 4900 x 10° m3 - kmol™? -s7?1
Zp 4917 x 10° m3 - kmol™?-s71
Z; 4,160 x 1012 st
Z; 7.600 x 10° m3 - kmol™!-s™1
zs 2.000 x 10° m? - kmol ™! -s7?
E; 4.000 x 102 k] - kmol ™!
Ep 2.236 x 10* k] - kmol ™!
E, 1.300 x 10° k] - kmol !
E; 2.300 x 10* k] - kmol !
Er 7.440 x 10* k] - kmol ™!
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Table 5: Worst-Case Parameter Values Corresponding to the Inhibitor Concentration Constraint Index.

Parameter Value Unit
Z 4,900 x 10° m?3 - kmol™!-s7?!
Zp 4,917 x 10° — 6.600 x 10° m3 - kmol™!-s™?1
Z 4160 x 1012 st
Z; 4,800 x 108 m3 - kmol™!-s™1
zr 2.000 x 10° — 4.660 x 10° m?3 - kmol™!-s71
E; 4.000 x 102 k] - kmol !
Ep 1.828 x 10* — 2.236 x 10* k] - kmol !
E; 1.300 x 10° k] - kmol ™!
E; 2.500 x 10* kJ - kmol !
Ee 2.030 x 10* — 7.440 x 10* k] - kmol ™!
Table 6: State-estimator Gain.
i 1 2 3 4 5 6
Li; | 0.88 | 7.46 | 0.00 | 8.88 | 0.79 | 0.01
L | 145231034348 | 141|623
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Figure 1: The optimal MPS action

corresponding to a constraint index whenng =
ng, =N, =n, =2; the u profile is
calculated offline and is used online to

determine whether MPS should generate a
DHO signal.
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Figure 2: The worst-case values of
p,d,and d,,, and the optimal MPS control
action corresponding to a constraint index
when n, =ng=ng =n,=2; the
d,p,dand u profiles are calculated offline
and are used online to determine whether MPS

should generate a PHO signal.
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Figure 3: Block diagram showing the implementation of an MPS system in real time.
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Figure 4: Flowchart of the nested PSO algorithm.
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Figure 5: The reactor state in the absence of the disturbance (under hazard-free operation
conditions).
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Figure 6: Real-time and projected values of the two constraint indices indicating the
operation is nominally hazard free.
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Figure 7: Real time and projected values of the constraint indices when applying the
PHO alarm mechanism.
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Figure 8: Real time and projected values of five constraint indices (normal operation). The
projections in each plot are with the optimal MPS control action corresponding to the

constraint index and the nominal values of the uncertain quantities.
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Figure 9: Real time and projected values of five constraint indices (normal operation).

The

projections in each plot are with the optimal MPS action corresponding to the constraint index

and the worst-case values of the uncertain quantities.
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Figure 10: Real time and projected values of five constraint indices (abnormal operation). The
projections in each plot are with the optimal MPS action corresponding to the constraint index

and the nominal values of the uncertain quantities.

0.05 0 -4.0E-04

-4.0E-04
-0.0025
0 -4.0E-04

o ~—
L /L T 0005 S -4.0E-04
-0.05 pa 4.0E-04
ya -0.0075
v -4.0E-04
0.1 -0.01
0 0.5 1 15 2 0 0.5 1 15 2 40804 0 05 1 15 5
Time (hr) Time (hr) Time (hr)
0 -46
——Process
4 .48

P13

8 ——Proj at t=0.14 hr
g -50 .
> 10 ——Proj at t=0.28 hr
- -52 Proj at t=0.42 hr
-16

——Proj at t=0.56 hr

-20 -54
0 0.5 1 1.5 2 0 0.5 1 1.5 2 ——Proj att=0.7 hr
Time (hr) Time (hr)
Figure 11: Real time and projected values of five constraint indices (abnormal operation). The
projections in each plot are with the optimal MPS action corresponding to the constraint index

and the worst-case values of the uncertain quantities.
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