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The perturbative procedure of matching was proposed to connect parton quasidistributions that are
calculable in lattice QCD to the corresponding light cone distributions which enter physical processes.
Such a matching procedure has so far been limited to the twist-2 distributions. Recently, we addressed the
matching for the twist-3 PDF g7 (x). In this work, we extend our perturbative calculations to the remaining
twist-3 PDFs, e(x) and £ (x). In particular, we discuss the nontrivialities involved in the calculation of the

singular zero-mode contributions for the quasi-PDFs.
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I. INTRODUCTION

The twist-3 parton distribution functions (PDFs) e(x)
and h; (x) were introduced some 30 years ago [1,2]. They
complement the twist-3 PDF g;(x), which enters the cross
section of polarized deep-inelastic lepton-nucleon scatter-
ing (DIS). Twist-3 PDFs are of general interest as they
contain information about quark-gluon-quark correlations
in the nucleon [3,4]. Moreover, a semiclassical relation
between the function e(x) and the (transverse) force acting
on transversely polarized quarks in an unpolarized
nucleon has been reported in Ref. [5]. In Ref. [6], e(x)
was shown to be related to the poorly known hadronic
matrix element of the quark chromomagnetic dipole
moment operator, which is an essential input in the study
of nuclear electric dipole moments (EDMs), and hence
this connection can provide new insight into physics
beyond the standard model. Recently, the role of e(x)
has also been discussed in relation to the mass structure of
hadrons [7] (see, also Ref. [8]). Unlike g;(x), both e(x)
and h; (x) are chiral odd and hence can only show up in
observables with other chiral-odd functions. This feature
makes it challenging to extract information on these
functions from experiment. In Ref. [2], it was argued
that e(x) can be accessed in an unpolarized Drell-Yan

“tug23108 @temple.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020,/102(11)/114025(17)

114025-1

process, but only at the level of twist-4. Soon after, it was
shown that e(x) could also be measured through a
particular twist-3 single-spin asymmetry in semi-inclusive
DIS [9], which has been measured by the HERMES and
CLAS collaborations [10-13]. An alternative process for
addressing e(x) is dihadron production in electron-proton
collisions [14]. A first attempt to extract information about
e(x) through this channel, based on preliminary data from
the CLAS collaboration, can be found in Ref. [15].
A twist-3 double-spin asymmetry in the Drell-Yan process
could be used to address A (x) [1,2,16,17], and other final
states in polarized hadronic collisions could in principle
be considered as well—see, for instance, the discussion in
Refs. [18,19]. But so far no information exists on & (x)
from the experimental side.

A. Delta function singularities in e(x) and k; (x)

An interesting and sometimes controversially discussed
feature of e(x) and &, (x) regards the possible existence of
singular zero-mode (x = 0) contributions, that is, delta-
function singularities (6(x)), and their implication on
sum rules. For the sake of this discussion, we summarize
below the sum rules for the lowest moments of e(x) and
hy(x). By definition, the lowest moment of the flavor-
singlet combination of e(x) gives the pion-nucleon sigma
term o,y [2],

/_ L dx(en(x) + ed(x)) = 2 (1)

1

where,
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m

oy = 3 (Pl O (0) + 7 O O) P
=3y +m), (2)

and My is the nucleon mass. On the basis of rotational
invariance, it was shown that the lowest moments of /; (x)
and the twist-2 transversity &, (x) [16,20] are connected as

j(:ath(x)__j(:awhlgxy 3)

which is the counterpart of the Burkhardt-Cottingham sum
rule that relates g;(x) and the (twist-2) helicity distribution
g1(x) [21].

As mentioned above, there has been discussion on
whether one can get around the presence of the zero
modes. References [22-24] emphasized that a §(x) singu-
larity in e(x) is a consequence of the QCD equation of
motion (EOM). Specifically, one can split e(x) as

= 5% (Pl (0)w?(0)|P) + 27(x) + efh(x),  (4)

ed(x)
where € is a “pure” twist-3 term (which encodes quark-
gluon-quark interactions) and e,, is a current-mass term.
Using the decomposition of Eq. (4) in the above mentioned
sum rule, one finds

/mw@:a

which implies that the first moment of e(x) entirely
receives contribution from the §(x) term. Very recently,
it was argued, again on the grounds of EOM approach, that
the coefficient of 5(x) is zero [25]. A critique on that work
was drawn in Ref. [7], ruling out the possibility of a
cancellation of §(x) in e(x). By reconstructing /4, (x) from
its operator product expanded (OPE) form, Ref. [2] showed
that h;(x) comprised of three terms: a twist-2 term, a
“pure” twist-3 term, and a current-mass term. Through a
foreseeable discontinuity in the integral relation between
h; (x) and the mass term, Ref. [26] indicated the existence
of a possible §(x) in iy (x). The need for such a singularity
was also justified for a compliance with the sum rule
mentioned in Eq. (3) as the twist-2 part, & (x), is continu-
ous at x = 0.

The first attempt to calculate e(x) and h; (x) was made in
the MIT bag model [2,27]. However, no &(x) singularity
was found. Calculations in diquark spectator models, with
form factors, did also not indicate such singularities [28].
A recent study in the same (spectator) model [29], using a
cutoff for the transverse momentum integration instead
of form factors, showed that a §(x) is present in both e(x)
and Ay (x). A 8(x) contribution in e(x) was also found in
nonperturbative calculations in the chiral quark-solition

/mguﬁﬂ, (s)

model (yQSM) [30-33]. Remarkably, the coefficient of
6(x) was shown to be related to the sigma term and
therefore the vacuum quark condensate—a quantity
directly related to the chiral symmetry breaking in the
QCD vacuum. Thus, this important finding demonstrated
that the non-trivial structure of the QCD vacuum, encoded
in the condensate, can show up in a physical observable. To
shed some light into the mechanism responsible for the
singularities in the twist-3 PDFs, an interesting calculation
in the (1 + 1)-dimensional Gross-Neveu model was pre-
sented in Ref. [20]. The origin of §(x) was identified to be
due to the long range quark-quark correlations, which in
fact is the same mechanism responsible for §(x) in e(x) in
#QSM. One-loop perturbative calculations of e(x) and
h;(x) in quark target models [26,29] also indicated the
presence of §(x). Interestingly, in calculations employing
the light-front Hamiltonian approach instead of the
Feynman-diagram approach, as in Refs. [26,29], no such
singularities were observed in e(x) [34] and h;(x) [35],
which can well be due to an insufficiency of the used
approach to deal with zero modes. Generally, it is accepted
that sum rules like in Eq. (3) are violated if &(x) con-
tributions are not included in the twist-3 PDFs [26,29,35].
We note in passing that zero-mode contributions can also
generate discontinuities for higher-twist generalized parton
distributions [29,36], thus endangering factorization of
certain observables in hard exclusive reactions.

B. Accessing PDFs from lattice QCD

By now, we already see that there are various theoretical
statements available in the literature about the §(x) singu-
larities, with some of them being contradictory. Lattice
QCD calculations with appropriate lattice parameters close
to the continuum limit and with large volumes, may be able
to offer some insights on the above matter in the future.
However, the explicit time-dependence of the light cone
PDFs prohibits their direct calculation on Euclidean latti-
ces. In 2013, there was a breakthrough proposal by Ji to
calculate instead parton quasidistributions (quasi-PDFs)
[37,38]. Quasi-PDFs are defined in terms of spatial
correlation functions of fast-moving hadrons, and therefore
can be directly calculated on Euclidean lattices. At large,
but finite, momentum, such correlation functions can be
matched to their respective light cone PDFs prior to the UV
renormalization. On the lattice, one is constrained to apply
the UV renormalization before taking the infinite momen-
tum limit. The issue of the limits leads to differences in the
UV behavior between the light cone PDFs and the quasi-
PDFs. The key underlying idea of this approach is that
the nonperturbative physics should be the same for the
light cone and the quasi-PDFs. The differences in the UV
behavior can be calculated and rectified perturbatively
in large momentum effective theory (LaMET), through a
procedure known as matching [39-41]. Apart from the
quasi-PDF approach as a way to directly access the
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x-dependence of the PDFs in lattice QCD, several other
ideas have been put forth [42-53].

In the last few years, there has been significant
advances, both in theory and in lattice QCD. This includes
the proof of renormalizability [54-56], the development
of a renormalization prescription [57,58], which was
extensively implemented on the lattice [59-66]. A pleth-
ora of other aspects regarding quasi-PDFs and Euclidean
correlators in general have also been extensively studied
[67-94]. The first lattice results for quasi-PDFs and other
related quantities constitute an important development in
this field [49,58,59,62,95-121]. Additionally, the verifi-
cation of convergence of quasi-PDFs to their light cone
counterparts in model calculations further substantiate
these quasidistributions to be reliable tools to study the
light cone PDFs [122-134]. We refer to [135-139] for
an up-to-date compendium of progress in the field of
studying light cone PDFs through Euclidean correlators in
lattice QCD.

The procedure of matching has largely been explored for
the twist-2 distribution functions [39-41,54,67,80,81,91,
140-146]. Recently, we computed the first ever one-loop
matching equations for the twist-3 PDF g;(x) [147], which
we implemented on lattice data in Ref. [148]. Here, we
extend our work, for the case of e(x) and Ay (x).
Specifically, we calculate the light cone PDFs e(x) and
hy (x), and their quasi-PDFs counterparts, e and 4 o, in a
quark target to one-loop order in perturbative QCD
(pQCD). The ultimate goal of this work is to obtain the
appropriate matching equations. We anticipate that a full
matching formula will also involve mixing with quark-
gluon-quark correlators. In the present work, we do not
consider such mixing.

We organize the manuscript as follows: In Sec. IT we
provide the definition of the light cone PDFs e(x) and
hy(x), and of the corresponding quasi-PDFs eq(x) and
hy o(x). In Sec. 111, we present one-loop pQCD results for
e(x) (eq(x)) and hy(x) (ho(x)) in the Feynman gauge
with three different IR regulators: nonzero gluon mass,
nonzero quark mass and dimensional regularization (DR).
Section IV addresses matching for e(x) and h; (x) in the
MS scheme. We summarize our results in Sec. V.

II. DEFINITIONS

We start by recalling the definition of twist-3 light cone
PDFs e(x) and h;(x) for quarks. Generally, light cone
PDFs are defined through the correlation function'

'For a generic four-vector v we denote the Minkowski
components by (1)0, vl 02, v3) and the light cone components
by (v, v7, 7, ), with v = %(1}0 +03), 07 = %(’UO — %) and

v, = (v',v?).

1 [dz7 .
e =1 [ o5
T

X w<§>|l’, S)

Here I' denotes a generic gamma matrix. Color gauge
invariance of this bilocal quark-quark correlator is enforced
by the Wilson line

Z Z
w(-33)

—PGXP<—i9s /;Tdy‘A*(O*,y‘,(l)) (7)

ZJr =0.ZL :()L

7t :O,ELZOL

where P is a path-ordered exponential depending on the
plus-component of the gluon field. The hadron is charac-
terized by its 4-momentum P and a covariant spin vector S
which can be written as

Pt M

ﬁ’_AF’SL>’ (8)

SH=(S+.57.5,) = </1
where 4 is the helicity of the hadron and M is its mass. The
spin vector satisfies the relation P-S = 0 by definition.
The twist-3 light cone PDFs e(x) and h;(x) are then
defined as

1 M
ol = FM(P’ S)1lu(P, S)e(x) = Fe(x), )
Plic™rs] — LQ(P S)ictysu(P, S)hy(x) = M/”lL(X)
2Pt ’ P ’
(10)

where u(P,S) (a(P,S)) is the spinor for the incoming
(outgoing) hadron, o* = £ (y*y* — y*y*) and ys is the usual
matrix which anticommutes with any other Dirac matrix.

We now turn to the quasi-PDFs which are defined
through the spatial correlation function [37,38]

[r] . p3 1 [dZ ik- _ Z 7z
® P == [ T eikzp “S)we (=22
Q (x, 5 P) 2/ 2w ™ ’S|y/< 2) WQ( 2’2)

xl,/<5)P,S> , (11)
2 ZOIO,leaL
with the Wilson line
7z
(4
¢ 2 2 ZOZO,ZL:(SL

3

:Pexp(—igs /jdy3A3(0,(_)'L,y3)). (12)

2
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k4 ek
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(1a) (1b) (

One-loop real diagrams contributing to the light cone PDFs e(x) and /, (x), and the quasi-PDFs e and £, q.

FIG. 1.

2a

T

1c) (1d)

&

2c

FIG.2. One-loop virtual diagrams contributing to the light cone PDFs ¢(x) and %, (x), and the quasi-PDFs e, and %, . The Hermitian

conjugate diagrams of (2a) and (2d) have not been shown.

The spin vector in this case is written as

P s PO) (13)

St = (80.8,.8) = (1—.5,.2—).
(50508 = (475100

The quasi-PDFs of interest are then defined as
N M i3 M
Oy = eq(n P ©g = b (P (14)

The definitions of the quasi-PDFs are such that their lowest
moments are P> independent [130],

/ dxeq(x; P*) = / dxe(x),

/dth_Q(x;P3) :/dth(x). (15)

III. ONE-LOOP RESULTS

In this section, we calculate the perturbative corrections
to the light cone PDFs and the quasi-PDFs to one-loop
order. In principle, one can do these calculations in any
gauge and the final result should be independent of the

|

gauge. Here, we choose to work in the Feynman gauge for
which the contributing real and virtual diagrams are shown
in Figs. 1 and 2, respectively. We regulate the infrared (IR)
divergences by making use of 3 different schemes: nonzero
parton mass regulations (m, #0 for gluon mass and
m, # 0 for quark mass) and dimensional regularization
(DR). The ultraviolet (UV) divergences in the problem have
consistently been tackled with DR. The individual dia-
grams have additional divergences at x = 1. However, the
combination of real and virtual corrections [which are
proportional to (1 — x)] is well-defined. Since our com-
putations are at the level of the partons (these results are
prior to embedding them into a full correlator picture), we
use m, and p (= xP) as the mass and 4-momentum for the
(quark) target.

A. Results for e(x)

In this subsection, we focus on the light cone PDF e(x)
and its corresponding quasi-PDF eg(x).

1. Light cone PDF

Let us discuss first the computation of the real diagrams.
The one-loop correction for Fig. 1(a) is calculated as

+

p 4

Ma p1a) () = — 19" Cr™ G / o dk Tr[(p + my)y* (K + mg) L (K + my)r"]
- oo (2m)" (K* — mZ + ie)*((p — k)* — m2 + ie)

kt 1
5<x‘p+>p+’ (16)

where g denotes the coupling for the quark-gluon-quark vertex and Cr = 4/3 is the color factor. The integrals in Eq. (16)
have been analytically continued to n = 4 — 2¢ dimensions to regulate the divergences present otherwise. Here ¢ is the DR
regulator. If € is used for the UV divergences, then ¢ — eyy > 0 (and the corresponding subtraction scale is y — pyy > 0),
while if it is used for the IR divergences then ¢ — eg < 0 (and p — pr > 0). Trace algebra simplifies Eq. (16) to

'ZC 2e 00
e19) () = - T ZFH s / d"2k , dk~dk*

(2—-n)2p-k+n(k* +m3) 5< _E) 1
2x)" . (K —m2+ie)(p—kF—m2+ie) \

i)
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We will use the following abbreviation to present our one-
loop results

1
PUV = —+ln4ﬂ—y5,
€uv

and similarly P for the IR. After regulating UV and IR
divergences in the k, integrals, Eq. (17) for m, # 0 case
can be written as

e, = ) + el 0] 8

9

where the “singular” part of the light cone PDF e(x)
(denoted as e)) is given by

= air 5(x) (PUV + 1n’:;%’ - 1),
(1a) (x) _ mg q

a,Cp 'M%JV
= %550(x) (PUV - Pr + 111@)»

(19)

€IR

and the “canonical” (or the regular) part of the light cone
PDF e(x) (denoted as e()) is given by

a,Cr :u%JV l—x
= 1 —_— - . 2
2r (PUV + nxmg x (20)

my

It is interesting to discuss the above results. We divided
the result into two distinct parts: (a) singular, and (b) canoni-
cal. The singular part of the PDF has a zero-mode &(x)
contribution. Such a singularity originates from a term
proportional to p -k [see the first term in Eq. (17)],
which can be used to cancel the gluon propagator leading
to [29,149]

1 in o(x
(2—n)/dk‘m— (2—n)m%.
1)

The k, integral in Eq. (21) has a UV divergence which is
regulated by DR, and the coefficient of this integral is such
that the UV pole 1/eyy allows for a §(x) contribution in
Egq. (19). For m, # 0, one should in principle set the quark
mass term in Eq. (21) to zero. In doing so, we confront an
IR divergence in the limit kK, — 0. As we pointed out in
Ref. [147], this IR divergence is left unattended when one
works with a nonzero gluon mass, and this is a new feature
appearing at the level of twist-3. In fact, this insufficiency
of the gluon mass as an IR regulator is only confined to this
specific singular zero-mode term present in Fig. 1(a).
For practical reasons, we suggest(ed) to handle the IR
divergence by either retaining the quark mass term in
Eq. (21) or by using DR. For g7, the two methods lead to
two (qualitatively) different answers, namely, the &(x)
drops out when using DR [147]. For e(x), as well as for
hy (x), the coefficient of the k| integral in Eq. (21) is such
that, regardless of the IR scheme, the §(x) term survives.
There is another crucial difference between the &(x)
appearing here versus those in gy. The §(x) for e(x) and
hy(x) comes in with a prefactor that has an explicit
dependence on the IR pole. On the other hand, the prefactor
of 5(x) for g is IR-finite. Note that the two results for the
singular part of e(x) in Eq. (19) correspond to the two
options of working with either m, # 0, or DR for the k;
integral in Eq. (21). For the canonical part of e(x), m, # 0
is sufficient to regulate the IR divergences and, therefore,
we have a unique result in Eq. (20). With m, # 0 and DR
for the IR, one obtains

1 1

), = ey (x)] el )|
a,Cp ”%JV a,Cr ﬂ%v 2
= 1) In—-1 1
2r (x)<PUV+ nmé T Pov ¥ n(l—x)zmé 1-x)°
a la la

e19(x)] 4 = () (¥)]  + e (%)

(s) e (c) .

a,Cr Ky a;,Cr Hiv
= o - In——+ - In—~ ). 22
s (x) (PUV Pr +In 2, + o Puyv —Pr +In 2 (22)
Therefore, for all three IR regulators, the §(x) contributes.
The diagram of Fig. 1(b) is calculated as
Ma y(1v) (x) =- e /°° - Telly + m )10k + 7)) o x— E L (23)
pt 4 —wo (270)" (v.(p — k) + ie) (K — m} + ie)((p — k)* — m] + ie) pt)pt

Here, v is defined such that v> = 0 and v -a = a™ for any four-vector a*. The results for the three IR regulators are
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Cr 1+4+x U2
(1b) _ %brF 1n oy 2%
e (X) my o7z 2<1 _ X) (PUV + nxm§> ’ ( )
Cr 14+x U2
(1b) _ &b 1 TX In—Hov_
e @, 2z 2(1 —x) <PUV N n(l —x)2m31>’
(25)

_o,Cp 1+x
w27 2(1 —x)

2
") (x)] (PUV —Pr + lnﬂLz\])'

HiR
(26)

The diagram of Fig. I(c) gives the same result as the
one of Fig. 1(b). For the light cone PDFs, the diagram of
Fig. 1(d) drops out because the results are proportional
to v2.

We now proceed with the computation of the virtual
diagrams. The quark self-energy diagram in Fig. 2(a) is
independent of the Dirac structure and we presented it in
Ref. [147]. We quote the results here for the sake of
completeness,

a,C ! Uz
e®(x)[,, = - zﬂFA dyy(Puv—Hnﬁ—l), (27)
g

a,C !
0),, = =5 [Tay(i-)

2 2
Hiv l+y
X | Pyyv +In - >,
( (1=y)Pmg  (1-y)?

(28)
a,Cp (1 Il
e (x)|e, = —WFA dyy <PUV - Pr + ln£>,
(29)

where y is the (integrated) loop momentum fraction.

*For convenience of notation, in our results we use that p3=(p*)>

1
X

37\ —2¢ -
P R (1—eR)
C(elR) <ﬂIR> ‘x‘l—zcm

The initial expression for the diagrams of Figs. 2(b)
and 2(c), is the same as the ones of Figs. 1(b) and 1(c),
respectively, modulo an overall sign (see Ref. [147]).
Therefore the results are

Cr [1 14y ud
(2b) Bt A P N 1n v
(30)
Cr [1 I+y
(2b) _ _&br Ty
Dy, =~ 5E [Ny
( ”%JV
x ([ Puv +1n4>, (31)
(1—=y)*mg
asCF 1 1 +y
e(zb)(x)|€IR = - 27[ /) dy 2(1 _ y)
2
X (PUV —Pr +1n %) (32)
R

Finally, the diagram of Fig. 2(d) does not contribute, similar
to the corresponding real diagram of Fig. 1(d). All these
results for the virtual diagrams are to be understood with an
overall prefactor of (1 —x) which we have left out for
simplicity.

2. Quasi-PDF

Just as in the light cone case, the result for Fig. 1(a) can
be divided into a singular and a canonical part. In this
section, we focus mostly on discussing the subtleties
involved in the treatment/calculation of the singular part
for the quasi-PDFs, and we refer to Ref. [147] for more
details on the calculation of the canonical part and the other
diagrams. The term which generates a §(x) in the light cone
PDF e(x) gives rise to the following structure for the quasi-
PDF eq(x)™:

\/ X pi+m?

x>1
r -1<x<1
x < -1,

x> 1

-1<x<1

x < -1,

2
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where

7;;1 /2—€R

(2m)2wI[1/2 = erg]”

Cler) = (34)

Note that we call the terms in Eq. (33) “singular” because,
as we shall see in the following, they exhibit an IR
singularity at x = 0. However, these terms are well-
behaved in other regions of x. Recall that the gluon mass
does not enter into the calculation of the singular compo-
nents of the PDFs. DR for the k* component in 1 —2¢
dimensions leads to extra factors like C(err) as shown in
Eq. (34). The x-dependent results for the real diagrams for
the quasi-PDFs are UV finite. (The same UV divergences
which stem from the k, integrals for the light cone PDFs
show up in the x-integrals of the above results for the
quasi-PDFs.) Therefore, at the level of extracting the
x-dependence, one can already perform a Taylor expan-
sion in powers of the UV regulator, that is eyy ~ 0 for the
regions |x| > 1. One can do this expansion in powers of
the IR regulator, that is mé / p% =~ 0 or ey ~ 0, for instance
for the region —1 < x < 1, but one cannot do so at the
specific point of x = 0. If we would do that, we would
arrive at the result eq() ~ (1/x). This generates a mis-
leading result and one arrives at the incorrect conclusion
that the functional forms for the IR singularities do
not agree between the light cone e and quasi-PDF
eq(s)- This is because for the light cone result one has the
IR singularity associated with the delta function e ~
8(x) Inm3 or e() ~ 5(x)1/erg, while for the quasi-PDF the
IR singularity is reflected in the structure eq) ~ (1/x) as
x — 0. A conceptually correct approach is to hold off
with this Taylor expansion in powers of the IR regulator
for the singular terms until we have carefully isolated the
IR singularity at x = 0.

We first take up the m, # 0 case. In the following,

; 1 ; = 3
we integrate by with »n=m,/p°,

interval [—1, 1] with a test function f(x) that is finite at
the origin,

over x in the

W, W) - 0)
\/x 7 Ja Vx4

b (f(x) = £(0)

v VT
)

NS

(35)

For the first and the second terms, we perform an expansion
about = 0. For the third term, we first integrate and
then expand the result about # ~ 0. Doing these steps, we
arrive at

(f(x) = f(0))

[ =i
4
+ £(0) <ln?> + O(n?). (36)

We now make the identifications

/_‘;dxw:/_?dﬁ(x){i] - (37)

—X

Aldx(f(x);f(‘)))zfdxf(x) LICLM, (38)

based on the definition of plus-functions at x = 0, that is,

i
x| +[0]

— oot = ) tim

Ro(lx])

me _p) 1nﬂ} |
(39)

where —1 < x < 1 and § > 0. (Note that the right-hand side
of Eq. (39) is an exact mathematical way of computing plus-
functions at x = 0 whose general definition has been shown
in Eq. (44). In this context, we also refer to Eq. (45) and the
paragraph thereafter.) Making these replacements, we see
that Eq. (36) can be cast as

/ \/m / dfx[ L[O]
n /_ Axf()3(x) (m%) +O@r).
(40)

Since Eq. (40) holds for any arbitrary test function in the
interval [—1, 1], we arrive at the identity

(1 —x)0(1 + x)

NeEr

We can extend the same logic for the case of DR. One
can readily verify the identity

— 5(x) (m%) +FRy(x) + O, (41)

O(1 —x)0(1 +x)
|x|1+2€IR -

SO S B

€1IR =0 n!

)-
(42)

where
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R, (1)) = | ™K
X =
" |x| +[0]

= 0((x)o(1 - x| lim [9(|x| _p ln’;||x|
+8(|x| = p) 1:": lﬂ] , (43)

with # > 0. This point has been addressed in Ref. [41] for
x > 0. The expression in Eq. (43) is therefore a straightfor-
ward generalization of the relevant identity [see Eq. (C.2)]
of Ref. [41] in order to cover also the region of negative x.
A simple way of understanding Eq. (43) is through the
standard definition of plus-functions. A plus-function at
x = 0, for instance in the interval [0, 1], is defined as

()]0 = 0()6(1 — x)lim [e<x _Af)

p—0
5= p) /ﬂ 1 dyf(y)] . (44)

Therefore, for the specific case when the function is 1/x!*¢,
Eq. (44) right away provides

1
X

1 a,Cr
ey (), =% < 5(x) In
_1
1 X
eéé))(x) - 1

1

X

As discussed in Sec. IIT A 1, there are two results because m

—6(x—p) <—_1 +£ _Zeﬂ . @3

A small-e¢ expansion of Eq. (45) readily shows its
equivalence with Eq. (43). We refer to Ref. [150] where
general relations like in Eq. (45) were derived for
different x-intervals, and various other important proper-
ties of plus-functions were outlined. For our purpose,
the first two nontrivial terms in the expansion of e
matter in Eq. (42). Notice that the finite terms entering
O(n°) and O(el) are exactly the same for the two IR
regulators.
Now, for m, # 0, the result for e can be written as

en (x) o () + e ()| (46)

Using Eq. (41) and Eq. (42) in Eq. (33), we obtain the
following expressions for the singular terms for eg

x> 1

+Ry(]x]) -1T<x<1

x < -1,

x> 1 (47)

i 2
el =5 3 =000 (P = 1= m3)  Rla) 1 <x <1

x < —1.

# 0 is insufficient to regulate the IR divergence present in the

singular terms. It is straightforward to arrive at the following result for the canonical part of e with m, # 0:

IHTI x> 1
el1® (x)| = % Cr InZ 12093 _ 1= 0<x<1 (43)
QM 2 m; x
In*=L x<0
For m, # 0 and DR, we find
la la la
0" ()], = equ)], + 0|,
L x> 1 In 2 x> 1
C 2 x
:“; Lo 4 Ry(lxl) ~1<x <1+ -2 0<x<l (49)
JT q q
-1 x< -1 In>=t x <0,
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@], = ot @], + o
% x>1 In =% x> 1
_ “;iF —5() (PIR 1 -1nj—§j> +Ry(x]) ~T<x<l+{ -Pr+m®8 g<xa1 (50)
_1 x < -1 ln%l x<0.

Finally, we want to emphasize that Eq. (41) and Eq. (42) are to be understood in the sense of a distribution because §(x) and
[...] [0 have a meaning under integrals only. In this sense, the s1ngular terms 1/4/x> + 5 and 1/|x|'*2® present in the
quasi-PDF eq can be re-written so that, to leading order in O(5?) and O(eR), they reproduce exactly the same effect as
the terms &(x) In#? or §(x)1 /e present in the light cone PDF ;). With these results, one infers an exact agreement in the

IR-pole structures between the light cone e() (e(c )) and the quasi-PDF eqq) (eq(c))-
The contribution from the diagram of Fig. 1(b) is given by
In % x>1
a,Cr 1+x 4(1-x
e )| = ~2”F2<1_x> In mg)”w O<x<l (51)
| m=l x <o,
In % x> 1
1b a,Cp 1 +x 4x
e (x) = 2n =) Ing—ps 0<x<l (52)
Inx=L x <0,
In % x>1
e(lb)(x) _aCp T4x _Pp +1HM 0<x<1 (53)
Q €IR 2n 2(1 —x) IR ®
ln)‘—;1 x < 0.

The diagram of Fig. 1(c) gives the same result as above. Unlike the case of light cone PDFs, the diagram of Fig. 1(d) is
nonvanishing for the quasi-PDFs and the result is given by

ﬁ x> 1
(1d) a,Cp 1
Ll x <0,

with the result being independent of the IR regulator.
We now take up the virtual diagrams. The quark self-energy diagram, which has been computed in our previous
work [147], is given by

y~2euv (y ln%— l) y>1
3\ —2eyy
=% (1= a)Cleon) () [ad s s 1-n) o<y <1 9

Huv
(—y)~2ewv (y lny% + 1)

y <0,
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(L—epy 2o ((1=y) I +1)  y>1
2e 4yp?
" . 3\ 2 v (1= epy)(1 = y) In 22
g ), ==t clen) (L) [y (56)
m, 2 Huv 2y?=5y+1 cuv | 4y
“(I—ew)* - (1-%) 5 0<y<l
(1= eon) ()2 (1= m5t-1) y <o,
y 2wy (yln 1) y>1
(2a) a,Cr P3 ~Zewv e (1 ))P3
eq ()| =- s (1 —eyv)Cleuy) oy dyq y ”V( YPRr +yIn= +1- ) 0<y<l (57)
€IR Uv
(—y)~2e0v (y lny);,1 + 1) y <0,

where C(eyy) is the same as in Eq. (34), but with the replacement ;g — eyy and with the understanding that ey > 0. The
(integrated) loop momentum fraction y is defined through the relation k* = yp3. A detailed discussion of these self-energy
results can be found in Ref. [147].

For the diagram of Fig. 2(b) we find

y~2euv lnL y>1
3\ —2¢
(2b) a,Cp p w / l+y ey 1. A01=y) P
S C - d uv ln— 0<y<l 58
Q () - 2 o) (ﬂUV) 21—y g g (58)
(—y)~2ewv lny’%l y <0,
y~2euv In 3% y>1
(2b) a,Crp p? o\ 2w / 1+y 2 4yp3
=- C — d uv ] O0<y<l1 59
), = et (o yaresd gt 0y (59)
()2 msl v <o,
y~2euv lny%1 y>1
(2b) a,Cr PP\ ew / I+y ) 4y(1=y)p3
— C £ d W —-Pr+h—=] 0<y<] 60
eq (%) " o (euv) <MUV )’2(1 =) y IR 7z y (60)
(—y)~2ewv lny’%1 y <0,
and the diagram in Fig. 2(c) gives the exact same result.
Finally, we find the following for the diagram in Fig. 2(d)
. y—2€UV IL—y y > 1
C —2¢
egd)(x) - -5 FC(€UV)<Iup ) Uv/dy y_zewy%l 0<y<l (61)
uv

(=y)Pwv sk vy <.

All of the y integrals appearing in the virtual diagrams are logarithmically divergent. These UV divergences can be
renormalized in the MS scheme.
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B. Results for h;
In this subsection, we present results for the light cone PDF £, (x) and the quasi-PDF A g (x).

1. Light cone PDF

The contribution from the diagram of Fig. 1(a) can be obtained by making the replacement of 1 — ict~ys in Eq. (16).
The resulting expressions with the three IR regulators are shown below.
For m, # 0:

: (62)

where the singular part of the light cone PDF h; (x) is

— 8y (PUV T infy - 1>,

B (x) = q " (63)
2

= -5 5(x) <PUV —Pr + IH’:JTV>,

and the canonical part of the light cone PDF &, (x) is

(1a) _a,Cr pov | (1=x)(1-2x)
hL(c) ()C) m, = o <7)UV + lnx—’ng + —x . (64)
For m, # 0 and DR for the IR:
1 1 1
Y| =]+ G|
a,Cr Hoy a,Crp Hov 1+x
= — 1) In—- -1 In—————+2x-3—
7 (X)(Puv+ nmé + o PUV+ n(l—x)2m§+ X 1—x s
la la la
B0 =hS@] +alE @
(s) e (c) .
€IR
a,Cp M%v a,Cr ﬂ%v
= —75()6) (PUV - PIR + IHK + o PUV - PIR + IHE . (65)

The discussions for the diagram in Fig. 1(a) made in the context of e(x) carries over to A, (x). Note that the singular terms
for hy (x) (hy o) and e(x) (eq) are the same except for an overall sign. After making the replacement of 1 — ic™ys in
Eq. (23), we find that the results for the diagrams shown in Figs. 1(b) and 1(c) are the same as that of e(x). This is due to the
relevant trace algebra. As a consequence, the results of all the virtual diagrams for A (x) are the same as that of e(x).

2. Quasi-PDF

The results for &, o with the three IR regulators are shown below.
For m, # 0 we have

la la la
()] =AY @) + e @) (66)

m

where, for the singular part of hL.Q, we find
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—% x>1
1 a,Cr 4p?
' (%) - 34 =800 IS —Ro(|x) ~1<x <1
(19) % x < -1,
a
h.q () = 1 x> 1 ©7)
1 a,Cr 4 %
' () =] o) <7>1R -1- ln?%) ~Ro(lx]) -l<x<1
% x < -1,
and for the canonical part of /1, o we find
o x>1
la a,C (1=0p} | 1o
Mo ()], =", MR 0<x<] (68)
In>=t x < 0.
For m, # 0 and DR, we obtain
la la la
Ky (x) = h'o g () i + i o () N
-1 x> 1 In 2 x> 1
c x
:% 5 —Ry(]) ~1<x<l+{I 2 0<x<l (69)
T q q
L x < -1 In>=t x <0,
la la la
M|, = hlgw®)|, +hilen®|
-1 x> 1 In %5 x> 1
C X(1—X
:a}’ F 5(x)<771R—1—1n1%%) —R0(|x|) -1<x<1 + (—PIR+2(1—X)+IH4(1”—2)[7§) O0<x<l1
T IR IR

1
X

x< -1

x=1
In*

x < 0.

(70)

The other diagrams yield the same results as for e, (see corresponding comment in previous subsection).

IV. ONE-LOOP MATCHING COEFFICIENT IN MS

Schematically, the relation between light cone and quasi-
PDFs is expressed through the following factorization
theorem up to power corrections that are suppressed with
respect to the hadron momentum,

aer) = [ ffy—ﬁc@)q@HO(é). )

In Eq. (71), the symbol g(g) stands for a quasi-PDF (light
cone PDF) of a parton inside a hadron, while C denotes the
matching coefficient. Like we already pointed out in the
Introduction, we expect mixing with quark-gluon-quark

operators, even for the quark nonsinglet case. However, in
this work we do not consider such mixing. The key feature of
the factorization-type formula in Eq. (71) is the IR-finiteness
of the matching coefficient C. To derive the first-order
correction to the matching coefficient, one applies a pertur-
bative expansion of Eq. (71) in powers of «ay, leading to

Cx) = 8(1 = x) + % EP(x) = ()]
+%5(1 _)[f —TI. (72)

In Eq. (72), T (I') and IT (I1) are the real corrections and
the virtual corrections for the light cone (quasi-) PDFs,
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respectively. Equation (72) implies that the matching
coefficient, at the lowest nontrivial order in perturbation
theory, is given by the difference between one-loop results
for the quasi-PDFs and the light cone PDFs. Matching, in
conjunction with proper renormalization, corrects for the
different UV behavior between the light cone and quasidis-
tributions such that in the limit of P3 — oo one is able to
recover the light cone distributions.

The formalism of the matching relies on the fact that
the IR behavior of the light cone and quasidistributions
are the same. Previous papers on matching calculations
for the twist-2 distributions have confirmed this [39-41,54,
67,80,81,91,140-146]. In Ref. [147], where we addressed
the one-loop matching formula for gy, we also found an
agreement between the IR behavior of the light cone PDF
gr and the quasi-PDF gy . In this work, we confirm that the
IR poles exactly match between e (h;) and eq (hy, o) for all
three IR regulators and for all one-loop diagrams. Finding
this feature required extensive calculations. Also a non-
trivial analysis was needed in the case of the singular term
as discussed above in detail.

In the following, we take a brief look at the difference
between one-loop results for the quasi-PDFs and the light
|

cone PDFs. This procedure gives the matching coefficient.
For the purpose of this discussion, we take the MS
renormalized expressions of the light cone results. As
for quasi-PDFs, we renormalize the virtual diagram results
in the same scheme, leaving the real diagram results as it is.
The basics steps to do this exercise have been outlined in
Ref. [147]. The difference between one-loop results for
eq(x) (hpq) and e(x) (hy) in the MS scheme can be
represented in the compact form

2 2 2
(e Zost—g 1 e (e Lo (a2
Cu (5’ p2> =0 =9+ G (5’ p%) s (5’ p%)’

3
(73)

where the first term corresponds to the tree-level distribu-
tions, while the second and the third terms are the
differences from the singular and canonical parts of the
distributions, respectively.

The difference between eq(x) and e(x) from the singular
terms reads

% E>1
S 2 SC :
Chrg <fzg> =SS (1) +Ry(E) —1<g<1 (74)
_é &< —1.

The above equation reaffirms that there is an exact agreement in the IR poles for the singular terms between the two
distributions. Moreover, both m,, # 0 and DR for the IR provide the very same matching coefficient. From a practical point
of view, this is a very important outcome. In Eq. (74), we have done a change of variable x — £ in order to reserve x as the
variable signifying the momentum fraction carried by quarks inside the hadrons, that is p* = xP3. The difference between
eq(x) and e(x) from the canonical terms is

IR e e B
2
© (. H a;,Cp [L 45(1—§)P2_L}
CMS<§,p%> = ropln=—r— =1 0<¢<l1
—1
[1zfln%_%—é+i§ LT €<0
asCF /’tz
—0(1 — In— ), 75
50010 (n ) (75)

where the plus-prescription |...], has been defined at £ = 1. The above equation reiterates that there is an exact agreement
in the IR poles for the canonical terms of the distributions. Furthermore, just as in the case of the singular terms, this result is
the same for all three IR regulators.

We now turn our attention to the difference between the one-loop results for 4, (x) and ; (x) in the MS. For the singular
term we obtain a unique result,
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E>1

1) =Ro(le) —1<£<1 (76)

€<_17

and for the canonical term, which is also independent of the IR regulator, we get

2 1pf o1 1

L-gln§—1+1—5+éL :
2

© (K _&Cr ) [ 2 40-0p3

s <§’_2> = [

I ST B
{1—5ln¢ 1—5+1—5] (=

We believe that the above results are useful, but we also
repeat that operator mixing should be taken into account.
As we elaborated in Ref. [147], the problem of working
with MS matching coefficients is that the convolution
integrals involved in the matching formula are divergent.
The divergences can be successfully removed through
an extra subtraction, for instance in the MMS scheme
[113,147].

V. SUMMARY

In this paper, we present a calculation of the twist-3 light
cone PDFs e(x) and h;(x) and their quasi-PDF counter-
parts eq(x) and Ay g (x) for a quark target to one-loop order
in perturbation theory. We have regulated the IR divergen-
ces in 3 different ways: nonzero parton mass regulations,
that is m, # 0 and m, # 0, and DR. The UV divergences
are regulated using DR.

Throughout our work, we point out the main differences
between these results and the ones from our previous work
on gr(x) [147]. Specifically, we discuss the role played by
singular zero-mode contributions in the matching for e(x)
and &y (x). While a 6(x) may or may not arise in gr(x)
depending upon the IR scheme, it is bound to be present in
e(x) and Ay (x). Even more importantly, the §(x) in e(x)
and Ay (x) is accompanied by prefactors that exhibit an IR
divergence. The quasi-PDFs eq(x) and h; o(x) have a
seemingly different-looking IR-pole structure at x = 0.
However, we have shown that it is possible, in the sense
of a distribution, to cast the singular terms for the quasi-
PDFs into a §(x) term whose prefactors exactly agree with

+—5(1—§)<1+1

E>1
2(1—5)—%_5}+ 0<é<l
E<O
+
2

|

those from the light cone PDFs. This is a nontrivial point
and we have provided a formal proof of this for the IR
regulators m, # 0 and DR. Moreover, we find that dia-
gram-by-diagram there is an exact agreement in the IR
poles between e(x) and eq(x) as well as iy (x) and iy o(x).
This leads to the important conclusion that matching is
possible for e(x) and h;(x). Explicit results for the
matching coefficients have been extracted in the MS
scheme. We repeat that complete matching equations for
twist-3 PDFs most likely involve operator mixing, which
we did not consider in the present work. However, we
believe that our results are very useful and provide an
important step toward explicitly establishing the quasi-PDF
approach beyond leading twist.
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