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Quasi parton distributions (quasi-PDFs) are currently under intense investigation. Quasi-PDFs are
defined through spatial correlation functions and are thus accessible in lattice QCD. They gradually
approach their corresponding standard (light-cone) PDFs as the hadron momentum increases. Recently, we
investigated the concept of quasi-distributions in the case of generalized parton distributions (GPDs) by
calculating the twist-2 vector GPDs in the scalar diquark spectator model. In the present work, we extend
this study to the remaining six leading-twist GPDs. For large hadron momenta, all quasi-GPDs analytically
reduce to the corresponding standard GPDs. We also study the numerical mismatch between quasi-GPDs
and standard GPDs for finite hadron momenta. Furthermore, we present results for quasi-PDFs, and
explore higher-twist effects associated with the parton momentum and the longitudinal momentum transfer
to the target. We study the dependence of our results on the model parameters as well as the type of diquark.
Finally, we discuss the lowest moments of quasidistributions, and elaborate on the relation between quasi-
GPDs and the total angular momentum of quarks. The moment analysis suggests a preferred definition of
several quasidistributions.

DOI: 10.1103/PhysRevD.102.054021

I. INTRODUCTION

Parton distribution functions (PDFs) are important
objects encoding information about the quark and gluon
structure of hadrons [1]. They can be extracted from data
for a large class of hard scattering processes, where the
key underlying tool is factorization theorems in quantum
chromodynamics (QCD) that separate the perturbatively
calculable short distance part of a cross section from the
long-distance part described by PDFs and other potential
non-perturbative quantities [2]. On the other hand, first-
principles calculations of PDFs using lattice QCD
have remained challenging due to their explicit time-
dependence. As a result, in the past almost all related
studies in lattice QCD focused on moments of PDFs which
are defined through time-independent local operators,
while the full dependence of PDFs on the parton momen-
tum fraction x remained elusive.
The recently proposed quasiparton distributions (quasi-

PDFs) offer a way to directly access the x-dependence of
the PDFs in lattice QCD [3,4]. Quasi-PDFs are defined
through spatial equal-time operators that can be computed

on four-dimensional Euclidean lattices. They reduce to
their corresponding standard (light-cone) PDFs if the
hadron momentum P3 ¼ j  Pj → ∞, prior to renormaliza-
tion. However, for lattice calculations one first renormal-
izes, and P3 is finite. This leads to two sources of
discrepancies between quasi-PDFs and standard PDFs:
higher-twist corrections that are suppressed by powers of
1
P3, and a different ultraviolet (UV) behavior for these two
types of PDFs. The UV disparities can be cured order by
order in perturbative QCD through a so-called matching
procedure—see for instance Refs. [5–7]. Other approaches
for computing the x-dependence of PDFs and related
quantities have also been suggested [8–19]. Some of them
are closely related to the concept of quasi-PDFs.
By now there has been important progress in under-

standing the renormalization of quasi-PDFs [20–32].
A variety of other aspects of quasi-PDFs and, generally,
Euclidean correlators have also been extensively studied
[33–60]. In particular, the first lattice QCD results for
quasi-PDFs and related quantities can be considered mile-
stones in this field [15,24,25,28,61–82]. Additionally,
the convergence of quasi-PDFs to the corresponding
standard PDFs has been explored in several models
[83–90]. The progress in this field was recently reviewed
in Refs. [91–93].
As already pointed out in Ref. [3], the concept of

quasidistributions is not limited to forward PDFs. For
example, generalized parton distributions (GPDs) [94–98]
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could also be addressed in this approach. A number of
compelling motivations to study GPDs exist, where we refer
to review articles for more details [99–105]. On the other
hand, extracting GPDs from experiment is difficult. In this
situation, reliable information from lattice QCD on GPDs
using quasi distributions would be very helpful. So far, only
a very limited number of papers have considered quasi-
GPDs. In Refs. [106–108] the perturbative matching for
quasi-GPDs of quarks was studied. Recently, we explored
quasi-GPDs in the scalar diquark-spectator model (SDM) of
the nucleon, where the focus was on the twist-2 vector GPDs
H and E [90]. Here we extend this study by considering the
remaining six leading-twist quark GPDs in the same model.
We also present some new model-independent results on
moments of quasidistributions.
Specifically, in this work we address the following

points. In Sec. II we provide definitions of all leading-
twist quasi-GPDs for quarks. For each standard GPD we
consider two corresponding quasi-GPDs. Some important
kinematical relations are listed as well in that section. In
Sec. III we present, in particular, the analytical results for
the standard GPDs and the quasi-GPDs in the SDM. For
P3 → ∞, all expressions for the quasi-GPDs reduce to the
ones of the respective standard GPDs, where the necessary
steps for this check are presented through one example.
This outcome further supports quasi-GPDs as a viable tool
for studying standard GPDs. As a byproduct, we also
consider quasi-PDFs in the SDM, and elaborate for PDFs
on the specific point x ¼ 0 at which standard PDFs (in the
SDM) are discontinuous. It is interesting that, in the limit
P3 → ∞, quasi-PDFs exactly reproduce the standard PDFs
even at x ¼ 0. The numerical results are discussed in
Sec. IV. For PDFs we find considerable discrepancies
between the quasidistributions and the standard distribu-
tions around x ¼ 0 and x ¼ 1, and we locate the source of
this feature. For GPDs one observes the same issue around
x ¼ 1, as well as in and close to the Efremov-Radyushkin-
Brodsky-Lepage (ERBL) region, if that region is very
narrow. On the other hand, quasi-GPDs and standard GPDs
are very similar for a considerable part of a large ERBL
region. We also study two sources of higher-twist effects—
those related with the average longitudinal momentum
fractions of the quark, and those associated with the
skewness variable of GPDs. In general, we have tried to
extract robust numerical results of the SDM. To this end we
have explored the dependence of the results on variations of
the model parameters. In Sec. V, we corroborate the
robustness of the SDM results by studying the impact
on the unpolarized GPD H of modeling the diquark as an
axial-vector diquark instead of a scalar diquark. Model-
independent results on the first and second moments of
quasidistributions can be found in Sec. VI. They include a
discussion of the relation between quasi-GPDs and the total
angular momentum of quarks. Considering moments of
quasidistributions from lattice QCD might offer a way to

study systematic uncertainties. The moment analysis also
suggests a preferred definition of several quasidistributions.
We summarize our work in Sec. VII.

II. DEFINITION OF GPDs

We start by recalling the definition of twist-2 standard
GPDs of quarks for a spin-1

2
hadron, which are specified

through the Fourier transform of off-forwardmatrix elements
of bilocal quark operators (see for instance Ref. [100]),1

F½Γ�ðx;Δ;λ;λ0Þ¼1

2

Z
dz−

2π
eik·zhp0;λ0jψ̄

�
−
z
2

�
Γ

×W
�
−
z
2
;
z
2

�
ψ

�
z
2

�
jp;λijzþ¼0;  z⊥¼  0⊥ : ð1Þ

In Eq. (1), Γ denotes a generic gamma matrix, and the
Wilson line

W
�
−
z
2
;
z
2

�����
zþ¼0;  z⊥¼  0⊥

¼ P exp

�
−igs

Z z−
2

−z−
2

dy−Aþð0þ; y−;  0⊥Þ
�

ð2Þ

ensures the color gauge invariance of the operator, where P
indicates path-ordering and gs the strong coupling constant.
The incoming (outgoing) hadron state in (1) is characterized
by the 4-momentum pðp0Þ and the helicity λðλ0Þ. Frequently
used kinematical variables in the context of such off-forward
matrix elements are

P ¼ 1

2
ðpþ p0Þ; Δ ¼ p0 − p; t ¼ Δ2;

ξ ¼ p0þ − pþ

p0þ þ pþ ¼ −
Δþ

2Pþ : ð3Þ

For the skewness variable one typically considers ξ ≥ 0,
because ξ is non-negative for every known physical process
that allows access to the GPDs. Therefore we also limit
our discussion to ξ ≥ 0. We work in a symmetric frame of
reference where  P⊥ ¼ 0. Also, we take P3 > 0 and large.
The variable t is related to ξ and  Δ⊥ through

t ¼ −
1

1 − ξ2
ð4ξ2M2 þ  Δ2⊥Þ; ð4Þ

where M is the nucleon mass. Equation (1) represents a
leading-twist matrix element if Γ contains one plus-index.
The corresponding (eight) quark GPDs are then defined via
(see for instance Refs. [100,109])

1For a generic four-vector v we denote the Minkowski
components by ðv0; v1; v2; v3Þ and the light-cone components
by ðvþ; v−;  v⊥Þ, with vþ ¼ 1ffiffi

2
p ðv0 þ v3Þ, v− ¼ 1ffiffi

2
p ðv0 − v3Þ and

 v⊥ ¼ ðv1; v2Þ.
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F½γþ�ðx;Δ; λ; λ0Þ ¼ 1

2Pþ ūðp0; λ0Þ
�
γþHðx; ξ; tÞ þ iσþμΔμ

2M
Eðx; ξ; tÞ

�
uðp; λÞ; ð5Þ

F½γþγ5�ðx;Δ; λ; λ0Þ ¼ 1

2Pþ ūðp0; λ0Þ
�
γþγ5H̃ðx; ξ; tÞ þ Δþγ5

2M
Ẽðx; ξ; tÞ

�
uðp; λÞ; ð6Þ

F½iσjþγ5�ðx;Δ; λ; λ0Þ ¼ −
iε−þij

2Pþ ūðp0; λ0Þ
�
iσþiHTðx; ξ; tÞ þ

γþΔi⊥ − Δþγi⊥
2M

ETðx; ξ; tÞ

þ PþΔi⊥
M2

H̃Tðx; ξ; tÞ −
Pþγi⊥
M

ẼTðx; ξ; tÞ
�
uðp; λÞ; ð7Þ

where uðp; λÞ (ūðp0; λ0Þ) is the helicity spinor for the
incoming (outgoing) hadron and σμν ¼ i

2
ðγμγν − γνγμÞ.

We adopt the convention of ε0123 ¼ 1. The quarks are
unpolarized in the case of the vector GPDs H and E,
longitudinally polarized for H̃ and Ẽ, and transversely
polarized for HT, ET , H̃T and ẼT . In Eq. (7), because of
the relation iσμνγ5 ¼ − 1

2
ϵμναβσαβ, one may also work with

the matrix iσjþ (instead of iσjþγ5) to define chiral-odd quark
GPDs. A generic GPD depends upon the average longi-
tudinal momentum fraction x ¼ kþ

Pþ, as well as ξ and t. By
means of Eq. (4) one can consider standard GPDs as
function of x, ξ and  Δ⊥. We in fact use these variables
for the numerical evaluations of the GPDs later on. We recall
in passing that the support region for the standard GPDs is
given by the range −1 ≤ x ≤ 1.
Quasi-GPDs, on the other hand, are defined through an

equal-time spatial correlation function [3],

F½Γ�
Q ðx;Δ;λ;λ0;P3Þ¼1

2

Z
dz3

2π
eik·zhp0;λ0jψ̄

�
−
z
2

�
Γ

×WQ

�
−
z
2
;
z
2

�
ψ

�
z
2

�
jp;λijz0¼0;  z⊥¼  0⊥ ;

ð8Þ

where the Wilson line is given by,

WQ

�
−
z
2
;
z
2

�����
z0¼0;  z⊥¼  0⊥

¼ P exp

�
−igs

Z z3
2

−z3
2

dy3A3ð0;  0⊥; y3Þ
�
: ð9Þ

For a given standard GPD, we consider two distinct
definitions of its corresponding quasi-GPD. The counter-
parts of Eqs. (5), (6) and (7) are

F½γ0�ðx;Δ; λ; λ0;P3Þ ¼ 1

2P0
ūðp0; λ0Þ

�
γ0HQð0Þðx; ξ; t;P3Þ þ iσ0μΔμ

2M
EQð0Þðx; ξ; t;P3Þ

�
uðp; λÞ; ð10Þ

F½γ3γ5�ðx;Δ; λ; λ0;P3Þ ¼ 1

2P0
ūðp0; λ0Þ

�
γ3γ5H̃Qð3Þðx; ξ; t;P3Þ þ Δ3γ5

2M
ẼQð3Þðx; ξ; t;P3Þ

�
uðp; λÞ; ð11Þ

F½iσj0γ5�ðx;Δ; λ; λ0;P3Þ ¼ −
iε03ij

2P0
ūðp0; λ0Þ

�
iσ3iHT;Qð0Þðx; ξ; t;P3Þ þ γ3Δi⊥ − Δ3γi⊥

2M
ET;Qð0Þðx; ξ; t;P3Þ

þ P3Δi⊥
M2

H̃T;Qð0Þðx; ξ; t;P3Þ − P3γi⊥
M

ẼT;Qð0Þðx; ξ; t;P3Þ
�
uðp; λÞ: ð12Þ

One can define HQð3Þ and EQð3Þ through Eq. (10) using the
replacement 0 → 3 (see also Ref. [90]), while H̃Qð0Þ and
ẼQð0Þ are defined through Eq. (11) with 0 ↔ 3. The chiral-
odd quasi-GPDs HT;Qð3Þ, ET;Qð3Þ, H̃T;Qð3Þ, and ẼT;Qð3Þ are
defined through Eq. (12) with 0 → 3, with the exception
that ε03ij should be left as is. The factor 1

P0 on the right-hand

side (rhs) of (11) (which appears counterintuitive due to the
γ3γ5 projection) is necessary to be consistent with the
definition of the corresponding helicity quasi-PDF, such
that the definitions of all (sixteen) quasi-GPDs are con-
sistent with the corresponding forward limits. It has been
argued that the gamma matrices used in (10), (11) and (12)
provide optimal behavior of the associated operators under
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renormalization [23,44]. By taking the forward limit of
Eqs. (10)–(12) one recovers the so far most frequently used
definitions of the quasi-PDFs f1;Qð0Þ, g1;Qð3Þ and h1;Qð0Þ. In
Sec. VI below we will return to this point.
We now briefly discuss the behavior of GPDs under the

replacement ξ → −ξ. Hermiticity implies that all standard
GPDs but ẼT are even functions of ξ, while ẼT is an
odd function of ξ [100,109]. We find the exact same
(model-independent) behavior for the corresponding
quasi-GPDs. Exploiting the symmetry of quasi-GPDs
under ξ → −ξ may provide more statistics for lattice
calculations.
Apart from the dependence on ξ and t, quasi-GPDs are

functions of x ¼ k3

P3. The latter variable is of course different

from the average plus-momentum kþ
Pþ that appears for

standard GPDs, and it is not possible to relate these two
momentum fractions in a model-independent manner.
In Sec. IV B we study the impact of their difference in
the cut-graph approach in the diquark spectator model.
Note that the support region for the quasi-GPDs is given by

−∞ < x < ∞. For the calculations we also need the
relation P0 ¼ δP3 where

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2 − t=4

ðP3Þ2

s
: ð13Þ

Below we frequently make use of the variable δ. Moreover,
P · Δ ¼ 0, from which one obtains Δ0 ¼ −2ξP3.

III. ANALYTICAL RESULTS IN SCALAR
DIQUARK MODEL

In this section we present the analytical results in the
SDM. Details about this model can be found in Ref. [90]
and references therein.

A. Results for standard GPDs

We begin with the results for the standard GPDs. To the
lowest nontrivial order in the SDM, the correlator in (1)
takes the form

F½Γ�ðx;Δ; λ; λ0Þ ¼ ig2

2ð2πÞ4
Z

dk−d2  k⊥
ūðp0; λ0Þð=kþ Δ

2
þmqÞΓð=k − Δ

2
þmqÞuðp; λÞ

DGPD
; ð14Þ

where g denotes the strength of the nucleon-quark-diquark
vertex, and

DGPD ¼
��

kþ Δ
2

�
2

−m2
q þ iε

���
k −

Δ
2

�
2

−m2
q þ iε

�
× ½ðP − kÞ2 −m2

s þ iε�: ð15Þ

In order to obtain the standard GPDs we have used Gordon
identities and evaluated the k−-integral by contour integra-
tion. The result for the GPD H can be cast in the form

Hðx;ξ;tÞ¼

8>>><
>>>:

0 −1≤x≤−ξ;
g2ðxþξÞð1þξÞð1−ξ2Þ

4ð2πÞ3
R
d2  k⊥ NH

D1D
−ξ≤x≤ξ
2

−ξ≤x≤ ξ;

g2ð1−xÞð1−ξ2Þ
2ð2πÞ3

R
d2  k⊥ NH

D1D
x≥ξ
2

x≥ ξ;

ð16Þ

and corresponding expressions hold for the other GPDs.
The following is a compilation of the numerators of all the
leading-twist standard GPDs in the SDM:

NH ¼  k2⊥ þ ðmq þ xMÞ2 þ ð1 − xÞ2 t
4
− ð1 − xÞξt

 k⊥ ·  Δ⊥
 Δ2⊥

;

ð17Þ

NE ¼ 2ð1 − xÞM
�
mq þ

�
xþ 2ξ

 k⊥ ·  Δ⊥
 Δ2⊥

�
M

�
; ð18Þ

NH̃ ¼ −  k2⊥ þ ðmq þ xMÞ2 − ð1 − xÞ2 t
4

þ ξ½4Mðmq þ xMÞ þ ð1 − xÞt�
 k⊥ ·  Δ⊥
 Δ2⊥

; ð19Þ

ξNẼ ¼ 2M

�
ð1 − xÞξðmq þMÞ þ 2½ð1 − ξ2Þmq

þ ðx − ξ2ÞM�
 k⊥ ·  Δ⊥
 Δ2⊥

�
; ð20Þ

NHT
¼  k2⊥ − 2

ð  k⊥ ·  Δ⊥Þ2
 Δ2⊥

þ ðmq þ xMÞ2 − ð1 − xÞ2 t
4

þ ξ½4Mðmq þ xMÞ þ ð1 − xÞt�
 k⊥ ·  Δ⊥
 Δ2⊥

; ð21Þ

NET
¼ 2M

�
4M

 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2
ð  Δ2⊥Þ2

þ
�
1 − x − 2ξ

 k⊥ ·  Δ⊥
 Δ2⊥

�
ðmq þMÞ

�
; ð22Þ
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NH̃T
¼ −M2

�
4ð1 − ξ2Þ

 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2
ð  Δ2⊥Þ2

þ ð1 − xÞ
�
1 − x − 4ξ

 k⊥ ·  Δ⊥
 Δ2⊥

��
; ð23Þ

NẼT
¼ 4M

�
2ξM

 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2
ð  Δ2⊥Þ2

− ðmq þ xMÞ
 k⊥ ·  Δ⊥
 Δ2⊥

�
: ð24Þ

The denominators in (16) are given by

D1 ¼ ð1þ ξÞ2  k2⊥ þ 1

4
ð1 − xÞ2  Δ2⊥

− ð1 − xÞð1þ ξÞ  k⊥ ·  Δ⊥ þ ð1 − xÞð1þ ξÞm2
q

þ ðxþ ξÞð1þ ξÞm2
s − ð1 − xÞðxþ ξÞM2;

D−ξ≤x≤ξ
2 ¼ ξð1 − ξ2Þ  k2⊥ þ 1

4
ð1 − x2Þξ  Δ2⊥

þ xð1 − ξ2Þ  k⊥ ·  Δ⊥ þ ξð1 − ξ2Þm2
q

− ξðx2 − ξ2ÞM2;

Dx≥ξ
2 ¼ ð1 − ξÞ2  k2⊥ þ 1

4
ð1 − xÞ2  Δ2⊥

þ ð1 − xÞð1 − ξÞ  k⊥ ·  Δ⊥ þ ð1 − xÞð1 − ξÞm2
q

þ ðx − ξÞð1 − ξÞm2
s − ð1 − xÞðx − ξÞM2: ð25Þ

In the above equations we have used the quark mass mq
and the diquark mass ms. The standard GPDs in the SDM
can also be extracted from the results for the generalized
transverse momentum dependent parton distributions
listed in Ref. [110]. We reckoned full consistency
between the results. The standard GPDs vanish for
−1 ≤ x ≤ −ξ due to the absence of antiquarks to
Oðg2Þ in the SDM. We emphasize that the positions of
the k−-poles in (15) depend on x. This leads to different
analytical expressions for the standard GPDs in the
ERBL and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) regions. The GPDs remain continuous at the
boundaries x ¼ �ξ between these regions (see also
Ref. [90]), though their derivatives are discontinuous.
Note also that spectator models typically lead to discon-
tinuous higher-twist GPDs [111,112].
The GPD Ẽ exhibits a singularity as ξ → 0 which is why

we show ξẼ in Eq. (20) and later on for the numerics. For
the chiral-odd GPDs, one has integrals of the typeR
d2  k⊥ki⊥k

j
⊥… ¼ Aδij⊥ þ BΔi⊥Δ

j
⊥. Such integrals give rise

to terms like
 k2⊥  Δ2⊥−2ð  k⊥·  Δ⊥Þ2

ð  Δ2⊥Þ2
as can be seen in Eqs. (21)–(24).

Our model results must satisfy the symmetry behavior
under the replacement ξ → −ξ discussed in Sec. II above.
In order to verify that the results pass this test, it is
necessary to replace the integration variable  k⊥ with −  k⊥.
One then finds that the numerators in Eqs. (17)–(24) are
indeed even under ξ → −ξ except the one for ẼT, which is
odd under this transformation. The analysis of the denom-
inators requires more care. In order to locate the position of
the poles in the complex k−-plane, and hence to arrive at the
above expressions of the standard GPDs, we have consid-
ered ξ > 0. Keeping this in mind, one can verify that
ξ → −ξ switches the position of the poles of the quark
propagators only such that the denominators in the ERBL
and DGLAP regions are even in ξ. We also note that
our analytical results for the quasi-GPDs below show the
exact same behavior under ξ → −ξ as the respective
standard GPDs.
In the SDM to Oðg2Þ, all the leading-twist standard

GPDs are UV-finite, except H and H̃. (We consider the fact
that the chiral-odd GPD HT is UV-finite to be an artifact
of the SDM. In the quark-target model in perturbative
QCD this function shows the well-known UV-divergence
[107,109].) For the numerics we impose a cutoff on the
transverse quark momenta on all the standard GPDs as well
as the (UV-finite) quasi-GPDs.

B. Results for quasi-GPDs

The quasi-GPD correlator in Eq. (8) in the SDM reads

F½Γ�
Q ðx;Δ; λ; λ0;P3Þ ¼ ig2

2ð2πÞ4
Z

dk0d2  k⊥
ūðp0; λ0Þð=kþ =Δ

2
þmqÞΓð=k − =Δ

2
þmqÞuðp; λÞ

DGPD
: ð26Þ

We again have used Gordon identities to obtain the quasi-GPDs. Before carrying out the k0-integral one has

HQð0=3Þðx; ξ; t;P3Þ ¼ ig2P3

ð2πÞ4
Z

dk0d2  k⊥
NHð0=3Þ
DGPD

; ð27Þ

and corresponding expressions for the other quasi-GPDs. For completeness we first quote the numerators for the
unpolarized quasi-GPDs, HQð0=3Þ and EQð0=3Þ, from our previous work [90]:
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NHð0Þ ¼ δðk0Þ2 − 2

P3

�
xðP3Þ2 −mqM − x

t
4
−
1

2
δξt

 k⊥ ·  Δ⊥
 Δ2⊥

�
k0 þ δ

�
x2ðP3Þ2 þ  k2⊥ þm2

q þ ð1 − 2xÞ t
4
− δξt

 k⊥ ·  Δ⊥
 Δ2⊥

�
;

ð28Þ

NHð3Þ ¼ −ðk0Þ2 þ 2

δP3

�
xððP3Þ2 þM2Þ − t

4

�
k0 − x2ðP3Þ2 þ  k2⊥ þmqðmq þ 2xMÞ þ t

4
− ð1 − xÞ ξt

δ

 k⊥ ·  Δ⊥
 Δ2⊥

; ð29Þ

NEð0Þ ¼ −2Mδ

�
mq þ xM þ 2Mδξ

 k⊥ ·  Δ⊥
 Δ2⊥

��
k0

δP3
− 1

�
; ð30Þ

NEð3Þ ¼ 2ð1 − xÞM
�

M
δP3

k0 þmq þ 2
Mξ

δ

 k⊥ ·  Δ⊥
 Δ2⊥

�
: ð31Þ

We now turn to the new results by first considering the case of longitudinal quark polarization, that is, the quasi-GPDs
H̃Qð0=3Þ and ẼQð0=3Þ. They read

NH̃ð0Þ ¼ −ðk0Þ2 þ 2k0
�
xδP3 − 2ξ

 k⊥ ·  Δ⊥
 Δ2⊥

ð1 − δ2ÞP3

�
−  k2⊥ −

t
4
− x2ðP3Þ2 þ 2xð1 − δ2ÞðP3Þ2

þ 2xMðmq þMÞ þm2
q þ 4δξ

 k⊥ ·  Δ⊥
 Δ2⊥

½ð1 − δ2ÞðP3Þ2 þMðmq þMÞ�; ð32Þ

NH̃ð3Þ ¼ δðk0Þ2 þ 2
k0

P3
½ð1 − x − δ2ÞðP3Þ2 þMðmq þMÞ� þ δ

�
−  k2⊥ −

t
4
þ x2ðP3Þ2 þm2

q

�

þ 4ξ
 k⊥ ·  Δ⊥
 Δ2⊥

½ð1 − xÞð1 − δ2ÞðP3Þ2 þMðmq þMÞ�; ð33Þ

ξNẼð0Þ ¼ 4k0M2
1

P3

 k⊥ ·  Δ⊥
 Δ2⊥

þ 2Mξð1 − xÞðmq þMÞ − 4δM
 k⊥ ·  Δ⊥
 Δ2⊥

½Mξ2 −mqð1 − ξ2Þ�; ð34Þ

ξNẼð3Þ ¼ −2k0
ξ

P3
Mðmq þMÞ þ 2δξMðmq þMÞ − 4M

 k⊥ ·  Δ⊥
 Δ2⊥

½Mðξ2 − xÞ −mqð1 − ξ2Þ�: ð35Þ

Note that the quasi-GPDs ẼQð0=3Þ have a pole at ξ ¼ 0, just like their light-cone counterpart. We next list the numerators of
the quasi-GPDs that appear for transverse quark polarization:

NHTð0Þ ¼ δðk0Þ2 − k0

P3

�  Δ2⊥
2

− 2mqM þ ð2x − 2ξ2ð1 − δ2ÞÞðP3Þ2
�
þ δ

�
 k2⊥ − 2

ð  k⊥ ·  Δ⊥Þ2
 Δ2⊥

þ
 Δ2⊥
4

þm2
q

�

þ δ½x2 − ξ2ð1 − δ2Þ�ðP3Þ2 − 4ξ
 k⊥ ·  Δ⊥
 Δ2⊥

�
ðx − ξ2Þð1 − δ2ÞðP3Þ2 −mqM þ

 Δ2⊥
4

�
; ð36Þ

NHTð3Þ ¼ −ðk0Þ2 − 2k0
�
2ξð1 − δ2ÞP3

 k⊥ ·  Δ⊥
Δ2⊥

− xδP3

�
þ  k2⊥ − 2

ð  k⊥ ·  Δ⊥Þ2
 Δ2⊥

þ ð1 − 2xÞ
 Δ2⊥
4

þm2
q þ 2xmqM

− ðP3Þ2½x2 þ ð1 − 2xÞξ2ð1 − δ2Þ� − 4δξ
 k⊥ ·  Δ⊥
Δ2⊥

�  Δ2⊥
4

−mqM − ξ2ð1 − δ2ÞðP3Þ2
�
; ð37Þ

NH̃T ð0Þ ¼ δNH̃T ð3Þ; ð38Þ
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NH̃Tð3Þ ¼ −4M2ð1 − ξ2Þ
 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2

ð  Δ2⊥Þ2
−

k0

δP3

�
2δξ

 k⊥ ·  Δ⊥
 Δ2⊥

− ð1 − xÞ
�
M2

þ 2
ξ

δ

 k⊥ ·  Δ⊥
 Δ2⊥

½ð1 − xÞ þ δ2�M2 − ð1 − xÞM2; ð39Þ

NETð0Þ ¼ 8δM2
 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2

ð  Δ2⊥Þ2
− 2δMðmq þMÞ

�
k0

δP3
− 1

�
− 4ξMðmq þMÞ

 k⊥ ·  Δ⊥
 Δ2⊥

; ð40Þ

NET ð3Þ ¼ 8M2
 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2

ð  Δ2⊥Þ2
þ 2ð1 − xÞMðmq þMÞ − 4δξMðmq þMÞ

 k⊥ ·  Δ⊥
 Δ2⊥

; ð41Þ

NẼTð0Þ ¼ 8δ2ξM2
 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2

ð  Δ2⊥Þ2
− 4δMðmq þ xMÞ

 k⊥ ·  Δ⊥
 Δ2⊥

; ð42Þ

NẼT ð3Þ ¼ 8
ξ

δ
M2

 k2⊥  Δ2⊥ − 2ð  k⊥ ·  Δ⊥Þ2
ð  Δ2⊥Þ2

− 4M

�
mq þ

k0

δP3
M

�  k⊥ ·  Δ⊥
 Δ2⊥

: ð43Þ

The quasi-GPDs H̃T;Qð0Þ and H̃T;Qð3Þ corresponding to two different Dirac structures are related through Eq. (38). This is the
only quasi-GPD whose two different projections have such a simple relation. We repeat that all quasi-GPDs have support in
the range −∞ < x < ∞. However, for large P3 they are all power-suppressed outside the region −ξ ≤ x ≤ 1. We also
observe that the numerators of the quasi-GPDs ET;Qð3Þ and ẼT;Qð0Þ are the only ones that do not depend on k0.
The denominator DGPD can be written as

DGPD ¼ ðk0 − k01þÞðk0 − k01−Þðk0 − k02þÞðk0 − k02−Þðk0 − k03þÞðk0 − k03−Þ; ð44Þ

where the poles from the quark propagators, with 4-momenta ðk − Δ
2
Þ and ðkþ Δ

2
Þ, and from the spectator propagator are

given by

k01� ¼ −ξP3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ δξÞ2ðP3Þ2 þ

�
 k⊥ −

 Δ⊥
2

�
2

þm2
q − iε

s
; ð45Þ

k02� ¼ ξP3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − δξÞ2ðP3Þ2 þ

�
 k⊥ þ

 Δ⊥
2

�
2

þm2
q − iε

s
; ð46Þ

k03� ¼ δP3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ2ðP3Þ2 þ  k2⊥ þm2

s − iε
q

: ð47Þ

It is important to realize that, while the position of the poles depends on x, they never switch half planes. Specifically, k01−,
k02− and k03− always lie in the upper half plane, while the other three poles lie in the lower half plane. After performing the k0-
integral, one therefore has the same functional form for the quasi-GPDs for any x, which implies that all quasi-GPDs are
continuous as a function of x—in this context, see also Ref. [90].

C. Recovering standard GPDs from quasi-GPDs

We have checked that for P3 → ∞ the analytical results of all quasi-GPDs reduce to the ones of the respective standard
GPDs. Here we provide the most important steps involved in this test. We start with the poles of the propagators, which can
be expanded as

k01þ ¼
(
xP3 þ 1

2ðxþξÞP3 ½  k2⊥ −  k⊥ ·  Δ⊥ − t
4
ðxξþ 1Þ þm2

q þ xξM2 − iε� þO
�

1
ðP3Þ2

	
x ≥ −ξ;

−ðxþ 2ξÞP3 − 1
2ðxþξÞP3 ½  k2⊥ −  k⊥ ·  Δ⊥ − t

4
ðxξþ 1Þ þm2

q þ xξM2 − iε� þO
�

1
ðP3Þ2

	
x ≤ −ξ;

ð48Þ

EXPLORING TWIST-2 GPDS THROUGH QUASIDISTRIBUTIONS … PHYS. REV. D 102, 054021 (2020)

054021-7



k01− ¼
8<
:

−ðxþ 2ξÞP3 − 1
2ðxþξÞP3

h
 k2⊥ −  k⊥ ·  Δ⊥ − t

4
ðxξþ 1Þ þm2

q þ xξM2 − iε
i
þO

�
1

ðP3Þ2
	

x ≥ −ξ;

xP3 þ 1
2ðxþξÞP3

h
 k2⊥ −  k⊥ ·  Δ⊥ − t

4
ðxξþ 1Þ þm2

q þ xξM2 − iε
i
þO

�
1

ðP3Þ2
	

x ≤ −ξ;
ð49Þ

k02þ ¼
8<
:

xP3 þ 1
2ðx−ξÞP3

h
 k2⊥ þ  k⊥ ·  Δ⊥ þ t

4
ðxξ − 1Þ þm2

q − xξM2 − iε
i
þO

�
1

ðP3Þ2
	

x ≥ ξ;

−ðx − 2ξÞP3 þ 1
2ðξ−xÞP3

h
 k2⊥ þ  k⊥ ·  Δ⊥ þ t

4
ðxξ − 1Þ þm2

q − xξM2 − iε
i
þO

�
1

ðP3Þ2
	

x ≤ ξ;
ð50Þ

k02− ¼
8<
:

−ðx − 2ξÞP3 − 1
2ðx−ξÞP3

h
 k2⊥ þ  k⊥ ·  Δ⊥ þ t

4
ðxξ − 1Þ þm2

q − xξM2 − iε
i
þO

�
1

ðP3Þ2
	

x ≥ ξ;

xP3 − 1
2ðξ−xÞP3

h
 k2⊥ þ  k⊥ ·  Δ⊥ þ t

4
ðxξ − 1Þ þm2

q − xξM2 − iε
i
þO

�
1

ðP3Þ2
	

x ≤ ξ;
ð51Þ

k03þ ¼
8<
:

xP3 þ 1
2ðx−1ÞP3

h
 k2⊥ þ t

4
ð1 − xÞ − ð1 − xÞM2 þm2

s − iε
i
þO

�
1

ðP3Þ2
	

x ≥ 1;

−ðx − 2ÞP3 þ 1
2ð1−xÞP3

h
 k2⊥ − t

4
ð1 − xÞ þ ð1 − xÞM2 þm2

s − iε
i
þO

�
1

ðP3Þ2
	

x ≤ 1;
ð52Þ

k03− ¼
8<
:

−ðx − 2ÞP3 þ 1
2ðx−1ÞP3

h
−  k2⊥ þ t

4
ð1 − xÞ − ð1 − xÞM2 −m2

s þ iε
i
þO

�
1

ðP3Þ2
	

x ≥ 1

xP3 þ 1
2ð1−xÞP3

h
−  k2⊥ − t

4
ð1 − xÞ þ ð1 − xÞM2 −m2

s þ iε
i
þO

�
1

ðP3Þ2
	

x ≤ 1:
ð53Þ

It is evident from these equations that the analytical expressions of the expansions of the poles depend on x, but the poles
always lie in the same half plane, as already discussed above.
In the following we focus on the quasi-GPDHQð0Þ. We first note that the dominant contribution is from those residues for

which the leading order term is xP3. Specifically, for the other residues the numerator ofHQð0Þ has a leading contribution of
order ðP3Þ3, while the leading contribution of the denominator is of order ðP3Þ5, resulting in an overall suppression like
1=ðP3Þ2. For x ≤ −ξ we close the integration contour in the lower half plane. Then none of the poles have xP3 as leading
term, which then leads to a power-suppressed contribution. A corresponding discussion applies for x ≥ 1 if one closes the
integration contour in the upper half plane.
For the DGLAP region (x ≥ ξ), we close the integration contour in the upper half plane. Then the dominant contribution

comes from the residue at the pole k03−. Therefore in that region

lim
P3→∞

HQð0Þ ¼ − lim
P3→∞

g2P3

ð2πÞ3
Z

d2  k⊥
NHð0Þðk03−Þ

ðk03− − k01þÞðk03− − k01−Þðk03− − k02þÞðk03− − k02−Þðk03− − k03þÞ
: ð54Þ

We first determine the leading term of the numerator in (54) which is given by

NHð0Þðk03−Þ ¼ δðk03−Þ2 − 2
k03−
P3

�
xðP3Þ2 −mqM − x

t
4
−
δξt
2

 k⊥ ·  Δ⊥
 Δ2⊥

�
þ δ

�
x2ðP3Þ2 þ  k2⊥ þm2

q þ ð1 − 2xÞ t
4
− δξt

 k⊥ ·  Δ⊥
 Δ2⊥

�
:

ð55Þ

Then using

δðk03−Þ2 ¼
�
1þM2 − t

4

2ðP3Þ2
�
× x2ðP3Þ2

�
1 −

 k2⊥ þ t
4
ð1 − xÞ − ð1 − xÞM2 þm2

s

2xð1 − xÞðP3Þ2
�

2

þ…

¼ x2ðP3Þ2 þ 1

2
x2
�
M2 −

t
4

�
−

x
ð1 − xÞ

�
 k2⊥ þ t

4
ð1 − xÞ − ð1 − xÞM2 þm2

s

�
þ…; ð56Þ

where … indicates suppressed terms, and
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2
k03−
P3

≈ 2xþ 1

ð1 − xÞðP3Þ2
�
 k2⊥ þ t

4
ð1 − xÞ − ð1 − xÞM2 þm2

s

�
þ…; ð57Þ

provides

NHð0Þðk03−Þ ¼ x2ðP3Þ2 þ 1

2
x2
�
M2 −

t
4

�
−

x
ð1 − xÞ

�
 k2⊥ þ t

4
ð1 − xÞ − ð1 − xÞM2 þm2

s

�

− 2x2ðP3Þ2 þ x
ð1 − xÞ

�
 k2⊥ þ t

4
ð1 − xÞ − ð1 − xÞM2 þm2

s

�
þ 2x

�
mqM þ x

t
4

�
þ xξt

 k⊥ ·  Δ⊥
 Δ2⊥

þ x2ðP3Þ2 þ 1

2
x2
�
M2 −

t
4

�
þ  k2⊥ þm2

q þ ð1 − 2xÞ t
4
− ξt

 k⊥ ·  Δ⊥
 Δ2⊥

þ…

¼ NH þ…: ð58Þ

On the other hand, the denominator in (54) simplifies as

ðk03− − k01þÞðk03− − k01−Þðk03− − k02þÞðk03− − k02−Þðk03− − k03þÞ ¼ −8ðP3Þ3ðx2 − ξ2Þð1 − xÞðk03− − k01þÞðk03− − k02þÞ þ…

¼ −
2P3

ð1 − xÞð1 − ξ2ÞD1D
x≥ξ
2 þ…: ð59Þ

Using Eqs. (58) and (59) in Eq. (54), one readily confirms

lim
P3→∞

HQð0Þ ¼
g2ð1 − xÞð1 − ξ2Þ

2ð2πÞ3
Z

d2  k⊥
NH

D1D
x≥ξ
2

¼ H: ð60Þ

The overall logic to analytically recover H in the ERBL region (−ξ ≤ x ≤ ξ) remains the same as discussed above. In this
case it is convenient to close the integration contour in the lower half plane, so that the dominant contribution comes from
the residue at k01þ only. With a very similar analysis we have shown that all the quasi-GPDs reduce to the corresponding
standard GPDs in the large-P3 limit.

D. Results for quasi-PDFs

Starting from the expressions of the standard GPDs and taking Δ ¼ 0 (which implies ξ ¼ t ¼ 0), one obtains the
following expressions for the standard PDFs:

f1ðxÞ ¼ Hðx; 0; 0Þ ¼ g2ð1 − xÞ
2ð2πÞ3

Z
d2  k⊥

 k2⊥ þ ðmq þ xMÞ2
½  k2⊥ þ xm2

s þ ð1 − xÞm2
q − xð1 − xÞM2�2

; ð61Þ

g1ðxÞ ¼ H̃ðx; 0; 0Þ ¼ g2ð1 − xÞ
2ð2πÞ3

Z
d2  k⊥

−  k2⊥ þ ðmq þ xMÞ2
½  k2⊥ þ xm2

s þ ð1 − xÞm2
q − xð1 − xÞM2�2

; ð62Þ

h1ðxÞ ¼ HTðx; 0; 0Þ ¼
g2ð1 − xÞ
2ð2πÞ3

Z
d2  k⊥

ðmq þ xMÞ2
½  k2⊥ þ xm2

s þ ð1 − xÞm2
q − xð1 − xÞM2�2

: ð63Þ

Only three GPDs survive in this limit—E, Ẽ, ET and H̃T vanish becauseΔ appears in their prefactor in the parametrizations
in (5), (6) and (7), while ẼT drops out since ū0γiTu vanishes in the forward limit. The GPDH reduces to the unpolarized PDF
f1, whereas H̃ reduces to the helicity PDF g1, and HT to the transversity PDF h1. Our results for the forward PDFs agree
with the ones published in Ref. [109]. In general, like for standard GPDs, the region of support for PDFs is −1 ≤ x ≤ 1. In
the SDM to Oðg2Þ, they also vanish for −1 ≤ x < 0. Below we give a separate discussion for the point x ¼ 0, where the
forward PDFs in the SDM are discontinuous.
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For the quasi-PDFs one has

f1;Qð0=3Þðx;P3Þ ¼ ig2P3

ð2πÞ4
Z

dk0d2  k⊥
Nf1ð0=3Þ
DPDF

; ð64Þ

and corresponding expressions for the other quasi-PDFs.
The numerators are given by

Nf1ð0Þ ¼ δ0ðk0Þ2 −
2k0

P3
ðxðP3Þ2 −mqMÞ

þ δ0ð  k2⊥ þ x2ðP3Þ2 þm2
qÞ; ð65Þ

Nf1ð3Þ ¼ −ðk0Þ2 þ k0ð2xδ0P3Þ þ  k2⊥ − x2ðP3Þ2
þmqðmq þ 2xMÞ; ð66Þ

Ng1ð0Þ ¼ −ðk0Þ2 þ k0ð2xδ0P3Þ −  k2⊥ − x2ðP3Þ2
þmqðmq þ 2xMÞ; ð67Þ

Ng1ð3Þ ¼ δ0ðk0Þ2 −
2k0

P3
ðxðP3Þ2 −mqMÞ

þ δ0ð−  k2⊥ þ x2ðP3Þ2 þm2
qÞ; ð68Þ

Nh1ð0Þ ¼ δ0ðk0Þ2 −
2k0

P3
ðxðP3Þ2 −mqMÞ

þ δ0ðx2ðP3Þ2 þm2
qÞ; ð69Þ

Nh1ð3Þ ¼ −ðk0Þ2 þ k0ð2xδ0P3Þ − x2ðP3Þ2
þmqðmq þ 2xMÞ; ð70Þ

and the denominator reads

DPDF ¼ ½k2 −m2
q þ iε�2½ðP − kÞ2 −m2

s þ iε�: ð71Þ

The results for the quasi-PDFs follow directly from the
ones for the quasi-GPDs. In Eqs. (65)–(70) we have used
δ0 ¼ δðt ¼ 0Þ. Like for quasi-GPDs, the support range of
quasi-PDFs is −∞ < x < ∞. The process of analytically
recovering standard PDFs from the corresponding quasi-
PDFs has been discussed in Ref. [90]. Results for the quasi-
PDFs associated with the gamma matrices γ3=γ3γ5=iσj3γ5
were already presented in [83], but in the so-called cut-
graph approximation. In Ref. [90], we have discussed the
differences of that approach compared to a full calculation
that includes all contributions. Note that we have calculated
all the forward distributions independently using a trace
technique, and have found complete agreement with the
results obtained from the quasi-GPDs.

E. The point x= 0 for standard PDFs
and quasi-PDFs

In the SDM all three standard PDFs are discontinuous at
x ¼ 0. (We have argued in Ref. [90] that for f1 this

discontinuity may not be an artifact of the model.)
Specifically, in the case of f1 one has

lim
ε→0

f1ð−εÞ ¼ 0; lim
ε→0

f1ðεÞ ¼
g2

2ð2πÞ3
Z

d2  k⊥
1

ð  k2⊥ þm2
qÞ
:

ð72Þ

Also, for x ¼ 0 the contour integration that can be used for
any other value of x does not work. Two questions arise at
this point. Can one still assign an unambiguous value to the
standard PDFs for x ¼ 0? And, if so, does the correspond-
ing quasi-PDF reproduce that value for P3 → ∞? One
readily verifies that using the well-known identityZ

dk−
1

k− − k−pole þ iε

¼ PV
Z

dk−
1

k− − k−pole
− iπδðk− − k−poleÞ ð73Þ

allows one to compute the standard PDFs for x ¼ 0. In the
case of f1 one finds

f1ðx ¼ 0Þ ¼ g2

4ð2πÞ3
Z

d2  k⊥
1

ð  k2⊥ þm2
qÞ

¼ 1

2
lim
ε→0

ðf1ð−εÞ þ f1ðεÞÞ: ð74Þ

Corresponding equations hold for g1 and h1. We next
investigate if the quasi-PDFs fQð0=3Þ analytically reprodu-
ces the result in Eq. (74). It turns out that this is indeed true,
that is,

lim
P3→∞

f1;Qð0=3Þðx ¼ 0Þ ¼ f1ðx ¼ 0Þ: ð75Þ

The very same conclusion applies to g1 and h1. It is
interesting that the quasi-PDFs reproduce exactly all the
features of the corresponding standard PDFs around the
point where the latter are discontinuous.
Before closing this section, we take up the impact of

including a form factor (rather than a  k⊥ cutoff) on the
discontinuity (continuity) feature exhibited by the standard
PDFs (quasi-PDFs). As an example, we study the impact of
the form factor IðkÞ ¼ k2 −m2

q=ðk2 − Λ2Þ2 on the PDF f1,
as was done in Ref. [113]. By performing the contour
integration and then setting x ¼ 0, we find

f1ð0þÞ ¼
g2

24ð2πÞ2
1

Λ4

�
1þ 2

m2
q

Λ2

�
: ð76Þ

Note that reversing the order of operations—setting x ¼ 0
and then performing the contour integration—provides half
of this result. Regardless, the discontinuity at x ¼ 0 persists
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but decreases as Λ gets larger. Since the continuity property
of the quasi-PDFs is unaffected by the inclusion of such a
multiplicative form factor in our analytical expressions,
discrepancies between standard and quasi-PDFs will still be
prominent in the small x region. Furthermore, in Ref. [83],
a cut-graph model with the same form factor was used to
study the up and down quark distributions in the proton
considering contributions from both scalar and axial-vector
diquarks. Substantial discrepancies were observed between
the quasi and standard distributions at large x values. Since
for not too small x values, calculation of quasi-PDFs
with or without on-shell diquarks does not lead to huge
qualitative differences (see Fig. 5 in Ref. [90]), we
emphasize that considerable differences will persist at large
x in our case as well (where the calculation is performed
with the spectator off-shell). We therefore expect similar
conclusions for the GPDs as well, although one cannot
simply resort to doing calculations for standard and quasi-
GPDs with spectator on-shell (since one needs to pick up a
quark pole to get the ERBL region). To this end, we
emphasize that there is no clear prescription for using form
factors to regulate the UV divergences as the model no
longer follows from a Lagrange density.

IV. NUMERICAL RESULTS IN SCALAR
DIQUARK MODEL

For the numerical analysis we proceed along the lines
of our previous work [90]. For completeness we first repeat
the numerical values of the parameters. We use g ¼ 1 for
the strength of the nucleon-quark-diquark coupling. None
of the general conclusions depend on the precise value
of g. Our “standard values” for the mass parameters are
M ¼ 0.939 GeV, ms ¼ 0.7 GeV and mq ¼ 0.35 GeV.
Elaborating on our choice of parameters, we mention that
our starting point comes from the Ref. [113] where the
value mq ¼ 0.3 GeV was chosen and the value ms ¼
0.822 GeV was found from the phenomenological fits of
Refs. [114,115]. We have therefore chosen values similar to
these, but have adjusted so that the convergence of the quasi
distributions to the standard distributions is maximal. From

Fig. 4 in [90], one can see that the relative difference
between the quasi and standard f1 is quite sensitive to
adjustments in ms. Thus it was important to reduce the
value of ms to ms¼ 0.7 GeV to achieve the best con-
vergence. One can also see that the convergence is barely
affected by changes inmq, so we increase the value ofmq to
mq¼ 0.35 GeV to satisfy ms þmq > M. In short, after
exploring the sensitivity of our results to variations in ms
and mq, we maintain that such a choice of the parameters,
as discussed at length in Ref. [90], is “optimal” with regard
to the question of convergence of the quasidistributions
to their light-cone counterparts. For most of our plots, the
cutoff for the j  k⊥j integration is Λ ¼ 1 GeV, and the
transverse momentum transfer is j  Δ⊥j ¼ 0. We also shall
show some plots and comment extensively on the depend-
ence of the various distributions on Λ and j  Δ⊥j. We begin
with discussing the PDFs.

A. Results for quasi-PDFs

Results for the quasi-PDFs g1;Qð0=3Þ and h1;Qð0=3Þ are
shown in Fig. 1 and Fig. 2, respectively. Comparing these
results with the corresponding plots for f1;Qð0=3Þ in
Ref. [90], one qualitatively observes the same features.
First, for P3 ¼ 2 GeV and above, there is not much
difference between g1;Qð0Þ and g1;Qð3Þ. The same holds in
the case of the quasitransversities. Second, considerable
differences appear between quasi-PDFs and standard PDFs
as x → 0 and x → 1. As discussed in detail in [90], the
discrepancy at small x can be expected since the standard
PDFs are discontinuous at x ¼ 0. The quasi-PDFs are
continuous, but for large P3 must approach the correspond-
ing standard PDF, which automatically results in large
deviations in the region around x ¼ 0. To better illustrate
the discrepancy at large x we consider the relative differ-
ence, which in the case of f1 we define as [90]

Rf1ð0=3Þðx;P3Þ ¼ f1ðxÞ − f1;Qð0=3Þðx;P3Þ
f1ðxÞ

: ð77Þ
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FIG. 1. Quasi-PDF g1;Q as a function of x for different values of P3. Left panel: results for g1;Qð0Þ. Right panel: results for g1;Qð3Þ. The
standard PDF g1 is shown for comparison.
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In Fig. 3, this quantity is shown for the transversity
distributions. Like for f1, at P3 ¼ 2 GeV one can hardly
go above x ¼ 0.8 for the relative difference to stay below
50%. This statement holds true for the helicity distributions
as well. We shed some more light on the large-x discrep-
ancy in Sec. IV B.
We forgo showing plots for the dependence of the PDFs

(and the GPDs) on the mass parameters ms and mq. Our
findings in this context can be summarized as follows. The
impact of changing ms is typically larger. Specifically,
discrepancies get somewhat larger when increasing ms,
especially in the large-x region. This feature is partly
related to the increasing (with ms) difference between
the momentum fractions that enter the standard PDFs
and the quasi-PDFs. We refer to Sec. IV B for further
discussion of this point. Within the range [0.01, 0.35] GeV
which we have explored, we find only a mild dependence
on mq. Analytically, this is caused by the fact that mq is
small compared to the other scales in the problem such as
M, ms, P3, cutoff for k⊥. Transversity is the only exception
with regard to the mq dependence especially in the small-x
region. This can be understood from the analytical result in
Eq. (63). For small x, the quark mass term in the numerator
dominates resulting in a larger sensitivity to mq of this
distribution compared to f1 and g1. The latter distributions

have a  k2⊥ in the numerator—in addition to the ðmq þ xMÞ2
term—which gives rise to the (standard) logarithmic UV-
divergence and, in particular, a very mild dependence
on mq. As already discussed above, the absence of the
UV divergence for the transversity is an artifact of the
model, and therefore so is the stronger dependence of h1 on
mq at small x. For the GPDs we find a very similar overall
pattern upon variation of ms and mq. In the ERBL region
there can be some deviations from this pattern. But the
effects are not very significant, and we therefore refrain
from further elaborating on them.
In Fig. 4, we show the relative difference for f1 for

two values (1 GeV and 4 GeV) of the cutoff Λ for the
k⊥-integration. For x≲ 0.5 the relative difference increases
with an increase of Λ. But at least for f1;Qð3Þ this effect is
mild, given that the two values of Λ are very different. We
find very similar results for the transversity distribution. On
the other hand, for g1 the impact (on the relative difference)
of changing Λ is larger. This applies in particular in the
region around the point at which g1 changes sign—see
Fig. 1. It is obvious from the definition in Eq. (77) that in
such a case the relative difference is not a very good
measure. A very similar situation occurs for GPDs if they
switch sign. Overall, our choice Λ ¼ 1 GeV typically
minimizes the difference between the quasidistributions
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FIG. 3. Relative difference between quasi-PDFs and h1 as a function of x for different values of P3. Left panel: results for Rh1ð0Þ.
Right panel: results for Rh1ð3Þ. The maximum values of x for the curves are chosen such that jRh1j ≤ 4.
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FIG. 2. Quasi-PDF h1;Q as a function of x for different values of P3. Left panel: results for h1;Qð0Þ. Right panel: results for h1;Qð3Þ. The
standard PDF h1 is shown for comparison.

BHATTACHARYA, COCUZZA, and METZ PHYS. REV. D 102, 054021 (2020)

054021-12



and the standard distributions. Also, the fact that some of
the standard distributions have a logarithmic divergence
does not necessarily lead to a much poorer convergence as
Λ increases, unless one considers cutoff values much larger
than 4 GeV. Thus our model can give a faithful description
of these distributions with 1 GeV < Λ < 4 GeV.

B. A particular higher-twist contribution
in the cut-diagram approximation

We repeat that the two momentum fractions kþ
Pþ and k3

P3 are
different and that they cannot be related in a model-
independent way. In this section we denote the latter by
x̃, and study the impact of the difference between x and x̃ in
the (model-dependent) cut-graph approach in the SDM. In
Ref. [90] we found for f1 that numerically, for P3 ≥ 2 GeV
and the range 0 ≤ x ≤ 1, the difference between the cut-
graph approximation and the full calculation in the SDM is
rather small, except in the small-x region. For more
discussion of this approach we refer to [83,90]. In the
cut-graph model one puts the diquark spectator on-shell,
that is, ðP − kÞ2 ¼ m2

s [see Eq. (15)]. One can then derive
the relation

x̃ ¼ x
2
ð1þ δ0Þ þ

 k2⊥ þm2
s − ð1 − xÞM2

2ð1 − xÞð1þ δ0ÞðP3Þ2

¼ xþ 1

4ðP3Þ2
�  k2⊥ þm2

s

1 − x
− ð1 − xÞM2

�
þO

�
1

ðP3Þ4
�
:

ð78Þ

Obviously, the difference between x̃ and x is of order
Oð1=ðP3Þ2Þ and therefore power-suppressed. A numerical
comparison of the two variables can be found in Fig. 5.
Their difference gets larger as ms increases, as can also be
expected based on Eq. (78). Most importantly, due to the
1=ð1 − xÞ factor, one finds x̃ → ∞ as x → 1, which implies
very large differences between the two momentum frac-
tions at large x—see also Ref. [83]. One can therefore
speculate that the considerable discrepancies between the

quasidistributions and the corresponding standard distri-
butions at large x are mostly caused by the (huge)
discrepancy between x̃ and x. In Fig. 6 we explore this
point for f1. The quasi-PDF f1;Qð0Þ indeed provides, at
large x, a better agreement with the standard PDF, while
this is not true for f1;Qð3Þ, unless one goes to extremely large
x. In the case of g1 and h1 (not shown) we find that the
“recipe” of distinguishing between x̃ and x works better
for g1;Qð3Þ and h1;Qð0Þ, respectively. The fact that, overall,
this “recipe” does not lead to a much better agreement
between quasi-PDFs and standard PDFs (at large x) can
be traced back to other higher-twist contributions in the
cut-graph approach that also diverge for x → 1.

C. Results for quasi-GPDs

Details about the numerics for the quasi-GPDs HQ and
EQ can be found in Ref. [90]. Here we therefore mostly
focus on the remaining six quasi-GPDs, which are shown in
Figs. 7–12 for ξ ¼ 0.1. For the skewness variable we have
explored the range 0.01 ≤ ξ ≤ 0.4 and below briefly com-
ment on the ξ-dependence. Like in the case of quasi-PDFs,
for P3 ≳ 2 GeV there is no clear indication as to which
of the two definitions (for each quasi-GPD) one should
prefer. The convergence problem at large x persists for the
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FIG. 5. Momentum fraction x̃ as a function of x as given in
Eq. (78) in cut-graph approach, for different values of ms.
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FIG. 4. Relative difference between quasi-PDFs and f1 as a function of x for different values of the cut-off Λ for the k⊥-integration.
Left panel: results for Rf1ð0Þ. Right panel: results for Rf1ð3Þ.
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quasi-GPDsHQ and EQ [90] and the other six quasi-GPDs.
We emphasize that this outcome is a robust feature of our
model calculation. In lattice calculations, the matching
procedure could potentially improve the situation at large x,
as was observed for the quasi-PDFs [70,71]. It has been
shown that, at one-loop order, a nontrivial matching exists
only for the quasi-GPDs HQ, H̃Q and HT;Q—the ones that
survive in the forward limit [106–108]. It remains to be
seen whether in lattice studies it is more difficult to obtain

good results at large x for the quasi-GPDs that do not
require a nontrivial matching. We also note that, in general,
there is a tendency of the discrepancies at large x to increase
when ξ gets larger. The significance of this feature depends
on the GPD under consideration, and it is most pronounced
for the quasi-GPDs ẼQ and ẼT;Q. This aspect is illustrated
via Fig. 13 which clearly shows an increase in the relative
difference at large x for larger values of ξ for the GPD Ẽ for
instance, compared to the GPD H.

ms=0.7 GeV

mq=0.35 GeV

=0.1

H̃

˜

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

–1.5 –1.0 –0.5 0.5 1.0 1.5
x

–0.005

0.005

0.010

0.015

0.020

0.025

HQ (0)

ms=0.7 GeV

mq=0.35 GeV

=0.1

H̃

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

–1.5 –1.0 –0.5 0.5 1.0 1.5
x

–0.005

0.005

0.010

0.015

0.020

0.025

HQ (3)˜

FIG. 7. Quasi-GPDs H̃Qð0Þ and H̃Qð3Þ as a function of x for ξ ¼ 0.1 and different values of P3. The standard GPD H̃ is shown for
comparison. The limits of the ERBL region are indicated by vertical dashed lines.
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FIG. 8. Quasi-GPDs ξẼQð0Þ and ξẼQð3Þ as a function of x for ξ ¼ 0.1 and different values of P3. The standard GPD ξẼ is shown for
comparison. The limits of the ERBL region are indicated by vertical dashed lines.
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We make a brief passing comment regarding the origin
of sign changes in the x < 0 region depending upon the
use of γ0 vs γ3 operator in the quasi-GPD matrix element.
The reason for this are the terms proportional to xM. If a
quasidistribution contains such a term, as H̃Qð0Þ, HT;Qð3Þ,
and h1;Qð3Þ do [see Eqs. (32), (37), and (70)], then the
distribution will change sign in the region x < 0 (see for
instance Figs. 2 or 7 or 9). As this is the first model
calculation of quasi-GPDs, it is difficult to speculate
whether this behavior is model-independent. The purely

mathematical origin of this behavior in our model gives no
deeper insight.
The plots in the Figs. 14–19 show the quasi-GPDs in the

ERBL region for ξ ¼ 0.01 and ξ ¼ 0.4, while correspond-
ing plots for HQ and EQ can be found in our previous work
[90]. Generally, for small ξ one finds significant deviations
between the quasi-GPDs and the corresponding standard
GPDs. This situation is the GPD counterpart of the problem
for quasi-PDFs around x ¼ 0. For small ξ, the standard
GPDs rapidly approach zero at x ¼ −ξ in a very narrow
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FIG. 11. Quasi-GPDs H̃T;Qð0Þ and H̃T;Qð3Þ as a function of x for ξ ¼ 0.1 and different values of P3. The standard GPD H̃T is shown for
comparison. The limits of the ERBL region are indicated by vertical dashed lines.
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FIG. 9. Quasi-GPDs HT;Qð0Þ and HT;Qð3Þ as a function of x for ξ ¼ 0.1 and different values of P3. The standard GPD HT is shown for
comparison. The limits of the ERBL region are indicated by vertical dashed lines.
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x-range, whereas the quasi-GPDs are much smoother in
that range. Once ξ is increased, we observe a (much) better
agreement between quasi-GPDs and the standard GPDs for
a large fraction of the ERBL region. To be more quanti-
tative, we look at H̃Qð3Þ as an example, with ξ ¼ 0.01 at the
point x ¼ 0.01. From Fig. 14 we can see that the agreement
is extremely poor for P3 ¼ 4 GeV. For decent agreement
(relative difference less than 20%), one must go to P3

values as high as 18 GeV, which is well beyond the present

reach of lattice QCD. On the other hand, if we instead
choose ξ ¼ 0.4 and focus on the point x ¼ 0.4, one finds
decent agreement (as defined above) with P3 values as
low as 1 GeV which are currently accessible in lattice
QCD. This outcome suggests that lattice calculations could
provide very valuable information in the ERBL region,
provided that the skewness is not too small.
We have also studied the dependence of our results on the

transverse momentum transfer to the hadron j  Δ⊥j or t, where
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FIG. 13. Left panel: relative difference between quasi-GPD HQð0Þ and H as a function of ξ for different values of P3. Right panel:
relative difference between quasi-GPD ξẼQð3Þ and ξẼ as a function of ξ for different values of P3. The relative difference with
P3 ¼ 1 GeV is much larger than what we observe here for P3 ≥ 2 GeV (see for instance Fig. 3).
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Fig. 20 and Fig. 21 show results for HQð0Þ and EQð0Þ,
respectively. Apparently, at least at large x, the discrepancies
get somewhat larger as j  Δ⊥j is increased. However, we also
found that the relative difference as defined in Eq. (77) is
hardly affected at all when j  Δ⊥j gets larger. This statement
holds true for all the other quasi-GPDs. In fact none of the
general conclusions discussed above are affected if j  Δ⊥j is
varied, where we have mostly explored the range 0GeV≤
j  Δ⊥j≤2GeV or 0 ðGeVÞ2≤ jtj≤4 ðGeVÞ2.

D. Exploring different skewness variables

So far we have used the same skewness variable ξ for
both the standard GPDs and the quasi-GPDs. However, in
the case of quasi-GPDs one could in principle consider
different variables to describe the longitudinal momentum
transfer to the hadron. Actually, in the matching calcu-
lations for quasi-GPDs the quantity ξ̃3 ¼ − Δ3

2P3 was used

[106–108]. The two variables are related via ξ̃3 ¼ δξ,
with δ from Eq. (13). We emphasize that this relation is
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FIG. 16. Quasi-GPD HT;Qð0Þ as a function of x in the ERBL region for different values of P3. Left panel: results for ξ ¼ 0.01.
Right panel: results for ξ ¼ 0.4. The standard GPD HT is shown for comparison.

ms=0.7 GeV

mq=0.35 GeV

=0.01

ET

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

–0.010 –0.005 0.005 0.010
x

0.02

0.04

0.06

0.08

ET,Q (0)

ms=0.7 GeV

mq=0.35 GeV

=0.4

ET

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

–0.4 –0.2 0.2 0.4
x

0.01

0.02

0.03

0.04

ET,Q (0)

FIG. 17. Quasi-GPD ET;Qð0Þ as a function of x in the ERBL region for different values of P3. Left panel: results for ξ ¼ 0.01.
Right panel: results for ξ ¼ 0.4. The standard GPD ET is shown for comparison.
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model-independent, which is in contrast to the situation for
the parton momentum fractions kþ

Pþ and k3

P3 for which no
model-independent relation exists. Another possible skew-
ness variable is ξ̃0 ¼ − Δ0

2P0 ¼ ξ
δ, though admittedly ξ̃0 is

somewhat less natural than ξ̃3 due to the dependence of
quasi-GPDs on k3

P3. In any case, the difference between the
three variables is a higher-twist effect that vanishes for

P3 → ∞. For finite P3, however, the differences can be
substantial as illustrated in Fig. 22, and they are largest for
large ξ. Note that as ξ → 1 one has jtj → ∞, and therefore
also δ → ∞. Here we want to explore the impact of the
difference between ξ, ξ̃3, and ξ̃0 on the quasi-GPDs.
In order to calculate quasi-GPDs using ξ̃0=3 one can then

no longer use Eq. (4), but rather needs
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FIG. 19. Quasi-GPD ẼT;Qð0Þ as a function of x in the ERBL region for different values of P3. Left panel: results for ξ ¼ 0.01.
Right panel: results for ξ ¼ 0.4. The standard GPD ẼT is shown for comparison.
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tðξ̃0;  Δ⊥;P3Þ ¼ −
2

ξ̃20

�
ð1 − ξ̃20ÞðP3Þ2 − 2ξ̃20M

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ̃20Þ2ðP3Þ4 − ξ̃20ð4M2 þ  Δ2⊥ÞðP3Þ2

q �
; ð79Þ

tðξ̃3;  Δ⊥;P3Þ ¼ 2

�
ð1 − ξ̃23ÞðP3Þ2 þM2 −

 Δ2⊥
4

�
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ̃23Þ2ðP3Þ4 þ 2ð1þ ξ̃23Þ

�
M2 þ

 Δ2⊥
4

�
ðP3Þ2 þ

�
M2 þ

 Δ2⊥
4

�
2

s
;

ð80Þ

to compute the Mandelstam variable t. For P3 → ∞,
both (79) and (80) reduce to Eq. (4), while non-negligible
numerical differences exist when P3 is finite. From Fig. 22
one finds that the allowed range for ξ̃0 is smaller than [0, 1].
As a consequence, t would become imaginary if in Eq. (79)
one plugs in a value for ξ̃0 that is too large.
In Fig. 23 and Fig. 24 we show the following compar-

isons. The standard GPDs in these figures, which enter the
relative difference R in Eq. (77), are all evaluated for
ξ ¼ 0.4, while the quasi GPDs are calculated using the
three different skewness variables ξ, ξ̃0 and ξ̃3 and choosing
for them in each case again the value 0.4. One observes
considerable differences between the three cases, especially

once P3 is relatively low. Interestingly, in the case of HQð0Þ
the relative difference is smaller for most of the DGLAP
region (in particular, in the range where the GPDs have
their maximum) if one uses ξ̃3 instead of ξ. We find this
pattern for most of the quasi-GPDs, while in the ERBL
region no general pattern exists. The only outliers in that
regard are EQð0Þ, ẼQð0=3Þ and ET;Qð0Þ, where EQð0Þ is shown
in Fig. 23 as a representative case. We also observe that
using the variable ξ̃0 typically gives poorer convergence for
the quasi-GPDs. This feature is again most pronounced in
the range where the GPDs are largest. Our conclusions also
hold for even larger values of ξ, where the numerical
discrepancy between the three skewness variables increases
further—see Fig. 22.
We take a moment to briefly discuss the nature of two

distinct higher-twist effects that we encounter in our model
study. The higher-twist effect associated with the longi-
tudinal momentum transfer to the target (relating ξ̃0=3 to ξ)
is kinematical. Such an effect, expressed through the
parameter δ, is model-independent and simply describes
the relationship between the variables P0 and P3. The
impact of this effect, however, on the individual GPDs
is model-dependent. On the other hand, the higher-twist
effect associated with the longitudinal parton momenta
(relating x̃ to x) is a dynamical one which stems from
modeling of the spectator as an onshell diquark. We note
that these effects are entirely separate from the higher-twist
effects associated with QCD higher-twist operators.
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FIG. 22. Comparison of the skewness variables ξ, ξ̃3 and ξ̃0 for
P3 ¼ 2 GeV and Δ⊥ ¼ j  Δ⊥j ¼ 0 GeV.
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FIG. 21. Quasi-GPD EQð0Þ as a function of x for different values of P3 and two values of Δ⊥ ¼ j  Δ⊥j. Left panel: results for
Δ⊥ ¼ 0 GeV. Right panel: results for Δ⊥ ¼ 2 GeV.
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V. AXIAL-VECTOR DIQUARK RESULTS

It is well known that both a scalar diquark and an axial-
vector diquark are needed to describe the phenomenology
of up quarks and down quarks in the nucleon—see, for
instance, Refs. [116–118]. In this section, we therefore
explore contributions from the axial-vector diquark. We
repeat that we do not aim at a fine-tuned quantitative
description of the standard GPDs, which would be beyond
the scope of the present work, but rather just focus on how
well the quasi-GPDs compare with their corresponding
standard GPDs.
In order to study the impact of the axial-vector diquark,

we examine in detail the effects on the GPD H. For the
scalar diquark, the vertex factor is given by igsγμ, where gs
is the scalar coupling constant, and the propagator is given
by i

ðP−kÞ2−m2
sþiε. In contrast, for the axial-vector diquark the

vertex factor is given by igaffiffi
2

p γμγ5, where ga is the axial vector

coupling constant, and the propagator by idμν

ðP−kÞ2−m2
aþiε,

where dμν and ma are, respectively, the polarization tensor
and mass of the axial-vector diquark. There are several
possible choices for the polarization tensor (see Ref. [113]),
but we choose the definition

dμν ¼ −gμν þ PμPν

m2
a

; ð81Þ

which was analyzed in Ref. [119]. The other choices for the
polarization tensor are explored in Refs. [113,120–122].
We now replace the scalar diquark vertex and propagator in
the light-cone correlation function with the axial vector
diquark vertex and propagator. Note that with this replace-
ment the light-cone correlation function no longer follows
from a Lagrange density, and thus this direct replacement is
also a part of our model for the axial vector diquark. The
result is

Fa½Γ�ðx;ΔÞ ¼ ig2a
4ð2πÞ4

Z
dk−d2  k⊥dμν

ūðp0; λ0Þγμγ5ð=kþ =Δ
2
þmqÞΓð=kþ =Δ

2
−mqÞγνγ5uðp; λÞ

Da
GPD

; ð82Þ
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FIG. 23. Relative difference between HQð0Þ and H as a function of x. The quasi-GPD is evaluated for three different definitions of the
skewness variable. (See text for more details.) Left panel: results for P3 ¼ 1 GeV. Right panel: results for P3 ¼ 2 GeV.
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FIG. 24. Relative difference between EQð0Þ and E as a function of x. The quasi-GPD is evaluated for three different definitions of the
skewness variable. (See text for more details.) Left panel: results for P3 ¼ 1 GeV. Right panel: results for P3 ¼ 2 GeV.
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whereDa
GPD is the same asDGPD with the replacement ms → ma. For the figures below we always choose ga ¼ gs ¼ 1 and

 Δ⊥ ¼ 0 GeV. We also use ma ¼ 1 GeV as our standard value, as when quarks couple to a higher spin-state, the resulting
state tends to have a larger mass [113].
For the standard GPDH, one again uses Γ ¼ γþ. The result for the axial-vector diquark is given by Eq. (16) in our paper

[90] with the replacement NH → Na
H, where

2Na
H ¼

�
2þM2

m2
a
þ t
4m2

a

�
ð  k2⊥ þm2

q þ x2M2Þ þ 2

�
4x − x
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m2
a
þ ð2þ xÞ t

4m2
a

�
mqM

þ ð1þ xÞ
�
2ð1þ xÞ þ ð1 − 3xÞM

2
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þ ð1þ xÞ t

4m2
a

�
t
4
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�
2 −
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þ t
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a

�
ξt
 k⊥ ·  Δ⊥
 Δ2⊥

: ð83Þ

The quasi–GPD correlator for the axial-vector diquark is given by

Fa½Γ�ðx;Δ;P3Þ ¼ ig2a
4ð2πÞ4

Z
dk0d2  k⊥dμν

ūðp0; λ0Þγμγ5ð=kþ =Δ
2
þmqÞΓð=kþ =Δ

2
−mqÞγνγ5uðp; λÞ

Da
GPD

; ð84Þ

and the results for the axial-vector diquark are given by Eq. (27) but with the replacement NHð0=3Þ → Na
Hð0=3Þ where

2

δ
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In Figs. 25 and 26 we show the results obtained for the
quasi-GPDHQ. Comparison with Figs. 6 and 9 in Ref. [90]
shows that the qualitative features of the GPDH remain the

same regardless of the type of diquark. Figure 26 shows
that while convergence in the ERBL region is poor at
extremely small values of ξ, it is reasonable at larger values.
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FIG. 25. Quasi-GPD Ha
Q as a function of x for ξ ¼ 0.1 and different values of P3. Left panel: results for Ha

Qð0Þ. Right panel: results for
Ha

Qð3Þ. The standard GPD Ha is shown for comparison.
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Based on this, we conclude that with the polarization tensor
chosen as in Eq. (81), there are non-negligible contributions
to the GPDs and PDFs from the axial vector diquark.
However, these contributions have the exact same quali-
tative features as those of the scalar diquark contributions,
and thus our conclusions based on the scalar diquark
contributions alone are robust. Our general findings there-
fore also apply for faithful GPDs for up and down quarks in
a spectator model.

VI. MOMENTS OF QUASIDISTRIBUTIONS

Recently, moments of quasi-PDFs have attracted some
attention [41,52,53,55]. Specifically, in Refs. [41,52]
concerns have been raised over divergences of moments
of quasi-PDFs, while Ref. [53] argues that the two
lowest moments are well defined. While the whole
point of exploring quasi-PDFs is to go beyond the
calculation of moments, it can still be instructive to
look at them.
We first consider the lowest moments of quasi-GPDs

and recall also the well-known results for the lowest
moments of the corresponding standard GPDs. Including
a flavor index “q” one finds the model-independent
relations

Z
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In the above equations, F1 is the Dirac form factor, F2 the
Pauli form factor, GA the axial form factor, GP the
pseudoscalar form factor, and F1;T , F2;T and F3;T are
the form factors of the local tensor current [123]. Note that
time-reversal invariance leads to a vanishing first moment
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FIG. 26. Quasi-GPD Ha
Qð0Þ in the ERBL region for different values of P3. Left panel: results for ξ ¼ 0.01. Right panel: results for

ξ ¼ 0.4. The standard GPD Ha is shown for comparison.

BHATTACHARYA, COCUZZA, and METZ PHYS. REV. D 102, 054021 (2020)

054021-22



for ẼT [100]. The results for the moments of the forward
PDFs f1, g1 and h1 can be extracted from Eq. (87), (89) and
(91), respectively. The lowest moment of standard GPDs
depends on t, but does not depend on ξ. The quasi-GPDs
depend in addition on P3, but it is remarkable that also that
dependence drops out in the lowest moment. (A corre-
sponding discussion for f1;Q can be found in Ref. [53].)
However, according to Eqs. (87)–(93) one must divide half
of the quasi-GPDs by the (simple) kinematical factor δ in
order to arrive at this result. (Our numerical results in the
SDM comply with Eqs. (87)–(93).) For P3 ≲ 2 GeV
inclusion of this factor leads to a visible difference for
the numerics. Of course δ describes a higher-twist effect,
and therefore including this factor is in principle a matter of
taste. But the moment analysis suggests that taking into
account δ like in Eqs. (87)–(93) appears natural. (This
suggestion is in line with the definition of quasi-GPDs used
in the very recent matching study in Ref. [108].) In the case
of quasi-PDFs, such a definition implies that f1;Qð0Þ, g1;Qð3Þ
and h1;Qð0Þ are to be divided by δ0 in comparison to what so
far has been used mostly in the literature.
We now turn our attention to the second moment of

quasi-distributions, but consider the vector operator
ψ̄qγμψq only. It is well known that the corresponding local
operators are related to the form factors of the energy
momentum tensor (EMT) Tμν. The EMT, when evaluated
between different hadron states, has five independent
structures [124],

hp0;λ0jTμν;qð0Þjp;λi

¼ ūðp0;λ0Þ
�
PμPν

M
AqðtÞþΔμΔν−gμνΔ2

M
CqðtÞþMgμνC̄qðtÞ

þPfμiσνgαΔα

4M
ðAqðtÞþBqðtÞÞþP½μiσν�αΔα

4M
DqðtÞ

�
uðp;λÞ;

ð94Þ

where Tμν;qð0Þ ¼ ψ̄qð0Þγμ i
2
Dν
↔
ψqð0Þ with Dμ the covariant

derivative, afμbνg ¼aμbνþaνbμ and a½μbν� ¼ aμbν − aνbμ.

The connection between the quasi-GPDs and the form
factors of the EMT is established through the equation

ðP3Þ2
Z

∞

−∞
dx x

Z
∞

−∞

dz3

2π
eixP

3z3hp0; λ0jψ̄q

�
−
z3

2

�
γμ

×WQ

�
−
z
2
;
z
2

�
ψq

�
z3

2

�
jp; λi

����
z0¼0;  z⊥¼  0⊥

¼ hp0; λ0jTμ3;qð0Þjp; λi; ð95Þ

where the index μ can be 0 or 3. In close analogy to the
celebrated expression for the second moment of H þ E,
namely

R
1
−1 dx xðHqðx; ξ; tÞ þ Eqðx; ξ; tÞÞ ¼ AqðtÞ þ BqðtÞ

where Aqð0Þ þ Bqð0Þ ¼ Jq is the total angular momentum
for the quark flavor q [95], one then finds for the quasi-
GPDsZ

∞

−∞
dx x

1

δ
ðHq

Qð0Þðx; ξ; t;P3Þ þ Eq
Qð0Þðx; ξ; t;P3ÞÞ

¼ 1

2
ðδ2 þ 1ÞðAqðtÞ þ BqðtÞÞ þ 1

2
ðδ2 − 1ÞDqðtÞ; ð96Þ

Z
∞

−∞
dx xðHq

Qð3Þðx; ξ; t;P3Þ þ Eq
Qð3Þðx; ξ; t;P3ÞÞ

¼ AqðtÞ þ BqðtÞ: ð97Þ

Note that in Eq. (96) the form factor Dq of the antisym-
metric part of the EMT enters. One can conclude that the
second moment of HQð3Þ þ EQð3Þ is directly related to the
angular momentum of quarks, while forHQð0Þ þ EQð0Þ this
relation contains a higher-twist “contamination.” Our
numerics are in accord with these two equations in the
sense that the left-hand side (lhs) of (97) is independent of
P3 and agrees with what we find from the second moment
of H þ E, while the lhs of (96) does depend on P3 and
converges to AqðtÞ þ BqðtÞ for large P3. In Table I, we
show that the first moments of HQð3Þ and EQð3Þ match with
the first moments of H and E, respectively, and are
independent of P3. We also show that Ji’s spin-sum rule
holds for the γ3 projection regardless of the value of P3.
The conclusions remain the same if one uses γ0 as the
projection.
We now briefly take up the case of the second moment

for f1. In that case one hasZ
1

−1
dx xf1ðxÞ ¼ Aqð0Þ; ð98Þ

and the corresponding equations for the quasi-PDFs read

Z
∞

−∞
dx x

1

δ0
f1;Qð0Þðx;P3Þ ¼ Aqð0Þ; ð99Þ

TABLE I. Left column: first moment ofHQð3Þ for various values
ofP3.Note that

R
dxH ¼ 0.0105741.Middle column: firstmoment

of EQð3Þ for various values of P3. Note that
R
dxE ¼ 0.0136164.

Right column: Ji’s spin-sum rule for the γ3 projection. Note thatR
dxxðH þ EÞ ¼ 0.00904572. All the numerical values have been

obtained for ξ ¼ 0.1 and t ¼ −1ðGeVÞ2.
P3 (GeV)

R
dxHQð3Þ

R
dxEQð3Þ

R
dx xðHQð3Þ þ EQð3ÞÞ

1 0.0105746 0.0136164 0.00904580
2 0.0105743 0.0136165 0.00904583
3 0.0105744 0.0136164 0.00904580
4 0.0105743 0.0136163 0.00904584
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Z
∞

−∞
dx xf1;Qð3Þðx;P3Þ ¼ Aqð0Þ − ðδ20 − 1ÞC̄qð0Þ: ð100Þ

The second moment of the quasi-PDF f1;Qð0Þ is independent
of P3 only if the function is divided by δ0, which agrees with
the situation for the lowest moment. On the other hand, the
second moment of f1;Qð3Þ does depend on P3. Once again,
our numerical results align with these analytical results. We
also find that the third moments of the quasi-PDFs f1;Q, g1;Q
and h1;Q and their corresponding quasi-GPDs (HQ, H̃Q, and
HT;Q) diverge. On the other hand, the third moments of the
quasi-GPDs without forward counterparts do not diverge.
We emphasize again that these moments relations are model-
independent. For the regulated results, the moments are finite
for both the standard and quasidistributions. Of course,
renormalization of the quasidistributions needs to be con-
sidered as well. However, this point is equally relevant for
the moments of the standard GPDs.
The model-independent expressions for the moments of

the quasidistributions are potentially significant as they
may be useful for studying the systematic uncertainties of
results from lattice QCD, especially due to the fact that the
P3-dependence of the moments is either computable or
nonexistent.

VII. SUMMARY

We have presented results for all the quasi-GPDs
corresponding to the eight leading-twist standard GPDs
in the SDM. While the results for the vector quasi-GPDs
HQ and EQ were already included in our previous work
[90], all the other ones are new. For each standard GPD we
have studied two quasi-GPDs. Taking the forward limit,
we have also obtained the quasi-PDFs f1;Q, g1;Q and h1;Q as
byproducts. In the limit P3 → ∞, all quasi-GPDs analyti-
cally reduce to the respective standard GPDs. This outcome
further supports the idea of computing quasi-GPDs in
lattice QCD to get information on standard GPDs. Though
the forward PDFs (in the SDM) are discontinuous at x ¼ 0,
for P3 → ∞ they are exactly reproduced by the corre-
sponding quasi-PDFs. Numerically, in the case of PDFs we
have found significant discrepancies between the quasidis-
tributions and the standard distributions around x ¼ 0 and

x ¼ 1. We have also elaborated on the underlying cause of
these discrepancies. For instance, the disparities near x ¼ 1,
which also exist for quasi-GPDs, are due to higher-twist
effects that grow as x → 1. For GPDs these disparities tend
to increase with an increase of the skewness ξ. On the other
hand, for large ξ we have found quite good agreement
between quasi-GPDs and standard GPDs for a significant
part of the ERBL region. Furthermore, at least in the
DGLAP region we have observed for most quasi-GPDs a
better agreement with the standard GPDs if ξ is replaced by
ξ̃3 ¼ − Δ3

2P3. The difference between ξ and ξ̃3 is a higher-
twist effect. Generally, we have tried to identify robust
results in the SDM. We have therefore studied the depend-
ence of the result on the free parameters—the quark mass
mq, the spectator mass ms, the cutoff for the integration
upon the transverse quark momentum Λ, and the momen-
tum transfer to the hadron. We have also studied the
contributions from the axial diquark and found no quali-
tative differences compared to the scalar diquark. We have
also clarified the behavior of quasi-GPDs under the trans-
formation ξ → −ξ. Moreover, we have derived model-
independent results for the first and second moments of
quasidistributions. It is remarkable that these moments
either do not depend on P3, or their P3-dependence can be
computed. A particularly interesting case is the second
moment of HQ þ EQ, which is related to the total angular
momentum of quarks. The results for the moments suggest
a preferred definition of several quasidistributions.
Moments of quasidistributions might allow one to explore
systematic uncertainties of results in lattice QCD. In
conclusion, we believe it is worthwhile to further study
quasi-GPDs from a conceptual point of view as well as
numerically in lattice QCD and in other models.
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